[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP3781794B1 - Ensemble d'anneau de turbine avec étanchéité inter-secteurs - Google Patents

Ensemble d'anneau de turbine avec étanchéité inter-secteurs Download PDF

Info

Publication number
EP3781794B1
EP3781794B1 EP19722665.7A EP19722665A EP3781794B1 EP 3781794 B1 EP3781794 B1 EP 3781794B1 EP 19722665 A EP19722665 A EP 19722665A EP 3781794 B1 EP3781794 B1 EP 3781794B1
Authority
EP
European Patent Office
Prior art keywords
groove
sealing
ring
downstream
upstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19722665.7A
Other languages
German (de)
English (en)
Other versions
EP3781794A1 (fr
Inventor
Clément Jarrossay
Sébastien Serge Francis Congratel
Antoine Claude Michel Etienne Danis
Clément Jean Pierre Duffau
Lucien Henri Jacques Quennehen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Safran Aircraft Engines SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines SAS filed Critical Safran Aircraft Engines SAS
Publication of EP3781794A1 publication Critical patent/EP3781794A1/fr
Application granted granted Critical
Publication of EP3781794B1 publication Critical patent/EP3781794B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/246Fastening of diaphragms or stator-rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/005Sealing means between non relatively rotating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/323Application in turbines in gas turbines for aircraft propulsion, e.g. jet engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/60Assembly methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/11Shroud seal segments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/55Seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/201Heat transfer, e.g. cooling by impingement of a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/603Composites; e.g. fibre-reinforced
    • F05D2300/6033Ceramic matrix composites [CMC]

