EP3512339A1 - Mélanges pesticides - Google Patents
Mélanges pesticidesInfo
- Publication number
- EP3512339A1 EP3512339A1 EP17761102.7A EP17761102A EP3512339A1 EP 3512339 A1 EP3512339 A1 EP 3512339A1 EP 17761102 A EP17761102 A EP 17761102A EP 3512339 A1 EP3512339 A1 EP 3512339A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- compound
- mixture
- pyrazol
- spp
- plants
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N43/00—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
- A01N43/713—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with four or more nitrogen atoms as the only ring hetero atoms
Definitions
- the present invention relates to fungicidal mixtures comprising
- compound II is selected from the group consisting of 4-[1-[2-[3-(difluoromethyl)-5-methyl-pyrazol-1-yl]acetyl]-4-piperidyl]-N-tetralin-1-yl-pyridine-2- carboxamide; 4-[1-[2-[3,5-bis(difluoromethyl)pyrazol-1 -yl]acetyl]-4-piperidyl]-N-tetralin-1-yl- pyridine-2-carboxamide; 4-[1 -[2-[3-(difluoromethyl)-5-(trifluoromethyl)pyrazol-1-yl]acetyl]-4- piperidyl]-N-tetralin-1 -yl-pyridine-2-carboxamide; 4-[1-[2-[5-cyclopropyl-3- (difluoromethyl)pyrazol-1 -yl]acetyl]-4-piperidyl]-N-tetralin-1
- the invention relates to a method for controlling pests, this refers to includes animal pests and harmful fungi, using the inventive mixtures and the use of compound I and compound II for preparing such mixtures, and also compositions comprising such mixtures.
- the invention relates to a method for controlling harmful fungi, using the inventive mixtures of compound I, II and to the use of compound I and one compound II as defined above for preparing such mixtures, and also compositions comprising such mixtures.
- the present invention also comprises a method for protection of plant propagation material (preferably seed) from harmful fungi or comprising contacting the plant propagation materials (preferably seeds) with an inventive mixture in pesticidally effective amounts
- plant propagation material is to be understood to denote all the generative parts of the plant such as seeds and vegetative plant material such as cuttings and tubers (e. g. potatoes), which can be used for the multiplication of the plant. This includes seeds, roots, fruits, tubers, bulbs, rhizomes, shoots, sprouts and other parts of plants, including seedlings and young plants, which are to be transplanted after germination or after emergence from soil.
- the term propagation material denotes seeds.
- the present invention also comprises a method for protection of plant propagation material (preferably seed) from harmful fungi comprising contacting the plant propagation materials (preferably seeds) with the inventive mixture in pesticidally effective amounts.
- the invention relates to a method for controlling harmful fungi using the inventive mixtures and to the use of the compounds present in the inventive mixtures for preparing such mixtures, and also to compositions comprising such mixtures.
- the present invention further relates to plant-protecting active ingredient mixtures having syner- gistically enhanced action of improving the health of plants and to a method of applying such inventive mixtures to the plants.
- Compounds I and analogues as well as their pesticidal action and methods for producing them are known e.g. from WO 2013 162072.
- Compounds II as well as their pesticidal action and methods for producing them are generally known, for example compound II from EP 2865267A, WO2015/65922A and EP2865265A.
- pests embrace harmful fungi and animal pests.
- Another problem encountered concerns the need to have available pest control agents which are effective against a broad spectrum of harmful fungi and harmful animal pests.
- compositions that improve plants a process which is commonly and hereinafter referred to as "plant health”.
- plant health comprises various sorts of improvements of plants that are not connected to the control of pests.
- advantageous properties are improved crop characteristics including: emergence, crop yields, protein content, oil content, starch content, more developed root system (improved root growth), improved stress tolerance (e.g.
- tillering increase, increase in plant height, bigger leaf blade, less dead basal leaves, stronger tillers, greener leaf color, pigment content, photosynthetic activity, less input needed (such as fertilizers or water), less seeds needed, more productive tillers, earlier flowering, early grain maturity, less plant verse (lodging), increased shoot growth, enhanced plant vigor, increased plant stand and early and better germination; or any other advantages familiar to a person skilled in the art.
- compound II is selected from the group consisting of 4-[1-[2-[3-(difluoromethyl)-5-methyl-pyrazol-1-yl]acetyl]-4-piperidyl]-N-tetralin-1 -yl-pyridine-2- carboxamide; 4-[1-[2-[3,5-bis(difluoromethyl)pyrazol-1 -yl]acetyl]-4-piperidyl]-N-tetralin-1-yl- pyridine-2-carboxamide; 4-[1 -[2-[3-(difluoromethyl)-5-(trifluoromethyl)pyrazol-1-yl]acetyl]-4- piperidyl]-N-tetralin-1 -yl-pyridine-2-carboxamide; 4-[1-[2-[5-cyclopropyl-3- (difluoromethyl)pyrazol-1 -yl]acetyl]-4-piperidamide;
- the mixtures as defined in the outset show markedly enhanced action against pests compared to the control rates that are possible with the individual compounds and/or is suitable for improving the health of plants when applied to plants, parts of plants, seeds, or at their locus of growth.
- the ratio by weight of compound I and compound II in binary mixtures is from 10000:1 to 1 :10000, from 500:1 to 1 :500, preferably from 100:1 to 1 :100 more preferably from 50:1 to 1 :50, most preferably from 20:1 to 1 :20, including also ratios from 10:1 to 1 :10, 1 :5 to 5:1 , or 1 :1 .
- compound II present in the inventive mixtures is N'-(2,5-dimethyl-4-phenoxy-phenyl)-N-ethyl-N-methyl-formamidine.
- compound II present in the inventive mixtures is N'-[4-(4,5-dichlorothiazol-2-yl)oxy-2,5-dimethyl-phenyl]-N-ethyl-N-methyl- formamidine.
