EP3658751B1 - Blade for a turbine blade - Google Patents
Blade for a turbine blade Download PDFInfo
- Publication number
- EP3658751B1 EP3658751B1 EP18779293.2A EP18779293A EP3658751B1 EP 3658751 B1 EP3658751 B1 EP 3658751B1 EP 18779293 A EP18779293 A EP 18779293A EP 3658751 B1 EP3658751 B1 EP 3658751B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- impingement cooling
- blade
- wall
- cooling
- impingement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001816 cooling Methods 0.000 claims description 122
- 238000000034 method Methods 0.000 claims description 4
- 238000011144 upstream manufacturing Methods 0.000 claims description 4
- 239000000654 additive Substances 0.000 claims description 3
- 230000000996 additive effect Effects 0.000 claims description 3
- 239000002826 coolant Substances 0.000 description 19
- 238000005516 engineering process Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 238000010146 3D printing Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005495 investment casting Methods 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/186—Film cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/187—Convection cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/187—Convection cooling
- F01D5/188—Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/30—Manufacture with deposition of material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/20—Rotors
- F05D2240/30—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
- F05D2240/303—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the leading edge of a rotor blade
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/20—Rotors
- F05D2240/30—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
- F05D2240/304—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the trailing edge of a rotor blade
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2250/00—Geometry
- F05D2250/10—Two-dimensional
- F05D2250/18—Two-dimensional patterned
- F05D2250/185—Two-dimensional patterned serpentine-like
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/201—Heat transfer, e.g. cooling by impingement of a fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/202—Heat transfer, e.g. cooling by film cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/205—Cooling fluid recirculation, i.e. after cooling one or more components is the cooling fluid recovered and used elsewhere for other purposes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/221—Improvement of heat transfer
- F05D2260/2214—Improvement of heat transfer by increasing the heat transfer surface
- F05D2260/22141—Improvement of heat transfer by increasing the heat transfer surface using fins or ribs
Definitions
- the invention relates to an airfoil for a turbine blade according to the preamble of claim 1, for example in FIG DE 10 2016 123 525 A1 disclosed.
- An airfoil corresponding to the preamble of claim 1 has long been known from the extensive prior art.
- the airfoil and in particular also the entire gas turbine blade are usually produced in an investment casting process, so that cavities are present in the interior of the airfoil.
- a coolant mostly cooling air, can flow through these cavities so that the metallic material of the blade and the turbine blade can permanently withstand the high temperatures occurring during operation.
- impingement cooling Different cooling concepts, which have long been known, are used for cooling, one of which is referred to as impingement cooling.
- cooling air jets hit the inner surfaces of the metallic blade wall at an almost perpendicular angle in order to absorb the thermal energy contained therein and then to transport it away with them.
- the impingement cooling walls required to form the impingement cooling can on the one hand be cast with or on the other hand be provided by installing metal sheet metal inserts.
- cast impingement cooling systems require a minimum distance between the wall surface to be cooled and the impingement cooling wall having the impingement cooling openings, since the cast cores themselves required a minimum wall thickness for sufficient strength.
- the perforated impact cooling wall is mounted as an insert in a blade, additional manufacturing and assembly steps are required, which increase the cost of manufacturing the turbine blade.
- additional manufacturing and assembly steps are required, which increase the cost of manufacturing the turbine blade.
- the object of the invention is therefore to provide a long-lasting airfoil for a turbine blade which enables particularly efficient cooling of the side walls of the airfoil.
- the present invention proposes that in an airfoil for a turbine blade, comprising a suction-side side wall and a pressure-side side wall, which extend along a profile center line from a common leading edge to a common trailing edge and in a spanwise direction from a root-side end to a head-side end At least partially enclose the cavity, with a first perforated impact cooling wall for impingement cooling of the front edge and at least one further perforated impingement cooling wall for impingement cooling of a section of the suction-side and / or pressure-side side wall, the impingement cooling openings of the first impingement cooling wall and the impingement cooling openings of the at least one being provided along the span inside further baffle cooling wall are fluidically connected in series.
- cascaded impingement cooling inside the blade is proposed, with at least one further impingement cooling section, preferably two further impingement cooling sections, per side wall cascading downstream from a first impingement cooling at the leading edge on the suction side and / or pressure side.
- the invention is based on the knowledge that series-connected impingement cooling (cascaded impingement cooling) allows the cooling air to be used multiple times and thus to make it more uniform to achieve the temperature distribution along the cross-section.
- the area of the airfoil which is thermally most heavily loaded, ie the area around the leading edge, is fed with the coolest cooling air and is impingely cooled in a first impingement cooling section.
- the cooling air is heated up for the first time and the blade temperature in the vicinity of the leading edge is reduced to a tolerable level.
- the heated cooling air is then passed into a downstream section of the airfoil and used there again for impingement cooling of the side wall, whereby the temperature of the side wall there is also lowered and the cooling air is heated again.
- This achieves an efficient use of cooling air, so that - compared with conventional blades - the saved cooling air can be used to increase the efficiency of the gas turbine.
- the thermal displacement across the blade cross-section can be reduced. This can reduce the thermo-mechanical load on the metallic airfoil, which can lead to an increased service life of the airfoil. Due to the fact that the series-connected impingement cooling has low cross-flow components in the spanwise direction, it is comparatively efficient.
- An impingement cooling space is also provided between the relevant impingement cooling wall and the inside of the associated side wall, a collecting space being provided downstream of the impinging cooling space in question, which is immediately adjacent to the downstream further impingement cooling wall.
- the relative terms “upstream” and “downstream” refer to the direction of flow of the cooling air inside the airfoil, unless otherwise stated.
- the collecting spaces serve as cavities in which the coolant, which has been further heated after impingement cooling, can be collected on the one hand and it can be collected from the other through the impingement cooling openings of the subsequent ones Impact cooling wall can pass through for further impingement cooling.
- the collecting spaces preferably extend in the spanwise direction over the entire length of the blade. As a result, the pressure in the collecting space can be made uniform.
- the collecting space is partially delimited by a projection which is impact-cooled.
- outlet openings close to the side wall are arranged in a rib, which extends according to a cross-sectional plane from a rib end on the suction side to a rib end on the pressure side.
- a supply channel for supplying coolant for cooling the leading edge is provided between the first collecting space and the first impingement cooling space.
