[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP3532434B1 - Lampensystem mit einer gasentladungslampe und dafür angepasstes betriebsverfahren - Google Patents

Lampensystem mit einer gasentladungslampe und dafür angepasstes betriebsverfahren Download PDF

Info

Publication number
EP3532434B1
EP3532434B1 EP17784957.7A EP17784957A EP3532434B1 EP 3532434 B1 EP3532434 B1 EP 3532434B1 EP 17784957 A EP17784957 A EP 17784957A EP 3532434 B1 EP3532434 B1 EP 3532434B1
Authority
EP
European Patent Office
Prior art keywords
light intensity
control
gas discharge
discharge lamp
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17784957.7A
Other languages
English (en)
French (fr)
Other versions
EP3532434A1 (de
Inventor
Jan Winderlich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Noblelight GmbH
Original Assignee
Heraeus Noblelight GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heraeus Noblelight GmbH filed Critical Heraeus Noblelight GmbH
Publication of EP3532434A1 publication Critical patent/EP3532434A1/de
Application granted granted Critical
Publication of EP3532434B1 publication Critical patent/EP3532434B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/39Controlling the intensity of light continuously
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/52Cooling arrangements; Heating arrangements; Means for circulating gas or vapour within the discharge space
    • H01J61/523Heating or cooling particular parts of the lamp
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/295Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps with preheating electrodes, e.g. for fluorescent lamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature
    • H01J61/18Selection of substances for gas fillings; Specified operating pressure or temperature having a metallic vapour as the principal constituent
    • H01J61/20Selection of substances for gas fillings; Specified operating pressure or temperature having a metallic vapour as the principal constituent mercury vapour

