EP3766082B1 - Packaging for the transport and/or storage of radioactive materials, permitting easier production and improved heat conductivity - Google Patents
Packaging for the transport and/or storage of radioactive materials, permitting easier production and improved heat conductivity Download PDFInfo
- Publication number
- EP3766082B1 EP3766082B1 EP19734845.1A EP19734845A EP3766082B1 EP 3766082 B1 EP3766082 B1 EP 3766082B1 EP 19734845 A EP19734845 A EP 19734845A EP 3766082 B1 EP3766082 B1 EP 3766082B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- annular
- unitary
- wall
- package
- structures
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- 239000012857 radioactive material Substances 0.000 title claims description 16
- 238000003860 storage Methods 0.000 title claims description 12
- 238000004806 packaging method and process Methods 0.000 title description 40
- 230000004224 protection Effects 0.000 claims description 79
- 230000005855 radiation Effects 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 6
- 230000001681 protective effect Effects 0.000 claims description 2
- 239000000463 material Substances 0.000 description 15
- 230000000875 corresponding effect Effects 0.000 description 7
- 238000013461 design Methods 0.000 description 7
- 238000009434 installation Methods 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 208000031968 Cadaver Diseases 0.000 description 2
- 229910001018 Cast iron Inorganic materials 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000005202 decontamination Methods 0.000 description 2
- 230000003588 decontaminative effect Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 239000003758 nuclear fuel Substances 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 239000002901 radioactive waste Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 229940082150 encore Drugs 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F5/00—Transportable or portable shielded containers
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F3/00—Shielding characterised by its physical form, e.g. granules, or shape of the material
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F5/00—Transportable or portable shielded containers
- G21F5/06—Details of, or accessories to, the containers
- G21F5/10—Heat-removal systems, e.g. using circulating fluid or cooling fins
Definitions
- the present invention relates to the field of containers for the transport and/or storage of radioactive materials, for example nuclear fuel assemblies or radioactive waste.
- the present invention relates to a packaging comprising at its periphery an outer envelope for radiological protection.
- This envelope can be obtained by stacking unitary annular structures, as is for example known from the documents EP 1 524 673 Where EP 2 041 753 .
- the axially stacked structures together define an outer radial surface of the package, which turns out to be quite easily decontaminated, and able to meet current decontamination requirements.
- Each unitary annular structure of the stack is traversed axially by a multitude of orifices.
- the axial alignment of the orifices passing through the various structures makes it possible to form a plurality of axial cavities each extending over the entire length of the casing. These cavities are then filled by the radiological protection material, which then takes the form of a plurality of axial bands of radiological protection distributed circumferentially in the casing.
- This design certainly makes it possible to achieve the objective of easy decontamination of the outer radial surface of the packaging, but it requires a complicated assembly of the unitary annular structures. Indeed, these must be perfectly indexed angularly relative to each other, in order to properly reconstitute the axial cavities for housing the radiological protection strips.
- the subject of the invention is a packaging for the transport and/or storage of radioactive materials, comprising the characteristics of claim 1.
- the invention thus proves to be advantageous in that it allows the preservation of an easily decontaminable outer packaging envelope, produced by the multiplicity of the outer annular walls of the unitary structures, while improving the heat conduction function thanks to the radial walls. thermal conduction which may have a more direct radial path.
- the internal annular wall in contact with the lateral packaging body makes it possible to improve heat exchange between this lateral body and the unitary annular structure, thanks to a large contact surface.
- the fact of integrating the internal annular wall to the annular structure unit avoids having to attach fixedly, on the packaging side body, a heat transfer plate between this same side body and the unitary annular structure.
- This internal annular wall in addition to conferring protection against gamma radiation, facilitates the installation and maintenance of the radiological protection in the cavity, by participating in the delimitation of the latter.
- the proposed design greatly facilitates the assembly of the outer casing, since the formation of the cavities for housing the radiological protection elements no longer requires precise angular indexing of the structures with respect to each other. Also, the radiological protection elements can advantageously be put in place gradually, as the stacking of the unitary annular structures is carried out.
- the invention also has at least one of the following optional characteristics, taken individually or in combination.
- Each unitary annular structure is in one piece, which makes it possible to limit manufacturing costs, while retaining the desired functionalities for this unitary annular structure.
- n.E1/H ratio the higher the n.E1/H ratio, the lower the maximum temperature observed within the neutron protection elements. This ratio is thus greater than 0.02, while remaining less than 0.3 in order to maintain sufficient neutron protection.
- the interval adopted for the n.E1/H ratio makes it possible to very satisfactorily satisfy the thermal criterion, as well as the neutron protection criterion as a whole within the package.
- the packaging also corresponds to the following formula: not / H > 2 with "H" expressed in meters.
- the thickness E1 of the radial heat conduction walls is limited, so that the neutron leaks observed locally at the level of these walls are advantageously reduced.
- each unitary annular structure preferably corresponds to the following formula: I / E 1 ⁇ 10 with "L" corresponding to the radial spacing between the inner and outer annular walls.
- the thickness E1 of the radial heat conduction wall constitutes a determining factor for the neutron dose rate at 2 meters, more so than the spacing L for which an effect of threshold was also detected, beyond which the increase in this spacing L no longer really acts on the neutron dose rate at 2 meters.
- each unitary annular structure has a half cross-section in the general shape of a U, with the base of the U formed by the radial heat conduction wall, and the two branches of the U respectively formed by the outer and inner annular walls, the inside the U forms the annular cavity housing said at least one radiological protection element.
- the two free ends of the two outer and inner annular walls are located in the same transverse plane of the packaging.
- each unitary annular structure has, in half cross-section, the shape of a straight segment, preferably oriented orthogonally to the central longitudinal axis.
- the radial heat conduction wall of each unitary annular structure has, in half cross-section, at least one level axial break between a radially outer portion of the wall, and a radially inner portion of the wall.
- this provides better radiological protection, since no radial leakage occurs via the radial heat conduction walls.
- the radiological protection element(s) forms a protection ring extending over 360°.
- This ring extends continuously or discontinuously, and in the latter case obtained with several protective elements arranged end to end, circumferential overlap zones are preferably provided at the junction between these elements.
- each radiological protection element is an element cast in the cavity, or a prefabricated element arranged in this cavity.
- At least several of said unitary annular structures are identical, and preferably all of them. This allows for greater ease of manufacture. But on the contrary, for at least some of them, the annular structures can have different geometries to adapt the volume of the annular cavities and the radiological protections housed therein, to the local need for radiological protection.
- Each unitary annular structure has a half cross-section of constant shape, again for ease of manufacture.
- the radial heat conduction wall has the same thickness. This helps to impart uniform thermal performance in the radial direction.
- the number of unitary annular structures is between 10 and 50, and the height of the outer radiological protection envelope formed by the stacking of these structures is between 1 and 4 m.
- This implementation makes it very easy to assemble the components of the packaging, thanks in particular to the sequencing of steps as well as the possibility of manufacturing the means of radiological protection separately from the side body of the packaging, or even on a different manufacturing site. It also allows easy verification of the conformity of the radiological protection elements, before the installation of the associated annular structure around the side body of the packaging. In the event of failure of one of the radiological protection elements, it can be reworked or replaced, always before the installation of the associated annular structure around the side body of the packaging.
- a packaging 1 for the storage and/or transport of radioactive materials such as nuclear fuel assemblies or radioactive waste (not shown).
- This packaging 1 is shown in a vertical storage position, in which its central longitudinal axis 2 is oriented vertically. It rests on a packaging bottom 4, opposite a removable lid 6 in the direction of the height 8, parallel to the longitudinal axis 2. Between the bottom 4 and the lid 6, the packaging 1 comprises a side body 10 extending around the axis 2, and internally delimiting a housing 12 for the radioactive materials.
- This housing can constitute a containment enclosure 12 intended to receive the radioactive materials, for example arranged in a storage basket also located in the containment enclosure.
- the containment enclosure is fully defined by a case, also referred to as a “canister”, placed in the aforementioned housing 12. The latter is closed axially upwards by cover 6, and downwards by bottom 4.
- the side body 10 can be made in one piece, as shown in the figure 1 , or by several concentric ferrules.
- the packaging 1 includes an outer radiological protection casing 14, specific to the present invention.
- the casing 14 is made using the axial stack of a plurality of unitary annular structures 16, for example provided in a number n between 10 and 50, over a cumulative height "H" of the order of 1 to 4m.
- This height "H" of the outer casing 14 corresponds substantially to that of the housing 12 in the direction 8.
- all the structures 16 stacked along the axis 2 are identical, each secured to and in contact with an outer radial surface 18 of the lateral body 10. At one of the ends of the stack, corresponding to the low end on the figure 1 , the last structure 16 can nevertheless be covered with a closure plate 20.
- the structure 16 is preferably made in one piece.
- the annular structure 16 is in one piece, for example produced by forging then machining, or else by molding, preferably by casting in cast iron. These techniques make it possible to limit the production costs.
- the structure 16 has a half cross-section in the general shape of a U, with its base facing upwards. A reverse orientation with the base down would obviously be possible, without departing from the scope of the invention. This half-cross-section maintains a constant shape, regardless of the plane of section along the circumferential direction of this structure 16.