Definitions

  • a turbine ring assembly for a turbine engine includes a plurality of one-piece ring sectors of ceramic matrix composite material or metallic material and a ring support structure.
  • the field of application of the invention is in particular that of aeronautical gas turbine engines.
  • the invention is however applicable to other turbomachines, for example industrial turbines.
  • Ceramic matrix composite materials are known for their good mechanical properties which make them suitable for constituting structural elements, and for their ability to retain these properties at high temperatures.
  • the use of CMCs for various hot parts of aeronautical engines has already been envisaged, especially since CMCs have a lower density than that of refractory metals traditionally used.
  • the production of a turbine ring assembly from CMC ring sectors is described in particular in the document WO 2017/060604 .
  • the ring sectors comprise an annular base whose internal face defines the internal face of the turbine ring and an external face from which extend two parts forming legs whose ends are engaged in housings of a structure metal ring support.
  • CMC ring sectors make it possible to significantly reduce the ventilation required to cool the turbine ring.
  • seal between the gas flow stream on the inside of the ring sectors and the outside of the ring sectors remains a problem.
  • sealing tabs are arranged in grooves formed in the faces of adjacent ring sectors in order to establish a seal between the ring sectors.
  • the sealing tabs generally have small dimensions, in particular in thickness, to be easily made of CMC.
  • the invention aims to allow high temperature use of CMC turbine rings and proposes for this purpose a turbine ring assembly comprising a plurality of adjacent ring sectors forming a turbine ring extending circumferentially around in an axial direction, each ring sector having a first part forming a platform with, in a radial direction of the turbine ring, an internal face defining the internal face of the turbine ring and an external face starting from which extend in the radial direction an upstream leg and a downstream leg, each ring sector comprising a first groove in the platform present in the vicinity of the internal face of the said platform, a second groove in the platform present in the vicinity of the external face of said platform, the first and the second groove extending in the axial direction of the turbine ring, an upstream groove extending radially in the upstream leg and a downstream groove extending radially in the downstream leg, a first sealing tongue extending into the first groove, a second sealing tongue extending into the second groove, a sealing tongue upstream extending into the upstream groove and
  • the opening or openings present in the second sealing tongue namely the tongue closest to the external face of the platform of each ring sector which is intended to receive a cooling flow, allow the cooling flow to pass through this second sealing tab and impact the first sealing tab, namely the sealing most exposed to thermal fluxes. It is thus possible to cool the first sealing tongue which can then be exposed to flows of higher temperatures. Additionally, the airflow used to impact the first sealing tab also recharges the pressure in the area between the first and second sealing tabs. The risk of reintroduction of hot air from the vein into this area is thus reduced. The opposite faces of the adjacent ring sectors and the sealing tabs are therefore better protected from high temperature flows.
  • angled sealing elements makes it possible to plug the leaks which may occur at the level of the contact portions between the sealing tongues, that is to say at the level of the junctions between the grooves.
  • each of the sealing tabs and each of the bent sealing elements has a thickness of between 0.1 mm and 1 mm.
  • each of the sealing tongues and each of the bent sealing elements is made of a material chosen from one of the following materials: alloy based on cobalt, nickel and tungsten.
  • sealing tongues comprising two continuous portions forming an angle between them, it is possible to prevent leaks at the junction of two grooves, and this without having to use additional elbow joints.
  • the assembly of inter-sector ring sealing systems is thus simplified and the production cost reduced. Checking the placement of the sealing tongues is also simplified because they no longer need to cooperate with angled seals as in the prior art.
  • each of the sealing tabs has a thickness of between 0.1 mm and 1 mm.
  • each of the sealing tongues is made of a metal alloy based on nickel, cobalt or tungsten.
  • each opening present in the second sealing tab has a surface of between 0.1 mm 2 and 10 mm 2 .
  • each opening present in the second sealing tongue is completely surrounded by the material of said second sealing tongue.
  • each ring sector is made of ceramic material with a composite matrix.
  • the figure 1 shows a ring assembly for a high pressure turbine comprising a turbine ring 1, here made of ceramic matrix composite material (CMC) comprising a plurality of adjacent ring sectors each having an annular base or platform 12, an upstream leg 14 and a downstream leg 16 which each extend radially projecting outwards from the platform 12.
  • the turbine ring 1 surrounds a set of rotating blades 5.
  • the ring set of the invention may also be formed by other turbine ring assemblies such as, for example, a turbine ring assembly comprising stationary gas turbine nozzle sector vanes.
  • the platform is a platform of a distributor and the upstream and downstream tabs 14, 16 can carry sealing means and/or fixing means in order to come into leaktight contact with the casing.
  • the turbine ring 1 is formed from a plurality of adjacent ring sectors 10, the figure 1 being a view in radial section along a plane passing between two contiguous ring sectors.
  • the arrow D A indicates the axial direction with respect to the turbine ring 1 while the arrow D R indicates the radial direction with respect to the turbine ring 1.
  • Each ring sector 10 has a section substantially in the shape of an inverted Pi ( ⁇ ) with an annular base or platform 12, the internal face 12a of which may be coated with a layer of abradable material and/or with a thermal barrier (not shown on the figure 1 ).
  • the inner face 12a defines the gas stream flow path in the turbine.
  • Upstream and downstream tabs 14, 16 extend from the outer face 12b of the platform 12 in the radial direction D R .
  • upstream and downstream are used here in reference to the direction of flow of the gas stream in the turbine (arrow F).
  • the ring support structure 3 which is integral with a turbine casing 30 comprises an annular upstream radial flange 32 comprising a lip 34 on its face facing the upstream tabs 14 of the ring sectors 10, the lip 34 being in support on the external face 14a of the upstream tabs 14.
  • the ring support structure comprises an annular downstream radial flange 36 comprising a lip 38 on its face facing the downstream tabs 16 of the ring sectors 10, the lip 38 both resting on the outer face 16a of the downstream legs 16.
  • each ring sector 10 The lugs 14 and 16 of each ring sector 10 are mounted between the annular flanges 32 and 36 and held therebetween by locking pins. More specifically and as illustrated in the figure 1 , pins 50 are engaged both in the annular upstream radial flange 32 of the ring support structure 3 and in the upstream lugs 14 of the ring sectors 10. For this purpose, the pins 50 each respectively pass through an orifice 33 formed in the annular upstream radial flange 32 and an orifice 15 formed in each upstream lug 14, the orifices 33 and 15 being aligned when mounting the ring sectors 10 on the ring support structure 3.
  • pins 51 are engaged both in the annular downstream radial flange 36 of the structure of ring support 3 and in the downstream lugs 16 of the ring sectors 10.
  • the pins 51 each pass respectively through an orifice 37 made in the annular downstream radial flange 36 and an orifice 17 made in each downstream lug 16, the orifices 37 and 17 being aligned when mounting the ring sectors 10 on the ring support structure 3.
  • each ring sector 10 is provided with a first sealing tongue 21 which here extends horizontally over almost the entire length of the platform 12, with a second sealing tongue 20 arranged above the first horizontal in the radial direction D R and which here extends horizontally over part of the length of the platform 12, an upstream sealing tab 22 which extends mainly along the upstream tab 14 and a tab d downstream seal 23 which extends mainly along the downstream leg 16.
  • each sealing tab is housed in grooves facing each other in the facing edges of two neighboring ring sectors.
  • each ring sector 10 comprises a first groove 41 which here extends horizontally in the platform 12 in the vicinity of the internal face 12a thereof and in which is housed the first sealing tongue 21, a second groove 40 which here extends horizontally in the platform 12 in the vicinity of the outer face 12b of the latter and above the groove 41 in the radial direction D R , in which the second sealing tongue 20 is housed, a upstream groove 42 formed in the upstream leg 14 in which is housed the upstream sealing tongue 22 and a downstream groove 43 formed in the downstream leg 16 and in which the downstream sealing tongue 23 is housed.
  • the second sealing tongue 20 is in contact at one end with the tongue of watertight upstream tee 22 and in contact at the other end with the downstream tongue 23.
  • the downstream groove 43 opens into the first groove 41 so that the radially inner end of the sealing tongue downstream 23 is in contact with the first sealing tab 21. Leaks are thus reduced by superimposing the tabs.
  • the figure 1 , 2A and 2B illustrate a single ring sector 10 in which the tongues 20, 21, 22 and 23 are partially inserted respectively into the grooves 40, 41, 42 and 43.
  • the part of the tongues 20, 21, 22 and 23 projecting from the sector ring 10 ( figure 2B ) are introduced into corresponding grooves made in the neighboring ring sector (not shown on the figure 1 , 2A and 2B ).
  • the tabs 20, 21, 22 and 23 are for example metallic and are preferably mounted with cold play in the grooves 40, 41, 42 and 43 in order to ensure the sealing function at the temperatures encountered in service.
  • the sealing tabs can be made of a metal alloy based on nickel, cobalt or tungsten.
  • first sealing element or elbow joint 24 is housed both in the upstream vertical groove 42 and in the second groove 40 while a second sealing element or elbow joint 25 is housed both in the first groove 41 and in the downstream vertical groove 43.
  • Elbow joints 24 and 25 may be formed from bent sheets of metal.
  • the elbow joints can be made of a metal alloy based on nickel, cobalt or tungsten.
  • the elbow joints 24 and 25 are partially introduced respectively into the grooves 42 and 40 and into the grooves 41 and 43.
  • the part of the elbow joints 24 and 25 protruding of the ring sector 10 ( figure 2B ) are introduced into corresponding grooves made in the neighboring ring sector (not shown on the figure 1 , 2A and 2B ).
  • the elbow seals 24 and 25 make it possible to stop the leaks which may occur at the level of the contact portions between the sealing tabs, that is to say at the level of the orthogonal junctions of the grooves.