- This supply channel preferably extends over the entire span of the airfoil. It can, more preferably, taper from its foot-side end to the head-side end, so that, provided that the coolant is fed into the supply channel at the foot-side end, it has a larger flow cross-section at the foot-side end than at its head end. This takes into account the fact that, due to the presence of impingement cooling openings in the impingement cooling wall, the amount of coolant present in the supply channel decreases with increasing distance from the end on the foot side. The conical shape of the supply channel therefore leads to an equalization of the flow rate of the coolant along the spreading direction.
- At least one side wall of the blade is preferably on at least one additional baffle cooling wall is provided on both side walls.
- the first impingement cooling (the leading edge of the blade) is followed in series by the suction-side impingement cooling and the pressure-side impingement cooling, although the two other impingement cooling systems on both sides of the profile center line are connected in parallel.
- one of the two further impingement cooling spaces is arranged on the suction side and the other of the two further impingement cooling spaces is arranged on the pressure side and a separate collecting space is connected upstream of each of these two impingement cooling spaces.
- These can preferably be provided by providing a first separating rib.
- the coolant pressures required in the relevant collecting spaces can be set in accordance with the local thermal load on the suction-side and pressure-side side walls so that coolants are used efficiently and locally.
- a further cavity is provided between two collecting spaces arranged on both sides of the profile center line.
- This further cavity is preferably separated from the collecting spaces by two second separating ribs.
- Said cavity can be used on the one hand to reduce the size of the collecting spaces to a desired level if a certain flow velocity is to be achieved in the collecting spaces.
- the further cavity can also be used to guide a further coolant from a head end to a foot end of the airfoil if this coolant is only to be passed through the airfoil without absorbing thermal energy, if possible.
- Such blades can be produced in particular by means of an additive process.
- An additive method is understood in particular to be what is known as SLM technology, which is known as “selective laser melting”.
- SLM technology which is known as “selective laser melting”.
- This technology also known as 3D printing technology, enables metal components to produce cavities and passage openings that are comparatively small and with exact dimensions compared to turbine blades manufactured using conventional castings.
- a turbine blade 10 relating to the invention is shown in perspective in FIG.
- the turbine blade 10 is according to FIG Figure 1 designed as a rotor blade.
- the invention can also be used in a guide vane, not shown, of a guide vane.
- the turbine blade 10 comprises a blade root 12, which is shaped like a fir tree in cross-section, and a platform 14 arranged thereon.
- the platform 14 is followed by a blade 16 which is aerodynamically curved.
- the airfoil 16 comprises a suction side wall 22 and a pressure side wall 24 which, in relation to a hot gas flowing around the airfoil 16, extend from a leading edge 18 to a trailing edge 20.
- a plurality of openings 28 for blowing out coolant are provided along the rear edge 20 and are separated from one another by webs 30 arranged in between.
- the blade 16 extends along a spanwise direction from a foot-side end 26 to a head-side end 27. When the turbine blade 10 shown is used in a gas turbine with an axial flow, the spanwise direction coincides with the radial direction of the gas turbine.
- Figure 2 shows a sectional view through the airfoil 16 according to the section line II-II as a first embodiment of an airfoil 16 according to the invention
- Figure 3 shows a second embodiment for this.
- the blade 16 and its pressure-side side wall 24 and suction-side side wall 22 extend - as already explained - from the leading edge 18 starting along a profile center line 32 to the rear edge.
- impingement cooling wall 34 In the interior of the blade 16, a first perforated, ie provided with impingement cooling openings 42, impingement cooling wall 34 is arranged at a distance from the inner surface of the leading edge 18, so that a first impingement cooling space 36 is formed between them.
- a supply channel 38 is provided on the side of the first impingement cooling wall 34 opposite the first impingement cooling space 36. This is separated from the remaining cavity of the airfoil 16 by a first rib 40.
- the first rib 40 extends according to the cross-sectional plane from a rib end 37 on the suction side to a rib end 37 on the pressure side and has outlet openings 39 close to the side wall for the first impingement cooling space 36.
- impingement cooling openings 42 lying in the sectional plane are provided in the first impingement cooling wall 34 for surface cooling of the front edge 18 and the directly adjoining suction-side and pressure-side areas of the side walls 22, 24.
- first rib 40 is followed by a first collecting space 44 which is separated from a second collecting space 48 by a second rib 46.
- the latter is also delimited by a third rib 50, so that a third collecting space 52 adjoins it further in the direction of the rear edge.
- the first collecting space 44 is delimited both on the suction side and on the pressure side by two further impact cooling walls 54.
- Impingement cooling openings 42 are also arranged in these, so that first further impingement cooling spaces 56 are provided with which corresponding sections of the suction-side and pressure-side side walls 22 and 24 can be impingement-cooled.
- Second further impingement cooling spaces 59 are separated from the second collecting space 48 by impingement cooling walls 55.
- all further impingement cooling spaces 56, 59 are laterally delimited by projections 57 extending inward from the side walls 22, 24.
- the second and third ribs 46, 50 merge at their rib ends 37 into the suction-side and pressure-side side wall 22, 24 and have outlet openings 39 there near the side wall.
- impingement cooling openings 42 outlet openings 39 are present, but that more of them are distributed along the span in the corresponding walls at the corresponding position, preferably lying in a row.
- a coolant is fed to the supply channel 38 through an opening (not shown) in the turbine blade 10 during operation. There it is distributed over the span of the blade and flows through the individual impingement cooling openings 42 of the first impingement cooling wall 34, forming air jets. The air jets impinge in a known manner on the inner surface of the leading edge and cool it as intended. The coolant then flows through the outlet openings 39 of the first rib 40, after which it strikes the projections 57 with impinging cooling and is deflected by them into the first collecting space 44. From there it flows through the first and second further impact cooling walls 54, 55 for cooling the associated side wall sections. It passes from the first and second impingement cooling spaces 56, 59 through the outlet openings of the ribs 46, 50 into the subsequent collecting spaces 48, 52.
- the coolant After the coolant has flowed through the cascaded impingement cooling arrangement described above, it reaches the collecting space 52. From there, the coolant can be fed in a known manner and further sections of the airfoil 16 are used for cooling. It is conceivable that on the one hand it is diverted into a kind of meander cooling and then blown out through the rear edge openings 28. It is also possible that the coolant from the interior of the airfoil 16 through film cooling openings (64, Fig. 3 ) is directed to the outside. The combination of both variants can also make technical sense.
- Figure 3 shows an alternative embodiment of the turbine blade 10 according to the invention as a second embodiment.