- the base of the U forms a radial heat conduction wall 22. It takes the form of a straight segment which is preferably orthogonal to the axis 2, for a more direct conduction path towards the outside of the package.
- This wall 22 has the same thickness "E1" in any cross-section half. This thickness “E1” is for example between 5 and 40 mm, and preferably between 15 and 25 mm. As will be described later, its thickness is correlated to the number of structures 16, in particular with the aim that all the radial walls joined together can evacuate a determined quantity of heat, given off by the radioactive materials.
- the inner end of the radial heat conduction wall 22 is intended to be in contact with and secured to the outer radial surface 18 of the side body 10.
- the radial wall 22 is integral with an outer annular wall 24.
- this wall 24 takes the form of a straight segment parallel to the axis 2, and which projects downwards from the outer end of the radial wall 22.
- the thickness "E2" of the wall 24 is essentially dependent on its capacity to absorb the gamma radiation generated by the neutrons, when the latter are absorbed within the radiological protection , in the case where the latter is a neutron shield as will be described below.
- the thickness "E2" can be between 5 and 40 mm, and preferably between 15 and 25 mm.
- the radial wall 22 is integral with an internal annular wall 26 forming a second branch of the U.
- the internal annular wall 26 is also in contact with and integral with the outer radial surface 18 of the side body 10.
- the contact is preferably a surface contact, over the entire internal surface of the annular wall 26.
- the joining is effected for example by hooping, as will be described below.
- the contact may simply be sliding between, on the one hand, the internal annular wall 26 and the inner end of the radial heat conduction wall 22 which extends it axially, and, on the other hand, the external radial surface 18 of the lateral body 10. .
- this wall 26 also takes the form of a straight line segment parallel to the axis 2, and which projects downwards from the inner end of the radial wall 22.
- the thickness “E3” of the wall 26 is notably dictated by its ability to limit gamma radiation. The greater its thickness, the more that of the side body 10 can be reduced. The manufacturing costs of the assembly formed by the side body 10 and the outer casing 14 can then be reduced, since the cost of the internal parts of the annular structures 16, which are preferably made of cast iron, is lower than that of the body. 10, preferably made of forged steel.
- each annular cavity 30 is delimited by two structures 16 directly consecutive in the stack.
- the cavity 30 is closed radially towards the outside by the external annular wall 24 of one of the two directly consecutive annular structures 16, and closed radially towards the interior by the internal annular wall 26 of this same annular structure 16.
- annular cavity 30 is closed axially upwards by the radial wall 22 of this same structure 16, and closed axially downwards by the radial wall 22 of the annular structure 16 directly consecutive in the stack, which closes off the opening between the two branches of the U of the first structure 16.
- the outer annular walls 24 are adjacent along the direction 8, and they together form an outer radial surface of the packaging which is substantially continuous, and easily decontaminated.
- the annular cavities 30 thus follow one another along the axis 2, each being filled entirely or almost entirely with a radiological protection material.
- a radiological protection material may be a material for protection against gamma radiation, and/or a neutron absorption material aimed at satisfying regulatory radiological criteria around the packaging when it is loaded with radioactive materials.
- it is a neutron-absorbing material, comprising on the one hand neutron-absorbing elements, and on the other hand hydrogenated elements.
- neutron absorber elements it is understood elements which have an effective section greater than 100 barns for thermal neutrons. By way of indicative examples, these are elements of the boron, gadolinium, hafnium, cadmium, indium, etc. type.
- each structure 16 corresponds to the following formula: 0.02 ⁇ not .
- this ratio makes it possible to maintain sufficient neutron shielding in the cavities 30. Moreover, by being greater than 0.02, this ratio surprisingly makes it possible to maintain the neutron shielding material at a reasonable maximum temperature. , limiting the risk of accelerated ageing. This ratio thus offers a very satisfactory compromise in terms of thermal conduction and neutron protection as a whole.
- the packaging is such that it corresponds to the following formula: n/H > 2, “H” here being expressed in meters.
- the thickness E1 of the radial walls 22 is limited, and the neutron leaks observed locally are thereby reduced.
- each structure 16 preferably responds to the following formula: I / E 1 ⁇ 10 with "L" corresponding to the radial spacing between the inner and outer annular walls 26, 24. It is further specified that this distance L also preferably corresponds substantially to the radial length of the neutron shield. More generally, it is indicated that the annular cavity is filled in whole or in large part by the neutron shielding, preferably over at least 90% of its total volume.
- This geometric condition makes it possible to limit the thickness E1 of the radial wall 22, which constitutes a determining factor for the neutron dose rate at 2 meters.
- a dimensioning of the annular structure 16 with such a higher ratio or equal to 10 would result in a high radial length of the casing 14 to satisfy the neutron dose rate criterion at 2 meters, and therefore a substantial overall mass of the package. This is explained at least in part by the fact that from a given radial length of the neutron shield, a threshold effect occurs and the increase in this length has little effect on the throughput of neutron dose at 2 meters.
- the radiological protection material is for example in the form of one or more cast elements, preferably a single continuous ring cast over 360° in the cavity 30. It can alternatively be in the form of one or more several prefabricated elements, arranged in the cavity 30.
- a neutron protection ring 34 is formed discontinuously using several protection elements 32 arranged end to end.
- these latter elements 32 preferably have circumferential overlap zones 36 at their circumferential ends ensuring the junction between these different elements.
- the figure 6 represents a first method of manufacturing the packaging 1, for the steps which relate to the assembly of the outer casing 14 of radiological protection around the side body 10.
- This method consists of the repetition of two successive steps.
- the first of these two steps consists in setting up one of the unitary annular structures 16 in the stack around the lateral body 10, even though its annular cavity 30 is not yet filled by the radiological protection element(s). .
- This step is schematized by the arrow 36 on the figure 6 .
- the structure 16 can be heated beforehand, for example to a temperature of the order of 200°C. It is brought into contact with the rest of the stack, so as to close the cavity 30 of the structure 16 previously placed in the stack, and which is filled with the radiological protection material.
- the structure has cooled, for example to a temperature below 160° C., it adheres by shrinking to the outer radial wall 18 of the side body, via the inner end of the radial wall 22 and via the inner annular wall 26 .
- the radiological protection material can then be placed in the annular cavity 30 of the cooled structure 16, without risk of thermal degradation of this material.
- these steps are carried out with the packaging 1 in the vertical position, but with its bottom facing upwards so that each cavity 30 to be filled is open upwards.
- the material is put in place by casting or by arranging prefabricated elements in the cavity 30, then the radiological protection thus obtained is inspected before repeating these same two first and second steps.
- the figure 7 represents a second method of manufacturing the packaging 1, for the steps which relate to the assembly of the outer casing 14 of radiological protection around the side body 10.
- This method consists of the repetition of two successive steps.
- the first of these two steps here consists in placing each radiological protection element in the annular cavity 30 defined in part by one of the unitary annular structures 16, not yet placed in the stack.
- This step can advantageously be carried out on a site different from that on which the stacking of the unitary annular structures 16 is carried out.
- the quality of the radiological protection elements can be inspected before the installation of the structure 16 around the body 10, this operation corresponding to the second step.
- This insertion of the structure 16, equipped with its radiological protection can also be carried out by heating, as has been described above.
- each unitary annular structure 16 has a half cross-section in the general shape of a U, with the base of the U formed by the radial wall 22, and the two branches of the U respectively formed by the external 24 and internal 26 annular walls.
- the two free ends of the two annular walls 24, 26 are located in the same transverse plane of the packaging. Nevertheless, the free ends of the two annular walls 24, 26 can be offset axially from each other, without departing from the scope of the invention. Maintaining the free ends of the two annular walls 24, 26 in the same transverse plane makes it easier to cast the neutron shield in the annular cavity 30.
- each cavity 30 is delimited radially outwards by a part of the external wall 24 (the external lateral branch of the H) of one of the structures 16, and by a part of the external wall 24 of the structure 16 directly consecutive in stacking.
- Each annular cavity 30 is also delimited radially towards the inside by a part of the internal wall 26 (the internal lateral branch of the H) of one of the structures 16, and by a part of the internal wall 26 of the structure 16 directly consecutive in the stack.
- the two side branches could be offset axially from one another, without departing from the scope of the invention.
- the figure 9 represents another alternative embodiment mentioned above, in which the unitary structure 16 of half cross-section in the shape of a general U no longer has a base 22 substantially orthogonal to the axis 2, but this base 22 is inclined with respect to this same axis 2 by an angle "A" different from 90°.
- This angle can preferably be between 20 and 70°.
- the base 22 forming the radial heat conduction wall may be an inclined straight segment, connecting the ends of the two annular walls 24, 26.
- a central part of this base 22 of can be a straight segment, or even a curved portion, and the two connecting ends 40 can be rounded.
- the figures 10 and 11 represent another alternative embodiment, on which the radial heat conduction wall 22 of each unitary annular structure 16 has a different shape. It is no longer straight and radial as in the previous embodiments, but it includes, in half-section transverse, at least one level axial rupture 22c between a radially outer wall portion 22a and a radially inner wall portion 22b.
- This embodiment like the previous one, makes it possible to improve radiological protection, since no radial leakage occurs via the radial heat conduction walls 22.