  • the elbow joint 24 prevents leaks at the level of the contact portion between the second tab 20 and the upstream vertical tongue 22 while the elbow joint 25 prevents leaks at the level of the contact portion between the first tongue 21 and the downstream vertical tongue 23.
  • the second horizontal tab has one or more openings.
  • the second tongue 20 comprises two openings 26 and 27.
  • the first tongue 21 is located closest to the internal face 12a of the platform 12 of the ring sector, that is to say at the most near the vein. Consequently, it is the first horizontal tongue 21 which is subjected to the highest temperatures.
  • the openings 26 and 27 made in the second tongue 20 make it possible to cool the first tongue 21.
  • the outer face 12b of the platform 12 of each ring sector receives a cooling flow F R introduced inside the ring by ventilation elements making it possible to bring the cooling flow to the external face 12b of the platform.
  • the cooling flow F R is introduced through passages 35 present in the annular upstream radial flange 32 of the ring support structure 3, the cooling flow impacting the outer surface 12b of the platform after its inlet into each ring sector 10.
  • the cooling flow can be taken from the compressor stage or come from a combustion chamber bypass airflow . Thanks to the presence of the openings 26 and 27 in the second tab 20 which is located closest to the outer face 12b of the platform 12 receiving the cooling flow F R , a fraction of the cooling flow F R can reach the first tab 21 and cool the latter.
  • the openings present in the second sealing tongue make it possible to create local leakage passages towards the first sealing tongue.
  • each opening present in the second sealing tongue is preferably entirely surrounded by the material of the tongue as illustrated in the figure 2A in order to maintain a continuity of material on the entire length of the tongue and, therefore, to limit leaks at the level of the openings.
  • each opening has a surface of between 1 mm 2 and 10 mm 2 . It is thus possible to increase the temperature of the gases circulating in the stream on the side of the internal face 12a of the platform of the ring sectors without risking damaging the sealing tongue most exposed to the heat fluxes, namely the first horizontal tab 21.
  • the number and/or the shape of the openings made on the second tongue are defined according to the cooling needs of the first horizontal tongue.
  • the picture 3 shows a turbine ring assembly in accordance with another embodiment of the invention.
  • the ring support metal structure 3 and the ring sectors 10 forming the turbine ring 1, here in ceramic matrix composite (CMC) material are identical to those already described below. before in relation to figure 1 , 2A and 2B and will not be described here again for simplicity.
  • CMC ceramic matrix composite
  • the turbine ring assembly shown in the figure 3 , 4A and 4B differs from the turbine ring assembly previously described in connection with the figure 1 , 2A and 2B in that certain sealing tongues comprise two portions forming an angle between them so as to prevent leaks at the junction of two grooves in the ring sectors, and this without having to use additional elbow joints as in the mode of previous achievement.
  • each ring sector 10 is provided with a first sealing tongue 61 which extends over almost the entire length of the platform 12, with a second sealing tongue 60 arranged above the first tongue in the direction radial D R and which extends over part of the length of the platform 12, an upstream sealing tongue 62 which extends mainly along the upstream leg 14 and a downstream sealing tongue 63 which extends mainly along the downstream leg 16.
  • each sealing tab is housed in grooves facing each other in the facing edges of two neighboring ring sectors.
  • each ring sector 10 comprises a first groove 41 extending here horizontally in the platform 12 in the vicinity of the internal face 12a of the latter, a second groove 40 extending here horizontally in the platform 12 in the vicinity of the external face 12b of the latter and above the groove 41 in the radial direction D R , an upstream groove 42 formed in the upstream leg 14 and a downstream groove 43 formed in the downstream leg.
  • the second groove 40 opens on one side into the radially inner part of the upstream groove 42 and on the other side into the radially inner part of the downstream groove 43.
  • the downstream groove 43 also opens into the first groove 41.
  • the upstream sealing tongue 62 comprises first and second continuous portions 620 and 621 forming an angle between them, the first portion 620 extending into the upstream groove 42 and the second portion 621 extending partially into the second groove 40.
  • the second sealing tongue 60 comprises first and second continuous portions 600 and 601 forming an angle between them, the first portion 600 extending into the second groove 40 and the second portion 601 partially extending into the downstream groove 23, the second portion 621 of the upstream sealing tongue 22 overlapping the first portion 600 of the second sealing tongue 20.
  • the downstream sealing tongue 23 comprises first and second continuous portions 630 and 631 forming an angle between them, the first portion 630 extending into the downstream groove 43 and the second portion 631 extending partially into the first groove 41.
  • the second portion 601 of the second tongue d sealing 20 overlaps the first portion 630 of the downstream sealing tongue 23 while the second portion 631 of the downstream sealing tongue 23 overlaps the first sealing tongue 21.
  • the figure 3 , 4A and 4B illustrate a single ring sector 10 in which the tongues 60, 61, 62 and 63 are partially inserted respectively into the grooves 40, 41, 42 and 43.
  • the part of the tongues 60, 61, 62 and 63 projecting from the sector of ring 10 ( figure 4B ) are introduced into corresponding grooves made in the neighboring ring sector (not shown on the figure 3 , 4A and 4B ).
  • the sealing tabs have very small dimensions. Indeed, the sealing tabs intended to be placed between turbine ring sectors generally have a thickness between approximately 0.1 mm and 1 mm.
  • the tabs 60, 62 and 63 can be produced for example by additive manufacturing or by MIM (Metal Injection Molding) manufacturing, which makes it possible to directly form sealing tabs of very small dimensions with two continuous portions forming an angle.
  • MIM Metal Injection Molding
  • the conformation, for example by bending, of initially flat metallic material tabs having very small dimensions proves difficult, in particular as regards the control of the angle present between the two continuous portions of a tab.
  • a sealing tongue having a thickness of less than 1 mm and comprising two continuous portions forming between them an angle of between 60° and 170° can be produced by laser fusion.
  • the sealing tabs 60, 61, 62 and 63 can be made of metallic material and are preferably mounted with cold play in the grooves 40, 41, 42 and 43 in order to ensure the sealing function at the temperatures encountered. in service.
  • the sealing tabs can be made of a metal alloy based on nickel, cobalt or tungsten.
  • the second portion 621 which extends axially from the first portion 620 of the upstream sealing tongue 62, overlaps the first portion 600 of the second sealing tongue 60.
  • the second portion 601 which extends axially from the first portion 600 of the second sealing tongue 60, overlaps the first portion 630 of the downstream sealing tongue 63.
  • the second portion 631 which extends axially from the first portion 630 of the downstream sealing tongue 63, overlaps the first sealing tongue 61.
  • a double seal is produced at the base of the ring which reinforces the inter-sector seal in the ring while ensuring a redirection of the air flowing from the outer side of the ring upstream, that is to say in the moving wheel formed by the rotating blades inside the ring.
  • this is preferably made as close as possible to the internal face 12a of the platform 12 of the ring sector so that the first sealing tongue 21 is located as close as possible to the vein. This reduces the inter-sector clearance and its impact on the tip of the blades.
  • the second tab has one or more openings.
  • the second tab 60 comprises two openings 126 and 127.
  • the first tab 61 is located closest to the internal face 12a of the platform 12 of the ring sector, that is to say at the most near the vein. Consequently, it is the first tongue 61 which is subjected to the highest temperatures.
  • the openings 126 and 127 made in the second tongue 60 make it possible to cool the first tongue 61.
  • the outer face 12b of the platform 12 of each ring sector receives a cooling flow F R introduced inside the ring by ventilation elements making it possible to bring the cooling flow to the external face 12b of the platform.
  • the cooling flow F R is introduced through passages 35 present in the annular upstream radial flange 32 of the ring support structure 3, the flow cooling flow impacting the outer surface 12b of the platform after it has entered each ring sector 10.
  • the cooling flow can be taken from the compressor stage or come from combustion chamber bypass airflow. Thanks to the presence of the openings 126 and 127 in the second tab 60 which is located closest to the outer face 12b of the platform 12 receiving the cooling flow F R , a fraction of the cooling flow F R can reach the first tab 61 and cool the latter. It is thus possible to increase the temperature of the gases circulating in the stream on the side of the internal face 12a of the platform of the ring sectors without risking damaging the sealing tongue most exposed to heat fluxes, namely the first tongue 61.
  • the number and/or the shape of the openings made on the second horizontal tongue are defined according to the cooling needs of the first horizontal tongue.
  • Each opening may for example have a square or round shape.
  • the opening or openings are positioned on the second tab to lead to hot spots identified on the first tab.
  • each opening present in the second sealing tongue is preferably entirely surrounded by the material of the tongue and/or has a surface comprised between 1 mm 2 and 10 mm 2 .
  • Comparative temperature simulations were carried out by calculation by the Holder. Simulations were carried out with CMC ring sectors and sealing tabs as defined above. The simulations consisted of exposing the internal face of the ring sector platform to a reference temperature greater than 1000°C while circulating a cooling flow on the external face of the ring sector platform.
  • the second sealing tongue that is to say the sealing tongue closest to the external face of the platform of the ring sectors receiving the cooling flow, does not comprise openings.
  • the second sealing tongue comprises openings as described above.
  • the maximum temperature reached by the first sealing tab was calculated. This is reduced by more than 10° C. when the second horizontal sealing tongue has openings.
  • a reduction of approximately 30° C. has been calculated in the areas of the first sealing tongue into which the openings present in the second sealing tongue open. We see here the impact of the openings made in the second sealing tongue on the temperature reduction of the first sealing tongue.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