Definitions

  • the present invention relates to a method for operating a lamp system, with a gas discharge lamp, an electronic ballast and with a control unit for regulating a power-influencing controlled variable of the lamp system.
  • the present invention relates to a lamp system for carrying out the method, having a gas discharge lamp, an electronic ballast and a control unit for regulating a power-influencing controlled variable of the lamp system.
  • Gas discharge lamps are mercury vapor lamps, fluorescent lamps or sodium vapor lamps.
  • the emission power of mercury-containing UV discharge lamps shows a maximum at a specific mercury partial pressure. There is therefore an optimal operating temperature at which the emission performance of the gas discharge lamp is at its maximum.
  • an equilibrium is formed between the mercury bound in the amalgam and the free mercury, which also depends on the operating temperature of the gas discharge lamp, in particular on the temperature of the amalgam depot , depends.
  • the electrical connected load of the gas discharge lamp is designed for the highest possible emission power in continuous operation, taking into account the ambient conditions.
  • the operating temperature that actually occurs during use often differs from the projected temperature. For example, overheating due to high ambient air temperature or insufficient ventilation lead to a deviation from the operating optimum. Lamp aging can also lead to changes in emissions.
  • Temperature control of the amalgam depot was proposed in order to ensure a maximum emission output that is independent of the ambient conditions.
  • a temperature sensor is arranged in the area of the amalgam depot, and depending on the determined temperature, the amalgam depot is heated by means of an adjustable heater.
  • the surface temperature of the lamp bulb is measured by a temperature sensor and at the same time the UV radiation emission is measured by a UV sensor.
  • the lamp be cooled or heated via a blower unit depending on the temperature determined.
  • the GB 2 316 246 A describes a dimmable fluorescent lamp that is equipped with an independent heating circuit for lamp heating that can be controlled separately from the actual power current.
  • the power requirement for the electrode heating is detected with a temperature sensor.
  • DE 10 2008 044 294 A1 relates to a mercury vapor lamp, a method for sterilizing liquids and a liquid sterilizing device.
  • U.S. 2008/0156738 A1 describes a control system for a UV treatment system for fluids such as water.
  • WO 2007/025376 A2 relates to a fluid treatment system with a UV lamp.
  • U.S. 2013/0309131 A1 relates to a lamp system for dynamic temperature compensation.
  • DE 10 2010 014 040 A1 relates to a method for operating an amalgam lamp with a heatable amalgam depot with a nominal output having a discharge chamber containing a filling gas, in which a lamp voltage designed for a maximum UVC emission is present between electrodes or a lamp current designed for a maximum UVC emission flows.
  • the nominal lamp current is applied when the UV lamp is switched on and is generally kept almost constant during operation of the UV lamp.
  • Changing operating conditions of the UV lamp, in particular the temperature lead to undesirable changes in the emission power.
  • a certain prior knowledge of the type of radiator is required, for example to adapt a temperature control circuit. Changes occurring as a result of lamp aging, which would require an adjustment of the electrical connected load, are also not taken into account.
  • the invention is therefore based on the object of specifying a method for operating a gas discharge lamp that enables operation with high emission power regardless of its design and any changes resulting from lamp aging, especially when the optimal operating temperature is not known.
  • the invention is based on the object of providing a lamp system which can be operated with a high emission power even under changing operating conditions and any changes resulting from lamp aging.
  • the object is achieved by a lamp system according to claim 9 and a method according to claim 1.
  • Gas discharge lamps are usually operated with power control, sometimes also with current control, with the connection power or the connection current being designed for an optimum concentration of the charge carrier in the discharge space or an optimum temperature and thus maximum light intensity. Accordingly, with conventional lamp systems, deviations the ambient temperature and associated changes in the operating temperature of the gas discharge lamp by adjusting operating parameters such as current, voltage or temperature of an amalgam depot.
  • the light intensity of the gas discharge lamp forms the power-influencing desired value of the regulation.
  • the emitted light intensity is therefore not only measured, as is also usual, but is also regulated to a maximum or a predetermined threshold value, which is lower than the actual maximum value of the emission, using a control value of the lamp control that affects the light intensity.
  • the light intensity in particular the emitted UV power, always remains in the range of the target value, i.e. the maximum or the specified threshold value, regardless of the ambient conditions and even when neither the current operating temperature nor an optimal operating temperature are known.
  • the maximum light intensity can be generally specified for a lamp type and then may not have to be determined for each individual gas discharge lamp.
  • the maximum light intensity for each gas discharge lamp is individually determined at the factory.
  • the individually determined desired value is stored in a memory unit of the lamp system, which is read out by the control unit when the gas discharge lamp is switched on.
  • the current maximum of the light intensity when the gas discharge lamp is switched on is not known and is determined individually when the gas discharge lamp is switched on. If necessary, this individual determination takes place each time the lamp is switched on or in predetermined switch-on cycles and/or operating times.
  • the operating method according to the invention is preferably used in a gas discharge lamp which emits UV radiation.
  • the spectral range for ultraviolet radiation that is relevant for gas discharge lamps extends between 184 nm, with a focus on 254 nm and up to 380 nm preferably the intensity of UV radiation emitted by the gas discharge lamp, which includes radiation with a wavelength of 254 nm.
  • the emission spectrum of mercury vapor discharge lamps shows a characteristic and pronounced line at 254 nm (UVC radiation), which is very well suited for regulation.
  • Control technology knows a number of methods for finding a maximum of a controlled variable and subsequent control to this found maximum under the keyword "extreme value control”.
  • the extreme value control includes finding the maximum value of the light intensity, and as a result of this, a target value for the control variable, ie for the light intensity, is transferred to the control unit.
  • This target value remains constant during the subsequent operating phase or it is redefined continuously, from time to time or as required.
  • this is designed as a two-point control, in which the manipulated variable is set to at least two initial values during a starting phase, one of which causes a temperature increase and the other of which causes a temperature decrease in the gas discharge lamp, with both as a result the temperature increase and as a result of the temperature decrease, a maximum of the light intensity is reached and exceeded, and that a value between the one and the other output value is set as the target value of the manipulated variable.
  • the two-point control is based on the fact that the controlled variable, in this case the light intensity, has a relative maximum as a function of the manipulated variable.
  • the controlled variable in this case the light intensity
  • the temperature of the amalgam depot can in turn depend on another parameter, such as the cooling or heating capacity of a temperature control element acting on the amalgam depot. This type of dependence of the light intensity on a manipulated variable with a pronounced maximum is shown schematically in Figure 3a shown.
  • the two-point control used here is particularly suitable for use with comparatively sluggish control systems, as is the case with the light intensity of the gas discharge lamp.
  • this includes a determination of the curvature of a transfer function of the manipulated variable and the light intensity, with the target value being determined using the maximum of the light intensity.
  • This type of control is also based on the fact that the light intensity has a relative maximum as a function of the manipulated variable.
  • This embodiment of the extreme value determination is particularly well suited for control, since once the optimum has been reached, the manipulated variable no longer changes under constant ambient conditions (in contrast to 2-point control and classic "Extremum Seeking Control" algorithms).
  • the control based on the determination of the curvature does not require any complex determination of the maximum of the light intensity and enables a continuous control without steps. It manages with comparatively few control interventions, which has a favorable effect on the service life of the actuator supplying the manipulated variable, such as a fan, and it is therefore less acoustically noticeable than other controls.
  • this control method has also proven to be particularly suitable for use in the comparatively sluggish control system such as here.
  • a deviation of the light intensity from a previously determined maximum can indicate a change in the surroundings of the gas discharge lamp, in particular a temperature change affecting the light intensity; such as the temperature of an amalgam depot. It makes sense to use the temperature in question or a changeable parameter that is mathematically clearly correlated with the temperature as the manipulated variable for the light intensity control.
  • a particularly preferred variant of the method is characterized in that an operating temperature of the gas discharge lamp that influences the light intensity can be changed by means of a temperature control element with controllable temperature control power, and that the temperature control power is used as a control variable for the control.
  • Temperature control is achieved by using a gaseous, liquid or solid temperature control medium.
  • the temperature control element is designed, for example, as a Peltier element or as an array of several Peltier elements.
  • the operating temperature is, for example, a characteristic temperature in the area of the surface of the gas discharge lamp or the temperature of an amalgam depot.
  • the temperature control includes increasing, reducing and maintaining this temperature by means of the temperature control element.
  • the fan With fan control using PWM (pulse width modulation), the fan has its own control chip. In contrast to fan control with variable voltage, with PWM fan control there is no start-up voltage below which the fan rotor stops rotating. This allows the speed to be regulated down to very low values. In addition, PWM control eliminates the problem of waste heat caused by the variable resistor in voltage control.
  • the temperature control output as a control variable is the ventilation output, which can be specified, for example, in revolutions of the fan rotor per unit of time or as a mass or volume flow of a gaseous temperature control medium. Cooling and heating processes, such as the temperature control of the gas discharge lamp here, basically cause a sluggish control system, for which continuous control via PWM has proven to be particularly advantageous.
  • control unit for setting the operating temperature sends a control signal that regulates the cooling capacity to the temperature control element.
  • the light intensity measured as a controlled variable can relate to the emission of a specific wavelength and/or to that of a wavelength range.
  • a variant of the method has proven particularly useful, in which the intensity of UV radiation emitted by the gas discharge lamp, which includes radiation with a wavelength of 254 nm, is used as the light intensity.
  • a threshold value for the light intensity is specified, falling below which marks the end of the service life of the gas discharge lamp, this threshold value being used as the desired value for the light intensity control
  • a drop to, for example, 50% to 90% of the initial power can be defined as the end of the lamp life.
  • a gas discharge lamp can be operated with a constant UV output in accordance with the specified threshold value over its entire service life. This procedure is referred to below as "lifetime compensation".
  • the target value UV duration of the light intensity is set to a lower threshold value, which marks the end of the lamp's service life, for example to a value in the range from 50 to 90% of the initial, maximum light intensity.
  • operating parameters that affect the light intensity such as supply voltage, current or power or the temperature of an amalgam depot, are set in standard operation in such a way that the light intensity is reduced compared to the maximum possible light intensity UV max sets UV duration at a lower, relative maximum intensity.
  • the light intensity is regulated to this lower maximum UV duration , whereby the extreme value regulation explained above according to the invention can be used for this.
  • the intentionally reduced, lower, relative maximum UV duration of the light intensity takes the place of the absolute maximum UVmax of the light intensity as a target value.
  • the operating parameters that affect the light intensity such as supply voltage, current or power or the temperature of an amalgam depot, are optimally set in standard operation, so that theoretically the maximum possible light intensity UVmax is generated could.
  • the threshold value of the light intensity as the target value for the temperature control is not set to the maximum light intensity UV max but, for example, to a value which is 10 to 50 percentage points below this maximum value.
  • the initial maximum and/or the initial target value is stored in a memory of the lamp system and read out from the memory when the gas discharge lamp is switched on.
  • the above-mentioned object is achieved, based on a lamp system of the type mentioned at the outset, according to the invention in that there is a light sensor for determining an actual value of a light intensity emitted by the gas discharge lamp, and the control is designed as a light intensity control in which the emitted light intensity is used as a controlled variable, the actual value of the light intensity being present as an input signal at a signal input of the control unit.
  • the light intensity of the gas discharge lamp is the power-influencing setpoint of the regulation.
  • a sensor is provided for measuring the emitted light intensity, preferably the UV intensity in a gas discharge lamp emitting UV radiation.
  • the sensor preferably a UV sensor, is part of the gas discharge lamp or it is positioned in the emission area of the gas discharge lamp, for example in a base or a frame or a housing of the lamp system.
  • the UV sensor is designed in such a way that it detects the emission of a specific wavelength and/or the emission of a wavelength range, preferably UV radiation emitted by the gas discharge lamp, which includes radiation of the wavelength of 254 nm.
  • the control is designed for extreme value control. It is suitable for regulating the light intensity to a maximum or a predetermined threshold value. As a result, the light intensity, in particular the emitted UV power, always remains in the range of the desired value, i.e. the maximum or the specified threshold value, regardless of the ambient conditions.
  • the maximum light intensity can be generally specified for a lamp type, it can be determined individually for each gas discharge lamp at the factory, or it is read out by the control unit when the gas discharge lamp is switched on.
  • control unit comprises a device for controlling extreme values, in which a target value is determined for a manipulated variable at which the light intensity assumes a maximum or a predetermined threshold value.
  • the extreme value control is preferably implemented as a two-point control or as a determination of the curvature of a transfer function of the manipulated variable and the light intensity.
  • the relevant explanations for the method according to the invention also apply to the lamp system.
  • the temperature of an amalgam depot of the gas discharge lamp is preferably used as the manipulated variable.
  • the lamp system is preferably equipped with a temperature control element with controllable temperature control output, which is suitable for changing an operating temperature of the gas discharge lamp that influences the light intensity, the operating temperature or a parameter correlated with the operating temperature being present at a signal input of the control unit and being usable as a manipulated variable for the light intensity control .
  • the temperature control element works with a gaseous, liquid or solid temperature control medium.
  • the temperature control element is designed, for example, as a Peltier element or as an array of several Peltier elements.
  • the operating temperature is, for example, a characteristic temperature in the area of the surface of the gas discharge lamp or the temperature of an amalgam depot.
  • the temperature control includes increasing, reducing and maintaining this temperature by means of the temperature control element.
  • a temperature control element with controllable cooling or heating power in particular a fan with PWM-controlled ventilation power, which is connected to the control unit, has proven particularly useful.
  • FIG. 12 shows a lamp system for the generation of ultraviolet radiation, which is assigned the reference numeral 10 as a whole.
  • the lamp system comprises a low-pressure amalgam lamp 11, an electronic ballast 14 for the low-pressure amalgam lamp 11, a radial fan 15 for cooling the low-pressure amalgam lamp 11 and a control unit 16 for the radial fan 15.
  • the low-pressure amalgam radiator 11 is operated with a substantially constant lamp current with a nominal power of 200 W (at a nominal lamp current of 4.0 A). It has a light length of 50 cm, an outside diameter of 28 mm and a power density of about 4 W/cm.
  • At least one amalgam depot 13 is located in the discharge space 12 at a gold point of the envelope bulb.
  • the envelope of the low-pressure amalgam radiator 11 is closed at both ends with pinches 17 through which a power supply 18 is guided and which are held in sockets 23 .
  • a memory element 22 in the form of an EEPROM is arranged in one of the sockets 23 .
  • the separate memory chip in the base the gas discharge lamp is dispensed with and the required data is stored in the central control unit 16 .
  • a UV sensor 24 is arranged in the vicinity of one end of the envelope bulb. It is a commercially available photodiode made of silicon carbide (SiC), which is characterized by its insensitivity to daylight and its long-term stability. It detects UVC radiation including the wavelength of 254 nm, a main emission line of the low-pressure amalgam lamp 11.
  • the UV sensor 24 is connected to the control unit 16 via a data line 25. During operation, the control unit 16 determines the UVC light intensity measured by the UV sensor 24 as the actual value UV Ist . the light intensity control.
  • the low-pressure amalgam radiator 11 is operated on the electronic ballast 14 and is connected to it via the connection lines 20 .
  • the electronic ballast 14 also has a mains voltage connection 19 .
  • the radial fan 15 has a PWM signal (pulse width modulation) for controlling the speed of the rotor.
  • the speed determines its cooling capacity, which can be set between 0 and 200 m 3 /h by means of a cooling air volume flow.
  • the light intensity serves as a variable reference value and the cooling capacity of the radial fan 15 forms the control value for the lamp control.
  • the light intensity is regulated to a maximum or to a predetermined threshold value which is lower than the actual maximum value of the emission.
  • the light intensity always remains in the range of the target value, i.e. the maximum or the specified threshold value, regardless of the ambient conditions. Operating and control processes are explained in more detail below using three methods.
  • the chart of figure 2 illustrates a procedure for determining the target value of the light intensity using a two-point control as an example. It shows the course over time of measured light intensity (curve A), cooling capacity (curve B; measured as PWM) and temperature of the amalgam depot 13 (curve C; measured using an IR sensor). On the left ordinate is that measured by the UV sensor Light intensity UV is plotted in mW/cm 2 , and the cooling air volume flow PWM is plotted in m 3 /h on the right-hand ordinate. In the case of the temperature profile (curve C) also entered in the diagram, the temperatures are not specially scaled relative values. The unit of the time axis t is seconds (s).
  • the fan 15 (curve B) initially remains switched off.
  • the UV light intensity (curve A) increases rapidly, reaches a maximum and then decreases.
  • the drop in the UV light intensity can be attributed to an excessively high temperature of the envelope of the lamp and of the amalgam depot 13 (curve C).
  • the fan 15 is then operated at maximum speed (fan max) until the lamp bulb (more precisely: the temperature of the amalgam depot 13) has subcooled and the UV light intensity therefore drops again.
  • the duration of this time segment is tmax.
  • the fan 15 is operated at a low speed (fan min ) for a duration tmin (so that it just turns) until the gas discharge lamp overheats again and the UV light intensity drops again.
  • the result of this starting phase is an initial value for the standard speed of the fan 15, as is used as a measure of the cooling capacity in the further operation of the gas discharge lamp.
  • the UV light intensity that occurs with the standard fan cooling capacity represents the target value UV target for the lamp control; it also represents the maximum value. If the UV light intensity falls below a critical threshold during operation (e.g. 98% of the maximum value), the fan is switched to minimum operation (fan min ) and a check is made during a reaction time t crit to see whether the UV light intensity increases again. If necessary, the value for standard fan is reduced. Otherwise the fan is operated at maximum fan max and the standard test direction is changed (from fan min to fan max ).
  • a critical threshold during operation e.g. 98% of the maximum value
  • the time constant, t crit can be determined by a simple step function test, even automatically from the response time of the UV light intensity after the fan is first switched on.
  • FIG. 3 Another procedure for determining the set point of light intensity and operation of the lamp system is illustrated figure 3 using the example of a curvature determination with a transfer function of the manipulated variable and the light intensity.
  • the chart of Figure 3a outlines the dependency of the UV light intensity UV on the PWM cooling capacity (e.g. the fan speed).
  • the UV light intensity shows a pronounced maximum with optimal cooling performance. Since the transfer function ( Figure 3a ) is not monotonous, it is not possible to deduce the correct control direction when the light intensity changes.
  • figure 4 demonstrated using the temporal progression of UV light intensity (curve D) and the associated cooling capacity (fan speed or cooling air volume flow; curve E).
  • the light intensity UV relative (in %) as a relative value based on the maximum light intensity is plotted on the left ordinate and the cooling air volume flow PWM in m 3 /h on the right ordinate.
  • This continuous control by means of a PWM-controlled radial fan 15 generates a largely constant UV light intensity, as curve D shows, despite the inertia of the control system, which results from the temperature control of the gas discharge lamp as a manipulated variable.
  • this UV control via the curvature determination can become unstable and the fan can be changed in the wrong direction.
  • This case is intercepted by the control system as soon as the UV light intensity falls below a critical threshold during operation (e.g. 95% of the maximum value; UV ⁇ 95% of UV max ).
  • the fan speed is then specifically disturbed, i.e. the speed is drastically changed; for example to zero at a previous PWM value of 50% or more, or to maximum PWM value (100%) at a previous PWM value of less than 50% in order to generate a clear control signal.
  • This disturbance is then not permitted for x time steps in order to give the control time to adjust.
  • Another method of operating and controlling the lamp system relies on an absolute measurement of the UV light intensity to a predetermined value (rather than controlling to the relative maximum UV light intensity as described in the two procedures above).
  • UV output drops to, for example, 90% of the initial output over the lifetime of the lamp.
  • a gas discharge lamp can be operated with constant UV output over its entire service life.
  • the control keeps bringing the fan setting to the relative maximum in order to maintain this target value.
  • This process variant with an operating parameter (lamp current) adapted to the UV duration is in Figure 3a indicated by the dashed curve V1 with the relative maximum UV duration of the light intensity.
  • control unit 16 compares the actual value of the UV light intensity transmitted by the UV light sensor 24 with the target value UV Duration , determines the deviation of the actual value from the target value and outputs a control signal that controls the cooling capacity of the radial fan 15 rules.
  • the reduction of the light intensity to UV duration is achieved here by an intentionally unoptimized fan performance, an adjustment of the operating parameters is not necessary for this.
  • the fan output is set in such a way that a temperature is set at the amalgam depot 13 that is lower than the temperature required to reach the absolute maximum. This process variant without adjustment of the operating parameters is in Figure 3a indicated by the control point V2.