- the inventive mixtures can further contain one or more insecticides, fungicides, herbicides.
- compositions e.g. solutions, emulsions, suspensions, dusts, powders, pastes, granules, pressings, capsules, and mixtures thereof.
- composition types are suspensions (e.g. SC, OD, FS), emulsifiable concentrates (e.g. EC), emulsions (e.g. EW, EO, ES, ME), capsules (e.g. CS, ZC), pastes, pastilles, wetable powders or dusts (e.g. WP, SP, WS, DP, DS), pressings (e.g. BR, TB, DT), granules (e.g.
- compositions types are defined in the "Catalogue of pesticide formulation types and international coding system", Technical Monograph No. 2, 6 th Ed. May 2008, CropLife International.
- compositions are prepared in a known manner, such as described by Mollet and
- auxiliaries are solvents, liquid carriers, solid carriers or fillers, surfactants, disper- sants, emulsifiers, wetters, adjuvants, solubilizers, penetration enhancers, protective colloids, adhesion agents, thickeners, humectants, repellents, attractants, feeding stimulants, compatibil- izers, bactericides, anti-freezing agents, anti-foaming agents, colorants, tackifiers and binders.
- Suitable solvents and liquid carriers are water and organic solvents, such as mineral oil fractions of medium to high boiling point, e.g. kerosene, diesel oil; oils of vegetable or animal origin; aliphatic, cyclic and aromatic hydrocarbons, e. g. toluene, paraffin, tetrahydronaphthalene, alkylated naphthalenes; alcohols, e.g. ethanol, propanol, butanol, benzylalcohol, cyclohexanol; glycols; DMSO; ketones, e.g. cyclohexanone; esters, e.g.
- mineral oil fractions of medium to high boiling point e.g. kerosene, diesel oil
- oils of vegetable or animal origin oils of vegetable or animal origin
- aliphatic, cyclic and aromatic hydrocarbons e. g. toluene, paraffin, tetrahydronaphthalene, alkylated
- lactates carbonates, fatty acid esters, gamma-butyrolactone; fatty acids; phosphonates; amines; amides, e.g. N-methylpyrrolidone, fatty acid dimethylamides; and mixtures thereof.
- Suitable solid carriers or fillers are mineral earths, e.g. silicates, silica gels, talc, kaolins, limestone, lime, chalk, clays, dolomite, diatomaceous earth, bentonite, calcium sulfate, magnesium sulfate, magnesium oxide; polysaccharides, e.g. cellulose, starch; fertilizers, e.g. ammonium sulfate, ammonium phosphate, ammonium nitrate, ureas; products ofvegetable origin, e.g. cereal meal, tree bark meal, wood meal, nutshell meal, and mixtures thereof.
- Suitable surfactants are surface-active compounds, such as anionic, cationic, nonionic and amphoteric surfactants, block polymers, polyelectrolytes, and mixtures thereof. Such surfactants can be used as emusifier, dispersant, solubilizer, wetter, penetration enhancer, protective colloid, or adjuvant. Examples of surfactants are listed in McCutcheon's, Vol.1 : Emulsifiers & De- tergents, McCutcheon's Directories, Glen Rock, USA, 2008 (International Ed. or North American Ed.).
- Suitable anionic surfactants are alkali, alkaline earth or ammonium salts of sulfonates, sulfates, phosphates, carboxylates, and mixtures thereof.
- sulfonates are alkylaryl- sulfonates, diphenylsulfonates, alpha-olefin sulfonates, lignine sulfonates, sulfonates of fatty acids and oils, sulfonates of ethoxylated alkylphenols, sulfonates of alkoxylated arylphenols, sulfonates of condensed naphthalenes, sulfonates of dodecyl- and tridecylbenzenes, sulfonates of naphthalenes and alkylnaphthalenes, sulfosuccinates or sulfosuccinamates.
- sulfates are sulfates of fatty acids and oils, of ethoxylated alkylphenols, of alcohols, of ethoxylated alcohols, or of fatty acid esters.
- phosphates are phosphate esters. Exam- pies of carboxylates are alkyl carboxylates, and carboxylated alcohol or alkylphenol ethoxylates.
- Suitable nonionic surfactants are alkoxylates, N-subsituted fatty acid amides, amine oxides, esters, sugar-based surfactants, polymeric surfactants, and mixtures thereof.
- alkoxylates are compounds such as alcohols, alkylphenols, amines, amides, arylphenols, fatty acids or fatty acid esters which have been alkoxylated with 1 to 50 equivalents.
- Ethylene oxide and/or propylene oxide may be employed for the alkoxylation, preferably ethylene oxide.
- N-subsititued fatty acid amides are fatty acid glucamides or fatty acid alkanolamides.
- esters are fatty acid esters, glycerol esters or monoglycerides.
- sugar- based surfactants are sorbitans, ethoxylated sorbitans, sucrose and glucose esters or al- kylpolyglucosides.
- polymeric surfactants are home- or copolymers of vinylpyrroli- done, vinylalcohols, or vinylacetate.
- Suitable cationic surfactants are quaternary surfactants, for example quaternary ammonium compounds with one or two hydrophobic groups, or salts of long-chain primary amines.
- Suitable amphoteric surfactants are alkylbetains and imidazolines.
- Suitable block polymers are block polymers of the A-B or A-B-A type comprising blocks of polyethylene oxide and polypropylene oxide, or of the A-B-C type comprising alkanol, polyethylene oxide and polypropylene oxide.
- Suitable polyelectrolytes are polyacids or polybases. Examples of polyacids are alkali salts of polyacrylic acid or polyacid comb polymers. Examples of polybases are polyvinylamines or pol- yethyleneamines.