    Arrière-plan de l'invention
  • L'invention concerne un ensemble d'anneau de turbine pour une turbomachine, lequel ensemble comprend une pluralité de secteurs d'anneau en une seule pièce en matériau composite à matrice céramique ou en matériau métallique et une structure de support d'anneau.
  • Le domaine d'application de l'invention est notamment celui des moteurs aéronautiques à turbine à gaz. L'invention est toutefois applicable à d'autres turbomachines, par exemple des turbines industrielles.
  • Les matériaux composites à matrice céramique, ou CMC, sont connus pour leurs bonnes propriétés mécaniques qui les rendent aptes à constituer des éléments de structure, et pour leur capacité à conserver ces propriétés à des températures élevées. L'utilisation de CMC pour différentes parties chaudes de moteurs aéronautiques a déjà été envisagée, d'autant que les CMC ont une masse volumique inférieure à celle de métaux réfractaires traditionnellement utilisés.
  • Ainsi, la réalisation d'un ensemble d'anneau de turbine à partir de secteurs d'anneau en CMC est notamment décrite dans le document WO 2017/060604 . Les secteurs d'anneau comportent une base annulaire dont la face interne définit la face interne de l'anneau de turbine et une face externe à partir de laquelle s'étendent deux parties formant pattes dont les extrémités sont engagées dans des logements d'une structure métallique de support d'anneau.
  • L'utilisation de secteurs d'anneau en CMC permet de réduire significativement la ventilation nécessaire au refroidissement de l'anneau de turbine. Toutefois, l'étanchéité entre la veine d'écoulement gazeux du côté intérieur des secteurs d'anneau et le côté extérieur des secteurs d'anneau demeure un problème.
  • Comme décrit dans le document WO 2017/060604 , des languettes d'étanchéité sont disposées dans des rainures ménagées dans les faces des secteurs d'anneau adjacents afin d'établir une étanchéité entre les secteurs d'anneau. Les languettes d'étanchéité présentent en général des dimensions faibles, en particulier en épaisseur, pour être facilement réalisées en CMC.
  • Les documents WO 2017/060604 , EP 2 987 959 et WO 2018/004583 divulguent des ensembles d'anneau pour turbine.
  • Afin d'améliorer les performances des turbines, en particulier leur rendement, on recherche des températures de fonctionnement toujours plus élevées. Si les anneaux en CMC supportent des températures relativement élevées (pouvant dépasser 1500°C), les languettes d'étanchéité en matériau métallique sont plus sensibles aux hautes températures. Par conséquent, le niveau de température auquel les anneaux en CMC peuvent être soumis est limité par la présence des languettes d'étanchéité.
  • Objet et résumé de l'invention
  • L'invention vise à permettre une utilisation à température élevée des anneaux de turbine en CMC et propose à cet effet un ensemble d'anneau pour turbine comprenant une pluralité de secteurs d'anneau adjacent formant un anneau de turbine s'étendant de manière circonférentielle autour d'une direction axiale, chaque secteur d'anneau ayant une première partie formant plateforme avec, suivant une direction radiale de l'anneau de turbine, une face interne définissant la face interne de l'anneau de turbine et une face externe à partir de laquelle s'étendent suivant la direction radiale une patte amont et une patte aval, chaque secteur d'anneau comprenant une première rainure dans la plateforme présente au voisinage de la face interne de ladite plateforme, une deuxième rainure dans la plateforme présente au voisinage de la face externe de ladite plateforme, la première et la deuxième rainure s'étendant suivant la direction axiale de l'anneau de turbine, une rainure amont s'étendant radialement dans la patte amont et une rainure aval s'étendant radialement dans la patte aval, une première languette d'étanchéité s'étendant dans la première rainure, une deuxième languette d'étanchéité s'étendant dans la deuxième rainure, une languette d'étanchéité amont s'étendant dans la rainure amont et une languette d'étanchéité aval s'étendant dans la rainure aval, la structure de support d'anneau comprenant des éléments de ventilation permettant d'amener un flux de refroidissement sur la face externe de la plateforme, caractérisé en ce que la deuxième languette d'étanchéité comporte une ou plusieurs ouvertures.
  • La ou les ouvertures présentes dans la deuxième languette d'étanchéité, à savoir la languette la plus proche de la face externe de la plateforme de chaque secteur d'anneau qui est destinée à recevoir un flux de refroidissement, permettent au flux de refroidissement de passer au travers de cette deuxième languette d'étanchéité et de venir impacter la première languette d'étanchéité, à savoir la languette d'étanchéité la plus exposée aux flux thermiques. Il est ainsi possible de refroidir la première languette d'étanchéité qui peut alors être exposée à des flux de plus hautes températures. En outre, le flux d'air utilisé pour impacter la première languette d'étanchéité permet également de recharger la pression dans la zone située entre les première et deuxième languettes d'étanchéité. Le risque de réintroduction d'air chaud de la veine dans cette zone est ainsi diminué. Les faces en regard des secteurs d'anneau adjacents et les languettes d'étanchéité sont donc mieux protégées des flux hautes températures.
  • Selon un premier aspect de l'ensemble d'anneau de l'invention, la rainure amont débouche dans la deuxième rainure, la rainure aval débouchant dans les première et deuxième rainures, chaque secteur d'anneau comprenant :
    • un premier élément d'étanchéité coudé logé à la fois dans la rainure amont et dans la deuxième rainure, et
    • un deuxième élément d'étanchéité coudé logé à la fois dans la première rainure et dans la rainure aval.
  • L'utilisation d'éléments d'étanchéité coudés permettent de boucher les fuites qui peuvent se produire au niveau des portions de contact entre les languettes d'étanchéité, c'est-à-dire au niveau des jonctions entre les rainures.
  • Selon une caractéristique particulière de l'ensemble d'anneau de l'invention, chacune des languettes d'étanchéité et chacun des éléments d'étanchéité coudés présente une épaisseur comprise entre 0.1 mm et 1 mm.
  • Selon une autre caractéristique particulière de l'ensemble d'anneau de l'invention, chacune des languettes d'étanchéité et chacun des éléments d'étanchéité coudés est en un matériau choisi parmi un des matériaux suivants : alliage à base de cobalt, nickel et tungstène.
  • Selon un deuxième aspect de l'ensemble d'anneau de l'invention, la rainure amont débouche dans la deuxième rainure et la rainure aval débouche dans les première et deuxième rainures, ensemble d'anneau dans lequel :
    • la languette d'étanchéité amont comprend des première et deuxième portions continues formant un angle entre elles, la première portion s'étendant dans la rainure amont et la deuxième portion s'étendant partiellement dans la deuxième rainure,
    • la deuxième languette d'étanchéité comprenant des première et deuxième portions continues formant un angle entre elles, la première portion s'étendant dans la deuxième rainure et la deuxième portion s'étendant partiellement dans la rainure aval, la deuxième portion de la languette d'étanchéité amont chevauchant la première portion de ladite deuxième languette d'étanchéité,
    • une languette d'étanchéité aval comprend des première et deuxième portions continues formant un angle entre elles, la première portion s'étendant dans la rainure aval et la deuxième portion s'étendant partiellement dans la première rainure, la deuxième portion de la deuxième languette d'étanchéité chevauchant la première portion de la languette d'étanchéité aval, la deuxième portion de ladite languette d'étanchéité aval chevauchant la première languette d'étanchéité.
  • Avec des languettes d'étanchéité comportant deux portions continues formant un angle entre elles, il est possible d'empêcher les fuites à la jonction de deux rainures, et ce sans avoir à utiliser des joints coudés additionnels. Le montage des systèmes d'étanchéité inter-secteurs d'anneau est ainsi simplifié et le coût de production diminué. Le contrôle de la mise en place des languettes d'étanchéité est également simplifié car elles n'ont plus besoin de coopérer avec des joints coudés comme dans l'art antérieur.
  • Selon une caractéristique particulière de l'ensemble d'anneau de l'invention, chacune des languettes d'étanchéité présente une épaisseur comprise entre 0.1 mm et 1 mm.
  • Selon une autre caractéristique particulière de l'ensemble d'anneau de l'invention, chacune des languettes d'étanchéité est en un alliage métallique à base nickel, cobalt ou tungstène.
  • Selon une caractéristique particulière de l'ensemble d'anneau de l'invention, chaque ouverture présente dans la deuxième languette d'étanchéité présente une surface comprise entre 0,1 mm2 et 10 mm2.
  • Selon une caractéristique particulière de l'ensemble d'anneau de l'invention, chaque ouverture présente dans la deuxième languette d'étanchéité est entièrement entourée par le matériau de ladite deuxième languette d'étanchéité.
  • Selon une autre caractéristique particulière de l'ensemble d'anneau de turbine de l'invention, chaque secteur d'anneau est en matériau céramique à matrice composite.
  • Brève description des dessins.
  • L'invention sera mieux comprise à la lecture faite ci-après, à titre indicatif mais non limitatif, en référence aux dessins annexés sur lesquels :
    • la figure 1 est une vue en demi-coupe radiale montrant un mode de réalisation d'un ensemble d'anneau de turbine selon l'invention ;
    • les figures 2A et 2B sont des vues schématiques partielles en perspective montrant le positionnement de languettes d'étanchéité dans un secteur d'anneau de l'ensemble d'anneau de turbine de la figure 1 ;
    • la figure 3 est une vue en demi-coupe radiale montrant un autre mode de réalisation d'un ensemble d'anneau de turbine selon l'invention ;
    • les figures 4A et 4B sont des vues schématiques partielles en perspective montrant le positionnement de languettes d'étanchéité dans un secteur d'anneau de l'ensemble d'anneau de turbine de la figure 3.
    Description détaillée de modes de réalisation
  • La figure 1 montre un ensemble d'anneau pour turbine haute pression comprenant un anneau de turbine 1, ici en matériau composite à matrice céramique (CMC) comprenant une pluralité de secteurs d'anneau adjacents ayant chacun une base annulaire ou plateforme 12, une patte amont 14 et une patte aval 16 qui s'étendent chacune radialement en saillie vers l'extérieur de la plateforme 12. Dans l'exemple décrit ici, l'anneau de turbine 1 entoure un ensemble de pales rotatives 5. Toutefois, l'ensemble d'anneau de l'invention peut également être formé par d'autres ensemble d'anneau pour turbine comme par exemple un ensemble d'anneau pour turbine comprenant des aubes fixes de secteurs de distributeur de turbine à gaz. Dans ce cas, la plateforme est une plateforme d'un distributeur et les pattes amont et aval 14, 16 peuvent porter des moyens d'étanchéité et/ou des moyens de fixation afin de venir en contact étanche avec le carter. Dans chaque cas, l'anneau de turbine 1 est formé d'une pluralité de secteurs d'anneau adjacents 10, la figure 1 étant une vue en coupe radiale selon un plan passant entre deux secteurs d'anneaux contigus. La flèche DA indique la direction axiale par rapport à l'anneau de turbine 1 tandis que la flèche DR indique la direction radiale par rapport à l'anneau de turbine 1.