- the identical features are provided with the same reference numerals, so that only the differences from the first exemplary embodiment will be discussed below.
- separating ribs 58, 60 are provided in the interior of the airfoil 16.
- a first separating rib 58 extends between the rib 40 and the further rib 46 along the profile center line 32.
- the separating rib 58 divides the collecting space 44 into two collecting spaces 44a and 44b, of which the former is provided on the suction side and the latter on the pressure side.
- Two second separating ribs 60 extend along and thus quasi parallel to the profile center line 32 between the rib 46 and the rib 50, but one of them is arranged on the suction side and one on the pressure side.
- a further cavity 62 can be provided.
- the further cavity 62 can be used for different purposes. For example, it is suitable for conveying part of the coolant from the foot-side end 26 of the airfoil 16 to a head-side end 27 of the airfoil 16 without this coming into contact with the comparatively hot side walls 22, 24. In this way, comparatively cool cooling air can be provided at the head-side end 27 of the airfoil, which is particularly advantageous in the case of guide vanes. It is also conceivable that the cavity 62 is hermetically sealed in order to guide the cooling air guided in the sub-collection spaces 48a, 48b closer to the impingement cooling walls 54 and the impingement cooling openings 42 arranged therein.
- the invention thus relates to an airfoil 16 for a turbine blade 10, comprising a suction-side side wall 22 and a pressure-side side wall 24, which extend along a profile center line 32 from a common leading edge 18 to a common trailing edge 20 and in a spreading direction from a base end 26 a head end 27 extending at least partially enclosing a cavity, with a first perforated baffle cooling wall 34 provided with openings inside for impingement cooling of the leading edge 18 and at least one further perforated impingement cooling wall 54 for impingement cooling of a section of the suction-side and / or pressure-side vane wall 22, 24 is provided.
- the impingement cooling openings 42 of the first impingement cooling wall 34 and the at least one second impingement cooling wall 54 are fluidically connected in series.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Description
Die Erfindung betrifft ein Schaufelblatt für eine Turbinenschaufel gemäß dem Oberbegriff des Anspruchs 1, wie beispielsweise in der
Ein dem Oberbegriff des Anspruchs 1 entsprechendes Schaufelblatt ist aus dem umfangreichen vorhandenen Stand der Technik längstens bekannt. Das Schaufelblatt und insbesondere auch die gesamte Gasturbinenschaufel werden in der Regel in einem Feingussverfahren hergestellt, so dass im Inneren des Schaufelblatts Hohlräume vorhanden sind. Diese Hohlräume sind von einem Kühlmittel, zumeist Kühlluft, durchströmbar, damit das metallische Material des Schaufelblatts und der Turbinenschaufel den im Betrieb auftretenden hohen Temperaturen dauerhaft Stand halten kann.An airfoil corresponding to the preamble of claim 1 has long been known from the extensive prior art. The airfoil and in particular also the entire gas turbine blade are usually produced in an investment casting process, so that cavities are present in the interior of the airfoil. A coolant, mostly cooling air, can flow through these cavities so that the metallic material of the blade and the turbine blade can permanently withstand the high temperatures occurring during operation.
Zur Kühlung werden längst bekannte unterschiedliche Kühlkonzepte verwendet, von denen eines als Prallkühlung bezeichnet wird. Bei dieser treffen Kühlluftstrahlen in einem nahezu senkrechten Winkel auf die Innenflächen der metallischen Schaufelwand auf, um die darin enthaltene Wärmeenergie aufzunehmen und anschließend mit sich abzutransportieren. Die zur Ausbildung der Prallkühlung erforderlichen Prallkühlwände können einerseits mit gegossen werden oder andererseits durch Einbau metallischer Blecheinsätze bereitgestellt werden. Gegossene Prallkühlungen bedürfen aufgrund der Herstellung jedoch einem Mindestabstand zwischen der zu kühlenden Wandfläche und der die Prallkühlöffnungen aufweisenden Prallkühlwand, da die dafür erforderlichen Gusskerne selber eine Mindestwandstärke für eine ausreichende Festigkeit benötigen. Sofern die perforierte Prallkühlwand als Einsatz in einem Schaufelblatt montiert ist, bedarf es dafür weiterer Herstellungs- und Montageschritte, die den Aufwand zur Herstellung der Turbinenschaufel erhöhen. Darüber hinaus können zum einen Undichtigkeiten an der Nahtstelle zwischen dem eingesetzten Prallkühleinsatz und Gussbauteil und zum anderen Verschleißerscheinungen auftreten, was die Kühleffizienz bzw. die Lebensdauer beeinträchtigen kann.Different cooling concepts, which have long been known, are used for cooling, one of which is referred to as impingement cooling. With this, cooling air jets hit the inner surfaces of the metallic blade wall at an almost perpendicular angle in order to absorb the thermal energy contained therein and then to transport it away with them. The impingement cooling walls required to form the impingement cooling can on the one hand be cast with or on the other hand be provided by installing metal sheet metal inserts. However, due to the manufacturing process, cast impingement cooling systems require a minimum distance between the wall surface to be cooled and the impingement cooling wall having the impingement cooling openings, since the cast cores themselves required a minimum wall thickness for sufficient strength. If the perforated impact cooling wall is mounted as an insert in a blade, additional manufacturing and assembly steps are required, which increase the cost of manufacturing the turbine blade. In addition, on the one hand there can be leaks at the interface between the Impingement cooling insert and cast component and on the other hand signs of wear occur, which can affect the cooling efficiency or the service life.
Aufgabe der Erfindung ist daher die Bereitstellung eines langlebigen Schaufelblatts für eine Turbinenschaufel, welches eine besonders effiziente Kühlung der Seitenwände des Schaufelblatts ermöglicht.The object of the invention is therefore to provide a long-lasting airfoil for a turbine blade which enables particularly efficient cooling of the side walls of the airfoil.
Diese Aufgabe wird erfindungsgemäß gelöst durch ein Schaufelblatt gemäß Anspruch 1. Vorteilhafte Weiterbildungen der erfindungsgemäßen Vorrichtung sind jeweils Gegenstand abhängiger Unteransprüche sowie der nachfolgenden Beschreibung.This object is achieved according to the invention by an airfoil according to claim 1. Advantageous developments of the device according to the invention are each the subject matter of the dependent claims and the following description.