- Suitable adjuvants are compounds, which have a neglectable or even no pesticidal activity themselves, and which improve the biological performance of the inventive mixtures on the target.
- examples are surfactants, mineral or vegeTable Aoils, and other auxilaries. Further examples are listed by Knowles, Adjuvants and additives, Agrow Reports DS256, T&F Informa UK, 2006, chapter 5.
- Suitable thickeners are polysaccharides (e.g. xanthan gum, carboxymethylcellulose), anor- ganic clays (organically modified or unmodified), polycarboxylates, and silicates.
- Suitable bactericides are bronopol and isothiazolinone derivatives such as alkyliso- thiazolinones and benzisothiazolinones.
- Suitable anti-freezing agents are ethylene glycol, propylene glycol, urea and glycerin.
- Suitable anti-foaming agents are silicones, long chain alcohols, and salts of fatty acids.
- Suitable colorants are pigments of low water solubility and water- soluble dyes.
- examples are inorganic colorants (e.g. iron oxide, titan oxide, iron hexacyanofer- rate) and organic colorants (e.g. alizarin-, azo- and phthalocyanine colorants).
- Suitable tackifiers or binders are polyvinylpyrrolidone, polyvinylacetates, polyvinyl alcohols, polyacrylates, biological or synthetic waxes, and cellulose ethers.
- composition types and their preparation are:
- 10-60 wt% of an inventive mixture and 5-15 wt% wetting agent e.g. alcohol alkoxylates
- a wetting agent e.g. alcohol alkoxylates
- the active substance dissolves upon dilution with water.
- an inventive mixture and 1 -10 wt% dispersant e. g. polyvinylpyrrolidone
- organic solvent e.g. cyclohexanone
- emulsifiers e.g. calcium dodecylben- zenesulfonate and castor oil ethoxylate
- water-insoluble organic solvent e.g. aromatic hydrocarbon
- Emulsions (EW, EO, ES)
- emulsifiers e.g. calcium dodecylbenzene- sulfonate and castor oil ethoxylate
- water-insoluble organic solvent e.g. aromatic hydrocarbon
- an inventive mixture 20-60 wt% are comminuted with addition of 2- 10 wt% dispersants and wetting agents (e.g. sodium lignosulfonate and alcohol ethoxylate), 0.1- 2 wt% thickener (e.g. xanthan gum) and water ad 100 wt% to give a fine active substance sus- pension. Dilution with water gives a stable suspension of the active substance.
- dispersants and wetting agents e.g. sodium lignosulfonate and alcohol ethoxylate
- 0.1- 2 wt% thickener e.g. xanthan gum
- water ad 100 wt% to give a fine active substance sus- pension.
- Dilution with water gives a stable suspension of the active substance.
- binder e.g. polyvinylalcohol
- an inventive mixture 50-80 wt% of an inventive mixture are ground finely with addition of dispersants and wetting agents (e.g. sodium lignosulfonate and alcohol ethoxylate) ad 100 wt% and prepared as water- dispersible or water-soluble granules by means of technical appliances (e. g. extrusion, spray tower, fluidized bed). Dilution with water gives a stable dispersion or solution of the active substance.
- dispersants and wetting agents e.g. sodium lignosulfonate and alcohol ethoxylate
- 50-80 wt% of an inventive mixture are ground in a rotor-stator mill with addition of 1 -5 wt% dispersants (e.g. sodium lignosulfonate), 1-3 wt% wetting agents (e.g. alcohol ethoxylate) and solid carrier (e.g. silica gel) ad 100 wt%. Dilution with water gives a stable dispersion or solution of the active substance.
- dispersants e.g. sodium lignosulfonate
- 1-3 wt% wetting agents e.g. alcohol ethoxylate
- solid carrier e.g. silica gel
- an inventive mixture In an agitated ball mill, 5-25 wt% of an inventive mixture are comminuted with addition of 3- 10 wt% dispersants (e.g. sodium lignosulfonate), 1 -5 wt% thickener (e.g. carboxy- methylcellulose) and water ad 100 wt% to give a fine suspension of the active substance. Dilution with water gives a stable suspension of the active substance,
- dispersants e.g. sodium lignosulfonate
- 1 -5 wt% thickener e.g. carboxy- methylcellulose
- an inventive mixture 5-20 wt% are added to 5-30 wt% organic solvent blend (e.g. fatty acid dimethylamide and cyclohexanone), 10-25 wt% surfactant blend (e.g. alcohol ethoxylate and arylphenol ethoxylate), and water ad 100 %. This mixture is stirred for 1 h to produce spontaneously a thermodynamicallystable microemulsion.
- organic solvent blend e.g. fatty acid dimethylamide and cyclohexanone
- surfactant blend e.g. alcohol ethoxylate and arylphenol ethoxylate
- An oil phase comprising 5-50 wt% of an inventive mixture, 0-40 wt% water insoluble organic solvent (e.g. aromatic hydrocarbon), 2-15 wt% acrylic monomers (e.g. methylmethacrylate, methacrylic acid and a di- or triacrylate) are dispersed into an aqueous solution of a protective colloid (e.g. polyvinyl alcohol). Radical polymerization initiated by a radical initiator results in the formation of poly(meth)acrylate microcapsules.
- an oil phase comprising 5-50 wt% of an inventive mixture according to the invention, 0-40 wt% water insoluble organic solvent (e.g. aromatic hydrocarbon), and an isocyanate monomer (e.g.
- diphenylmethene-4,4'- diisocyanatae are dispersed into an aqueous solution of a protective colloid (e.g. polyvinyl alcohol).
- a protective colloid e.g. polyvinyl alcohol.
- the addition of a polyamine results in the formation of pol- yurea microcapsules.
- the monomers amount to 1-10 wt%. The wt% relate to the total CS com- position.