  • Chaque secteur d'anneau 10 a une section sensiblement en forme de Pi (π) inversé avec une base annulaire ou plateforme 12 dont la face interne 12a peut-être revêtue d'une couche de matériau abradable et/ou d'une barrière thermique (non représentée sur la figure 1). La face interne 12a définit la veine d'écoulement de flux gazeux dans la turbine. Des pattes amont et aval 14, 16 s'étendent à partir de la face externe 12b de la plateforme12 dans la direction radiale DR. Les termes "amont" et "aval" sont utilisés ici en référence au sens d'écoulement du flux gazeux dans la turbine (flèche F).
  • La structure de support d'anneau 3 qui est solidaire d'un carter de turbine 30 comprend une bride radiale amont annulaire 32 comportant une lèvre 34 sur sa face en regard des pattes amont 14 des secteurs d'anneau 10, la lèvre 34 étant en appui sur la face externe 14a des pattes amont 14. Du côté aval, la structure de support d'anneau comprend une bride radiale aval annulaire 36 comportant une lèvre 38 sur sa face en regard des pattes aval 16 des secteurs d'anneau 10, la lèvre 38 tant en appui sur la face externe 16a des pattes aval 16.
  • Les pattes 14 et 16 de chaque secteur d'anneau 10 sont montées entre les brides annulaires 32 et 36 et maintenus entre celles-ci par des pions de blocage. Plus précisément et comme illustré sur la figure 1, des pions 50 sont engagés à la fois dans la bride radiale amont annulaire 32 de la structure de support d'anneau 3 et dans les pattes amont 14 des secteurs d'anneau 10. A cet effet, les pions 50 traversent chacun respectivement un orifice 33 ménagé dans la bride radiale amont annulaire 32 et un orifice 15 ménagé dans chaque patte amont 14, les orifices 33 et 15 étant alignés lors du montage des secteurs d'anneau 10 sur la structure de support d'anneau 3. De même, des pions 51 sont engagés à la fois dans la bride radiale aval annulaire 36 de la structure de support d'anneau 3 et dans les pattes aval 16 des secteurs d'anneau 10. A cet effet, les pions 51 traversent chacun respectivement un orifice 37 ménagé dans la bride radiale aval annulaire 36 et un orifice 17 ménagé chaque patte aval 16, les orifices 37 et 17 étant alignés lors du montage des secteurs d'anneau 10 sur la structure de support d'anneau 3.
  • Conformément à l'invention, l'étanchéité de l'anneau est assurée par des languettes d'étanchéité. Plus précisément, comme représenté sur les figures 1, 2A et 2B, chaque secteur d'anneau 10 est muni d'une première languette d'étanchéité 21 qui s'étend ici horizontalement sur presque toute la longueur de la plateforme12, d'une deuxième languette d'étanchéité 20 disposée au-dessus de la première languette horizontale la direction radiale DR et qui s'étend ici horizontalement sur une partie de la longueur de la plateforme12, d'une languette d'étanchéité amont 22 qui s'étend principalement le long de la patte amont 14 et d'une languette d'étanchéité aval 23 qui s'étend principalement le long de la patte aval 16.
  • Chaque languette d'étanchéité est logée dans des rainures se faisant face dans les bords en regard de deux secteurs d'anneau voisins. A cet effet, chaque secteur d'anneau 10 comporte une première rainure 41 qui s'étend ici horizontalement dans la plateforme12 au voisinage de la face interne 12a de celle-ci et dans laquelle est logée la première languette d'étanchéité 21, une deuxième rainure 40 qui s'étend ici horizontalement dans la plateforme12 au voisinage de la face externe 12b de celle-ci et au-dessus de la rainure 41 suivant la direction radiale DR, dans laquelle est logée la deuxième languette d'étanchéité 20, une rainure amont 42 ménagée dans la patte amont 14 dans laquelle est logée la languette d'étanchéité amont 22 et une rainure aval 43 ménagée dans la patte aval 16 et dans laquelle est logée la languette d'étanchéité aval 23. La deuxième rainure 40 débouche d'un côté dans la partie radialement interne de la rainure amont 42 et de l'autre côté dans la partie radialement interne de la rainure aval 43. Ainsi, la deuxième languette d'étanchéité 20 est en contact à une extrémité avec la languette d'étanchéité amont 22 et en contact à l'autre extrémité avec la languette aval 23. En outre, la rainure aval 43 débouche dans la première rainure 41 de sorte que l'extrémité radialement interne de la languette d'étanchéité aval 23 est en contact avec la première languette d'étanchéité 21. On réduit ainsi les fuites par superposition des languettes.
  • Les figures 1, 2A et 2B illustrent un seul secteur d'anneau 10 dans lequel les languettes 20, 21, 22 et 23 sont partiellement introduites respectivement dans les rainures 40, 41, 42 et 43. La partie des languettes 20, 21, 22 et 23 dépassant du secteur d'anneau 10 (figure 2B) sont introduites dans des rainures correspondantes ménagées dans le secteur d'anneau voisin (non représenté sur les figures 1, 2A et 2B).
  • Les languettes 20, 21, 22 et 23 sont par exemple métalliques et sont de préférence montées avec jeu à froid dans les rainures 40, 41, 42 et 43 afin d'assurer la fonction d'étanchéité aux températures rencontrées en service. A titre d'exemples non limitatifs, les languettes d'étanchéité peuvent être réalisées en un alliage métallique à base nickel, cobalt ou tungstène.
  • En outre, un premier élément d'étanchéité ou joint coudé 24 est logé à la fois dans la rainure verticale amont 42 et dans la deuxième rainure 40 tandis qu'un deuxième élément d'étanchéité ou joint coudé 25 est logé à la fois dans la première rainure 41 et dans la rainure verticale aval 43. Les joints coudés 24 et 25 peuvent être formés à partir de feuilles de métal pliées. A titre d'exemples non limitatifs, les joints coudés peuvent être réalisés en un alliage métallique à base nickel, cobalt ou tungstène.
  • De même que pour les languettes d'étanchéité 20, 21, 22 et 23, les joints coudés 24 et 25 sont partiellement introduits respectivement dans les rainures 42 et 40 et dans les rainures 41 et 43. La partie des joints coudés 24 et 25 dépassant du secteur d'anneau 10 (figure 2B) sont introduites dans des rainures correspondantes ménagées dans le secteur d'anneau voisin (non représenté sur les figures 1, 2A et 2B).
  • Avec deux languettes d'étanchéité superposées dans la direction radiale DR dans la plateforme, on réalise une double étanchéité au niveau de la base de l'anneau qui renforce l'étanchéité inter-secteur dans l'anneau tout en assurant une redirection de l'air circulant du côté externe de l'anneau vers l'amont, c'est-à-dire dans la roue mobile formée par les pales rotatives à l'intérieur de l'anneau. Par ailleurs, l'utilisation des joints coudés 24 et 25 permettent de boucher les fuites qui peuvent se produire au niveau des portions de contact entre les languettes d'étanchéité, c'est-à-dire au niveau des jonctions orthogonales des rainures. Dans l'exemple décrit ici, le joint coudé 24 empêche les fuites au niveau de la portion de contact entre la deuxième languette 20 et la languette verticale amont 22 tandis que le joint coudé 25 empêche les fuites au niveau de la portion de contact entre la première languette 21 et la languette verticale aval 23.
  • Conformément à l'invention, la deuxième languette horizontale comporte une ou plusieurs ouvertures. Dans l'exemple décrit ici, la deuxième languette 20 comporte deux ouvertures 26 et 27. La première languette 21 est située au plus près de la face interne 12a de la plateforme12 du secteur d'anneau, c'est-à-dire au plus près de la veine. Par conséquent, c'est la première languette horizontale 21 qui est soumise aux températures les plus hautes. Les ouvertures 26 et 27 réalisées dans la deuxième languette 20 permettent de refroidir la première languette 21. En effet, la face externe 12b de la plateforme12 de chaque secteur d'anneau reçoit un flux de refroidissement FR introduit à l'intérieur de l'anneau par des éléments de ventilation permettant d'amener le flux de refroidissement sur la face externe 12b de la plateforme. Dans l'exemple décrit ici, flux de refroidissement FR est introduit par des passages 35 présents dans la bride radiale amont annulaire 32 de la structure de support d'anneau 3, le flux de refroidissement impactant la surface externe 12b de la plateforme après son entrée dans chaque secteur d'anneau 10. Dans le cas d'une turbine à gaz, le flux de refroidissement peut être prélevé à partir de l'étage de compresseur ou provenir d'un flux d'air de contournement de la chambre de combustion. Grâce à la présence des ouvertures 26 et 27 dans la deuxième languette 20 qui est située au plus près de la face externe 12b de la plateforme12 recevant le flux de refroidissement FR, une fraction du flux de refroidissement FR peut parvenir jusqu'à la première languette 21 et refroidir cette dernière. Les ouvertures présentes dans la deuxième languette d'étanchéité permettent de créer des passages de fuite locaux vers la première languette d'étanchéité. Ces passages de fuite étant locaux et maîtrisés lors de la conception des languettes d'étanchéité, ils n'ont qu'un impact limité sur la fonction d'étanchéité de la deuxième languette. A cet effet, chaque ouverture présente dans la deuxième languette d'étanchéité est de préférence entièrement entourée par le matériau de la languette comme illustrée sur la figure 2A afin de maintenir une continuité de matière sur toute la longueur de la languette et, par conséquent, de limiter les fuites au niveau des ouvertures. Par ailleurs, chaque ouverture présente une surface comprise entre 1 mm2 et 10 mm2. Il est ainsi possible d'augmenter la températures des gaz circulant dans la veine du côté de la face interne 12a de la plateforme des secteurs d'anneau sans risquer d'endommager la languette d'étanchéité la plus exposée aux flux thermiques, à savoir la première languette horizontale 21.
  • Le nombre et/ou la forme des ouvertures réalisées sur la deuxième languette sont définis en fonction des besoins de refroidissement de la première languette horizontale.
  • La figure 3 montre un ensemble d'anneau pour turbine conformément à un autre mode de réalisation de l'invention. Dans l'exemple décrit ici, la structure métallique de support d'anneau 3 et les secteur d'anneau 10 formant l'anneau de turbine 1, ici en matériau composite à matrice céramique (CMC), sont identiques à ceux déjà décrits ci-avant en relation avec les figures 1, 2A et 2B et ne seront pas décrits ici à nouveau par souci de simplification.
  • L'ensemble d'anneau de turbine représenté sur les figures 3, 4A et 4B diffère de l'ensemble d'anneau de turbine décrit précédemment en relation avec les figures 1, 2A et 2B en ce que certaines languettes d'étanchéité comprennent deux portions formant un angle entre elles de manière à empêcher les fuites à la jonction de deux rainures dans les secteurs d'anneau, et ce sans avoir à utiliser des joints coudés additionnels comme dans le mode de réalisation précédent.