- the axial rupture at level 22c takes the form of a riser oriented parallel to the axis 2, and substantially centered between the two portions 22a, 22b.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Measurement Of Radiation (AREA)
- Buffer Packaging (AREA)
- Packages (AREA)
Description
La présente invention se rapporte au domaine des emballages de transport et/ou d'entreposage de matières radioactives, par exemple des assemblages de combustible nucléaire ou des déchets radioactifs.The present invention relates to the field of containers for the transport and/or storage of radioactive materials, for example nuclear fuel assemblies or radioactive waste.
Plus précisément, la présente invention se rapporte à un emballage comprenant à sa périphérie une enveloppe extérieure de protection radiologique.More specifically, the present invention relates to a packaging comprising at its periphery an outer envelope for radiological protection.
De l'art antérieur, il est connu de venir rapporter une enveloppe extérieure de protection radiologique, autour d'un corps latéral d'un emballage. La fonction recherchée avec cette enveloppe réside dans la protection contre le rayonnement gamma, et/ou dans l'absorption neutronique afin de respecter les critères radiologiques réglementaires autour de l'emballage, lorsque celui-ci est chargé de matières radioactives.From the prior art, it is known to add an outer envelope for radiological protection, around a side body of a package. The function sought with this casing lies in protection against gamma radiation, and/or in neutron absorption in order to comply with regulatory radiological criteria around the casing, when the latter is loaded with radioactive materials.
Cette enveloppe peut être obtenue par l'empilement de structures annulaires unitaires, comme cela est par exemple connu des documents
Chaque structure annulaire unitaire de l'empilement est traversée axialement par une multitude d'orifices. L'alignement axial des orifices traversant les différentes structures permet de former une pluralité de cavités axiales s'étendant chacune sur toute la longueur de l'enveloppe. Ces cavités sont ensuite comblées par le matériau de protection radiologique, qui prend alors la forme d'une pluralité de bandes axiales de protection radiologique réparties circonférentiellement dans l'enveloppe.Each unitary annular structure of the stack is traversed axially by a multitude of orifices. The axial alignment of the orifices passing through the various structures makes it possible to form a plurality of axial cavities each extending over the entire length of the casing. These cavities are then filled by the radiological protection material, which then takes the form of a plurality of axial bands of radiological protection distributed circumferentially in the casing.
Cette conception permet certes d'atteindre l'objectif d'une décontamination aisée de la surface radiale extérieure de l'emballage, mais elle requiert un assemblage compliqué des structures annulaires unitaires. En effet, celles-ci doivent être parfaitement indexées angulairement les unes par rapport aux autres, afin de reconstituer convenablement les cavités axiales de logement des bandes de protection radiologique.This design certainly makes it possible to achieve the objective of easy decontamination of the outer radial surface of the packaging, but it requires a complicated assembly of the unitary annular structures. Indeed, these must be perfectly indexed angularly relative to each other, in order to properly reconstitute the axial cavities for housing the radiological protection strips.
De nombreux autres inconvénients découlent de cette conception, parmi lesquels une fonction de conduction thermique fortement dégradée au sein de l'enveloppe. Cela s'explique par le fait que les bandes axiales se recouvrent partiellement les unes les autres selon la direction radiale, afin de limiter au mieux les fuites radiologiques dans cette direction. Ce recouvrement entraîne une complexification notable de la forme des parois radiales qui définissent les cavités axiales, créant ainsi des chemins de conduction thermique radiaux peu optimisés.Many other drawbacks arise from this design, including a greatly degraded thermal conduction function within the envelope. This is explained by the fact that the axial bands partially overlap each other in the radial direction, in order to best limit radiological leaks in this direction. This covering leads to a notable complexification of the shape of the radial walls which define the axial cavities, thus creating poorly optimized radial thermal conduction paths.
Par conséquent, il existe un besoin d'optimisation de la conception des emballages existants, afin de pallier les inconvénients décrits ci-dessus.Consequently, there is a need to optimize the design of existing packaging, in order to overcome the drawbacks described above.
Pour répondre à ce besoin, l'invention a pour objet un emballage pour le transport et/ou l'entreposage de matières radioactives, comprenant les caractéristiques de la revendication 1.To meet this need, the subject of the invention is a packaging for the transport and/or storage of radioactive materials, comprising the characteristics of
L'invention se révèle ainsi avantageuse en ce qu'elle permet la conservation d'une enveloppe extérieure d'emballage facilement décontaminable, réalisée par la multiplicité des parois annulaires externes des structures unitaires, tout en améliorant la fonction de conduction thermique grâce aux parois radiales de conduction thermique qui peuvent présenter un chemin radial plus direct. De plus, la paroi annulaire interne au contact du corps latéral d'emballage permet d'améliorer les échanges thermiques entre ce corps latéral et la structure annulaire unitaire, grâce à une surface de contact importante. Le fait d'intégrer la paroi annulaire interne à la structure annulaire unitaire évite d'avoir à rapporter fixement, sur le corps latéral d'emballage, une platine de transfert thermique entre ce même corps latéral et la structure annulaire unitaire. Cette paroi annulaire interne, en plus de conférer une protection contre les rayonnements gamma, facilite la mise en place et le maintien de la protection radiologique dans la cavité, en participant à la délimitation de celle-ci.The invention thus proves to be advantageous in that it allows the preservation of an easily decontaminable outer packaging envelope, produced by the multiplicity of the outer annular walls of the unitary structures, while improving the heat conduction function thanks to the radial walls. thermal conduction which may have a more direct radial path. In addition, the internal annular wall in contact with the lateral packaging body makes it possible to improve heat exchange between this lateral body and the unitary annular structure, thanks to a large contact surface. The fact of integrating the internal annular wall to the annular structure unit avoids having to attach fixedly, on the packaging side body, a heat transfer plate between this same side body and the unitary annular structure. This internal annular wall, in addition to conferring protection against gamma radiation, facilitates the installation and maintenance of the radiological protection in the cavity, by participating in the delimitation of the latter.
En outre, la conception proposée facilite grandement l'assemblage de l'enveloppe extérieure, car la formation des cavités de logement des éléments de protection radiologique ne requiert plus d'indexation angulaire précise des structures les unes par rapport aux autres. Egalement, les éléments de protection radiologique peuvent avantageusement être mis en place progressivement, au fur et à mesure de la réalisation de l'empilement des structures annulaires unitaires.In addition, the proposed design greatly facilitates the assembly of the outer casing, since the formation of the cavities for housing the radiological protection elements no longer requires precise angular indexing of the structures with respect to each other. Also, the radiological protection elements can advantageously be put in place gradually, as the stacking of the unitary annular structures is carried out.
D'autres avantages découlent de la conception propre à l'invention, comme par exemple l'amélioration de la protection radiologique qui peut à présent être annulaire, en comparaison des bandes axiales moins performantes de l'art antérieur.Other advantages flow from the design specific to the invention, such as for example the improvement of the radiological protection which can now be annular, in comparison with the less efficient axial bands of the prior art.
Il devient aussi possible d'adapter localement la performance radiologique du matériau, au besoin de protection spécifique associé à la position axiale de ce matériau. En effet, les cavités annulaires qui se succèdent axialement peuvent ne pas toutes être remplies avec un même matériau de protection radiologique. A cet égard, au centre de l'emballage, il sera par exemple utilisé un matériau présentant une plus forte capacité de protection radiologique que celle d'un autre matériau utilisé pour combler les cavités annulaires situées à proximité des extrémités axiales de l'emballage. Cela conduit à un gain économique important, tout en offrant une protection radiologique satisfaisante. Cette spécificité s'avère d'autant plus intéressante qu'elle est obtenue sans modifier l'épaisseur des éléments de protection radiologique, ni celle des cavités annulaires qui les reçoivent.It also becomes possible to locally adapt the radiological performance of the material, to the need for specific protection associated with the axial position of this material. Indeed, the annular cavities which follow one another axially may not all be filled with the same radiological protection material. In this respect, at the center of the packaging, a material will for example be used having a higher capacity for radiological protection than that of another material used to fill the annular cavities located close to the axial ends of the packaging. This leads to a significant economic gain, while providing satisfactory radiological protection. This specificity proves to be all the more advantageous in that it is obtained without modifying the thickness of the radiological protection elements, nor that of the annular cavities which receive them.
Toujours parmi les autres avantages conférés par l'invention, il est cité l'amélioration du contrôle de la qualité de la protection radiologique, en particulier lorsque la protection est coulée in situ. En effet, il est possible d'avoir un accès visuel sur la protection radiologique placée dans sa cavité associée, avant que celle-ci ne soit fermée par la mise en place de la structure directement consécutive dans l'empilement. Cet accès visuel peut avantageusement s'opérer sur tout le périmètre de la protection radiologique. Ainsi, en cas de non-conformité, la protection peut être retouchée ou remplacée avant la fermeture de la cavité dans laquelle elle est logée.Still among the other advantages conferred by the invention, mention is made of improving the quality control of the radiological protection, in particular when the protection is cast in situ. Indeed, it is possible to have visual access to the radiological protection placed in its associated cavity, before the latter is closed by the placement of the directly consecutive structure in the stack. This visual access can advantageously take place over the entire perimeter of the radiological protection. Thus, in the event of non-compliance, the protection can be touched up or replaced before closing the cavity in which it is housed.