- Dustable powders (DP, DS)
- an inventive mixture are ground finely and mixed intimately with solid carrier (e.g. finely divided kaolin) ad 100 wt%.
- solid carrier e.g. finely divided kaolin
- an inventive mixture is ground finely and associated with solid carrier (e.g. silicate) ad 100 wt%.
- solid carrier e.g. silicate
- organic solvent e.g. aromatic hydrocarbon
- compositions types i) to xi) may optionally comprise further auxiliaries, such as 0.1 -1 wt% bactericides, 5-15 wt% anti-freezing agents, 0.1-1 wt% anti-foaming agents, and 0.1-1 wt% colorants.
- auxiliaries such as 0.1 -1 wt% bactericides, 5-15 wt% anti-freezing agents, 0.1-1 wt% anti-foaming agents, and 0.1-1 wt% colorants.
- the resulting agrochemical compositions generally comprise between 0.01 and 95%, pref- erably between 0.1 and 90%, and in particular between 0.5 and 75%, by weight of active substance.
- the active substances are employed in a purity of from 90% to 100%, preferably from 95% to 100% (according to NMR spectrum).
- Solutions for seed treatment (LS), Suspoemulsions (SE), flowable concentrates (FS), powders for dry treatment (DS), water-dispersible powders for slurry treatment (WS), water-soluble powders (SS), emulsions (ES), emulsifiable concentrates (EC) and gels (GF) are usually employed for the purposes of treatment of plant propagation materials, particularly seeds.
- the compositions in question give, after two-to-tenfold dilution, active substance concentrations of from 0.01 to 60% by weight, preferably from 0.1 to 40%, in the ready-to-use preparations. Appli- cation can be carried out before or during sowing.
- Methods for applying the inventive mixtures and compositions thereof, respectively, on to plant propagation material, especially seeds include dressing, coating, pelleting, dusting, soaking and in-furrow application methods of the propagation material.
- the inventive mixtures or the compositions thereof, respectively are applied on to the plant propagation material by a method such that germination is not induced, e. g. by seed dressing, pelleting, coating and dusting.
- the amounts of active substances applied are, depending on the kind of effect desired, from 0.001 to 2 kg per ha, preferably from 0.005 to 2 kg per ha, more preferably from 0.01 to 1.0 kg per ha, and in particular from 0.05 to 0.75 kg per ha.
- amounts of active substance of from 0.01-10kg, preferably from 0.1-1000 g, more preferably from 1-100 g per 100 kilogram of plant propagation material (preferably seeds) are generally required.
- the amount of active substance applied depends on the kind of application area and on the desired effect. Amounts customarily applied in the protection of materials are 0.001 g to 2 kg, preferably 0.005 g to 1 kg, of active substance per cubic meter of treated material.
- oils, wetters, adjuvants, fertilizer, or micronutrients, and further pesticides may be added to the active substances or the compositions comprising them as premix or, if appropriate not until im- mediately prior to use (tank mix).
- pesticides e.g. herbicides, insecticides, fungicides, growth regulators, safeners
- These agents can be admixed with the compositions according to the invention in a weight ratio of 1 :100 to 100:1 , preferably 1 :10 to 10:1 .
- the user applies the composition according to the invention usually from a predosage device, a knapsack sprayer, a spray tank, a spray plane, or an irrigation system.
- the ag- rochemical composition is made up with water, buffer, and/or further auxiliaries to the desired application concentration and the ready-to-use spray liquor or the agrochemical composition according to the invention is thus obtained.
- 20 to 2000 liters, preferably 50 to 400 liters, of the ready-to-use spray liquor are applied per hectare of agricultural useful area.
- composition according to the invention such as parts of a kit or parts of a binary mixture may be mixed by the user himself in a spray tank or any other kind of vessel used for applications (e. g. seed treater drums, seed pelleting machinery, knapsack sprayer) and further auxiliaries may be added, if appropriate.
- a spray tank or any other kind of vessel used for applications (e. g. seed treater drums, seed pelleting machinery, knapsack sprayer) and further auxiliaries may be added, if appropriate.
- one embodiment of the invention is a kit for preparing a usable pesticidal com- position, the kit comprising a) a composition comprising component 1 ) as defined herein and at least one auxiliary; and b) a composition comprising component 2) as defined herein and at least one auxiliary; and optionally c) a composition comprising at least one auxiliary and optionally a further active component 3) as defined herein.
- the present invention comprises a method for controlling harmful fungi, wherein the pest, their habitat, breeding grounds, their locus or the plants to be protected against pest attack, the soil or plant propagation material (preferably seed) are treated with an pesticidally effective amount of a inventive mixture.
- inventive mixtures are suitable for controlling the following fungal plant diseases:
- Albugo spp. (white rust) on ornamentals, vegetables (e. g. A. Candida) and sunflowers (e. g. A. tragopogonis); Alternaria spp. (Alternaria leaf spot) on vegetables, rape (A. brass/cola or brassi- cae), sugar beets (A. tenuis), fruits, rice, soybeans, potatoes (e. g. A. solan/ or A. a/ternata), tomatoes (e. g. A. so/ani or A. a/ternata) and wheat; Aphanomyces spp. on sugar beets and vegetables; Ascochyta spp. on cereals and vegetables, e. g. A.
- tritici anthracnose
- Bipolar/s and Drechslera spp. teleomorph: Cochliobolus spp.), e. g. Southern leaf blight (D. mayd/sj or Northern leaf blight (B. zeicola) on corn, e. g. spot blotch (B. sorokiniana) on cereals and e. g. B. oryzae on rice and turfs
- Blumeria previously Erysiphe
- graminis powdery mildew
- Botrytis cinerea (teleomorph: Botryotinia fucke/iana: grey mold) on fruits and berries (e. g. strawberries), vegetables (e. g. lettuce, carrots, celery and cabbages), rape, flowers, vines, forestry plants and wheat; Brem/a lactucae (downy mildew) on lettuce; Ceratocystis (syn. Ophiostoma) spp. (rot or wilt) on broad- leaved trees and evergreens, e. g. C. ⁇ ///77/ ' (Dutch elm disease) on elms; Cercospora spp.