  • Plus précisément, comme représenté sur les figures 3, 4A et 4B, chaque secteur d'anneau 10 est muni d'une première languette d'étanchéité 61 qui s'étend sur presque toute la longueur de la plateforme12, d'une deuxième languette d'étanchéité 60 disposée au-dessus de la première languette la direction radiale DR et qui s'étend sur une partie de la longueur de la plateforme12, d'une languette d'étanchéité amont 62 qui s'étend principalement le long de la patte amont 14 et d'une languette d'étanchéité aval 63 qui s'étend principalement le long de la patte aval 16.
  • Chaque languette d'étanchéité est logée dans des rainures se faisant face dans les bords en regard de deux secteurs d'anneau voisins. A cet effet, chaque secteur d'anneau 10 comporte une première rainure 41 s'étendant ici horizontalement dans la plateforme12 au voisinage de la face interne 12a de celle-ci, une deuxième rainure 40 s'étendant ici horizontalement dans la plateforme12 au voisinage de la face externe 12b de celle-ci et au-dessus de la rainure 41 suivant la direction radiale DR, une rainure amont 42 ménagée dans la patte amont 14 et une rainure aval 43 ménagée dans la patte aval. La deuxième rainure 40 débouche d'un côté dans la partie radialement interne de la rainure amont 42 et de l'autre côté dans la partie radialement interne de la rainure aval 43. La rainure aval 43 débouche en outre dans la première rainure 41.
  • La languette d'étanchéité amont 62 comprend des première et deuxième portions continues 620 et 621 formant un angle entre elles, la première portion 620 s'étendant dans la rainure amont 42 et la deuxième portion 621 s'étendant partiellement dans la deuxième rainure 40. La deuxième languette d'étanchéité 60 comprend des première et deuxième portions continues 600 et 601 formant un angle entre elles, la première portion 600 s'étendant dans la deuxième rainure 40 et la deuxième portion 601 s'étendant partiellement dans la rainure aval 23, la deuxième portion 621 de la languette d'étanchéité amont 22 chevauchant la première portion 600 de la deuxième languette d'étanchéité 20. La languette d'étanchéité aval 23 comprend des première et deuxième portions continues 630 et 631 formant un angle entre elles, la première portion 630 s'étendant dans la rainure aval 43 et la deuxième portion 631 s'étendant partiellement dans la première rainure 41. La deuxième portion 601 de la deuxième languette d'étanchéité 20 chevauche la première portion 630 de la languette d'étanchéité aval 23 tandis que la deuxième portion 631 de la languette d'étanchéité aval 23 chevauche la première languette d'étanchéité 21.
  • Les figures 3, 4A et 4B illustrent un seul secteur d'anneau 10 dans lequel les languettes 60, 61, 62 et 63 sont partiellement introduites respectivement dans les rainures 40, 41, 42 et 43. La partie des languettes 60, 61, 62 et 63 dépassant du secteur d'anneau 10 (figure 4B) sont introduites dans des rainures correspondantes ménagées dans le secteur d'anneau voisin (non représenté sur les figures 3, 4A et 4B).
  • Les languettes d'étanchéité présentent des dimensions très réduites. En effet, les languettes d'étanchéité destinées à être placées entre des secteurs d'anneau de turbine présentent en général une épaisseur comprise environ entre 0.1 mm et 1 mm. Les languettes 60, 62 et 63 peuvent être réalisées par exemple par fabrication additive ou par fabrication MIM (Moulage par Injection de Métal) qui permet de former directement des languettes d'étanchéité de très faibles dimensions avec deux portions continues formant un angle. La conformation, par exemple par pliage, de languettes en matériau métallique initialement plates et présentant de très faibles dimensions s'avère délicate, en particulier en ce qui concerne le contrôle de l'angle présent entre les deux portions continues d'une languette. A titre d'exemple, une languette d'étanchéité présentant t une épaisseur inférieure à 1 mm et comportant deux portions continues formant entre elles un angle compris entre 60° et 170° peuvent être réalisées par fusion laser.
  • Les languettes d'étanchéité 60, 61, 62 et 63 peuvent être réalisées en matériau métallique et sont de préférence montées avec un jeu à froid dans les rainures 40, 41, 42 et 43 afin d'assurer la fonction d'étanchéité aux températures rencontrées en service. A titre d'exemples non limitatifs, les languettes d'étanchéité peuvent être réalisées en un alliage métallique à base nickel, cobalt ou tungstène .
  • Comme indiqué ci-avant, la deuxième portion 621, qui se prolonge axialement depuis la première portion 620 de la languette d'étanchéité amont 62, chevauche la première portion 600 de la deuxième languette d'étanchéité 60. De même, la deuxième portion 601, qui se prolonge axialement depuis la première portion 600 de la deuxième languette d'étanchéité 60, chevauche la première portion 630 de la languette d'étanchéité aval 63. De même encore, la deuxième portion 631, qui se prolonge axialement depuis la première portion 630 de la languette d'étanchéité aval 63, chevauche la première languette d'étanchéité 61.
  • L'utilisation de languettes d'étanchéité comportant, en outre d'une première portion principale, une deuxième portion continue avec la première portion qui chevauche la languette d'étanchéité adjacente, il est possible de boucher les fuites qui peuvent se produire au niveau des portions de jonction entre les languettes d'étanchéité, c'est-à-dire au niveau des jonctions entre les rainures, et ce sans avoir à utiliser de joins ou éléments d'étanchéité coudé comme dans l'art antérieur. Dans l'exemple décrit ici :
    • la deuxième portion 621 de la languette d'étanchéité amont 62 qui chevauche la première portion 600 de la deuxième languette d'étanchéité 60 empêche les fuites au niveau de la jonction entre les languettes 62 et 60 et des rainures 42 et 40 ;
    • la deuxième portion 601 de la deuxième languette d'étanchéité 60 qui chevauche la première portion 630 de la languette d'étanchéité aval 63 empêche les fuites au niveau de la jonction entre les languettes 60 et 63 et des rainures 40 et 43 ;
    • la deuxième portion 631 de la languette d'étanchéité aval 63 qui chevauche la première languette d'étanchéité 61 empêche les fuites au niveau de la jonction entre les languettes 63 et 61 et des rainures 43 et 41.
  • En outre, avec deux languettes d'étanchéité superposées dans la direction radiale DR dans la plateforme, on réalise une double étanchéité au niveau de la base de l'anneau qui renforce l'étanchéité inter-secteur dans l'anneau tout en assurant une redirection de l'air circulant du côté externe de l'anneau vers l'amont, c'est-à-dire dans la roue mobile formées par les pales rotatives à l'intérieur de l'anneau. Concernant la première rainure horizontale 41, celle-ci est réalisée de préférence au plus près de la face interne 12a de la plateforme12 du secteur d'anneau afin que la première languette d'étanchéité 21 se trouve au plus près de la veine. On réduit ainsi le jeu inter-secteur et son impact sur le sommet des aubes.
  • Conformément à l'invention, la deuxième languette comporte une ou plusieurs ouvertures. Dans l'exemple décrit ici, la deuxième languette 60 comporte deux ouvertures 126 et 127. La première languette 61 est située au plus près de la face interne 12a de la plateforme12 du secteur d'anneau, c'est-à-dire au plus près de la veine. Par conséquent, c'est la première languette 61 qui est soumise aux températures les plus hautes. Les ouvertures 126 et 127 réalisées dans la deuxième languette 60 permettent de refroidir la première languette 61. En effet, la face externe 12b de la plateforme12 de chaque secteur d'anneau reçoit un flux de refroidissement FR introduit à l'intérieur de l'anneau par des éléments de ventilation permettant d'amener le flux de refroidissement sur la face externe 12b de la plateforme. Dans l'exemple décrit ici, flux de refroidissement FR est introduit par des passages 35 présents dans la bride radiale amont annulaire 32 de la structure de support d'anneau 3, le flux de refroidissement impactant la surface externe 12b de la plateforme après son entrée dans chaque secteur d'anneau 10. Dans le cas d'une turbine à gaz, le flux de refroidissement peut être prélevé à partir de l'étage de compresseur ou provenir d'un flux d'air de contournement de la chambre de combustion. Grâce à la présence des ouvertures 126 et 127 dans la deuxième languette 60 qui est située au plus près de la face externe 12b de la plateforme12 recevant le flux de refroidissement FR, une fraction du flux de refroidissement FR peut parvenir jusqu'à la première languette 61 et refroidir cette dernière. Il est ainsi possible d'augmenter la températures des gaz circulant dans la veine du côté de la face interne 12a de la plateforme des secteurs d'anneau sans risquer d'endommager la languette d'étanchéité la plus exposée aux flux thermiques, à savoir la première languette 61.
  • Le nombre et/ou la forme des ouvertures réalisées sur la deuxième languette horizontale sont définis en fonction des besoins de refroidissement de la première languette horizontale.
  • Chaque ouverture peut présenter par exemple une forme carrée ou ronde. La ou les ouverture sont positionnées sur la deuxième languette pour déboucher sur des points chauds identifiés sur la première languette. En outre, comme indiqué précédemment, chaque ouverture présente dans la deuxième languette d'étanchéité est de préférence entièrement entourée par le matériau de la languette et/ou présente une surface comprise entre 1 mm2 et 10 mm2. Des simulations comparatives en température ont été réalisés par calcul par la Titulaire. Des simulations ont été réalisées avec des secteurs d'anneau en CMC et des languettes d'étanchéité telles que définies précédemment. Les simulations ont consisté à exposer la face interne de la plateforme des secteurs d'anneau à une température de référence supérieure à 1000°C tout en faisant circuler un flux de refroidissement sur la face externe de la plateforme des secteurs d'anneau. Dans une première simulation, la deuxième languette d'étanchéité, c'est-à-dire la languette d'étanchéité la plus proche de la face externe de la plateforme des secteurs d'anneau recevant le flux de refroidissement, ne comporte pas d'ouvertures. Dans une deuxième simulation, la deuxième languette d'étanchéité comporte des ouvertures comme décrites ci-avant. Lors de chaque simulation, on a calculé la température maximale atteinte par la première languette d'étanchéité. Celle-ci est réduite de plus de 10°C lorsque la deuxième languette d'étanchéité horizontale comporte des ouvertures. En outre, on a calculé une diminution de 30°C environ sur les zones de la première languette d'étanchéité sur lesquelles débouchent les ouvertures présentes dans la deuxième languette d'étanchéité. On voit ici l'impact des ouvertures réalisées dans la deuxième languette d'étanchéité sur la réduction de température de la première languette d'étanchéité.