Die vorliegende Erfindung schlägt vor, dass bei einem Schaufelblatt für eine Turbinenschaufel, umfassend eine saugseitige Seitenwand und eine druckseitige Seitenwand, die sich entlang einer Profilmittenlinie von einer gemeinsamen Vorderkante zu einer gemeinsamen Hinterkante und in einer Spannweiterichtung von einem fußseitigen Ende zu einem kopfseitigen Ende erstreckend einen Hohlraum zumindest teilweise umschließen, wobei längs der Spannweite im Inneren eine erste perforierte Prallkühlwand zur Prallkühlung der Vorderkante und zumindest eine weitere perforierte Prallkühlwand zur Prallkühlung eines Abschnitts der saugseitigen und/oder druckseitigen Seitenwand vorgesehen ist, die Prallkühlöffnungen der ersten Prallkühlwand und die Prallkühlöffnungen der zumindest einen weiteren Prallkühlwand strömungstechnisch in Reihe geschaltet sind. Mit anderen Worten: Es wird eine kaskadierte Prallkühlung im Inneren des Schaufelblatts vorgeschlagen, wobei ausgehend von einer ersten Prallkühlung an der Vorderkante saugseitig und/oder druckseitig zumindest einen weiteren Prallkühlabschnitt, vorzugsweise zwei weitere Prallkühlabschnitte, je Seitenwand kaskadierend nachgeschaltet ist bzw. sind.The present invention proposes that in an airfoil for a turbine blade, comprising a suction-side side wall and a pressure-side side wall, which extend along a profile center line from a common leading edge to a common trailing edge and in a spanwise direction from a root-side end to a head-side end At least partially enclose the cavity, with a first perforated impact cooling wall for impingement cooling of the front edge and at least one further perforated impingement cooling wall for impingement cooling of a section of the suction-side and / or pressure-side side wall, the impingement cooling openings of the first impingement cooling wall and the impingement cooling openings of the at least one being provided along the span inside further baffle cooling wall are fluidically connected in series. In other words, cascaded impingement cooling inside the blade is proposed, with at least one further impingement cooling section, preferably two further impingement cooling sections, per side wall cascading downstream from a first impingement cooling at the leading edge on the suction side and / or pressure side.
Der Erfindung liegt die Erkenntnis zu Grunde, dass eine in Reihe geschaltete Prallkühlung (kaskadierte Prallkühlung) es erlaubt, die Kühlluft mehrfach zu nutzen und damit eine Vergleichmäßigung der Temperaturverteilung längs des Querschnitts zu erzielen. Der thermisch am höchsten belastete Bereich des Schaufelblatts, d.h. der Bereich um die Vorderkante herum, wird in einem ersten Prallkühlabschnitt mit der kühlsten Kühlluft bespeist und prallgekühlt. Während der ersten Prallkühlung heizt sich die Kühlluft erstmalig auf und die Schaufeltemperatur in der Umgebung der Vorderkante wird auf ein erträgliches Maß reduziert. Die aufgeheizte Kühlluft wird anschließend in einem stromab gelegenen Abschnitt des Schaufelblatts geführt und dort erneut zur Prallkühlung der Seitenwand verwendet, wodurch die dortige Seitenwand ebenso in ihrer Temperatur abgesenkt und die Kühlluft wiederum aufgeheizt wird. Damit wird eine effiziente Verwendung von Kühlluft erreicht, so dass - verglichen mit konventionellen Schaufelblättern - die eingesparte Kühlluft zur Effizienzsteigerung der Gasturbine herangezogen werden kann.The invention is based on the knowledge that series-connected impingement cooling (cascaded impingement cooling) allows the cooling air to be used multiple times and thus to make it more uniform to achieve the temperature distribution along the cross-section. The area of the airfoil which is thermally most heavily loaded, ie the area around the leading edge, is fed with the coolest cooling air and is impingely cooled in a first impingement cooling section. During the first impingement cooling, the cooling air is heated up for the first time and the blade temperature in the vicinity of the leading edge is reduced to a tolerable level. The heated cooling air is then passed into a downstream section of the airfoil and used there again for impingement cooling of the side wall, whereby the temperature of the side wall there is also lowered and the cooling air is heated again. This achieves an efficient use of cooling air, so that - compared with conventional blades - the saved cooling air can be used to increase the efficiency of the gas turbine.
Weil die aufgeheizte Kühlluft gezielt in nachfolgenden Abschnitten eine geringere Kühlwirkung erzielt, kann die thermische Verzwängung über den Schaufelquerschnitt reduziert werden. Dies kann die thermo-mechanische Belastung des metallischen Schaufelblatts reduzieren, was zu einer erhöhten Lebensdauer des Schaufelblatts führen kann. Aufgrund der Tatsache, dass die in Reihe geschaltete Prallkühlung geringe Querströmungskomponenten in Spannweiterichtung aufweist, ist diese vergleichsweise effizient.Because the heated cooling air specifically achieves a lower cooling effect in subsequent sections, the thermal displacement across the blade cross-section can be reduced. This can reduce the thermo-mechanical load on the metallic airfoil, which can lead to an increased service life of the airfoil. Due to the fact that the series-connected impingement cooling has low cross-flow components in the spanwise direction, it is comparatively efficient.
Zwischen der betreffenden Prallkühlwand und der Innenseite der zugehörigen Seitenwand ist zudem ein Prallkühlraum vorgesehen, wobei stromab des betreffenden Prallkühlraums ein Sammelraum vorgesehen ist, der unmittelbar stromauf an der stromab gelegenen weiteren Prallkühlwand angrenzt. Die relativen Begriffe "stromauf" und "stromab" beziehen sich auf die Strömungsrichtung der Kühlluft im Inneren des Schaufelblatts, sofern nichts anderes erwähnt. Die Sammelräume dienen als Kavitäten, in denen das nach einer Prallkühlung weiter aufgeheizte Kühlmittel einerseits gesammelt werden kann und es aus dem andererseits durch die Prallkühlöffnungen der nachfolgenden Prallkühlwand zur weiteren Prallkühlung hindurchtreten kann. Für den Fall, dass aufgrund von Bauteiltoleranzen längs der Spannweite betrachtet unterschiedliche Durchströmungsquerschnitte lokal vorhanden sind, erstrecken sich die Sammelräume in Spannweiterichtung vorzugsweise über die gesamte Länge des Schaufelblatts. Folglich kann eine Vergleichmäßigung des Drucks im Sammelraum erfolgen.An impingement cooling space is also provided between the relevant impingement cooling wall and the inside of the associated side wall, a collecting space being provided downstream of the impinging cooling space in question, which is immediately adjacent to the downstream further impingement cooling wall. The relative terms “upstream” and “downstream” refer to the direction of flow of the cooling air inside the airfoil, unless otherwise stated. The collecting spaces serve as cavities in which the coolant, which has been further heated after impingement cooling, can be collected on the one hand and it can be collected from the other through the impingement cooling openings of the subsequent ones Impact cooling wall can pass through for further impingement cooling. In the event that different flow cross-sections are locally present due to component tolerances along the span, the collecting spaces preferably extend in the spanwise direction over the entire length of the blade. As a result, the pressure in the collecting space can be made uniform.