- Botrytis cinerea teleomorph: Botryotinia fucke/iana: grey mold
- fruits and berries e. g. strawberries
- vegetables e. g. lettuce, carrots, celery and cabbages
- rape flowers, vines, forestry plants and wheat
- Crop cospora leaf spots on corn (e. g. Gray leaf spot: C. zeae-maydis), rice, sugar beets (e. g. C. bet/cola), sugar cane, vegetables, coffee, soybeans (e. g. C. soj/ha or C. kikuchii) and rice; Cladosporium spp. on tomatoes (e. g. C. fulvurrr. leaf mold) and cereals, e. g. C. herbarum (black ear) on wheat; Claviceps purpurea (ergot) on cereals; Cochliobolus (anamorph: Helmin- thosporium of Bipolaris) spp.
- tomatoes e. g. C. fulvurrr. leaf mold
- cereals e. g. C. herbarum (black ear) on wheat
- Cochliobolus anamorph:
- spp. (anthracnose) on cotton (e. g. C. gossypil), corn (e. g. C. gramini- ⁇ %>/#/Anthracnose stalk rot), soft fruits, potatoes (e. g. C. coccodes. black dot), beans (e. g. C. lindemuthianum) and soybeans (e. g. C. truncatum or C. gloeosporioides); Corticium spp., e. g. C.
- sasak/i sheath blight
- Corynespora cassiicola leaf spots
- Cycloconium spp. e. g. C. oleaginum on olive trees
- Cylindrocarpon spp. e. g. fruit tree canker or young vine decline, teleomorph: Nectria ox Neonectria spp.
- vines e. g. C. liriodendri, teleomorph: Neonectria liriodendri.
- Phellinus punctata, F. mediterranea, Phaeomoniella chlamydospora (earlier Phaeoacremonium chlamydosporum), Phaeoacremonium aleophilum and/or Botryosphaeria obtusa, Elsinoe spp. on pome fruits (E. pyn), soft fruits (E. veneta: anthracnose) and vines (E. ampelina: anthracnose); Entyloma oryzae (leaf smut) on rice; Epicoccum spp. (black mold) on wheat; Erysiphe spp. (powdery mildew) on sugar beets (E.
- betae vegetables (e. g. E. pis/), such as cucurbits (e. g. E. c/choracearum), cabbages, rape (e. g. E. cruciferarum); Eutypa lata (Eutypa canker or dieback, anamorph: Cytosporina lata, syn. Libertella blepharis) on fruit trees, vines and ornamental woods; Exserohilum (syn. Helminthosporium) spp. on corn (e. g. E. turci- cum); Fusarium (teleomorph: Gibberella) spp. (wilt, root or stem rot) on various plants, such as F.
- vegetables e. g. E. pis/
- cucurbits e. g. E. c/choracearum
- cabbages rape (e. g. E. cruciferarum)
- Eutypa lata Eutypa canker or
- F. culmorum root rot, scab or head blight
- cereals e. g. wheat or barley
- F. oxysporum on tomatoes
- F. so/an/ sp. glycines now syn.
- F. virguliforme and F. tucumani- ae and F. brasiliense each causing sudden death syndrome on soybeans, and F. verticillioides on corn
- Gaeumannomyces graminis take-all
- rice e. g. G fujikuror.
- Bakanae disease Giomereiia cingulata on vines, pome fruits and other plants and G. gossypiion cotton; Grainstaining complex on rice; G 'uignardia bidwellii (black rot) on vines; Gymnosporangium spp. on rosaceous plants and junipers, e. g. G sabinae (rust) on pears; Helminthosporium spp. (syn. Drechslera, teleomorph: Cochiioboius) on corn, cereals and rice; Hemileia spp., e. g. H.
- fructi- 5 ⁇ /7# (bloom and twig blight, brown rot) on stone fruits and other rosaceous plants
- Myco- sphaerella spp. on cereals, bananas, soft fruits and ground nuts, such as e. g. M.A. graminicola (anamorph: Septoria tritici, Septoria blotch) on wheat or M.A. fijiensis (black Sigatoka disease) on bananas
- Peronospora spp. downy mildew) on cabbage (e. g. P. brassicae), rape (e. g. P. parasitica), onions (e. g. P. destructor), tobacco ⁇ P. tabacina) and soybeans (e. g.
- stem rot P. phaseoli, teleomorph: Diaporthe phaseolorum
- Phy- soderma maydis brown spots
- Phytophthora spp. tilt, root, leaf, fruit and stem root
- paprika and cucurbits e. g. P. capsici
- soybeans e. g. P.
- Plasmodiophora brassicae club root
- Plasmopara spp. e. g. P. viticola (grapevine downy mildew) on vines and P. ha/stediion sunflowers
- Podosphaera spp. powdery mildew
- Puccinia spp. rusts on various plants, e. g. P. triticina (brown or leaf rust), P. striiformis (stripe or yellow rust), P. horde/ (dwarf rust), P. graminis (stem or black rust) or P. recond/ta (brown or leaf rust) on cereals, such as e. g. wheat, barley or rye, P. kuehnii (orange rust) on sugar cane and P.
- Pyrenophora anamorph: Drechslera
- tritici-repentis tan spot
- P. teres net blotch
- Pyricularia spp. e. g. P. oryzae (teleomorph: Magnaporthe grisea, rice blast) on rice and P. grisea on turf and cereals
- Pythium spp. (damping-off) on turf, rice, corn, wheat, cotton, rape, sunflowers, soybeans, sugar beets, vegetables and various other plants (e. g. P. ultimum or P. aphanidermatum); Ramularia spp., e. g. R.