Landscapes

  • Discharge Lamps And Accessories Thereof (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Discharge-Lamp Control Circuits And Pulse- Feed Circuits (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)

Description

    Technischer Hintergrund
  • Die vorliegende Erfindung betrifft ein Verfahren zum Betrieb eines Lampensystems, mit einer Gasentladungslampe, einem elektronischen Vorschaltgerät und mit einer Steuereinheit zur Regelung einer leistungsbeeinflussenden Regelgröße des Lampensystems.
  • Weiterhin betrifft die vorliegende Erfindung ein Lampensystem zur Durchführung des Verfahrens, aufweisend eine Gasentladungslampe, einem elektronischen Vorschaltgerät und mit einer Steuereinheit zur Regelung einer leistungsbeeinflussenden Regelgröße des Lampensystems.
  • Bei Gasentladungslampen handelt es sich um Quecksilberdampflampen, Fluoreszenzlampen oder Natriumdampflampen. Die Emissionsleistung von quecksilberhaltigen UV-Entladungslampen zeigt ein Maximum bei einem spezifischen Quecksilberpartialdruck. Es gibt daher eine optimale Betriebstemperatur, bei der die Emissionsleistung der Gasentladungslampe maximal ist. Bei Entladungslampen, bei denen mindestens ein Teil des Quecksilbers nicht in flüssiger Form sondern als Legierung (Amalgam) vorliegt, bildet sich ein Gleichgewicht zwischen dem im Amalgam gebundenen und dem freien Quecksilber, das ebenfalls von der Betriebstemperatur der Gasentladungslampe, insbesondere von der Temperatur des Amalgamdepots, abhängt.
  • Die elektrische Anschlussleistung der Gasentladungslampe ist unter Berücksichtigung der Umgebungsbedingungen auf eine möglichst hohe Emissionsleistung im Dauerbetrieb ausgelegt. Die sich im Einsatz tatsächlich einstellende Betriebstemperatur unterscheidet sich aber häufig von der projektierten Temperatur. Beispielsweise können eine Überhitzung wegen hoher Umgebungslufttemperatur oder unzulänglicher Belüftung zu einer Abweichung vom Betriebsoptimum führen. Ebenso kann die Lampenalterung zu Änderungen der Emission führen.
  • Stand der Technik
  • Um eine von den Umgebungsbedingungen unabhängige maximale Emissionsleistung zu gewährleisten, wurde eine Temperierung des Amalgamdepots vorgeschlagen. Bei der aus der DE 101 29 755 A1 bekannten Leuchtstoffröhre erfolgt ist ein Temperatursensor im Bereich des Amalgamdepots angeordnet, und in Abhängigkeit von der ermittelten Temperatur wird das Amalgamdepot mittels einer einstellbaren Heizung beheizt.
  • Bei der aus der WO 2005/102401 A2 bekannten Sterilisierungsvorrichtung mit einer UV-Lampe werden die Oberflächentemperatur des Lampenkolbens mittels eines Temperatursensors und gleichzeitig die UV-Strahlungsemission mittels eines UV-Sensors gemessen. Um eine optimale Betriebstemperatur und Emissionsleistung der Lampe zu gewährleisten, wird vorgeschlagen, dass die Lampe in Abhängigkeit von der ermittelten Temperatur über eine Gebläse-Einheit gekühlt oder erwärmt wird.
  • Die GB 2 316 246 A beschreibt eine dimmbare Fluoreszenzlampe, die mit einem unabhängigen und separat vom eigentlichen Leistungsstrom ansteuerbaren Heizstromkreis für die Lampenheizung ausgestattet ist. Der Strombedarf für die Elektrodenheizung wird mit einem Temperatursensor detektiert.
  • Bei der Gasentladungslampe gemäß der WO 2014/056670 A1 ist ein elektronisches Vorschaltgerät und ein über eine Steuereinheit einstellbares Kühlelement zur Kühlung der Gasentladungslampe vorgesehen. Um eine hohe Emissionsleistung zu erreichen, wird vorgeschlagen, dass bei konstantem Lampenstrom als Regelgröße die Lampenspannung und als Stellgröße die Kühlleistung verwendet werden.
  • DE 10 2008 044 294 A1 betrifft eine Quecksilberdampflampe, ein Verfahren zum Entkeimen von Flüssigkeiten und eine Flüssigkeitsentkeimungsvorrichtung. US 2008/0156738 A1 beschreibt ein Regelsystem für ein UV Behandlungssystem für Fluide wie Wasser. WO 2007/025376 A2 betrifft ein Fluidbehandlungssystem mit einer UV-Lampe.
  • US 2013/0309131 A1 betrifft ein Lampensystem für eine dynamische Temperaturkompensation. DE 10 2010 014 040 A1 betrifft ein Verfahren zum Betreiben einer Amalgamlampe mit beheizbarem Amalgamdepot mit einer Nominal-Leistung aufweisend einen ein Füllgas enthaltenden Entladungsraum, in dem zwischen Elektroden eine auf ein Maximum an UVC-Emission ausgelegte Lampenspannung anliegt oder ein auf ein Maximum UVC-Emission ausgelegter Lampenstrom fließt.
  • Technische Aufgabe
  • Bei den bekannten Steuerungsmethoden wird der nominelle Lampenstrom beim Einschalten der UV-Lampe angelegt und in der Regel während des Betriebs der UV-Lampe nahezu konstant gehalten. Veränderte Betriebsbedingungen der UV-Lampe, insbesondere der Temperatur, führen zu unerwünschten Änderungen der Emissionsleistung. Um dabei gegenzusteuern, wird ein gewisses Vorwissen über den Strahlertyp benötigt, um beispielsweise einen Temperatur-Regelkreis anzupassen. Infolge von Lampenalterung auftretende Änderungen, die eine Anpassung der elektrischen Anschlussleistung erfordern würden, werden auch nicht berücksichtigt.
  • Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zum Betreiben einer Gasentladungslampe anzugeben, das einen Betrieb mit hoher Emissionsleistung unabhängig von deren Bauform und etwaigen Änderungen infolge von Lampenalterung ermöglicht, insbesondere auch dann, wenn die optimale Betriebstemperatur nicht bekannt ist.
  • Weiterhin liegt der Erfindung die Aufgabe zugrunde, ein Lampensystem bereitzustellen, die auch bei sich verändernden Betriebsbedingungen und etwaigen Änderungen infolge von Lampenalterung mit einer hohen Emissionsleistung betrieben werden kann. Die Aufgabe wird durch ein Lampensystem gemäß Anspruch 9 sowie einem Verfahren gemäß Anspruch 1 gelöst.
  • Allgemeine Beschreibung der Erfindung
  • Hinsichtlich des Verfahrens wird diese Aufgabe ausgehend von einem Verfahren der eingangs genannten Gattung erfindungsgemäß gemäß den beigefügten Patentansprüchen gelöst.
  • Gasentladungslampen werden üblicherweise leistungsgeregelt, manchmal auch stromgeregelt betrieben, wobei die Anschlussleistung beziehungsweise der Anschlussstrom auf eine optimale Konzentration des Ladungsträgers im Entladungsraum oder optimale Temperatur und damit maximale Lichtintensität ausgelegt sind. Demenentsprechend wird bei konventionellen Lampensystemen auf Abweichungen der Umgebungstemperatur und damit einhergehender Änderungen der Betriebstemperatur der Gasentladungslampe durch Anpassungen von Betriebsparametern wie Strom, Spannung oder Temperatur eines Amalgamdepots reagiert.
  • Im Unterschied dazu bildet beim erfindungsgemäßen Lampensystem die Lichtintensität der Gasentladungslampe den leistungsbeeinflussenden Sollwert der Regelung. Die emittierte Lichtintensität wird daher nicht nur gemessen, wie auch sonst auch üblich, sondern sie wird außerdem anhand eines auf die Lichtintensität wirkenden Stellwerts der Lampenregelung auf ein Maximum oder einen vorgegebenen Schwellwert, der niedriger ist als der eigentliche Maximalwert der Emission, geregelt.
  • Sofern im Folgenden von dem "Maximum" der Lichtintensität die Rede ist, so umfasst dieser Begriff auch einen "vorgegebenen Schwellwert der Lichtintensität", sofern nicht ausdrücklich Gegenteiliges gesagt wird.
  • Dadurch bleibt die Lichtintensität, insbesondere die emittierte UV-Leistung immer im Bereich des Sollwerts, also des Maximums oder des vorgegeben Schwellwerts, und zwar unabhängig von den Umgebungsbedingungen und zwar auch dann, wenn weder die aktuelle Betriebstemperatur noch eine optimale Betriebstemperatur bekannt sind.
  • Das Maximum der Lichtintensität kann allgemein für einen Lampentyp spezifiziert sein und muss dann gegebenenfalls nicht für jede einzelne Gasentladungslampe bestimmt werden. Bei einer anderen Ausführungsform wird das Maximum der Lichtintensität für jede Gasentladungslampe werksseitig individuell bestimmt. In dem Fall wird der individuell bestimmte Sollwert in einer Speichereinheit des Lampensystems gespeichert, das beim Einschalten der Gasentladungslampe von der Steuereinheit ausgelesen wird. Bei einer weiteren Ausführungsform ist das aktuelle Maximum der Lichtintensität beim Einschalten der Gasentladungslampe nicht bekannt und wird beim Einschalten der Gasentladungslampe individuell ermittelt. Gegebenenfalls erfolgt diese individuelle Ermittlung bei jedem Einschalten der Lampe oder in vorgegebenen Einschaltzyklen und/oder Betriebsdauern.
  • Das erfindungsgemäße Betriebsverfahren wird bevorzugt bei einer Gasentladungslampe angewandt, die UV-Strahlung emittiert. Der für Gasentladungslampe maßgebliche Spektralbereich für Ultraviolettstrahlung erstreckt sich zwischen 184 nm über schwerpunktmäßig 254 nm bis zu 380 nm. Gegebenenfalls wird als zu regelnde Lichtintensität auch bevorzugt eine Lichtintensität herangezogen, die UV-Licht aus dem Wellenlängenbereich von 170 bis 380 nm enthält, und ganz besonders bevorzugt die Intensität einer von der Gasentladungslampe emittierten UV-Strahlung, die Strahlung der Wellenlänge von 254 nm umfasst. Das Emissionsspektrum von Quecksilberdampfentladungslampen zeigt eine charakteristische und ausgeprägte Linie bei 254 nm (UVC-Strahlung), die zur Regelung sehr gut geeignet ist.