Weiter ist der Sammelraum teilweise von einem Vorsprung begrenzt, welcher prallgekühlt ist. Dafür sind seitenwandnahe Auslassöffnungen in einer Rippe angeordnet, die sich gemäß einer Querschnittsebene von einem saugseitigen Rippenende zu einem druckseitigen Rippenende erstreckt. Mit dieser Ausgestaltung kann eine vergleichmäßigte Temperatur der saugseitigen und/oder druckseitigen Seitenwand längs des Schaufelprofils, also von Vorderkante in Richtung der Hinterkante, erreicht werden.Furthermore, the collecting space is partially delimited by a projection which is impact-cooled. For this purpose, outlet openings close to the side wall are arranged in a rib, which extends according to a cross-sectional plane from a rib end on the suction side to a rib end on the pressure side. With this configuration, a more uniform temperature of the suction-side and / or pressure-side side wall along the blade profile, that is to say from the front edge in the direction of the rear edge, can be achieved.
Weiter bevorzugt ist zwischen dem ersten Sammelraum und dem ersten Prallkühlraum ein Versorgungskanal zum Zuführen von Kühlmittel zur Kühlung der Vorderkante vorgesehen. Dieser Versorgungskanal erstreckt sich vorzugsweise über die gesamte Spannweite des Schaufelblatts. Dabei kann er, weiter bevorzugt, von seinem fußseitigen Ende zu dem kopfseitigen Ende spitzer werdend zulaufend sein, so dass unter der Voraussetzung, dass die Zuführung des Kühlmittels in den Versorgungskanal am fußseitigen Ende erfolgt, er am fußseitigen Ende einen größeren Durchströmungsquerschnitt aufweist als an seinem kopfseitigen Ende. Damit wird dem Umstand Rechnung getragen, dass durch das Vorhandensein von Prallkühlöffnungen in der Prallkühlwand mit zunehmender Entfernung vom fußseitigen Ende die im Versorgungskanal vorhandene Kühlmittelmenge abnimmt. Die konische Form des Versorgungskanals führt daher zu einer Vergleichmäßigung der Strömungsgeschwindigkeit des Kühlmittels längs der Spannweiterichtung.More preferably, a supply channel for supplying coolant for cooling the leading edge is provided between the first collecting space and the first impingement cooling space. This supply channel preferably extends over the entire span of the airfoil. It can, more preferably, taper from its foot-side end to the head-side end, so that, provided that the coolant is fed into the supply channel at the foot-side end, it has a larger flow cross-section at the foot-side end than at its head end. This takes into account the fact that, due to the presence of impingement cooling openings in the impingement cooling wall, the amount of coolant present in the supply channel decreases with increasing distance from the end on the foot side. The conical shape of the supply channel therefore leads to an equalization of the flow rate of the coolant along the spreading direction.
Gemäß einer weiteren vorteilhaften Ausgestaltung ist an zumindest einer Seitenwand des Schaufelblatts, vorzugsweise an beiden Seitenwänden jeweils zumindest eine weitere Prallkühlwand vorgesehen. Mithin folgen der ersten Prallkühlung (der Vorderkante des Schaufelblatts) jeweils in Reihe die saugseitige Prallkühlung und die druckseitige Prallkühlung, wobei jedoch die beiden weiteren, beidseitig der Profilmittellinie angeordneten Prallkühlungen allein für sich betrachtet, parallel geschaltet sind.According to a further advantageous embodiment, at least one side wall of the blade is preferably on at least one additional baffle cooling wall is provided on both side walls. Thus, the first impingement cooling (the leading edge of the blade) is followed in series by the suction-side impingement cooling and the pressure-side impingement cooling, although the two other impingement cooling systems on both sides of the profile center line are connected in parallel.
Weiter ist es von besonderem Vorteil, wenn gemäß einer weiteren bevorzugten Ausgestaltung der eine der beiden weiteren Prallkühlräume saugseitig und der andere der beiden weiteren Prallkühlräume druckseitig angeordnet und jedem dieser beiden Prallkühlräume ein separater Sammelraum vorgeschaltet ist. Diese lassen sich vorzugsweise durch die Bereitstellung einer ersten Trennrippe bereitstellen. In diesem Fall können die in den betreffenden Sammelräumen erforderlichen Drücke des Kühlmittels gemäß der lokalen thermischen Belastung der saugseitigen und druckseitigen Seitenwände so eingestellt werden, dass hier eine effiziente sowie lokal angepasste Verwendung von Kühlmitteln erfolgt.It is also of particular advantage if, according to a further preferred embodiment, one of the two further impingement cooling spaces is arranged on the suction side and the other of the two further impingement cooling spaces is arranged on the pressure side and a separate collecting space is connected upstream of each of these two impingement cooling spaces. These can preferably be provided by providing a first separating rib. In this case, the coolant pressures required in the relevant collecting spaces can be set in accordance with the local thermal load on the suction-side and pressure-side side walls so that coolants are used efficiently and locally.
Darüber hinaus ist es von Vorteil, wenn zwischen zwei beidseitig der Profilmittenlinie angeordneten Sammelräume ein weiterer Hohlraum vorgesehen ist. Vorzugsweise wird dieser weitere Hohlraum durch zwei zweite Trennrippen von den Sammelräumen abgetrennt. Der besagte Hohlraum kann einerseits genutzt werden um die Größe der Sammelräume auf ein gewünschtes Maß zu reduzieren, wenn in den Sammelräumen eine bestimmte Strömungsgeschwindigkeit erreicht werden soll. Andererseits kann der weitere Hohlraum auch dafür genutzt werden, ein weiteres Kühlmittel von einem kopfseitigen Ende zu einem fußseitigen Ende des Schaufelblatts zu führen, wenn dieses Kühlmittel nach Möglichkeit ohne Aufnahme von Wärmeenergie lediglich durch das Schaufelblatt hindurchgeführt werden soll.In addition, it is advantageous if a further cavity is provided between two collecting spaces arranged on both sides of the profile center line. This further cavity is preferably separated from the collecting spaces by two second separating ribs. Said cavity can be used on the one hand to reduce the size of the collecting spaces to a desired level if a certain flow velocity is to be achieved in the collecting spaces. On the other hand, the further cavity can also be used to guide a further coolant from a head end to a foot end of the airfoil if this coolant is only to be passed through the airfoil without absorbing thermal energy, if possible.