Claims (10)

  1. Ensemble d'anneau pour turbine comprenant une pluralité de secteurs d'anneau adjacents (10) formant un anneau de turbine (1) s'étendant de manière circonférentielle autour d'une direction axiale (DA), chaque secteur d'anneau (10) ayant une plateforme (12) avec, suivant une direction radiale de l'anneau de turbine, une face interne définissant la face interne de l'anneau de turbine (1) et une face externe à partir de laquelle s'étendent suivant la direction radiale une patte amont (14) et une patte aval (16), chaque secteur d'anneau (10) comprenant une première rainure (41) présente dans la plateforme (12) au voisinage de la face interne (12a) de ladite plateforme , une deuxième rainure (40) présente dans la plateforme (12) au voisinage de la face externe (12b) de ladite plateforme, la première et la deuxième rainure s'étendant suivant la direction axiale de l'anneau de turbine, une rainure amont (42) s'étendant radialement dans la patte amont (14) et une rainure aval (43) s'étendant radialement dans la patte aval (16), une première languette d'étanchéité (21) s'étendant dans la première rainure (41), une deuxième languette d'étanchéité (20) s'étendant dans la deuxième rainure (40), une languette d'étanchéité amont (22) s'étendant dans la rainure amont (42) et une languette d'étanchéité aval (23) s'étendant dans la rainure aval (43),
    caractérisé en ce que la deuxième languette d'étanchéité (20) comporte une ou plusieurs ouvertures (26, 27).
  2. Ensemble d'anneau selon la revendication 1, dans lequel la rainure amont (42) débouche dans la deuxième rainure (40), la rainure aval (43) débouchant dans les première et deuxième rainures (41, 40), et dans lequel chaque secteur d'anneau comprend :
    - un premier élément d'étanchéité coudé (24) logé à la fois dans la rainure amont (42) et dans la deuxième rainure (40), et
    - un deuxième élément d'étanchéité coudé (25) logé à la fois dans la première rainure (41) et dans la rainure aval (43).
  3. Ensemble d'anneau selon la revendication 1 ou 2, dans lequel chacune des languettes d'étanchéité (20, 21, 22, 23) et chacun des éléments d'étanchéité coudés (24, 25) présente une épaisseur comprise entre 0.1 mm et 1 mm.
  4. Ensemble d'anneau selon la revendication 3, dans lequel chacune des languettes d'étanchéité (20, 21, 22, 23) et chacun des éléments d'étanchéité coudés (24, 25) est en un alliage métallique à base nickel, cobalt ou tungstène.
  5. Ensemble d'anneau selon la revendication 1, dans lequel la rainure amont (42) débouche dans la deuxième rainure (40) et la rainure aval (43) débouche dans les première et deuxième rainures (41, 40), et dans lequel :
    - la languette d'étanchéité amont (62) comprend des première et deuxième portions continues (620, 621) formant un angle entre elles, la première portion (620) s'étendant dans la rainure amont (42) et la deuxième portion (621) s'étendant partiellement dans la deuxième rainure (40),
    - la deuxième languette d'étanchéité (60) comprenant des première et deuxième portions continues (600, 601) formant un angle entre elles, la première portion (600) s'étendant dans la deuxième rainure (40) et la deuxième portion (601) s'étendant partiellement dans la rainure aval (43), la deuxième portion (621) de la languette d'étanchéité amont (62) chevauchant la première portion (600) de ladite deuxième languette d'étanchéité (60),
    - la languette d'étanchéité aval (63) comprend des première et deuxième portions continues (630, 631) formant un angle entre elles, la première portion (630) s'étendant dans la rainure aval (43) et la deuxième portion (631) s'étendant partiellement dans la première rainure (41), la deuxième portion (601) de la deuxième languette d'étanchéité (60) chevauchant la première portion (630) de la languette d'étanchéité aval (63), la deuxième portion (631) de ladite languette d'étanchéité aval chevauchant la première languette d'étanchéité (61).
  6. Ensemble d'anneau selon l'une quelconque des revendications 1 à 3, dans lequel chacune des languettes d'étanchéité (60, 61, 62, 63) présente une épaisseur comprise entre 0.1 mm et 1 mm.
  7. Ensemble d'anneau selon la revendication 6, dans lequel chacune des languettes d'étanchéité (60, 61, 62, 63) est en un alliage métallique à base nickel, cobalt ou tungstène.
  8. Ensemble d'anneau selon l'une quelconque des revendications 1 à 7, dans lequel chaque ouverture (26, 27, 126, 127) présente dans la deuxième languette d'étanchéité (20, 60) présente une surface comprise entre 0,1 mm2 et 10 mm2.
  9. Ensemble d'anneau selon l'une quelconque des revendications 1 à 8, dans lequel chaque ouverture (26, 27, 126, 127) présente dans la deuxième languette d'étanchéité est entièrement entourée par le matériau de ladite deuxième languette d'étanchéité.
  10. Ensemble d'anneau de turbine selon l'une quelconque des revendications 1 à 9, dans lequel chaque secteur d'anneau (10) est en matériau céramique à matrice composite.
EP19722665.7A 2018-04-16 2019-04-04 Ensemble d'anneau de turbine avec étanchéité inter-secteurs Active EP3781794B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1853302A FR3080142B1 (fr) 2018-04-16 2018-04-16 Ensemble d'anneau de turbine avec etancheite inter-secteurs
PCT/FR2019/050797 WO2019202234A1 (fr) 2018-04-16 2019-04-04 Ensemble d'anneau de turbine avec etancheite inter-secteurs