  • Die Regelungstechnik kennt unter dem Stichwort "Extremwertregelung" eine Anzahl von Methoden zum Auffinden eines Maximums einer Regelgröße und der anschließenden Regelung auf dieses aufgefundene Maximum.
  • Eine bevorzugte Verfahrensvariante des erfindungsgemäßen Verfahrens ist in den beigefügten Ansprüchen dargestellt.
  • Die Extremwertregelung umfasst eine Maximalwert-Findung der Lichtintensität und als Ergebnis davon wird der Steuerungseinheit ein Sollwert für die Regelungsgröße, also für die Lichtintensität, übergeben. Dieser Sollwert bleibt während der anschließenden Betriebsphase konstant oder er wird kontinuierlich, von Zeit zu Zeit oder bei Bedarf neu festgelegt.
  • Bei einer ersten bevorzugten Ausführungsform der Extremwertregelung ist diese als Zweipunkt-Regelung ausgeführt, bei der die Stellgröße während einer Startphase auf mindestens zwei Ausgangswerte eingestellt wird, von denen der eine Temperaturerhöhung, und von denen der andere eine Temperaturerniedrigung des Gasentladungslampe bewirkt, wobei sowohl in Folge der Temperaturerhöhung als auch in Folge der Temperaturerniedrigung ein Maximum der Lichtintensität erreicht und überschritten wird, und dass als Zielwert der Stellgröße ein Wert zwischen dem einen und dem anderen Ausgangswert eingestellt wird.
  • Die Zweipunkt-Regelung basiert darauf, dass die Regelgröße, also hier die Lichtintensität in Abhängigkeit von der Stellgröße ein relatives Maximum aufweist. Beispielsweise zeigen Amalgamlampen eine maximale UV-Leistung bei einem spezifischen Quecksilberdampfdruck, der wiederum mit der Temperatur des Amalgamdepots korreliert ist. Die Temperatur des Amalgamdepots kann wiederum von einem anderen Parameter abhängen, wie beispielsweise der Kühl- oder Heizleistung eines auf das Amalgamdepot einwirkenden Temperierelements. Diese Art der Abhängigkeit der Lichtintensität von einer Stellgröße mit einem ausgeprägten Maximum ist schematisch in Figur 3a dargestellt. Sie ermöglicht eine Findung des Maximums mit zwei Ausgangswerten der Stellgröße (oder des damit korrelierten Parameters) beiderseits des Maximums, wobei die Ausgangswerte so geändert werden, dass das Maximum in der Darstellung von Figur 3a einmal von der linken Seite und einmal von der rechten Seite erreicht und überschritten wird.
  • Im Vergleich zu anderen Methoden der Extremwert-Regelung ist die hier angewandte Zweipunkt-Regelung besonders geeignet für den Einsatz bei vergleichsweise trägen Regelsystemen, wie dies bei der Lichtintensität der Gasentladungslampe der Fall ist.
  • Bei einer zweiten, gleichermaßen bevorzugten Ausführungsform der Extremwert-regelung umfasst diese eine Krümmungsbestimmung einer Übertragungsfunktion von Stellgröße und der Lichtintensität, wobei der Zielwert anhand des Maximums der Lichtintensität ermittelt wird.
  • Auch diese Art der Regelung basiert darauf, dass die Lichtintensität in Abhängigkeit von der Stellgröße ein relatives Maximum aufweist. In der Praxis wird aber das Maximum der Lichtintensität nicht direkt, sondern nur mittelbar ermittelt, indem die Regelung als Differentialregelung ausgelegt ist, die mit der 2. Ableitung der Übertagungsfunktion arbeitet. Da die Übertragungsfunktion nicht monoton ist, ist es nicht möglich, bei Änderung der Lichtintensität auf die richtige Regelrichtung zu schließen. Die erste Ableitung ist jedoch monoton und hat bei der optimalen Stellgrößeneinstellung (= max. Lichtintensität) einen Null-Durchgang. Die Änderung der Stellgröße ergibt sich nun aus dem negativen Anstieg dieser Funktion (= 2. Ableitung der Übertragungsfunktion). Diese Ausführungsform der Extremwertbestimmung eignet sich besonders gut für die Regelung, da sich nach Erreichen des Optimums die Stellgröße unter konstanten Umgebungsbedingungen nicht mehr verändert (im Gegensatz zur 2-Punkt-Regelung und zu klassischen "Extremum Seeking Control" Algorithmen). Die Regelung auf Basis der Krümmungsbestimmung benötigt keine aufwändige Ermittlung des Maximums der Lichtintensität und ermöglicht eine kontinuierliche Regelung ohne Stufen. Sie kommt mit vergleichsweise wenigen Regeleingriffen aus, was sich auf die Lebensdauer des die Stellgröße liefernden Stellglieds günstig auswirkt, wie etwa einem Lüfter, und sie ist daher auch akustisch weniger auffällig als andere Regelungen.
  • Auch dieses Regelverfahren erweist sich im Vergleich zu anderen Methoden der Extremwert-Regelung als besonders geeignet für den Einsatz bei dem vergleichsweisen trägen Regelsystem wie hier.
  • Eine Abweichung der Lichtintensität von einem vorher ermittelten Maximum kann auf eine Veränderung der Umgebung der Gasentladungslampe hinweisen, insbesondere auf eine Temperaturänderung mit Einfluss auf die Lichtintensität; wie beispielsweise die Temperatur eines Amalgamdepots. Es bietet sich an, die betreffende Temperatur oder einen mit der Temperatur mathematisch eindeutig korrelierten veränderbaren Parameter als Stellgröße der Lichtintensität-Regelung einzusetzen.
  • Im Hinblick darauf zeichnet sich eine besonders bevorzugte Verfahrensvariante dadurch aus, dass eine die Lichtintensität beeinflussende Betriebstemperatur der Gasentladungslampe mittels eines Temperierelements mit regelbarer Temperierleistung veränderbar ist, und dass die Temperierleistung als Stellgröße der Regelung eingesetzt wird. Das Temperieren erfolgt durch Einsatz eines gasförmigen, flüssigen oder festen Temperiermediums. Bei einem festen Temperiermedium ist das Temperierelement beispielsweise als Peltierelement oder als Array mehrere Peltierelemente ausgeführt.
  • Die Betriebstemperatur ist beispielsweise eine charakteristische Temperatur im Bereich der Oberfläche der Gasentladungslampe oder die Temperatur eines Amalgamdepots. Das Temperieren umfasst ein Erhöhen, Verringern und Halten dieser Temperatur mittels des Temperierelements. Dabei hat sich der Einsatz eines Lüfters mit PWM-geregelter Lüftungsleistung als Temperierelement besonders bewährt, wobei die Lüftungsleistung als Stellgröße der Regelung eingesetzt wird.
  • Bei einer Lüfterregelung mittels PWM (Pulsweitenmodulation) verfügt der Lüfter über einen eigenen Steuerungs-Chip. Im Unterschied zur Lüfterregelung mit variabler Spannung, gibt es bei der PWM Lüfterregelung keine Anlaufspannung, unterhalb der sich Lüfterrotor nicht mehr dreht. Dadurch kann die Drehzahl bis auf sehr kleine Werte herabgeregelt werden. Außerdem entfällt bei der PWM-Regelung das Problem der Abwärme durch den variablen Widerstand bei der Spannungsregelung. Die Temperierleistung als Stellgröße der Regelung ist hierbei die Lüftungsleistung, die beispielsweise in Umdrehungen des Lüfterrotors pro Zeiteinheit oder als Massen- oder Volumenstrom eines gasförmigen Temperiermediums angegeben werden kann. Kühlungs- und Erwärmungsvorgänge, wie hier das Temperieren der Gasentladungslampe, bewirken grundsätzlich ein träges Regelsystem, für das sich eine Stetigregelung über PWM als besonders vorteilhaft erwiesen hat.
  • In Abhängigkeit von der ermittelten Abweichung vom Sollwert der Lichtintensität gibt die Steuereinheit zur Einstellung der Betriebstemperatur ein die Kühlleistung regulierendes Steuersignal an das Temperierelement.
  • Die als Regelgröße gemessene Lichtintensität kann sich auf die Emission einer spezifischen Wellenlänge und/oder auf die eines Wellenlängenbereichs beziehen. Besonders bewährt hat sich eine Verfahrensvariante, bei der als Lichtintensität die Intensität einer von der Gasentladungslampe emittierten UV-Strahlung herangezogen wird, die Strahlung der Wellenlänge von 254 nm umfasst.
  • Bei einer besonders bevorzugten Verfahrensvariante wird ein Schwellwert der Lichtintensität vorgegeben, dessen Unterschreitung das Lebensdauerende der Gasentladungslampe markiert, wobei als Sollwert der Lichtintensitätsregelung dieser Schwellwert genutzt wird
  • Die Lichtintensität - und damit auch die spezifische UV-Intensität - nimmt über die Lebensdauer der Gasentladungslampe ab. Ein Abfall auf beispielsweise 50 % bis 90% der Anfangsleistung kann als Ende der Strahlerlebensdauer definiert werden. Mit Hilfe der Erfindung kann eine Gasentladungslampe mit konstanter UV-Leistung entsprechend dem festgelegten Schwellwert über ihre gesamte Lebensdauer betrieben werden. Diese Verfahrensweise wird im Folgenden als "Lebensdauerkompensation" bezeichnet. Dazu wird der Sollwert UVDauer der Lichtintensität auf einen niedrigeren Schwellwert festgelegt, der das Strahlerlebensende markiert, beispielsweise auf einen Wert im Bereich von 50 bis 90 % der anfänglichen, maximalen Lichtintensität.