Zur Vermeidung von Leckagen an Kühlmittel innerhalb des Schaufelblatts ist es von Vorteil, wenn dieses monolithisch, d.h. einstückig ausgestaltet ist. Derartige Schaufelblätter lassen sich insbesondere mittels eines additiven Verfahrens herstellen. Unter einem additiven Verfahren wird insbesondere die sogenannten SLM-Technik verstanden, die als "Selective Laser Melting" bekannt ist. Diese auch als 3D-Druck-Technik bezeichnete Technologie ermöglich es für metallische Bauteile, im Vergleich zu konventionell gegossen hergestellten Turbinenschaufeln vergleichsweise kleine und in ihren Abmaßen exakte Hohlräume und Durchtrittsöffnungen herzustellen.To avoid leakage of coolant within the blade, it is advantageous if this is monolithic, ie is designed in one piece. Such blades can be produced in particular by means of an additive process. An additive method is understood in particular to be what is known as SLM technology, which is known as "selective laser melting". This technology, also known as 3D printing technology, enables metal components to produce cavities and passage openings that are comparatively small and with exact dimensions compared to turbine blades manufactured using conventional castings.
Auch wenn in der Beschreibung bzw. in den Patentansprüchen einige Begriffe jeweils im Singular oder in Verbindung mit einem Zahlwort verwendet werden, so soll der Umfang der Erfindung für diese Begriffe nicht auf den Singular oder das jeweilige Zahlwort eingeschränkt sein. Ferner sind die Wörter "ein" bzw. "eine" nicht als Zahlwörter, sondern als unbestimmte Artikel zu verstehen.Even if in the description or in the patent claims some terms are used in the singular or in connection with a numerical word, the scope of the invention for these terms should not be restricted to the singular or the respective numerical word. Furthermore, the words "a" or "an" are not to be understood as numerals, but as indefinite articles.
Die oben beschriebenen Eigenschaften, Merkmale und Vorteile der Erfindung sowie die Art und Weise wie diese erreicht werden, werden verständlich im Zusammenhang mit der folgenden Beschreibung der Ausführungsbeispiele anhand der nachfolgenden Figuren näher erläutert.The above-described properties, features and advantages of the invention and the way in which they are achieved are explained in more detail in connection with the following description of the exemplary embodiments with reference to the following figures.
Hierbei sind die Figuren lediglich schematisch dargestellt, wodurch insbesondere keine Einschränkung der Ausführbarkeit der Erfindung die Folge ist.Here, the figures are shown only schematically, which in particular does not result in any restriction of the implementation of the invention.
Es zeigen:
- Figur 1
- eine Turbinenschaufel in einer perspektivischen schematischen Darstellung,
- Figur 2
- den Querschnitt gemäß der Schnittlinie II-II durch das Schaufelblatt der Turbinenschaufel gemäß
Figur 1 als ein erstes Ausführungsbeispiel und - Figur 3
- ein zweites Ausführungsbeispiel eines erfindungsgemäßen Schaufelblatts einer Turbinenschaufel.
- Figure 1
- a turbine blade in a perspective schematic representation,
- Figure 2
- the cross section according to the section line II-II through the blade of the turbine blade according to
Figure 1 as a first embodiment and - Figure 3
- a second embodiment of an airfoil according to the invention of a turbine blade.
Nachfolgend sind die technischen Merkmale, welche mit gleichen Bezugszeichen versehen sind, solche, die die gleiche technische Wirkung aufweisen.In the following, the technical features which are provided with the same reference symbols are those which have the same technical effect.
Eine die Erfindung betreffende Turbinenschaufel 10 ist in Figur 1 perspektivisch dargestellt. Die Turbinenschaufel 10 ist gemäß
Gemäß dem dargestellten Ausführungsbeispiel sind in der ersten Prallkühlwand 34 vier in der Schnittebene liegende Prallkühlöffnungen 42 vorgesehen zur flächigen Kühlung der Vorderkante 18 und der unmittelbar daran angrenzenden saugseitigen und druckseitigen Bereiche der Seitenwände 22, 24.According to the exemplary embodiment shown, four
Entlang der Profilmittenlinie 32 betrachtend in Richtung der Hinterkante, folgt der ersten Rippe 40 ein erster Sammelraum 44, der durch eine zweite Rippe 46 von einem zweiten Sammelraum 48 abgetrennt ist. Letzter ist ebenso durch eine dritte Rippe 50 begrenzt, sodass weiter in Richtung Hinterkante sich ein dritter Sammelraum 52 anschließt. Der erste Sammelraum 44 wird sowohl saugseitig als druckseitig von zwei weiteren Prallkühlwänden 54 begrenzt. Auch in diesen sind Prallkühlöffnungen 42 angeordnet, so dass erste weitere Prallkühlräume 56 bereitgestellt sind, mit denen entsprechende Abschnitte der saugseitigen und druckseitigen Seitenwände 22 bzw. 24 prallkühlbar sind. Zweite weitere Prallkühlräume 59 sind durch Prallkühlwände 55 von dem zweiten Sammelraum 48 getrennt.Looking along the
Gemäß dem gezeigten Ausführungsbeispiel sind alle weiteren Prallkühlräume 56, 59 durch sich von den Seitenwänden 22, 24 nach innen erstreckemde Vorsprünge 57 seitlich begrenzt. Analog zur ersten Rippe 40 gehen die zweite und dritte Rippen 46, 50 an ihren Rippenenden 37 in die saugseitige bzw. druckseitige Seitenwand 22, 24 über und weisen dort seitenwandnahe Auslassöffnungen 39 auf.According to the exemplary embodiment shown, all further
Aufgrund der gewählten Anordnung von Sammelräumen 44, 48, 52, Prallkühlwänden 34, 54, Prallkühlräumen 36, 56, Auslassöffnungen 39 und Vorsprüngen 57 ist es offensichtlich, dass das Kühlmittel sowohl saugseitig als auch druckseitig in mehreren nacheinander geschalteten Prallkühlanordnungen mehrfach prallkühlend verwendet wird, um die Temperaturen der Schaufelwände 22, 24 auf ein gewünschtes Niveau zu reduzieren.Due to the chosen arrangement of collecting
Es versteht sich von selbst, dass nicht nur die dargestellten Prallkühlöffnungen 42, Auslassöffnungen 39 vorhanden sind, sondern dass in den entsprechenden Wänden weitere davon an der entsprechenden Position, vorzugsweise in einer Reihe liegend, längs der Spannweite verteilt sind.It goes without saying that not only the illustrated