- collo-cygni Roso-cygni (Ramularia leaf spots, Physiological leaf spots) on barley and R. beticola on sugar beets; Rhizoctonia spp. on cotton, rice, potatoes, turf, corn, rape, potatoes, sugar beets, vegetables and various other plants, e. g. R. so/an/ (root and stem rot) on soybeans, R. so/an/ (sheath blight) on rice or R.
- deformans leaf curl disease
- T. pruni plum pocket
- plums Thielaviopsis spp. (black root rot) on tobacco, pome fruits, vegetables, soybeans and cotton, e. g. T. basicola (syn. Chalara elegans); Tilletia spp. (common bunt or stinking smut) on cereals, such as e. g. T. tritici(syn. T. caries, wheat bunt) and T. controversa (dwarf bunt) on wheat; Typhula incarnata (grey snow mold) on barley or wheat; Urocystis spp., e. g. U.
- occulta stem smut
- Uromyces spp. rust
- vegetables such as beans (e. g. U. appendiculatus, syn. U. phaseoli) and sugar beets (e. g. U. betae)
- Ustilago spp. loose smut) on cereals (e. g. U. nuda and U. avaenae), corn (e. g. U. maydis. corn smut) and sugar cane
- Venturis spp. scab
- apples e. g. V. inaequalis
- pears Verticillium spp. (wilt) on various plants, such as fruits and ornamentals, vines, soft fruits, vegetables and field crops, e. g. V. dah/iae on strawberries, rape, potatoes and tomatoes.
- the mixtures according to the present invention are also suitable for controlling harmful fungi in the protection of stored products or harvest and in the protection of materials.
- protection of materials is to be understood to denote the protection of technical and non-living materials, such as adhesives, glues, wood, paper and paperboard, textiles, leather, paint dispersions, plastics, cooling lubricants, fiber or fabrics, against the infestation and destruction by harmful microorganisms, such as fungi and bacteria.
- harmful fungi Ascomycetes such as Ophiostoma spp., Ceratocystis spp., Aureobasidium pullulans, Sclerophoma spp.,
- fungi are particularly important for controlling a multitude of fungi on various cultivated plants, such as bananas, cotton, vegetable species (for example cucumbers, beans and cucurbits), cereals such as wheat, rye, barley, rice, oats; grass coffee, potatoes, corn, fruit species, soya, tomatoes, grapevines, ornamental plants, sugar cane and also on a large number of seeds.
- the inventive mixtures are used in soya (soybean), cereals and corn.
- pesticidally effective amount means the amount of the inventive mixtures or of compositions comprising the mixtures needed to achieve an observable effect on growth, including the effects of necrosis, death, retardation, prevention, and removal, destruction, or oth- erwise diminishing the occurrence and activity of the target organism.
- the pesticidally effective amount can vary for the various mixtures / compositions used in the invention.
- a pesticidally effective amount of the mixtures / compositions will also vary according to the prevailing conditions such as desired pesticidal effect and duration, weather, target species, locus, mode of application, and the like.
- the present invention comprises a method for improving the health of plants, wherein the plant, the locus where the plant is growing or is expected to grow or plant propagation material, from which the plant grows, is treated with an plant health effective amount of an inventive mixture.
- plant effective amount denotes an amount of the inventive mixtures, which is sufficient for achieving plant health effects as defined herein below. More exemplary information about amounts, ways of application and suitable ratios to be used is given below. Again, the skilled artisan is well aware of the fact that such an amount can vary in a broad range and is dependent on various factors, e.g. the treated cultivated plant or material and the climatic conditions.
- inventive mixtures are employed by treating the fungi or the plants, plant propagation materials (preferably seeds), materials or soil to be protected from fungal attack with a pesticidally effective amount of the active compounds.
- the application can be carried out both before and after the infection of the materials, plants or plant propagation materials (preferably seeds) by the pests.
- the term plant refers to an entire plant, a part of the plant or the propagation material of the plant.
- inventive mixtures and compositions thereof are particularly important in the control of a multitude of phytopathogenic fungi on various cultivated plants, such as cereals, e. g. wheat, rye, barley, triticale, oats or rice; beet, e. g. sugar beet or fodder beet; fruits, such as pomes, stone fruits or soft fruits, e. g.
- cereals e. g. wheat, rye, barley, triticale, oats or rice
- beet e. g. sugar beet or fodder beet
- fruits such as pomes, stone fruits or soft fruits, e. g.
- the inventive mixtures and compositions thereof are used for controlling a multitude of fungi on field crops, such as potatoes, sugar beets, tobacco, wheat, rye, barley, oats, rice, corn, cotton, soybeans, rape, legumes, sunflowers, coffee or sugar cane; fruits; vines; ornamentals; or vegetables, such as cucumbers, tomatoes, beans or squashes.
- field crops such as potatoes, sugar beets, tobacco, wheat, rye, barley, oats, rice, corn, cotton, soybeans, rape, legumes, sunflowers, coffee or sugar cane; fruits; vines; ornamentals; or vegetables, such as cucumbers, tomatoes, beans or squashes.
- treatment of plant propagation materials with the inventive mixtures and compositions thereof, respectively is used for controlling a multitude of fungi on cereals, such as wheat, rye, barley and oats; potatoes, tomatoes, vines, rice, corn, cotton and soybeans.
- cultiva plants is to be understood as including plants which have been modified by breeding, mutagenesis or genetic engineering including but not limiting to agricultural biotech products on the market or in development (cf. http://cera-gmc.org/, see GM crop database therein).