  • Bei einer ersten Verfahrensvariante der "Lebensdauerkompensation" werden im Standardbetrieb Betriebsparameter, die sich auf die Lichtintensität auswirken, wie etwa Versorgungsspannung, -strom oder -leistung oder die Temperatur eines Amalgamdepots, so eingestellt, dass sich eine gegenüber der maximal möglichen Lichtintensität UVmax verringerte Lichtintensität bei einem niedrigeren, relativen Intensitätsmaximum UVDauer einstellt. Die Lichtintensität wird auf dieses niedriger gelegene Maximum UVDauer geregelt, wobei dafür die oben erläuterte Extremwertregelung gemäß der Erfindung angewandt werden kann. Das absichtlich verringerte, niedrigere, relative Maximum UVDauer der Lichtintensität tritt dabei als Sollwert an die Stelle des absoluten Maximums UVmax der Lichtintensität.
  • Bei einer anderen Verfahrensvariante der "Lebensdauerkompensation" werden die Betriebsparameter, die sich auf die Lichtintensität auswirken, wie etwa Versorgungsspannung, -strom oder -leistung oder die Temperatur eines Amalgamdepots, im Standardbetrieb zwar optimal eingestellt, so dass theoretisch die maximal mögliche Lichtintensität UVmax erzeugt werden könnte. Allerdings wird der Schwellwert der Lichtintensität als Sollwert der Temperatur-Regelung nicht auf die maximale Lichtintensität UVmax eingestellt, sondern beispielsweise auf einen Wert, der um 10 bis 50 Prozentpunkte unterhalb dieses Maximalwerts liegt.
  • Bei beiden Verfahrensvarianten kann der niedrigere Schwellwert dabei anhand der Spezifikation - also ohne individuelle Messung - festgelegt werden, oder er wird als Anteil der anfänglichen Maximum (=100%) der Lichtintensität festgelegt, wie er bei beispielsweise bei der ersten Inbetriebnahme der Gasentladungslampe ermittelt wird. Im letztgenannten Fall werden das anfängliche Maximum und/oder der anfängliche Sollwert in einem Speicher des Lampensystems abgelegt und beim Einschalten der Gasentladungslampe aus dem Speicher ausgelesen.
  • Hinsichtlich des Lampensystems zur Durchführung des Verfahrens wird die oben genannte Aufgabe ausgehend von einem Lampensystem der eingangs genannten Gattung erfindungsgemäß dadurch gelöst, dass ein Lichtsensor zur Ermittlung eines Ist-Wert einer von der Gasentladungslampe emittierten Lichtintensität vorhanden ist, und die Regelung als Lichtintensitätsregelung ausgelegt ist, bei der die emittierte Lichtintensität als Regelgröße eingesetzt wird, wobei an einem Signaleingang der Steuereinheit der Ist-Wert der Lichtintensität als Eingangssignal anliegt.
  • Beim erfindungsgemäßen Lampensystem ist die Lichtintensität der Gasentladungslampe der leistungsbeeinflussende Sollwert der Regelung. Zur Messung der emittierten Lichtintensität, vorzugsweise der UV-Intensität bei einer UV-Strahlung emittierenden Gasentladungslampe, ist ein Sensor vorgesehen. Der Sensor, bevorzugt ein UV-Sensor, ist Bestandteil der Gasentladungslampe oder er wird im Emissionsbereich der Gasentladungslampe positioniert, beispielsweise in einem Sockel oder einem Rahmen oder einem Gehäuse des Lampensystems.
  • Der UV-Sensor ist so ausgelegt, dass er die Emission einer spezifischen Wellenlänge und/oder auf die Emission eines Wellenlängenbereichs erfasst, vorzugsweise von der Gasentladungslampe emittierte UV-Strahlung, die Strahlung der Wellenlänge von 254 nm umfasst.
  • Die Regelung ist für eine Extremwertregelung ausgelegt. Sie ist geeignet, die Lichtintensität auf ein Maximum oder einen vorgegebenen Schwellwert zu regeln. Dadurch bleibt die Lichtintensität, insbesondere die emittierte UV-Leistung, immer im Bereich des Sollwerts, also des Maximums oder des vorgegeben Schwellwerts, und zwar unabhängig von den Umgebungsbedingungen.
  • Das Maximum der Lichtintensität kann allgemein für einen Lampentyp spezifiziert sein, es kann für jede Gasentladungslampe werksseitig individuell bestimmt sein oder es wird beim Einschalten der Gasentladungslampe von der Steuereinheit ausgelesen.
  • Im Hinblick darauf umfasst bei einer bevorzugten Ausführungsform des erfindungsgemäßen Lampensystems die Steuereinheit eine Vorrichtung zur Extremwertregelung, bei der ein Zielwert für eine Stellgröße ermittelt wird, bei der die Lichtintensität ein Maximum oder einen vorgegebenen Schwellwert einnimmt.
  • Die Extremwertregelung ist dabei bevorzugt als Zweipunkt-Regelung oder als Krümmungsbestimmung einer Übertragungsfunktion von Stellgröße und der Lichtintensität ausgeführt. Die diesbezüglichen Erläuterungen zum erfindungsgemäßen Verfahren gelten auch auf das Lampensystem.
  • Als Stellgröße wird vorzugsweise die Temperatur eines Amalgamdepots der Gasentladungslampe verwendet. Dabei ist das Lampensystem vorzugsweise mit einem Temperierelement mit regelbarer Temperierleistung ausgestattet, das geeignet ist, eine die Lichtintensität beeinflussende Betriebstemperatur der Gasentladungslampe zu verändern, wobei die Betriebstemperatur oder ein mit der Betriebstemperatur korrelierter Parameter an einem Signaleingang der Steuereinheit anliegt und als Stellgröße der Lichtintensitätsregelung verwendbar ist.
  • Das Temperierelement arbeitet mit einem gasförmigen, flüssigen oder festen Temperiermedium. Bei einem festen Temperiermedium ist das Temperierelement beispielsweise als Peltierelement oder als Array mehrerer Peltierelemente ausgeführt.
  • Die Betriebstemperatur ist beispielsweise eine charakteristische Temperatur im Bereich der Oberfläche der Gasentladungslampe oder die Temperatur eines Amalgamdepots. Das Temperieren umfasst ein Erhöhen, Verringern und Halten dieser Temperatur mittels des Temperierelements.
  • Besonders bewährt hat sich ein Temperierelement mit regelbarer Kühl- oder Heizleistung, insbesondere ein Lüfter mit PWM-geregelter Lüftungsleistung, der mit der Steuereinheit verbunden ist.
  • Ausführungsbeispiel
  • Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen näher beschrieben. Im Einzelnen zeigt in schematischer Darstellung:
  • Figur 1
    ein Lampensystem zur Erzeugung ultravioletter Strahlung mit einem Niederdruck-Amalgamstrahler,
    Figur 2
    ein Diagramm zur Veranschaulichung der Findung des Maximums der Lichtintensität anhand einer 2-Punkt-Regelung,
    Figur 3
    ein Diagramm zur Veranschaulichung der Einstellung des Maximums der Lichtintensität anhand einer Regelung basierend auf der Krümmungsbestimmung einer Übertragungsfunktion von Stellgröße und der Lichtintensität, und
    Figur 4
    ein Diagramm mit den zeitlichen Verläufen von UV-Intensität und Lüfterleistung beim erfindungsgemäßen Verfahren.
  • Figur 1 zeigt ein Lampensystem für die Erzeugung ultravioletter Strahlung, der insgesamt die Bezugsziffer 10 zugeordnet ist. Das Lampensystem umfasst einen Niederdruck-Amalgamstrahler 11, ein elektronisches Vorschaltgerät 14 für den Niederdruck-Amalgamstrahler 11, einen Radial-Lüfter 15 zur Kühlung des Niederdruck-Amalgamstrahlers 11 und eine Steuereinheit 16 für den Radial-Lüfter 15.
  • Der Niederdruck-Amalgamstrahler 11 wird mit einem im Wesentlichen konstanten Lampenstrom mit einer Nominal-Leistung von 200 W betrieben (bei einem nominalen Lampenstrom von 4,0 A). Er hat eine Leuchtlänge von 50 cm, einen Strahler-Außendurchmesser von 28 mm und eine Leistungsdichte von etwa 4 W/cm.
  • Im Entladungsraum 12, der mit einer Gasmischung aus Argon und Neon (50:50) gefüllt ist, liegen sich zwei wendelförmige Elektroden 18a, 18b gegenüber, zwischen denen Betrieb ein Entladungsbogen gezündet ist. Im Entladungsraum 12 an einem Goldpunkt des Hüllkolbens befindet sich mindestens ein Amalgamdepot 13.
  • Der Hüllkolben des Niederdruck-Amalgamstrahlers 11 ist an beiden Enden mit Quetschungen 17 verschlossen, durch die eine Stromversorgung 18 geführt ist und die in Sockeln 23 gehalten sind. In einem der Sockel 23 ist ein Speicherelement 22 in Form eines EEPROMs angeordnet. Bei einer alternativen Ausführungsform des Lampensystems wird auf den separaten Speicherchip im Sockel der Gasentladungslampe verzichtet und die benötigten Daten in der zentralen Steuereinheit 16 abgespeichert.
  • In der Nähe des einen Hüllkolben-Endes ist ein UV-Sensor 24 angeordnet. Es handelt sich um eine handelsübliche Photodiode aus Siliziumcarbid (SiC), die sich durch Tageslichtunempfindlichkeit und Langzeitstabilität auszeichnet. Sie detektiert UVC-Strahlung einschließlich der Wellenlänge von 254 nm, einer Hauptemissionslinie der Niederdruck-Amalgamstrahlers 11. Der UV-Sensor 24 ist über eine Datenleitung 25 mit der Steuereinheit 16 verbunden. Während des Betriebs ermittelt die Steuereinheit 16 die von dem UV-Sensor 24 gemessene UVC-Lichtintensität als Ist-Wert UVIst. der Lichtintensitäts-Regelung.
  • Der Niederdruck-Amalgamstrahler 11 wird an dem elektronischen Vorschaltgerät 14 betrieben und mit diesem über die Anschlussleitungen 20 verbunden. Das elektronische Vorschaltgerät 14 weist darüber hinaus einen Netzspannungsanschluss 19 auf.
  • Der Radiallüfter 15 verfügt über ein PWM-Signal (pulse width modulation) zur Drehzahlregelung des Rotors. Die Drehzahl bestimmt dessen Kühlleistung, die durch einen Kühlluft-Volumenstrom zwischen 0 und 200 m3/h einstellbar ist.