Im Detail wird beim Betrieb durch eine nicht gezeigte Öffnung der Turbinenschaufel 10 ein Kühlmittel dem Versorgungskanal 38 zugeführt. Dort verteilt es sich über die Spannweite des Schaufelblatts und durchströmt luftstrahlenbildend die einzelnen Prallkühlöffnungen 42 der ersten Prallkühlwand 34. Die Luftstrahlen prallen in bekannter Manier auf die Innenfläche der Vorderkante und kühlen diese bestimmungsgemäß. Anschließend strömt das Kühlmittel durch die Auslassöffnungen 39 der ersten Rippe 40, wonach es prallkühlend auf die Vorsprünge 57 trifft und von diesen in den ersten Sammelraum 44 umgelenkt wird. Von dort aus strömt es durch die ersten und zweiten weiteren Prallkühlwande 54, 55 zur Kühlung der zugehörigen Seitenwandabschnitte. Aus den ersten und zweiten Prallkühlräumen 56, 59 gelangt es durch die Auslassöffnungen der Rippen 46, 50 in die nachfolgenden Sammelräume 48, 52.In detail, a coolant is fed to the
Nachdem das Kühlmittel die voran beschriebene kaskadierte Prallkühlanordnung durchströmt hat, gelangt es in den Sammelraum 52. Von dort aus kann das Kühlmittel in bekannter Art und Weise zur Kühlung weitere Abschnitte des Schaufelblatts 16 verwendet werden. Es ist denkbar, dass es einerseits in eine Art Mäanderkühlung umgeleitet und abschließend durch die Hinterkantenöffnungen 28 ausgeblasen wird. Ebenso ist es möglich, dass das Kühlmittel aus dem Inneren des Schaufelblatts 16 durch in den Seitenwänden 22, 24 angeordnete Filmkühlöffnungen (64,
Gegenüber dem ersten Ausführungsbeispiel sind Trennrippen 58, 60 im Inneren des Schaufelblatts 16 vorgesehen. Eine erste Trennrippe 58 erstreckt sich zwischen der Rippe 40 und der weiteren Rippe 46 entlang der Profilmittenlinie 32. Die Trennrippe 58 unterteilt den Sammelraum 44 in zwei Sammelräume 44a und 44b, von denen der erstgenannte saugseitig und der zweitgenannte druckseitig vorgesehen ist. Zwei zweite Trennrippen 60 erstrecken sich längs der und somit quasi parallel zur Profilmittenlinie 32 zwischen der Rippe 46 und der Rippe 50, wobei jedoch jeweils eine davon saugseitig und eine davon druckseitig angeordnet ist.Compared to the first exemplary embodiment, separating
Ebenso wie die erste Trennrippe 58 den Sammelraum 44 aufteilt, ist der Sammelraum 48 aus
Die in den betreffenden Ausführungsbeispielen beschrieben und in den abhängigen Ansprüchen angegebenen Merkmale können in beliebiger Art und Weise miteinander kombiniert werden.The features described in the relevant exemplary embodiments and specified in the dependent claims can be combined with one another in any desired manner.
Insgesamt betrifft die Erfindung mithin ein Schaufelblatt 16 für eine Turbinenschaufel 10, umfassend eine saugseitige Seitenwand 22 und eine druckseitige Seitenwand 24, die sich längs einer Profilmittenlinie 32 von einer gemeinsamen Vorderkante 18 zu einer gemeinsamen Hinterkante 20 und in einer Spannweiterichtung von einem fußseitigen Ende 26 zu einem kopfseitigen Ende 27 erstreckend einen Hohlraum zumindest teilweise umschließen, wobei längs der Spannweite im Inneren eine erste perforierte mit Öffnungen versehene Prallkühlwand 34 zur Prallkühlung der Vorderkante 18 und zumindest eine weitere perforierte Prallkühlwand 54 zur Prallkühlung eines Abschnitts der saugseitigen und/oder druckseitigen Schaufelwand 22, 24 vorgesehen ist. Um eine besonders effiziente Kühlung der Turbinenschaufel zu erreichen wird vorgeschlagen, dass die Prallkühlöffnungen 42 der ersten Prallkühlwand 34 und der zumindest einen zweiten Prallkühlwand 54 strömungstechnisch in Reihe geschaltet sind.Overall, the invention thus relates to an airfoil 16 for a
Claims (8)
- Blade (16) for a turbine blade (10), comprising a suction-side side wall (22) and a pressure-side side wall (24) which enclose a cavity at least partially in a manner which extends along a profile centre line from a common leading edge (18) to a common trailing edge (20) and in a span width direction from a root-side end (26) to a top-side end (27),
a first impingement cooling wall (34) which is provided with impingement cooling openings (42) for the impingement cooling of the leading edge (18) and at least one further impingement cooling wall (54, 55) which is also provided with impingement cooling openings (42) for the impingement cooling of a section of the suction-side and/or pressure-side side wall (22, 24) being provided along the span width in the interior, the impingement cooling openings (42) of the first impingement cooling wall (34) and the impingement cooling openings of the at least one second impingement cooling wall (54, 55) being connected in series in terms of flow, and an impingement cooling space (36, 56, 59) being provided between the relevant impingement cooling wall (34, 54, 55) and the inner side of the associated side wall (22, 24), and in each case one collecting space (44, 48, 52) being provided downstream of the relevant impingement cooling space (36, 56, 59), which collecting space (44, 48, 52) adjoins the downstream further impingement cooling wall (34, 54, 55) in a directly upstream manner,
characterized
in that the collecting space (44, 48) is delimited partially by a projection (57) which is impingement cooled, by outlet openings (39) which are close to the side wall being arranged in a rib (40, 46) which, in accordance with a cross-sectional plane, extends from a suction-side rib end (37) to a pressure-side rib end (37). - Blade (16) according to Claim 1,
a supply duct (38) being provided between the first collecting space (44) and the first impingement cooling space (36). - Blade (16) according to Claim 2,
in each case at least one further impingement cooling wall being provided on at least one side wall (22, 24) of the blade (16), preferably on the two side walls (22, 24). - Blade (16) according to Claim 3,
one of the two further impingement cooling spaces being arranged on the suction side and the other one of the two further impingement cooling spaces being arranged on the pressure side, and a separate collecting space (44a, 44b, 48a, 48b) being connected upstream of each of them. - Blade (16) according to Claim 4,
a further cavity (62) being provided between two collecting spaces which are arranged on both sides of the profile centre line. - Blade (16) according to one of the preceding claims which is monolithic.