- Genetically modified plants are plants, which genetic material has been so modified by the use of recombinant DNA techniques that under natural circumstances cannot readily be obtained by cross breeding, mutations or natural recombination.
- one or more genes have been integrated into the genetic material of a genetically modified plant in order to improve certain properties of the plant.
- Such genetic modifications also include but are not limited to targeted post-translational modification of protein(s), oligo- or polypeptides e. g. by gly- cosylation or polymer additions such as prenylated, acetylated or farnesylated moieties or PEG moieties.
- auxin herbicides
- herbicides e. bromoxynil or ioxynil herbicides as a result of conventional methods of breeding or genetic engineering. Furthermore, plants have been made resistant to multiple classes of herbicides through multiple genetic modifications, such as resistance to both glyphosate and glufosinate or to both glyphosate and a herbicide from another class such as ALS inhibitors, HPPD inhibitors, auxin herbicides, or ACCase inhibitors.
- ALS inhibitors e.g. described in Pest ManageM.A. Sci.
- cultivated plants have been rendered tolerant to herbicides by conventional methods of breeding (mutagenesis), e. g. Clearfield ® summer rape (Canola, BASF SE, Germany) being tolerant to imidazolinones, e. g.
- imazamox or ExpressSun ® sun- flowers (DuPont, USA) being tolerant to sulfonyl ureas, e. g. tribenuron.
- Genetic engineering methods have been used to render cultivated plants such as soybean, cotton, corn, beets and rape, tolerant to herbicides such as glyphosate and glufosinate, some of which are commercially available under the trade names RoundupReady ® (glyphosate-tolerant, Monsanto, U.S.A.), Cultivance ® (imidazolinone tolerant, BASF SE, Germany) and LibertyLink ® (glufosinate-tolerant, Bayer CropScience, Germany).
- plants are also covered that are by the use of recombinant DNA techniques capable to synthesize one or more insecticidal proteins, especially those known from the bacterial genus Bacillus, particularly from Bacillus thuringiensis, such as ⁇ -endotoxins, e. g. CrylA(b), CrylA(c), CrylF, CrylF(a2), CryllA(b), CrylllA, CrylllB(bl ) or Cry9c; vegetative insecticidal pro- teins (VIP), e. g. VIP1 , VIP2, VIP3 or VIP3A; insecticidal proteins of bacteria colonizing nematodes, e. g. Photorhabdus spp.
- VIP vegetative insecticidal pro- teins
- toxins produced by animals such as scorpion toxins, arachnid toxins, wasp toxins, or other insect-specific neurotoxins
- toxins produced by fungi such Streptomycetes toxins, plant lectins, such as pea or barley lectins; agglutinins
- proteinase inhibitors such as trypsin inhibitors, serine protease inhibitors, patatin, cystatin or papain inhibitors
- ribosome-inactivating proteins (RIP) such as ricin, maize-RIP, abrin, luffin, saporin or bryodin
- steroid metabolism enzymes such as 3-hydroxysteroid oxidase, ecdyster- oid-IDP-glycosyl-transferase, cholesterol oxidases, ecdysone inhibitors or HMG-CoA-reductase
- ion channel blockers such as blockers of
- these insecticidal proteins or toxins are to be understood expressly also as pre-toxins, hybrid proteins, truncated or otherwise modified proteins.
- Hybrid proteins are characterized by a new combination of protein domains, (see, e. g. WO 02/015701 ).
- Further examples of such toxins or genetically modified plants capable of synthesizing such toxins are disclosed, e. g., in EP-A 374 753, WO 93/007278, WO 95/34656, EP-A 427 529, EP-A 451 878, WO 03/18810 und WO 03/52073.
- the methods for producing such genetically modified plants are generally known to the person skilled in the art and are described, e. g.
- insecticidal proteins contained in the genetically modified plants impart to the plants producing these proteins tolerance to harmful pests from all taxonomic groups of athropods, especially to beetles (Coelop- tera), two-winged insects (Diptera), and moths (Lepidoptera) and to nematodes (Nematoda).
- Genetically modified plants capable to synthesize one or more insecticidal proteins are, e.
- plants are also covered that are by the use of recombinant DNA techniques capable to synthesize one or more proteins to increase the resistance or tolerance of those plants to bacterial, viral or fungal pathogens.
- proteins are the so-called "path- ogenesis-related proteins" (PR proteins, see, e. g. EP-A 392 225), plant disease resistance genes (e. g. potato cultivars, which express resistance genes acting against Phytophthora in- festans derived from the mexican wild potato Solanum bulbocastanum) or T4-lysozym (e. g. potato cultivars capable of synthesizing these proteins with increased resistance against bacte- ria such as Erwinia amylvora).
- PR proteins path- ogenesis-related proteins
- plant disease resistance genes e. g. potato cultivars, which express resistance genes acting against Phytophthora in- festans derived from the mexican wild potato Solanum bulbocastanum
- plants are also covered that are by the use of recombinant DNA techniques capable to synthesize one or more proteins to increase the productivity (e. g. bio mass produc- tion, grain yield, starch content, oil content or protein content), tolerance to drought, salinity or other growth-limiting environmental factors or tolerance to pests and fungal, bacterial or viral pathogens of those plants.
- plants are also covered that contain by the use of recombinant DNA techniques a modified amount of substances of content or new substances of content, specifically to improve human or animal nutrition, e. g. oil crops that produce health-promoting long-chain omega-3 fatty acids or unsaturated omega-9 fatty acids (e. g. Nexera ® rape, DOW Agro Sciences, Canada).
- plants are also covered that contain by the use of recombinant DNA techniques a modified amount of substances of content or new substances of content, specifically to improve raw material production, e. g. potatoes that produce increased amounts of amylopectin (e. g. Amflora ® potato, BASF SE, Germany).