L'invention présente par ailleurs au moins l'une des caractéristiques optionnelles suivantes, prises isolément ou en combinaison.The invention also has at least one of the following optional characteristics, taken individually or in combination.
Chaque structure annulaire unitaire est monobloc, ce qui permet de limiter les coûts de fabrication, tout en conservant les fonctionnalités désirées pour cette structure annulaire unitaire.Each unitary annular structure is in one piece, which makes it possible to limit manufacturing costs, while retaining the desired functionalities for this unitary annular structure.
Ledit élément de protection radiologique est un élément de protection neutronique, et chaque structure annulaire unitaire répond à la formule suivante :
- « n » correspondant au nombre total de structures annulaires unitaires empilées ;
- « E1 » correspondant à l'épaisseur de la paroi radiale de conduction thermique ; et
- « H » correspondant à la hauteur de l'enveloppe extérieure.
- "n" corresponding to the total number of stacked unitary annular structures;
- “E1” corresponding to the thickness of the radial heat conduction wall; and
- "H" corresponding to the height of the outer envelope.
Il a en effet été déterminé, de manière surprenante, que plus le rapport n.E1/H était élevé, plus la température maximale observée au sein des éléments de protection neutronique était faible. Ce rapport est ainsi supérieur à 0,02, tout en restant inférieur à 0,3 afin de conserver une protection neutronique suffisante. L'intervalle retenu pour le rapport n.E1/H permet de satisfaire de manière très satisfaisante le critère thermique, ainsi que le critère de protection neutronique dans sa globalité au sein de l'emballage.It has in fact been determined, surprisingly, that the higher the n.E1/H ratio, the lower the maximum temperature observed within the neutron protection elements. This ratio is thus greater than 0.02, while remaining less than 0.3 in order to maintain sufficient neutron protection. The interval adopted for the n.E1/H ratio makes it possible to very satisfactorily satisfy the thermal criterion, as well as the neutron protection criterion as a whole within the package.
De préférence, l'emballage répond également à la formule suivante :
Avec ce dimensionnement, l'épaisseur E1 des parois radiales de conduction thermique est limitée, de sorte que les fuites neutroniques observées localement au niveau de ces parois se trouvent avantageusement réduites.With this dimensioning, the thickness E1 of the radial heat conduction walls is limited, so that the neutron leaks observed locally at the level of these walls are advantageously reduced.
Egalement dans le but de réduire localement les fuites neutroniques, en particulier le débit de dose neutron à 2 mètres de la surface extérieure de l'enveloppe extérieure de l'emballage, chaque structure annulaire unitaire répond de préférence à la formule suivante :
De manière surprenante, il a en effet été déterminé que l'épaisseur E1 de la paroi radiale de conduction thermique constituait un facteur déterminant pour le débit de dose neutron à 2 mètres, plus d'ailleurs que l'écartement L pour lequel un effet de seuil a également été détecté, au-delà duquel l'augmentation de cet écartement L n'agit plus réellement sur le débit de dose neutron à 2 mètres.Surprisingly, it has in fact been determined that the thickness E1 of the radial heat conduction wall constitutes a determining factor for the neutron dose rate at 2 meters, more so than the spacing L for which an effect of threshold was also detected, beyond which the increase in this spacing L no longer really acts on the neutron dose rate at 2 meters.
De préférence, chaque structure annulaire unitaire présente une demi-section transversale en forme générale de U, avec la base du U formée par la paroi radiale de conduction thermique, et les deux branches du U respectivement formées par les parois annulaires externe et interne, l'intérieur du U forme la cavité annulaire logeant ledit au moins un élément de protection radiologique.Preferably, each unitary annular structure has a half cross-section in the general shape of a U, with the base of the U formed by the radial heat conduction wall, and the two branches of the U respectively formed by the outer and inner annular walls, the inside the U forms the annular cavity housing said at least one radiological protection element.
De préférence, pour chaque structure annulaire unitaire en forme de U, les deux extrémités libres des deux parois annulaires externe et interne se situent dans un même plan transversal de l'emballage.Preferably, for each U-shaped unitary annular structure, the two free ends of the two outer and inner annular walls are located in the same transverse plane of the packaging.
D'autres formes sont bien évidemment possibles, comme une forme en H, qui est également particulièrement simple à obtenir, tout en offrant des performances élevées de conduction thermique.Other shapes are of course possible, such as an H-shape, which is also particularly simple to obtain, while offering high thermal conduction performance.
La paroi radiale de conduction thermique de chaque structure annulaire unitaire présente, en demi-section transversale, la forme d'un segment de droite, de préférence orienté orthogonalement à l'axe central longitudinal.The radial heat conduction wall of each unitary annular structure has, in half cross-section, the shape of a straight segment, preferably oriented orthogonally to the central longitudinal axis.
Cette spécificité permet l'obtention d'une fonction de transfert thermique performante, car la paroi radiale forme alors un chemin direct de conduction de chaleur. Alternativement, le segment de droite pourrait être incliné différemment par rapport à l'axe central longitudinal. Le chemin de conduction thermique serait alors moins direct, mais la protection radiologique plus performante.This specificity makes it possible to obtain a high-performance heat transfer function, since the radial wall then forms a direct heat conduction path. Alternatively, the line segment could be tilted differently by relative to the central longitudinal axis. The thermal conduction path would then be less direct, but the radiological protection would be more effective.
Selon une autre réalisation, la paroi radiale de conduction thermique de chaque structure annulaire unitaire présente, en demi-section transversale, au moins une rupture axiale de niveau entre une portion radialement externe de paroi, et une portion radialement interne de paroi. Ici encore, cela procure une meilleure protection radiologique, car il ne se produit aucune fuite radiale via les parois radiales de conduction thermique.According to another embodiment, the radial heat conduction wall of each unitary annular structure has, in half cross-section, at least one level axial break between a radially outer portion of the wall, and a radially inner portion of the wall. Here again, this provides better radiological protection, since no radial leakage occurs via the radial heat conduction walls.
Dans chaque cavité annulaire, le/les éléments de protection radiologique forme un anneau de protection s'étendant sur 360°. Cet anneau s'étend de façon continue ou discontinue, et dans ce dernier cas obtenu avec plusieurs éléments de protection agencés bout-à-bout, il est de préférence prévu des zones de chevauchement circonférentiel au niveau de la jonction entre ces éléments.In each annular cavity, the radiological protection element(s) forms a protection ring extending over 360°. This ring extends continuously or discontinuously, and in the latter case obtained with several protective elements arranged end to end, circumferential overlap zones are preferably provided at the junction between these elements.
Dans chaque cavité annulaire, chaque élément de protection radiologique est un élément coulé dans la cavité, ou un élément préfabriqué agencé dans cette cavité.In each annular cavity, each radiological protection element is an element cast in the cavity, or a prefabricated element arranged in this cavity.
Au moins plusieurs desdites structures annulaires unitaires sont identiques, et de préférence la totalité d'entre elles. Cela permet une plus grande facilité de fabrication. Mais au contraire, pour au moins certaines d'entre elles, les structures annulaires peuvent présenter des géométries différentes pour adapter le volume des cavités annulaires et des protections radiologiques qui y sont logées, au besoin local en protection radiologique.At least several of said unitary annular structures are identical, and preferably all of them. This allows for greater ease of manufacture. But on the contrary, for at least some of them, the annular structures can have different geometries to adapt the volume of the annular cavities and the radiological protections housed therein, to the local need for radiological protection.
Chaque structure annulaire unitaire présente une demi-section transversale de forme constante, toujours pour des facilités de fabrication.Each unitary annular structure has a half cross-section of constant shape, again for ease of manufacture.
Dans toute demi-section transversale de chaque structure annulaire unitaire, la paroi radiale de conduction thermique présente une même épaisseur. Cela permet de conférer une performance thermique uniforme dans la direction radiale.In any half cross section of each unitary annular structure, the radial heat conduction wall has the same thickness. This helps to impart uniform thermal performance in the radial direction.
Le nombre de structures annulaires unitaires est compris entre 10 et 50, et la hauteur de l'enveloppe extérieure de protection radiologique formée par l'empilement de ces structures est comprise entre 1 et 4 m.The number of unitary annular structures is between 10 and 50, and the height of the outer radiological protection envelope formed by the stacking of these structures is between 1 and 4 m.
L'invention a également pour objet un procédé de fabrication d'un tel emballage pour le transport et/ou l'entreposage de matières radioactives ; comprenant la répétition des étapes successives suivantes :
- mise en place de l'une des structures annulaires unitaires dans l'empilement autour du corps latéral ;
- mise en place de chaque élément de protection radiologique dans la cavité annulaire définie en partie par la structure annulaire unitaire mise en place à l'étape précédente.
- positioning one of the unitary annular structures in the stack around the side body;
- placing each radiological protection element in the annular cavity defined in part by the unitary annular structure put in place in the previous step.