- Blade (16) according to Claim 6
which is produced by means of an additive method. - Turbine blade (10) with a blade (16) according to one of the preceding claims.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102017216926 | 2017-09-25 | ||
PCT/EP2018/075288 WO2019057743A1 (en) | 2017-09-25 | 2018-09-19 | Blade for a turbine blade |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3658751A1 EP3658751A1 (en) | 2020-06-03 |
EP3658751B1 true EP3658751B1 (en) | 2021-07-07 |
Family
ID=63708332
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18779293.2A Active EP3658751B1 (en) | 2017-09-25 | 2018-09-19 | Blade for a turbine blade |
Country Status (3)
Country | Link |
---|---|
US (1) | US11203937B2 (en) |
EP (1) | EP3658751B1 (en) |
WO (1) | WO2019057743A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3564484A1 (en) * | 2018-05-04 | 2019-11-06 | Siemens Aktiengesellschaft | Hot gas component wall |
US11512597B2 (en) * | 2018-11-09 | 2022-11-29 | Raytheon Technologies Corporation | Airfoil with cavity lobe adjacent cooling passage network |
US11286793B2 (en) * | 2019-08-20 | 2022-03-29 | Raytheon Technologies Corporation | Airfoil with ribs having connector arms and apertures defining a cooling circuit |
CN111927564A (en) * | 2020-07-31 | 2020-11-13 | 中国航发贵阳发动机设计研究所 | Turbine guide vane adopting efficient cooling structure |
US11767766B1 (en) * | 2022-07-29 | 2023-09-26 | General Electric Company | Turbomachine airfoil having impingement cooling passages |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6036441A (en) * | 1998-11-16 | 2000-03-14 | General Electric Company | Series impingement cooled airfoil |
JP2002242607A (en) | 2001-02-20 | 2002-08-28 | Mitsubishi Heavy Ind Ltd | Gas turbine cooling vane |
US7097426B2 (en) | 2004-04-08 | 2006-08-29 | General Electric Company | Cascade impingement cooled airfoil |
US7497655B1 (en) | 2006-08-21 | 2009-03-03 | Florida Turbine Technologies, Inc. | Turbine airfoil with near-wall impingement and vortex cooling |
US8070442B1 (en) * | 2008-10-01 | 2011-12-06 | Florida Turbine Technologies, Inc. | Turbine airfoil with near wall cooling |
JP5675081B2 (en) * | 2009-11-25 | 2015-02-25 | 三菱重工業株式会社 | Wing body and gas turbine provided with this wing body |
US10024171B2 (en) * | 2015-12-09 | 2018-07-17 | General Electric Company | Article and method of cooling an article |
-
2018
- 2018-09-19 EP EP18779293.2A patent/EP3658751B1/en active Active
- 2018-09-19 US US16/647,139 patent/US11203937B2/en active Active
- 2018-09-19 WO PCT/EP2018/075288 patent/WO2019057743A1/en unknown
Also Published As
Publication number | Publication date |
---|---|
EP3658751A1 (en) | 2020-06-03 |
US11203937B2 (en) | 2021-12-21 |
US20200277860A1 (en) | 2020-09-03 |
WO2019057743A1 (en) | 2019-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3658751B1 (en) | Blade for a turbine blade | |
DE60018817T2 (en) | Chilled gas turbine blade | |
EP2087206B1 (en) | Turbine blade | |
EP1320661B1 (en) | Gas turbine blade | |
DE69823236T2 (en) | DEVICE FOR COOLING GAS TURBINE SHOVELS AND METHOD FOR THE PRODUCTION THEREOF | |
DE3211139C1 (en) | Axial turbine blades, in particular axial turbine blades for gas turbine engines | |
DE60122050T2 (en) | Turbine vane with insert with areas for impingement cooling and convection cooling | |
EP2304185B1 (en) | Turbine vane for a gas turbine and casting core for the production of such | |
EP3762587B1 (en) | Airfoil for a turbine blade | |
DE102010016620A1 (en) | Turbine nozzle with Seitenwandkühlplenum | |
DE2042947A1 (en) | Blade arrangement with cooling device | |
EP2087207B1 (en) | Turbine blade | |
WO2010086419A1 (en) | Cooled vane for a gas turbine | |
EP1895096A1 (en) | Cooled turbine rotor blade | |
EP1283338A1 (en) | Gas turbine and method for operating a gas turbine | |
CH705185A1 (en) | Blade for a gas turbine and processes for manufacturing such a blade. | |
EP1757773A1 (en) | Hollow turbine airfoil | |
EP3473808B1 (en) | Blade for an internally cooled turbine blade and method for producing same | |
EP2489837A1 (en) | Metering insert for turbine blade and corresponding turbine blade | |
EP3112593A1 (en) | Internally cooled turbine blade | |
EP1138878B1 (en) | Gas turbine component | |
EP3232001A1 (en) | Rotor blade for a turbine | |
EP2868867A1 (en) | Turbine blade | |
EP3564484A1 (en) | Hot gas component wall | |
DE102009033753A1 (en) | Hollow turbine blade i.e. hollow guide vane, film cooling method, involves passive-controlling flow separation at blade, and bending nozzles under angle in transverse direction to mainstream direction of gas and under another angle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200227 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210208 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1408777 Country of ref document: AT Kind code of ref document: T Effective date: 20210715 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502018006088 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210707 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211108 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211007 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211007 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211008 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502018006088 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 |
|
26N | No opposition filed |
Effective date: 20220408 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210919 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210919 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210930 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20220919 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20180919 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220919 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240926 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240925 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240924 Year of fee payment: 7 |