  • Die Lichtintensität dient als variabler Sollwert und die Kühlleistung des Radiallüfters 15 bildet den Stellwert der Lampenregelung. Dabei wird die Lichtintensität auf ein Maximum oder auf einen vorgegebenen Schwellwert, der niedriger ist als der eigentliche Maximalwert der Emission, geregelt. Dadurch bleibt die Lichtintensität stets im Bereich des Sollwerts, also des Maximums oder des vorgegeben Schwellwerts, und zwar unabhängig von den Umgebungsbedingungen. Nachfolgend werden Betriebs- und Regelverfahren anhand dreier Methoden näher erläutert.
  • Das Diagramm von Figur 2 veranschaulicht eine Prozedur zur Ermittlung des Sollwerts der Lichtintensität am Beispiel einer Zwei-Punkt-Regelung. Es zeigt zeitliche Verläufe von gemessener Lichtintensität (Kurve A), Kühlleistung (Kurve B; gemessen als PWM) und Temperatur des Amalgamdepots 13 (Kurve C; gemessen mittels eines IR-Sensors). Auf der linken Ordinate ist die vom UV-Sensor gemessene Lichtintensität UV in mW/cm2 aufgetragen, und auf der rechten Ordinate ist der Kühlluft-Volumenstrom PWM in m3/h aufgetragen. Bei dem in das Diagramm außerdem eingetragenen Temperaturverlauf (Kurve C) sind die Temperaturen nicht eigens skalierte Relativwerte. Die Einheit der Zeitachse t sind Sekunden (s).
  • Der Lüfter 15 (Kurve B) bleibt zunächst ausgeschaltet. Die UV-Lichtintensität (Kurve A) steigt rasch an, erreicht ein Maximum und fällt danach ab. Der Abfall der UV-Lichtintensität kann auf eine zu hohe Temperatur des Hüllkolbens der Lampe und des Amalgamdepots 13 (Kurve C) zurückgeführt werden. Danach wird der Lüfter 15 so lange mit maximaler Drehzahl (Lüftermax) betrieben, bis der Lampenkolben (genauer: die Temperatur des Amalgamdepots 13) unterkühlt ist und deswegen die UV-Lichtintensität erneut abfällt. Die Dauer dieses Zeitabschnitts beträgt tmax.
  • Danach wird der Lüfter 15 für eine Dauer tmin bei geringer Drehzahl (Lüftermin) betrieben (so dass er sich gerade noch dreht) bis die Gasentladungslampe erneut überhitzt und die UV-Lichtintensität erneut abfällt.
  • Ergebnis dieser Startphase ist ein Anfangswert für die Standard-Drehzahl des Lüfters 15, wie sie im weiteren Betrieb der Gasentladungslampe als Maß für die Kühlleistung verwendet wird. Diese Standard-Drehzahl kann wie folgt berechnet werden: Lüfter Standard = Lüfter max t max + Lüfter min t min / t min + t max
    Figure imgb0001
  • Die sich bei der Kühlleistung LüfterStandard einstellende UV-Lichtintensität stellt den Sollwert UVSoll für die Lampenregelung dar; sie repräsentiert gleichzeitig den Maximalwert. Sollte im Betrieb die UV-Lichtintensität unter eine kritische Schwelle fallen (beispielsweise 98% des Maximalwerts), wird der Lüfter auf Minimalbetrieb geschaltet (Lüftermin) und während einer Reaktionsdauer tcrit geprüft, ob die UV-Lichtintensität wieder ansteigt. Gegebenenfalls wird der Wert für LüfterStandard verringert. Andernfalls wird der Lüfter im Maximum betrieben Lüftermax und die Standardprüfrichtung umgestellt (von Lüftermin auf Lüftermax).
  • Die Zeitkonstante tcrit, kann durch einen einfachen Test mit einer Stufenfunktion bestimmt werden, sogar automatisch aus der Reaktionszeit der UV-Lichtintensität nach dem ersten Einschalten des Lüfters.
  • Eine andere Prozedur zur Ermittlung des Sollwerts der Lichtintensität und des Betriebs des Lampensystems veranschaulicht Figur 3 am Beispiel einer Krümmungsbestimmung bei einer Übertragungsfunktion von Stellgröße und der Lichtintensität. Das Diagramm von Figur 3a skizziert die Abhängigkeit der UV-Lichtintensität UV von der Kühlleistung PWM (beispielsweise der Lüfter-Drehzahl). Die UV-Lichtintensität zeigt ein ausgeprägtes Maximum bei einer optimalen Kühlleistung. Da die Übertragungsfunktion (Fig. 3a) nicht monoton ist, ist es nicht möglich, bei Änderung der Lichtintensität auf die richtige Regelrichtung zu schließen.
  • Im Diagramm von Figur 3b ist die mathematische Ableitung der Funktion von Figur 3a schematisch dargestellt. Die erste Ableitung ΔUV/ΔPWM ist nun auch monoton und hat bei der optimalen Kühlleistung (= max. Lichtintensität) einen Null-Durchgang. Die Vorgabe zur Änderung der Stellgröße ΔPWM ergibt sich nun direkt aus dem negativen Anstieg dieser Funktion (~-dUV2/d2PWM = 2. Ableitung der Übertragungsfunktion = Krümmung).
  • Als technisch sinnvoll hat sich folgende Abwandlung erwiesen, wobei die Einstellung des Lüfters nach folgendem Schema erfolgt: Δ PWM = Const . sign Δ PWM alt sign d 2 UV abs Δ UV
    Figure imgb0002
  • Die Richtung der Stellgrößenänderung zwischen Zeitschritt n und nächsten bei n+1 ergibt sich aus dem Vorzeichen der 2. Ableitung. Diese setzt sich aus den drei zuletzt gemessenen UV-Werten zusammen (d2UV = UVn-2*UVn-1+UVn-2) und den beiden zuletzt eingestellten Lüftereinstellungen (ΔPWMalt = PWMn-PWMn-1). Die Höhe der Änderung zum nächsten Zeitschritt ΔPWM = PWMn+1-PWMn wird allerdings mit der betragsmäßigen Veränderung der UV-Intensität ΔUV und einem Parameter Const. skaliert, also: Const * abs (UVn-1+UVn-2).
  • Figur 4 demonstriert anhand der zeitlichen Verläufe von UV-Lichtintensität (Kurve D) und dazugehöriger Kühlleistung (Lüfterdrehzahl beziehungsweise Kühlluft-Volumenstrom; Kurve E). Auf der linken Ordinate ist die Lichtintensität UVrelative (in %) als Relativwert bezogen auf die maximale Lichtintensität aufgetragen und auf der rechten Ordinate der Kühlluft-Volumenstrom PWM in m3/h. Diese Stetigregelung mittels PWM-geregeltem Radiallüfters 15 erzeugt trotz der Trägheit des Regelsystems, die sich durch das Temperieren der Gasentladungslampe als Stellgröße ergibt, eine weitgehend konstante UV-Lichtintensität, wie Kurve D zeigt.
  • Unter ungünstigen Bedingungen kann diese UV-Regelung über die Krümmungsbestimmung jedoch instabil werden und der Lüfter in die falsche Richtung verändert werden. Dieser Fall wird regeltechnisch abgefangen, sobald im Betrieb die UV-Lichtintensität unter eine kritische Schwelle fällt (beispielsweise 95% des Maximalwerts; UV< 95% von UVmax). Die Lüfterdrehzahl wird dann gezielt gestört, das heißt die Drehzahl wird drastisch verändert; beispielsweise bei einem bisherigen PWM-Wert von 50 % oder mehr auf Null, oder bei einem bisherigen PWM-Wert von weniger als 50 % auf maximalen PWM-Wert (100 %), um ein deutliches Regelsignal zu erzeugen. Diese Störung wird anschließend für x Zeitschritte nicht zugelassen, um der Regelung Zeit zum Einstellen zu lassen.
  • Eine weitere Methode zum Betrieb und für die Regelung des Lampensystems beruht auf einer Absolut-Messung der UV-Lichtintensität auf einen vorgegebenen Wert (und nicht auf Regelung auf das relative Maximum der UV-Lichtintensität, wie bei den beiden obigen Prozeduren beschrieben).
  • Es ist bekannt, dass über die Strahlerlebensdauer die UV-Leistung auf beispielsweise 90% der Anfangsleistung absinkt. Mit Hilfe der Absolut-Regelung kann eine Gasentladungslampe mit konstanter UV-Leistung über ihre gesamte Lebensdauer betrieben werden. Für diese "Lebensdauerkompensation" wird beim erstmaligen Einschalten (@0h) der Gasentladungslampe die anfängliche Höhe der UV-Lichtintensität bestimmt (UVmax @0h=100%), und daraus die über die Lebensdauer konstant zu haltende UV-Lichtintensität UVDauer = 90% von UVmax@0h bestimmt und entweder im Speicherelement 22 des Lampensystems oder in der Lampensteuerung gespeichert.
  • Beim nächsten Einschalten der Gasentladungslampe wird bei einer ersten Verfahrensvariante die UV-Lichtintensität zunächst ins Maximum geführt und danach der Lampenstrom so lange reduziert bis der vorgegebene Sollwert UVDauer =90 % von UVmax@0h erreicht ist. Die Regelung führt die Lüftereinstellung immer wieder ins relative Maximum, um diesen Sollwert zu halten. Diese Verfahrensvariante mit einem auf UVDauer angepassten Betriebsparameter (Lampenstrom) ist in Figur 3a durch den gestrichelten Kurvenverlauf V1 mit dem relativen Maximum UVDauer der Lichtintensität angedeutet.
  • Bei einer anderen Verfahrensvariante vergleicht die Steuereinheit 16 den vom UV-Lichtsensor 24 übermittelten Istwert der UV-Lichtintensität mit dem Sollwert UVDau-er, ermittelt die Abweichung des Ist-Wertes vom Sollwert und gibt ein Steuersignal aus, das die Kühlleistung des Radial-Lüfters 15 regelt. Die Verringerung der Lichtintensität auf UVDauer erfolgt hierbei durch eine absichtlich nicht optimierte Lüfterleistung, eine Anpassung der Betriebsparameter ist dafür nicht erforderlich. Im bevorzugten Ausführungsbeispiel ist die Lüfterleistung so eingestellt, dass sich am Amalgamdepot 13 eine Temperatur einstellt, die niedriger ist als die zum Erreichen des absoluten Maximums erforderliche Temperatur. Diese Verfahrensvariante ohne Anpassung der Betriebsparameter ist in Figur 3a durch den Regelpunkt V2 angedeutet.
  • Es kann selbstverständlich auch sinnvoll sein, die beiden beschriebenen Verfahrensvarianten für die "Lebensdauerkompensation" miteinander zu kombinieren.