Publications (2)

Publication Number Publication Date
EP3781794A1 EP3781794A1 (fr) 2021-02-24
EP3781794B1 true EP3781794B1 (fr) 2022-07-20

Family

ID=62751119

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19722665.7A Active EP3781794B1 (fr) 2018-04-16 2019-04-04 Ensemble d'anneau de turbine avec étanchéité inter-secteurs

Country Status (5)

Country Link
US (1) US11111823B2 (fr)
EP (1) EP3781794B1 (fr)
CN (1) CN112004993B (fr)
FR (1) FR3080142B1 (fr)
WO (1) WO2019202234A1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11156098B2 (en) * 2019-02-07 2021-10-26 Raytheon Technologies Corporation Mate face arrangement for gas turbine engine components
US20230304412A1 (en) * 2022-01-28 2023-09-28 Raytheon Technologies Corporation Vane forward rail for gas turbine engine assembly
US12031443B2 (en) 2022-11-29 2024-07-09 Rolls-Royce Corporation Ceramic matrix composite blade track segment with attachment flange cooling chambers
US11773751B1 (en) 2022-11-29 2023-10-03 Rolls-Royce Corporation Ceramic matrix composite blade track segment with pin-locating threaded insert
US11713694B1 (en) 2022-11-30 2023-08-01 Rolls-Royce Corporation Ceramic matrix composite blade track segment with two-piece carrier
US11840936B1 (en) 2022-11-30 2023-12-12 Rolls-Royce Corporation Ceramic matrix composite blade track segment with pin-locating shim kit
US11732604B1 (en) 2022-12-01 2023-08-22 Rolls-Royce Corporation Ceramic matrix composite blade track segment with integrated cooling passages
KR20240087270A (ko) * 2022-12-12 2024-06-19 두산에너빌리티 주식회사 터빈 베인 플랫폼 씰링 어셈블리, 이를 포함하는 터빈 베인 및 가스 터빈
US11885225B1 (en) 2023-01-25 2024-01-30 Rolls-Royce Corporation Turbine blade track with ceramic matrix composite segments having attachment flange draft angles
FR3146935A1 (fr) * 2023-03-23 2024-09-27 Safran Aircraft Engines Ensemble statorique pour une turbomachine d’aéronef
FR3147317A1 (fr) * 2023-03-29 2024-10-04 Safran Aircraft Engines Ensemble d’anneau de turbine avec une tôle d’étanchéité

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2869944B1 (fr) * 2004-05-04 2006-08-11 Snecma Moteurs Sa Dispositif de refroidissement pour anneau fixe de turbine a gaz
US8753073B2 (en) * 2010-06-23 2014-06-17 General Electric Company Turbine shroud sealing apparatus
US10316683B2 (en) * 2014-04-16 2019-06-11 United Technologies Corporation Gas turbine engine blade outer air seal thermal control system
US20160053633A1 (en) * 2014-08-22 2016-02-25 Rolls-Royce Corporation Seal with cooling feature
US9874104B2 (en) * 2015-02-27 2018-01-23 General Electric Company Method and system for a ceramic matrix composite shroud hanger assembly
FR3041993B1 (fr) * 2015-10-05 2019-06-21 Safran Aircraft Engines Ensemble d'anneau de turbine avec maintien axial
WO2018004583A1 (fr) * 2016-06-30 2018-01-04 Siemens Aktiengesellschaft Ensemble aube de stator ayant un joint d'étanchéité à face d'accouplement comportant des trous de refroidissement
FR3068071B1 (fr) * 2017-06-26 2019-11-08 Safran Aircraft Engines Ensemble pour la liaison par palonnier entre un carter de turbine et un element annulaire de turbomachine

Also Published As

Publication number Publication date
FR3080142B1 (fr) 2020-05-01
US20210164366A1 (en) 2021-06-03
WO2019202234A1 (fr) 2019-10-24
CN112004993B (zh) 2023-04-14
FR3080142A1 (fr) 2019-10-18
US11111823B2 (en) 2021-09-07
CN112004993A (zh) 2020-11-27
EP3781794A1 (fr) 2021-02-24

Similar Documents

Publication Publication Date Title
EP3781794B1 (fr) Ensemble d'anneau de turbine avec étanchéité inter-secteurs
EP3359779B1 (fr) Ensemble d'anneau de turbine avec maintien axial
EP2334909B1 (fr) Etanchéité entre une chambre de combustion et un distributeur de turbine dans une turbomachine
CA2986663C (fr) Ensemble d'anneau de turbine avec maintien par brides
EP1818615B1 (fr) Chambre de combustion annulaire d'une turbomachine
CA2577520C (fr) Chambre de combustion annulaire d'une turbomachine
EP3591178B1 (fr) Module d'étanchéité de turbomachine
EP3049636B1 (fr) Ensemble rotatif pour turbomachine
EP3874131B1 (fr) Secteur d'anneau de turbine a languettes d'etancheite refroidies
WO2015044579A1 (fr) Ensemble rotatif pour turbomachine
FR3080143A1 (fr) Ensemble d'anneau de turbine avec etancheite inter-secteur
EP4165286B1 (fr) Ensemble annulaire pour turbine de turbomachine
EP4028644B1 (fr) Anneau d'étanchéité de turbomachine
EP3853445B1 (fr) Etancheite d'une turbine
EP3906357B1 (fr) Distributeur pour turbine, turbine de turbomachine équipée de ce distributeur et turbomachine équipée de cette turbine
WO2024200969A1 (fr) Ensemble d'anneau de turbine avec une tole d'etancheite
FR3111964A1 (fr) Assemblage d’une pièce de chambre de combustion par recouvrement par une autre pièce
WO2022223905A1 (fr) Ensemble d'anneau de turbine monté sur entretoise
WO2024189287A1 (fr) Ensemble d'anneau de turbine à pions axiaux améliorés
FR3040735A1 (fr) Carter de turbine haute-pression d'une turbomachine a refroidissement localise

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200922

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

INTG Intention to grant announced

Effective date: 20220518

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019017218

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1505637

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220720

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220720

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221121

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221020

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220720

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220720

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220720

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220720

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220720

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1505637

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220720

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221120

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220720

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221021

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602019017218

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220720

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220720

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220720

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220720

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220720

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220720

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220720

26N No opposition filed

Effective date: 20230421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220720

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230404

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220720

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230430

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230404

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240320

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220720

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240320

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240320

Year of fee payment: 6