Ainsi, lorsque les structures annulaires unitaires doivent être chauffées avant leur mise en place dans l'empilement, il peut alors être avantageusement attendu le refroidissement de la structure annulaire assemblée autour du corps latéral, avant la mise en place de chaque élément de protection radiologique. Ces éléments de protection radiologique ne sont alors exposés à aucun risque de dégradation thermique.Thus, when the unitary annular structures must be heated before they are placed in the stack, it can then advantageously be waited for the cooling of the annular structure assembled around the lateral body, before the establishment of each radiological protection element. These radiological protection elements are then not exposed to any risk of thermal degradation.
L'invention a également pour objet un autre procédé de fabrication d'un tel emballage pour le transport et/ou l'entreposage de matières radioactives, comprenant la répétition des étapes successives suivantes :
- mise en place de chaque élément de protection radiologique dans la cavité annulaire définie en partie par l'une des structures annulaires unitaires ;
- mise en place, dans l'empilement autour du corps latéral, de la structure annulaire unitaire mentionnée à l'étape précédente, équipée de chaque élément de protection radiologique.
- placing each radiological protection element in the annular cavity defined in part by one of the unitary annular structures;
- installation, in the stack around the side body, of the unitary annular structure mentioned in the previous step, equipped with each radiological protection element.
Cette mise en œuvre procure une grande facilité d'assemblage des composants de l'emballage, grâce en particulier au séquencement d'étapes ainsi qu'à la possibilité de fabriquer les moyens de protection radiologique séparément du corps latéral de l'emballage, voire sur un site de fabrication différent. Elle permet aussi une vérification aisée de la conformité des éléments de protection radiologique, avant la mise en place de la structure annulaire associée autour du corps latéral d'emballage. En cas de défaillance de l'un des éléments de protection radiologique, celui-ci peut être retouché ou remplacé, toujours avant la mise en place de la structure annulaire associée autour du corps latéral d'emballage.This implementation makes it very easy to assemble the components of the packaging, thanks in particular to the sequencing of steps as well as the possibility of manufacturing the means of radiological protection separately from the side body of the packaging, or even on a different manufacturing site. It also allows easy verification of the conformity of the radiological protection elements, before the installation of the associated annular structure around the side body of the packaging. In the event of failure of one of the radiological protection elements, it can be reworked or replaced, always before the installation of the associated annular structure around the side body of the packaging.
D'autres avantages et caractéristiques de l'invention apparaîtront dans la description détaillée non limitative ci-dessous.Other advantages and characteristics of the invention will appear in the non-limiting detailed description below.
Cette description sera faite au regard des dessins annexés parmi lesquels ;
- la
figure 1 représente une vue en coupe axiale longitudinale d'un emballage pour l'entreposage et/ou le transport de matières radioactives, selon un mode de réalisation préféré de la présente invention ; - la figure la représente une vue en coupe transversale de l'emballage montré sur la
figure 1 , selon la ligne la-la de cette figure ; - la
figure 2 représente une vue en perspective de l'emballage montré sur lafigure 1 ; - la
figure 3 représente une vue partielle en perspective de l'une des structures annulaires unitaires qui forment une enveloppe extérieure de protection radiologique de l'emballage montré sur les figures précédentes ; - la
figure 4 est une vue en coupe transversale de la structure montrée sur lafigure 3 ; - la
figure 5 est une vue en demi-section transversale de la structure annulaire unitaire montrée sur lesfigures 3 et 4 ; - la
figure 6 représente schématiquement un procédé de fabrication de l'emballage montré sur les figures précédentes, selon une première possibilité de mise en œuvre ; - la
figure 7 représente schématiquement un procédé de fabrication de l'emballage montré sur lesfigures 1 à 5 , selon une seconde possibilité de mise en œuvre ; - la
figure 8 représente une partie de l'emballage montré sur lesfigures 1 à 5 , selon une alternative de réalisation ; - la
figure 9 représente une vue similaire à celle de lafigure 5 , avec la structure annulaire unitaire se présentant selon une alternative de réalisation ; - la
figure 10 est une vue partielle en perspective de l'une des structures annulaires unitaires, selon encore une autre alternative de réalisation ; et - la
figure 11 est une vue en coupe transversale de la structure montrée sur lafigure 10 .
- the
figure 1 represents a view in longitudinal axial section of a packaging for the storage and/or transport of radioactive materials, according to a preferred embodiment of the present invention; - Figure la shows a cross-sectional view of the package shown in figure
figure 1 , along the line la-la of this figure; - the
figure 2 represents a perspective view of the packaging shown in thefigure 1 ; - the
picture 3 shows a partial perspective view of one of the unitary annular structures which form an outer envelope for radiological protection of the packaging shown in the preceding figures; - the
figure 4 is a cross-sectional view of the structure shown in thepicture 3 ; - the
figure 5 is a half cross-sectional view of the unitary ring structure shown in thefigure 3 and4 ; - the
figure 6 schematically represents a method of manufacturing the packaging shown in the preceding figures, according to a first possibility of implementation; - the
figure 7 schematically represents a manufacturing process for the packaging shown in thefigures 1 to 5 , according to a second possibility of implementation; - the
figure 8 represents part of the packaging shown on thefigures 1 to 5 , according to an alternative embodiment; - the
figure 9 represents a view similar to that of thefigure 5 , with the unitary annular structure occurring according to an alternative embodiment; - the
figure 10 is a partial perspective view of one of the unitary annular structures, according to yet another alternative embodiment; and - the
figure 11 is a cross-sectional view of the structure shown in thefigure 10 .
En référence tout d'abord aux
Cet emballage 1 est représenté en position verticale d'entreposage, dans laquelle son axe central longitudinal 2 est orienté verticalement. Il repose sur un fond d'emballage 4, opposé à un couvercle amovible 6 selon la direction de la hauteur 8, parallèle à l'axe longitudinal 2. Entre le fond 4 et le couvercle 6, l'emballage 1 comporte un corps latéral 10 s'étendant autour de l'axe 2, et délimitant intérieurement un logement 12 pour les matière radioactives. Ce logement peut constituer une enceinte de confinement 12 destinée à recevoir les matières radioactives, par exemple agencées dans un panier de rangement également situé dans l'enceinte de confinement. Alternativement, l'enceinte de confinement est définie intégralement par un étui, également dénommé « canister », placé dans le logement 12 précité. Ce dernier est fermé axialement vers le haut par le couvercle 6, et vers le bas par le fond 4.This
Le corps latéral 10 peut être réalisé d'un seul tenant, comme cela a été représenté sur la
Autour du corps latéral 10, l'emballage 1 comporte une enveloppe extérieure de protection radiologique 14, propre à la présente invention.Around the
L'enveloppe 14 est réalisée à l'aide de l'empilement axial d'une pluralité de structures annulaires unitaires 16, par exemple prévues dans un nombre n compris entre 10 et 50, sur une hauteur cumulée « H » de l'ordre de 1 à 4 m. Cette hauteur « H » de l'enveloppe extérieure 14 correspond sensiblement à celle du logement 12 selon la direction 8.The
Dans ce mode de réalisation préféré, toutes les structures 16 empilées selon l'axe 2 sont identiques, chacune solidaire et au contact d'une surface radiale extérieure 18 du corps latéral 10. A l'une des extrémités de l'empilement, correspondant à l'extrémité basse sur la
En référence à présent aux
La structure 16 est de préférence réalisée d'un seul tenant. En d'autres termes, la structure annulaire 16 est monobloc, par exemple réalisée par forgeage puis usinage, ou encore par moulage, de préférence par un moulage en fonte. Ces techniques permettent de limiter les coûts de réalisation.The
La structure 16 présente une demi-section transversale en forme générale de U, avec sa base orientée vers le haut. Une orientation inverse avec la base vers le bas serait bien évidemment envisageable, sans sortir du cadre de l'invention. Cette demi-section transversale conserve une forme constante, quel que soit le plan de section le long de la direction circonférentielle de cette structure 16.The
La base du U forme une paroi radiale de conduction thermique 22. Elle adopte la forme d'un segment de droite qui est préférentiellement orthogonal à l'axe 2, pour un chemin de conduction plus direct vers l'extérieur de l'emballage. Cette paroi 22 présente une même épaisseur « E1 » dans toute demi-section transversale. Cette épaisseur « E1 » est par exemple comprise entre 5 et 40 mm, et préférentiellement comprise entre 15 et 25 mm. Comme cela sera décrit ultérieurement, son épaisseur est corrélée au nombre de structures 16, notamment dans le but que toutes les parois radiales réunies puissent évacuer une quantité de chaleur déterminée, dégagée par les matières radioactives.The base of the U forms a radial