Claims (12)

  1. Verfahren zum Betrieb eines Lampensystems (10), mit einer Gasentladungslampe (11), einem elektronischen Vorschaltgerät (14), einem Temperierelement (15) mit regelbarer Temperierleistung und mit einer Steuereinheit (16) zur Regelung einer leistungsbeeinflussenden Regelgröße des Lampensystems (10), dadurch gekennzeichnet, dass eine Lichtintensitätsregelung vorgesehen ist, umfassend die folgenden Schritte:
    (i) Messen eines Ist-Wert einer von der Gasentladungslampe (11) emittierten Lichtintensität mittels eines Lichtsensors (24); und
    (ii) Einsetzen der emittierten Lichtintensität als Regelgröße, dadurch gekennzeichnet, dass mittels Extremwertregelung ein Zielwert für eine Stellgröße ermittelt wird, bei dem die Lichtintensität ein Maximum (UVmax) oder einen vorgegebenen Schwellwert (UVDauer) einnimmt, wobei eine die Lichtintensität beeinflussende Betriebstemperatur der Gasentladungslampe mittels des Temperierelements (15) veränderbar ist, und die Temperierleistung als die Stellgröße der Regelung eingesetzt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass eine Gasentladungslampe (11) eingesetzt wird, die UV-Strahlung emittiert.
  3. Verfahren nach einem der vorhergehenden Ansprüche , dadurch gekennzeichnet, dass die Extremwertregelung als Zweipunkt-Regelung ausgeführt ist, bei der die Stellgröße während einer Startphase auf mindestens zwei Ausgangswerte eingestellt wird, von denen der eine eine Temperaturerhöhung bewirkt, und von denen der andere eine Temperaturerniedrigung des Gasentladungslampe (11) bewirkt, wobei sowohl in Folge der Temperaturerhöhung als auch in Folge der Temperaturerniedrigung ein Maximum der Lichtintensität erreicht und überschritten wird, und dass als Zielwert der Stellgröße ein Wert zwischen dem einen und dem anderen Ausgangswert eingestellt wird.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Extremwertregelung eine Krümmungsbestimmung einer Übertragungsfunktion von Stellgröße und der Lichtintensität umfasst, wobei der Zielwert der Stellgröße anhand des Maximums der Lichtintensität ermittelt wird.
  5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine die Lichtintensität beeinflussende Betriebstemperatur der Gasentladungslampe (11) mittels des Temperierelements (15) mit regelbarer Temperierleistung veränderbar ist, und dass die Temperierleistung als Stellgröße der Regelung eingesetzt wird.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass als Temperierelement (15) ein Lüfter mit PWM-geregelter Lüftungsleistung eingesetzt wird, und dass die Lüftungsleistung als Stellgröße der Regelung eingesetzt wird.
  7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Lichtintensität die Intensität einer von der Gasentladungslampe (11) emittierten UV-Strahlung herangezogen wird, die Strahlung der Wellenlänge von 254 nm umfasst.
  8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Schwellwert der Lichtintensität (UVDauer) vorgegeben ist, dessen Unterschreitung das Lebensdauerende der Gasentladungslampe (11) markiert, und dass als Sollwert der Lichtintensitätsregelung dieser Schwellwert genutzt wird.
  9. Lampensystem zur Durchführung des Verfahrens nach einem der vorhergehenden Ansprüche 1 bis 8, mit einer Gasentladungslampe (11), einem elektronischen Vorschaltgerät (14) und mit einer Steuereinheit (16) zur Regelung einer leistungsbeeinflussenden Regelgröße des Lampensystems (10), dadurch gekennzeichnet, dass ein Lichtsensor (24) zur Ermittlung eines Ist-Wertes einer von der Gasentladungslampe (11) emittierten Lichtintensität vorhanden ist, und die Regelung als Lichtintensitätsregelung ausgelegt ist, bei der die emittierte Lichtintensität als Regelgröße eingesetzt wird, wobei an einem Signaleingang der Steuereinheit (16) der Ist-Wert der emittierten Lichtintensität als Eingangssignal anliegt, wobei die Steuereinheit (16) eine Vorrichtung zur Extremwertregelung umfasst, bei der ein Zielwert für eine Stellgröße ermittelt wird, bei dem die Lichtintensität ein Maximum (UVmax) oder einen vorgegebenen Schwellwert (UVDauer) einnimmt, wobei ein Temperierelement (15) mit regelbarer Temperierleistung vorgesehen ist, das geeignet ist, eine die Lichtintensität beeinflussende Betriebstemperatur der Gasentladungslampe (11) zu verändern.
  10. Lampensystem nach Anspruch 9, dadurch gekennzeichnet, dass die Extremwertregelung als Zweipunkt-Regelung oder als Krümmungsbestimmung einer Übertragungsfunktion von Stellgröße und der Lichtintensität ausgeführt ist.
  11. Lampensystem nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass die Gasentladungslampe (11) eine UV-Strahlung emittierende Gasentladungslampe ist.
  12. Lampensystem nach Anspruch 11, dadurch gekennzeichnet, dass ein Temperierelement (15) mit regelbarer Kühl- oder Heizleistung, insbesondere ein Lüfter mit PWM-geregelter Lüftungsleistung mit der Steuereinheit (16) verbunden ist.
EP17784957.7A 2016-10-28 2017-10-18 Lampensystem mit einer gasentladungslampe und dafür angepasstes betriebsverfahren Active EP3532434B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016120672.5A DE102016120672B4 (de) 2016-10-28 2016-10-28 Lampensystem mit einer Gasentladungslampe und dafür angepasstes Betriebsverfahren
PCT/EP2017/076529 WO2018077678A1 (de) 2016-10-28 2017-10-18 Lampensystem mit einer gasentladungslampe und dafür angepasstes betriebsverfahren

Publications (2)

Publication Number Publication Date
EP3532434A1 EP3532434A1 (de) 2019-09-04
EP3532434B1 true EP3532434B1 (de) 2022-06-15

Family

ID=60120063

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17784957.7A Active EP3532434B1 (de) 2016-10-28 2017-10-18 Lampensystem mit einer gasentladungslampe und dafür angepasstes betriebsverfahren

Country Status (7)

Country Link
US (1) US10652975B2 (de)
EP (1) EP3532434B1 (de)
JP (1) JP6828153B2 (de)
KR (1) KR102241690B1 (de)
CN (1) CN109923073B (de)
DE (1) DE102016120672B4 (de)
WO (1) WO2018077678A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113711692B (zh) * 2019-04-26 2024-04-05 株式会社岛津制作所 色谱仪用检测器
DE102019135736A1 (de) * 2019-12-23 2021-06-24 Prominent Gmbh Verfahren zum Überwachen des Dampfdruckes in einer Metalldampflampe

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4533853A (en) * 1983-03-25 1985-08-06 Xerox Corporation Mechanism and method for controlling the temperature and output of a fluorescent lamp
US4529912A (en) 1983-03-25 1985-07-16 Xerox Corporation Mechanism and method for controlling the temperature and light output of a fluorescent lamp
DE3925151A1 (de) * 1989-07-28 1991-02-07 Zumtobel Ag Verfahren zur anpassung der lichtstaerke des summenlichts an das aussenlicht
DE3929029A1 (de) * 1989-09-01 1991-03-07 Bosch Gmbh Robert Schaltungsanordnung zum betrieb einer gasentladungslampe
GB2316246A (en) 1996-08-05 1998-02-18 Bf Goodrich Avionics Systemc I Intensity control for fluorescent lamps
DE19919169A1 (de) * 1999-04-28 2000-11-02 Philips Corp Intellectual Pty Vorrichtung zur Desinfektion von Wasser mit einer UV-C-Gasentladungslampe
DE10113903A1 (de) * 2001-03-21 2002-09-26 Wedeco Ag Vorschaltgerät für UV-Strahler sowie Verfahren und Vorrichtung zur Desinfektion von Wässern
DE10129755A1 (de) 2001-06-20 2003-01-02 Wilken Wilhelm Betriebsgerät für Leuchtstoffröhren mit eingebauter Kühlstelle
ATE433332T1 (de) 2004-04-20 2009-06-15 Guido Kohler Sterilisationsvorrichtung zur sterilisation von fluiden
CN101253600B (zh) * 2005-08-31 2013-06-19 特洛伊科技有限公司 紫外射灯及放射源模组以及含有该紫外射灯的处理系统
US7601960B2 (en) 2006-12-29 2009-10-13 General Electric Company Control for UV water disinfection
DE102008044294A1 (de) 2008-12-02 2010-06-10 Brita Gmbh Quecksilberdampflampe, Verfahren zum Entkeimen von Flüssigkeiten und Flüssigkeitsentkeimungsvorrichtung
DE102008060778A1 (de) 2008-12-05 2010-06-10 Osram Gesellschaft mit beschränkter Haftung Betriebsgerät und Verfahren zum Betreiben mindestens einer Hg-Niederdruckentladungslampe
DE102010014040B4 (de) 2010-04-06 2012-04-12 Heraeus Noblelight Gmbh Verfahren zum Betreiben einer Amalgamlampe
DE102012006860A1 (de) * 2012-04-03 2013-10-10 Tridonic Gmbh & Co. Kg Verfahren und Vorrichtung zum Regeln einer Beleuchtungsstärke
WO2013177027A1 (en) * 2012-05-21 2013-11-28 Hayward Industries, Inc. Dynamic ultraviolet lamp ballast system
DE102012109519B4 (de) 2012-10-08 2017-12-28 Heraeus Noblelight Gmbh Verfahren zum Betreiben einer Lampeneinheit zur Erzeugung ultravioletter Strahlung sowie geeignete Lampeneinheit dafür

Also Published As

Publication number Publication date
KR20190051047A (ko) 2019-05-14
US20190254151A1 (en) 2019-08-15
US10652975B2 (en) 2020-05-12
KR102241690B1 (ko) 2021-04-19
CN109923073B (zh) 2022-04-08
WO2018077678A1 (de) 2018-05-03
EP3532434A1 (de) 2019-09-04
DE102016120672B4 (de) 2018-07-19
CN109923073A (zh) 2019-06-21
JP2020501297A (ja) 2020-01-16
JP6828153B2 (ja) 2021-02-10
DE102016120672A1 (de) 2018-05-03

Similar Documents

Publication Publication Date Title
DE4426664B4 (de) Vorrichtung zum Starten und Betreiben einer Hochdruck-Entladungs-Lampe
EP0422255B1 (de) Elektronisches Vorschaltgerät
EP3532434B1 (de) Lampensystem mit einer gasentladungslampe und dafür angepasstes betriebsverfahren
WO2007045599A1 (de) Verfahren zum betreiben einer gasentladungslampe
EP2904880B1 (de) Verfahren zum betreiben einer lampeneinheit zur erzeugung ultravioletter strahlung sowie geeignete lampeneinheit dafür
DE102006033672A1 (de) Beleuchtungssystem mit einer Entladungslampe und einem elektronischen Vorschaltgerät und Verfahren zum Betreiben eines Beleuchtungssystems
DE102010014040B4 (de) Verfahren zum Betreiben einer Amalgamlampe
EP1045619A1 (de) Abgleichsverfahren von Betriebsparameter eines Lampen-Vorschaltsgeräts
DE2827773A1 (de) Vorrichtung zum entkeimen von fluessigkeiten
EP1900262B1 (de) Vorrichtung und verfahren zum betreiben einer hochdruckentladungslampe
EP1400156B1 (de) Betriebsgerät für leuchtstoffröhren mit eingebauter kühlstelle
EP2452543B1 (de) Verfahren zum betrieb von gasentladungslampen bei niedrigen aussentemperaturen und dafür ausgelegtes betriebsgerät
DE10319950A1 (de) Betriebsgerät und Verfahren zum Betreiben von Gasentladungslampen
EP2617267B1 (de) Verfahren zum betreiben einer gasentladungslampe eines kraftfahrzeugscheinwerfers
EP2415068B1 (de) Dimmbare amalgamlampe und verfahren zum betreiben der amalgamlampe bei dimmung
EP1691587B1 (de) Verfahren und Vorrichtung zum Regeln und Steuern einer Wendelheizung für Lampen
DE102015219760B4 (de) Projektionsvorrichtung zum Projizieren mindestens eines Bildes auf eine Projektionsfläche und Verfahren dazu
DE102006034370B4 (de) Steuerverfahren für eine Entladungslampe
EP0315583A2 (de) Verfahren zur Entkeimung von Flüssigkeiten und/oder Gasen, sowie Vorrichtung dafür
EP1732363A2 (de) Beleuchtungssystem und verfahren zum Betreiben eines derartigen Beleuchtungssystems
WO2009153030A1 (de) Verfahren zum betreiben einer quecksilberniederdrucklampe, schnellstart-quecksilberniederdrucklampe sowie verwendung derselben
EP1670294A2 (de) Betriebsgerät und Verfahren zum Betreiben von Gasentladungslampen
DE102005026718A1 (de) Beleuchtungssystem und Verfahren zum Betreiben eines derartigen Beleuchtungssystems
DE102008042127A1 (de) Verfahren für die Steuerung einer Gasentladungslampe und Steuereinrichtung
EP2119324A1 (de) Verfahren zum bestimmen eines crestfaktors eines lampenstroms einer elektrischen lampe

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190328

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20201215

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220215

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017013334

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1498308

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220715

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220915

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220916

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221017

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017013334

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

26N No opposition filed

Effective date: 20230316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221018

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221018

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231019

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1498308

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221018

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231020

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502017013334

Country of ref document: DE

Representative=s name: MEWBURN ELLIS LLP, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221018

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231026

Year of fee payment: 7

Ref country code: DE

Payment date: 20231020

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20171018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615