L'extrémité intérieure de la paroi radiale de conduction thermique 22 est destinée à être au contact et solidaire de la surface radiale extérieure 18 du corps latéral 10. A son extrémité opposée, à savoir l'extrémité extérieure, la paroi radiale 22 est solidaire d'une paroi annulaire externe 24. En demi-section transversale, cette paroi 24 prend la forme d'un segment de droite parallèle à l'axe 2, et qui se projette vers le bas à partir de l'extrémité extérieure de la paroi radiale 22. A titre indicatif, il est noté que l'épaisseur « E2 » de la paroi 24 est essentiellement dépendante de sa capacité à absorber les rayonnements gamma générés par les neutrons, lorsque ces derniers se font absorber au sein de la protection radiologique, dans le cas où cette dernière est une protection neutronique comme cela sera décrit ci-après. L'épaisseur « E2 » peut être comprise entre 5 et 40 mm, et préférentiellement comprise entre 15 et 25 mm.The inner end of the radial
Enfin, à son extrémité intérieure, la paroi radiale 22 est solidaire d'une paroi annulaire interne 26 formant une seconde branche du U. La paroi annulaire interne 26 est elle aussi au contact et solidaire de la surface radiale extérieure 18 du corps latéral 10. Le contact est préférentiellement un contact surfacique, sur l'intégralité de la surface interne de la paroi annulaire 26. La solidarisation s'effectue par exemple par frettage, comme cela sera décrit ci-après. Alternativement, le contact peut être simplement glissant entre d'une part la paroi annulaire interne 26 et l'extrémité intérieure de la paroi radiale de conduction thermique 22 qui la prolonge axialement, et d'autre part la surface radiale extérieure 18 du corps latéral 10.Finally, at its inner end, the
En demi-section transversale, cette paroi 26 prend également la forme d'un segment de droite parallèle à l'axe 2, et qui se projette vers le bas à partir de l'extrémité intérieure de la paroi radiale 22. A titre indicatif, il est noté que l'épaisseur « E3 » de la paroi 26 est notamment dictée par sa capacité à limiter les rayonnements gamma. Plus son épaisseur est importante, plus celle du corps latéral 10 peut être réduite. Les coûts de fabrication de l'ensemble formé par le corps latéral 10 et l'enveloppe extérieure 14 peuvent alors être réduits, puisque le coût des parties internes des structures annulaires 16, qui sont de préférence en fonte, est moins élevé que celui du corps 10, réalisé de préférence en acier forgé.In half cross-section, this
Grâce à la conception de ces structures annulaires unitaires 16, lorsqu'elles sont empilées autour du corps latéral 10, elles forment des cavités annulaires logeant des éléments de protection radiologique. Plus précisément, en référence à nouveau à la
Une fois les structures annulaires empilées, les parois annulaires externes 24 sont adjacentes selon la direction 8, et elles forment ensemble une surface radiale extérieure de l'emballage qui est sensiblement continue, et facilement décontaminable.Once the annular structures are stacked, the outer
Les cavités annulaires 30 se succèdent ainsi le long de l'axe 2, en étant chacune remplie en totalité ou quasi-totalité avec un matériau de protection radiologique. Comme évoqué précédemment, il peut s'agir d'un matériau de protection contre les rayonnements gamma, et/ou d'un matériau d'absorption neutronique visant à satisfaire les critères radiologiques réglementaires autour de l'emballage lorsque celui-ci est chargé de matières radioactives. De préférence, il s'agit d'un matériau d'absorption neutronique, comprenant d'une part des éléments absorbeurs de neutrons, et d'autre part des éléments hydrogénés. A titre informatif, il est rappelé que par « éléments absorbeurs de neutrons », il est entendu des éléments qui présentent une section efficace supérieure à 100 barns pour les neutrons thermiques. A titre d'exemples indicatifs, il s'agit d'éléments du type bore, gadolinium, hafnium, cadmium, indium, etc. Il est également rappelé que l'hydrogène (atome léger) permet de ralentir les neutrons pour qu'ils soient ensuite absorbés par les éléments absorbeurs de neutrons. Ainsi, le critère de température doit être respecté essentiellement pour éviter une perte conséquente d'hydrogène, qui pourrait nuire aux fonctions de blindage neutronique, et ce pendant toute la durée d'utilisation de l'emballage.The
Pour le dimensionnement des différents constituants de l'emballage, il est tout d'abord fait en sorte que chaque structure 16 réponde à la formule suivante :
En restant inférieur à 0,3, ce rapport permet de conserver une protection neutronique suffisante dans les cavités 30. De plus, en étant supérieur 0,02, ce rapport permet de manière surprenante de maintenir le matériau de protection neutronique à une température maximale raisonnable, limitant les risques de vieillissement accéléré. Ce rapport offre ainsi un compromis très satisfaisant en matière de conduction thermique, et de protection neutronique dans sa globalité.By remaining below 0.3, this ratio makes it possible to maintain sufficient neutron shielding in the
Il est également noté que dans la formule n.E1/H, ainsi que dans la formule L/E1 < 10 décrite ci-après et incluant également l'épaisseur E1, celle-ci correspond à l'épaisseur moyenne lorsqu'elle n'est pas constante le long de la paroi radiale de conduction thermique 22.It is also noted that in the formula n.E1/H, as well as in the formula L/E1 < 10 described below and also including the thickness E1, this corresponds to the average thickness when it is not is not constant along the radial
Pour améliorer le critère protection neutronique, localement au niveau des parois radiales de conduction thermique 22, l'emballage est tel qu'il répond à la formule suivante :
n/H > 2, « H » étant ici exprimée en mètres.To improve the neutron protection criterion, locally at the level of the radial
n/H > 2, “H” here being expressed in meters.
Avec ce dimensionnement, l'épaisseur E1 des parois radiales 22 est limitée, et les fuites neutroniques observées localement s'en trouvent réduites.With this dimensioning, the thickness E1 of the
Toujours dans le but de réduire localement les fuites neutroniques, en particulier le débit de dose neutron à 2 mètres de la surface extérieure de l'enveloppe 14, chaque structure 16 répond de préférence à la formule suivante :
Cette condition géométrique permet de limiter l'épaisseur E1 de la paroi radiale 22, qui constitue un facteur déterminant pour le débit de dose neutron à 2 mètres. Un dimensionnement de la structure annulaire 16 avec un tel rapport supérieur ou égal à 10 entraînerait une longueur radiale élevée de l'enveloppe 14 pour satisfaire au critère de débit de dose neutron à 2 mètres, et donc une masse globale de l'emballage conséquente. Cela s'explique au moins en partie en ce qu'à partir d'une longueur radiale donnée de la protection neutronique, un effet de seuil se produit et l'augmentation de cette longueur n'a que peu d'incidence sur le débit de dose neutron à 2 mètres.This geometric condition makes it possible to limit the thickness E1 of the
Dans chaque cavité 30, le matériau de protection radiologique se trouve par exemple sous forme d'un ou plusieurs éléments coulés, de préférence un unique anneau continu coulé sur 360° dans la cavité 30. Il peut alternativement se présenter sous forme d'un ou plusieurs éléments préfabriqués, agencés dans la cavité 30. Dans ce dernier cas schématisé sur la
La
Une fois la structure refroidie, par exemple à une température inférieure à 160°C, celle-ci adhère par frettage à la paroi radiale extérieure 18 du corps latéral, via l'extrémité intérieure de la paroi radiale 22 et via la paroi annulaire interne 26.Once the structure has cooled, for example to a temperature below 160° C., it adheres by shrinking to the outer
Le matériau de protection radiologique peut ensuite être mis en place dans la cavité annulaire 30 de la structure 16 refroidie, sans risque de dégradation thermique de ce matériau. A cet égard, il est noté que ces étapes sont réalisées avec l'emballage 1 en position verticale, mais avec son fond orienté vers le haut afin que chaque cavité 30 à remplir soit ouverte vers le haut. Le matériau est mis en place par coulée ou par agencement des éléments préfabriqués dans la cavité 30, puis la protection radiologique ainsi obtenue est inspectée avant de répéter ces deux mêmes première et seconde étapes.The radiological protection material can then be placed in the
La
Dans le mode de réalisation qui vient d'être décrit, chaque structure annulaire unitaire 16 présente une demi-section transversale en forme générale de U, avec la base du U formée par la paroi radiale 22, et les deux branches du U respectivement formées par les parois annulaires externe 24 et interne 26. De plus, les deux extrémités libres des deux parois annulaires 24, 26 se situent dans un même plan transversal de l'emballage. Néanmoins, les extrémités libres des deux parois annulaires 24, 26 peuvent être décalées axialement les unes des autres, sans sortir du cadre de l'invention. Le fait de maintenir les extrémités libres des deux parois annulaires 24, 26 dans un même plan transversal permet de faciliter la coulée de la protection neutronique dans la cavité annulaire 30.In the embodiment which has just been described, each unitary
En référence à présent à la
Sur la
Chaque cavité annulaire 30 est également délimitée radialement vers l'intérieur par une partie de la paroi interne 26 (la branche latérale intérieure du H) de l'une des structures 16, et par une partie de la paroi interne 26 de la structure 16 directement consécutive dans l'empilement.Each
Ici aussi, les deux branches latérales pourraient être décalées axialement l'une de l'autre, sans sortir du cadre de l'invention.Here too, the two side branches could be offset axially from one another, without departing from the scope of the invention.
La
La base 22 formant la paroi radiale de conduction thermique peut être un segment de droit incliné, reliant les extrémités des deux parois annulaires 24, 26. Alternativement, comme montré sur la
Enfin, les
Bien entendu, diverses modifications peuvent être apportées par l'homme du métier à l'invention qui vient d'être décrite, uniquement à titre d'exemples non limitatifs et selon la portée définie par les revendications annexées. En particulier, les différentes alternatives peuvent être combinées.Of course, various modifications can be made by those skilled in the art to the invention which has just been described, solely by way of non-limiting examples and according to the scope defined by the appended claims. In particular, the different alternatives can be combined.
Claims (16)
- A package (1) for the transport and/or storage of radioactive materials, the package comprising a package side body (10) extending about a central longitudinal axis (2) and partly delimiting a housing (12) for the radioactive materials, the package also comprising, being arranged around the package side body, an external radiation protection shell (14) made of a plurality of unitary annular structures (16), stacked on each other along the central longitudinal axis (2) and arranged around the package side body (10),each unitary annular structure (16) comprising :- an outer annular wall (24) ;- an inner annular wall (26) ;- a radial heat conduction wall (22) having an external end integral with the outer annular wall (24), as well as an internal end in contact with the package side body (10) and integral with the inner annular wall (26) itself in contact with the package side body (10);where two unitary annular structures (16) directly consecutive in the stack at least partly delimit an annular cavity (30) housing at least one radiation protection element (32), said cavity being radially closed outwards by the outer annular wall (24) of one or both of the two directly consecutive unitary annular structures, radially closed inwards by the inner annular wall (26) of one or both of the two directly consecutive unitary annular structures, and axially closed on either side by the radial heat conduction wall (22) of one and the other of said two directly consecutive unitary annular structures (16) respectively.
- The package according to claim 1, characterised in that each unitary annular structure (16) is as a single piece.
- The package according to claim 1 or claim 2, characterised in that said radiation protection element (32) is a neutron protection element, and in that each unitary annular structure (16) meets the following formula :- n" corresponding to the total number of stacked unitary annular structures (16);- E1" corresponding to the thickness of the radial heat conduction wall (22); and- H" corresponding to the height of the external shell (14).
- The package according to any of the preceding claims, characterised in that each unitary annular structure (16) has a generally U-shaped half transverse cross-section, with the U-base formed by the radial heat conduction wall (22), and the two U-branches formed by the external (24) and internal (26) annular walls respectively, and in that U-interior forms the annular cavity (30) housing said at least one radiation protection element (32).
- The package according to claim 6, characterised in that for each unitary annular structure (16), the two free ends of the two annular outer (24) and inner (26) walls lie in the same transverse plane of the package.
- The package according to any of the preceding claims, characterised in that the radial heat conduction wall (22) of each unitary annular structure (16) has, in a half transverse cross-section, a straight segment shape, preferably oriented orthogonally to the central longitudinal axis (2).
- The package according to any one of claims 1 to 6, characterised in that the radial heat conduction wall (22) of each unitary annular structure has, in half transverse cross-section, at least one axial level change (22c) between a wall radially outer portion (22a) and a wall radially inner portion (22b).
- The package according to any of the preceding claims, characterised in that in each annular cavity (30) the radiation protection element(s) (32) forms a protective ring (34) extending over 360°.
- The package according to any of the preceding claims, characterised in that in each annular cavity (30) each radiation protection element (32) is an element cast in the cavity, or a prefabricated element arranged in that cavity.
- The package according to any of the preceding claims, characterized in that at least several of said unitary annular structures (16) are identical.
- The package according to any of the preceding claims, characterised in that each unitary annular structure (16) has a half transverse cross-section with a constant shape.
- The package according to any of the preceding claims, characterised in that the number of unitary annular structures (16) is between 10 and 50, and in that the height (H) of the external radiation protection shell (14) formed by the stack of these structures (16) is between 1 and 4 m.
- A method for manufacturing a package (1) for the transport and/or storage of radioactive materials according to any of the preceding claims, characterised in that it comprises repeating the following successive steps of:- installing one of the unitary annular structures (16) in the stack around the side body (10) ;- installing each radiation protection element (32) in the annular cavity (30) partly defined by the unitary annular structure (22) installed in the preceding step.
- A method for manufacturing a package (1) for the transport and/or storage of radioactive materials according to any one of claims 1 to 14, characterised in that it comprises repeating the following successive steps of:- installing each radiation protection element (32) in the annular cavity (30) partly defined by one of the unitary annular structures (16) ;- installing, in the stack around the side body (10), the unitary annular structure (16) mentioned in the preceding step, equipped with each radiation protection element (32).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI201930249T SI3766082T1 (en) | 2018-04-27 | 2019-04-25 | Packaging for the transport and/or storage of radioactive materials, permitting easier production and improved heat conductivity |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1853746A FR3080705B1 (en) | 2018-04-27 | 2018-04-27 | TRANSPORT AND / OR STORAGE PACKAGING OF RADIOACTIVE MATERIALS ALLOWING EASY MANUFACTURING AS WELL AS AN IMPROVEMENT OF THERMAL CONDUCTION |
PCT/FR2019/050976 WO2019207255A1 (en) | 2018-04-27 | 2019-04-25 | Packaging for the transport and/or storage of radioactive materials, permitting easier production and improved heat conductivity |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3766082A1 EP3766082A1 (en) | 2021-01-20 |
EP3766082B1 true EP3766082B1 (en) | 2022-03-23 |
Family
ID=63143250
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19734845.1A Active EP3766082B1 (en) | 2018-04-27 | 2019-04-25 | Packaging for the transport and/or storage of radioactive materials, permitting easier production and improved heat conductivity |
Country Status (9)
Country | Link |
---|---|
US (1) | US11250961B2 (en) |
EP (1) | EP3766082B1 (en) |
JP (1) | JP7200263B2 (en) |
KR (1) | KR102638259B1 (en) |
CN (1) | CN112041941B (en) |
ES (1) | ES2914389T3 (en) |
FR (1) | FR3080705B1 (en) |
SI (1) | SI3766082T1 (en) |
WO (1) | WO2019207255A1 (en) |
Family Cites Families (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2085189A1 (en) * | 1970-01-14 | 1971-12-24 | Transnucleaire | Storage and transport container for a - radioactive materials |
JPS59182396A (en) * | 1983-03-31 | 1984-10-17 | 三井造船株式会社 | Method of making cask for spent nuclear fuel |
JPS59210397A (en) * | 1983-05-14 | 1984-11-29 | 株式会社日本製鋼所 | Cask for spent fuel |
US4535250A (en) * | 1984-05-30 | 1985-08-13 | The United States Of America As Represented By The United States Department Of Energy | Container for radioactive materials |
JPH0298700A (en) * | 1988-10-06 | 1990-04-11 | Mitsubishi Heavy Ind Ltd | Vessel for transporting radioactive material |
US5406600A (en) * | 1993-10-08 | 1995-04-11 | Pacific Nuclear Systems, Inc. | Transportation and storage cask for spent nuclear fuels |
FR2776118B1 (en) * | 1998-03-13 | 2000-06-09 | Transnucleaire | RADIATION PROTECTION DEVICE FOR CONTAINER FOR TRANSPORTING RADIOACTIVE MATERIAL |
FR2786309B1 (en) * | 1998-11-23 | 2001-01-26 | Transp S De L Ind Nucleaire Tr | SHOCK ABSORBER DEVICE FOR CONTAINERS OF RADIOACTIVE MATERIAL |
DE59902780D1 (en) * | 1999-06-19 | 2002-10-24 | Gnb Gmbh | Transport and / or storage containers for radioactive heat-generating elements |
EP1122745A1 (en) * | 1999-12-15 | 2001-08-08 | GNB Gesellschaft für Nuklear-Behälter mbH | Container for shipping and/or storing radioactive heat releasing materials and method for producing the same |
JP3416657B2 (en) | 2001-01-25 | 2003-06-16 | 三菱重工業株式会社 | Cask and method of manufacturing cask |
JP2003057386A (en) * | 2001-08-13 | 2003-02-26 | Toshiba Corp | Spent fuel storage device, its manufacturing method and spent fuel storage method |
DE60335802D1 (en) * | 2002-07-23 | 2011-03-03 | Mitsubishi Heavy Ind Ltd | BARREL AND METHOD FOR ITS MANUFACTURE |
US7068748B2 (en) * | 2004-03-18 | 2006-06-27 | Holtec International, Inx. | Underground system and apparatus for storing spent nuclear fuel |
FR2872956B1 (en) * | 2004-07-12 | 2006-11-17 | Cogema Logistics Sa | EXTERNAL HEAT EXHAUST DEVICE FOR PACKAGING FOR THE STORAGE AND / OR TRANSPORT OF NUCLEAR MATERIALS |
CN101120418A (en) * | 2005-02-12 | 2008-02-06 | 赵景衍 | Apparatus for nuclear waste disposal, method for manufacturing and installing the same |
WO2008005932A2 (en) * | 2006-06-30 | 2008-01-10 | Holtec International, Inc. | Apparatus, system and method for storing high level waste |
US7994380B2 (en) * | 2006-10-11 | 2011-08-09 | Holtec International, Inc. | Apparatus for transporting and/or storing radioactive materials having a jacket adapted to facilitate thermosiphon fluid flow |
AU2007332612B2 (en) * | 2006-12-11 | 2012-03-22 | Trelleborg Industrie Sas | Cryogenic transfer hose having a fibrous insulating layer and method of constructing such a transfer hose |
FR2914104B1 (en) * | 2007-03-21 | 2012-05-04 | Tn Int | PACKAGING FOR THE TRANSPORT AND / OR STORAGE OF NUCLEAR MATERIALS COMPRISING A COLD LEAD RADIOLOGICAL PROTECTION ON A METAL FRAME |
DE102007024903B4 (en) * | 2007-05-29 | 2009-05-07 | Pyreos Ltd. | Device with sandwich structure for the detection of heat radiation, method for producing and using the device |
US8995604B2 (en) * | 2009-11-05 | 2015-03-31 | Holtec International, Inc. | System, method and apparatus for providing additional radiation shielding to high level radioactive materials |
FR2961005B1 (en) * | 2010-06-02 | 2015-12-11 | Tn Int | PACKAGING FOR THE TRANSPORT AND / OR STORAGE OF RADIOACTIVE MATERIALS, INCLUDING IMPROVED THERMAL CONDUCTION MEANS |
CN202093844U (en) * | 2010-12-01 | 2011-12-28 | 中国核电工程有限公司 | Multifunctional cooling structure for radioactive substance |
FR2974228B1 (en) * | 2011-04-18 | 2013-06-07 | Tn Int | THERMAL CONDUCTION ELEMENT FOR IMPROVING THE MANUFACTURE OF A TRANSPORT AND / OR STORAGE PACKAGING OF RADIOACTIVE MATERIALS |
FR2985365B1 (en) * | 2011-12-29 | 2014-01-24 | Tn Int | THERMAL DRIVER FOR SIDE BODY FOR PACKAGING TRANSPORT AND / OR STORAGE OF RADIOACTIVE MATERIALS |
JP3174865U (en) | 2012-01-30 | 2012-04-12 | 秀一 富田 | Storage container |
US20140044227A1 (en) * | 2012-08-13 | 2014-02-13 | Transnuclear, Inc. | Composite basket assembly |
JP5514934B1 (en) * | 2013-05-21 | 2014-06-04 | 朱雀プラスチック株式会社 | Storage container for radioactive contaminants |
FR3006098B1 (en) * | 2013-05-22 | 2015-06-26 | Tn Int | IRRADIE FUEL STORAGE PACKAGE INCLUDING AMORTIZED CASE GUIDANCE RAILS |
US9793021B2 (en) * | 2014-01-22 | 2017-10-17 | Nac International Inc. | Transfer cask system having passive cooling |
WO2017165180A1 (en) * | 2016-03-22 | 2017-09-28 | Holtec International | Apparatus for storing and/or transporting radioactive materials |
FR3049756B1 (en) * | 2016-04-01 | 2020-06-12 | Tn International | PACKAGE FOR TRANSPORTING AND / OR STORING RADIOACTIVE MATERIALS EQUIPPED WITH HEAT DISSIPATION DEVICES MADE IN ONE SINGLE HOLDER |
CN107481777A (en) * | 2017-07-07 | 2017-12-15 | 中国核电工程有限公司 | A kind of shielding construction of the nuclear fuel assembly container with heat sinking function |
US11333414B2 (en) * | 2017-08-15 | 2022-05-17 | Jan Vetrovec | Magnetocaloric refrigerator |
-
2018
- 2018-04-27 FR FR1853746A patent/FR3080705B1/en not_active Expired - Fee Related
-
2019
- 2019-04-25 US US17/050,584 patent/US11250961B2/en active Active
- 2019-04-25 EP EP19734845.1A patent/EP3766082B1/en active Active
- 2019-04-25 KR KR1020207030587A patent/KR102638259B1/en active IP Right Grant
- 2019-04-25 CN CN201980028444.7A patent/CN112041941B/en active Active
- 2019-04-25 WO PCT/FR2019/050976 patent/WO2019207255A1/en unknown
- 2019-04-25 ES ES19734845T patent/ES2914389T3/en active Active
- 2019-04-25 JP JP2020557265A patent/JP7200263B2/en active Active
- 2019-04-25 SI SI201930249T patent/SI3766082T1/en unknown
Also Published As
Publication number | Publication date |
---|---|
JP7200263B2 (en) | 2023-01-06 |
ES2914389T3 (en) | 2022-06-10 |
US11250961B2 (en) | 2022-02-15 |
WO2019207255A1 (en) | 2019-10-31 |
EP3766082A1 (en) | 2021-01-20 |
SI3766082T1 (en) | 2022-08-31 |
FR3080705A1 (en) | 2019-11-01 |
KR20210003760A (en) | 2021-01-12 |
JP2021522472A (en) | 2021-08-30 |
FR3080705B1 (en) | 2020-10-30 |
CN112041941B (en) | 2024-03-01 |
US20210241932A1 (en) | 2021-08-05 |
CN112041941A (en) | 2020-12-04 |
KR102638259B1 (en) | 2024-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2140459B1 (en) | Container for transporting and/or storing nuclear materials, comprising a radiological shield made of lead cast onto a metal reinforcement | |
WO2000060609A1 (en) | Installation for very long term storage of heat-generating products such as nuclear waste | |
EP2577678B1 (en) | Canister for transporting and/or storing radioactive materials, including improved thermal conduction means | |
EP2320429B1 (en) | Packaging for transporting and/or storing radioactive materials including radially stacked radiation protection elements | |
EP3982375B1 (en) | Packaging for transporting and/or storing radioactive materials, comprising a radiological protection device reducing the risk of radiological leaks | |
EP3766082B1 (en) | Packaging for the transport and/or storage of radioactive materials, permitting easier production and improved heat conductivity | |
FR2521764A1 (en) | NEUTRON PROTECTION DEVICE FOR RADIO-ACTIVE PRODUCT | |
EP3274998B1 (en) | Device for supporting packaging for transporting/storing radioactive materials, including a shroud for guiding air for cooling the packaging by natural convection | |
FR3054922A1 (en) | STORAGE BASKET FOR RADIOACTIVE MATERIALS, WITH AN OPTIMIZED SIZE | |
WO2017064174A1 (en) | Cooling element with base for discharging heat from a package | |
FR2974228A1 (en) | THERMAL CONDUCTION ELEMENT FOR IMPROVING THE MANUFACTURE OF A TRANSPORT AND / OR STORAGE PACKAGING OF RADIOACTIVE MATERIALS | |
EP2320432B1 (en) | Packaging for transporting and/or storing radioactive materials providing a reinforced heat transfer | |
EP3391379B1 (en) | Improved heat dissipation structure for natural convection for transport containers and/or storage containers for radioactive material | |
EP3928330B1 (en) | Assembly comprising a containment for storage of radioactive materials and its support system | |
EP3743928B1 (en) | Storage basket for radioactive materials, having an optimised space requirement and housings with more accurate geometry | |
FR2872956A1 (en) | EXTERNAL HEAT EXHAUST DEVICE FOR PACKAGING FOR THE STORAGE AND / OR TRANSPORT OF NUCLEAR MATERIALS | |
FR3101474A1 (en) | STORAGE BASKET FOR RADIOACTIVE MATERIALS, SIMPLIFIED DESIGN PROVIDING IMPROVED THERMAL TRANSFER PROPERTIES | |
FR3064809B1 (en) | PACKAGING OF TRANSPORT AND / OR STORAGE OF RADIOACTIVE MATERIALS WITH IMPROVED CONVICTIVE EXCHANGES | |
FR3143175A1 (en) | PACKAGING FOR THE TRANSPORT AND/OR STORAGE OF RADIOACTIVE MATERIALS, INCLUDING A SIMPLIFIED RADIOLOGICAL PROTECTION DEVICE, REDUCING THE RISKS OF RADIOLOGICAL LEAKS | |
WO2022200719A1 (en) | Assembly for transporting uranium hexafluoride, comprising shock absorber caps | |
FR3081253A1 (en) | PACKAGING FOR THE TRANSPORT OR STORAGE OF NUCLEAR MATERIAL | |
FR3121265A1 (en) | UNIT FOR THE TRANSPORT OF URANIUM HEXAFLUORIDE | |
WO2014111445A1 (en) | Packaging for transporting and/or storing radioactive substances, comprising improved protection against fire | |
FR2632440A1 (en) | FAST NEUTRAL NUCLEAR REACTOR, COOLED BY LIQUID METAL |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20201014 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ORANO NUCLEAR PACKAGES AND SERVICES |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20211020 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602019012848 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1478018 Country of ref document: AT Kind code of ref document: T Effective date: 20220415 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2914389 Country of ref document: ES Kind code of ref document: T3 Effective date: 20220610 |
|
REG | Reference to a national code |
Ref country code: FI Ref legal event code: FGE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220623 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220623 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1478018 Country of ref document: AT Kind code of ref document: T Effective date: 20220323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220624 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220725 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20220627 Year of fee payment: 4 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220723 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602019012848 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220425 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 |
|
26N | No opposition filed |
Effective date: 20230102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220425 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230526 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602019012848 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20190425 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240429 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240429 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240501 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240515 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20240328 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240429 Year of fee payment: 6 Ref country code: FR Payment date: 20240426 Year of fee payment: 6 Ref country code: FI Payment date: 20240426 Year of fee payment: 6 Ref country code: SI Payment date: 20240327 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20240430 Year of fee payment: 6 Ref country code: BE Payment date: 20240429 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 |