- a modified amount of substances of content or new substances of content specifically to improve raw material production, e. g. potatoes that produce increased amounts of amylopectin (e. g. Amflora ® potato, BASF SE, Germany).
- the separate or joint application of the compounds of the inventive mixtures is carried out by spraying or dusting the seeds, the seedlings, the plants or the soils before or after sowing of the plants or before or after emergence of the plants.
- inventive mixtures and the compositions comprising them can be used for protecting wooden materials such as trees, board fences, sleepers, etc. and buildings such as houses, outhouses, factories, but also construction materials, furniture, leathers, fibers, vinyl articles, elec- trie wires and cables etc. from ants and/or termites, and for controlling ants and termites from doing harm to crops or human being (e.g. when the pests invade into houses and public facilities).
- Customary application rates in the protection of materials are, for example, from 0.01 g to 1000 g of active compound per m 2 treated material, desirably from 0.1 g to 50 g per m 2 .
- the content of the mixture of the active ingredients is from 0.001 to 80 weight %, preferably from 0.01 to 50 weight % and most preferably from 0.01 to 15 weight %.
- the invention shall be illustrated, but not limited by the following examles:
- Example 1 Activity against the late blight pathogen Phytophthora infestans in the microtiter test
- the stock solutions were mixed according to the ratio, pipetted onto a micro titer plate and diluted with water to the stated concentrations.
- a spore suspension of Phytophtora infestans con- taining a pea juice-based aqueous nutrient medium or DDC medium was then added.
- the plates were placed in a water vapor-saturated chamber at a temperature of 18°C. Using an absorption photometer, the MTPs were measured at 405 nm 7 days after the inoculation.
- the measured parameters were compared to the growth of the active compound-free control variant (100%) and the fungus-free and active compound-free blank value to determine the rela- tive growth in % of the pathogens in the respective active compounds.
- Example 2 Activity against leaf blotch on wheat caused by Septoria tritici
- the stock solutions were mixed according to the ratio, pipetted onto a micro titer plate and diluted with water to the stated concentrations.
- a spore suspension of a QOI resistant isolate of Septoria tritici in an aqueous biomalt or yeast-bactopeptone-glycerine solution was then added.
- the plates were placed in a water vapor-saturated chamber at a temperature of 18°C. Using an absorption photometer, the MTPs were measured at 405 nm 7 days after the inoculation.
- the measured parameters were compared to the growth of the active compound-free control variant (100%) and the fungus-free and active compound-free blank value to determine the relative growth in % of the pathogens in the respective active compounds.
- Example 3 Activity against rice blast Pyricularia oryzae in the microtiterplate test
- the stock solutions were mixed according to the ratio, pipetted onto a micro titer plate and diluted with water to the stated concentrations.
- a spore suspension of a QOI resistant isolate of Pyricularia oryzae in an aqueous biomalt or yeast-bactopeptone-glycerine solution was then added.
- the plates were placed in a water vapor-saturated chamber at a temperature of 18°C. Using an absorption photometer, the MTPs were measured at 405 nm 7 days after the inocula- tion.
- the measured parameters were compared to the growth of the active compound-free control variant (100%) and the fungus-free and active compound-free blank value to determine the relative growth in % of the pathogens in the respective active compounds.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Agronomy & Crop Science (AREA)
- Pest Control & Pesticides (AREA)
- Plant Pathology (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Dentistry (AREA)
- General Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Environmental Sciences (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
Abstract
L'invention concerne des mélanges pesticides comprenant un composé tétrazolinone et un second composé fongicide II; et des méthodes mettant en œuvre ces mélanges pour lutter contre des champignons phytopathogènes.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16188560 | 2016-09-13 | ||
PCT/EP2017/072334 WO2018050508A1 (fr) | 2016-09-13 | 2017-09-06 | Mélanges pesticides |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3512339A1 true EP3512339A1 (fr) | 2019-07-24 |
Family
ID=56926066
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17761102.7A Withdrawn EP3512339A1 (fr) | 2016-09-13 | 2017-09-06 | Mélanges pesticides |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3512339A1 (fr) |
CN (1) | CN109788758A (fr) |
BR (1) | BR112019003759A2 (fr) |
WO (1) | WO2018050508A1 (fr) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10959431B2 (en) | 2016-10-10 | 2021-03-30 | Basf Se | Pesticidal mixtures |
JP2020033318A (ja) * | 2018-08-31 | 2020-03-05 | 住友化学株式会社 | 植物病害防除組成物及び植物病害防除方法 |
JP2020033319A (ja) * | 2018-08-31 | 2020-03-05 | 住友化学株式会社 | 植物病害防除組成物及び植物病害防除方法 |
JP2020033317A (ja) * | 2018-08-31 | 2020-03-05 | 住友化学株式会社 | 植物病害防除組成物及び植物病害防除方法 |
EP3698634A1 (fr) * | 2019-02-25 | 2020-08-26 | Basf Se | Mélanges de pesticides |
EP3698633A1 (fr) * | 2019-02-25 | 2020-08-26 | Basf Se | Mélanges de pesticides |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR8600161A (pt) | 1985-01-18 | 1986-09-23 | Plant Genetic Systems Nv | Gene quimerico,vetores de plasmidio hibrido,intermediario,processo para controlar insetos em agricultura ou horticultura,composicao inseticida,processo para transformar celulas de plantas para expressar uma toxina de polipeptideo produzida por bacillus thuringiensis,planta,semente de planta,cultura de celulas e plasmidio |
NZ231804A (en) | 1988-12-19 | 1993-03-26 | Ciba Geigy Ag | Insecticidal toxin from leiurus quinquestriatus hebraeus |
EP0392225B1 (fr) | 1989-03-24 | 2003-05-28 | Syngenta Participations AG | Plantes transgéniques résistantes aux maladies |
ATE121267T1 (de) | 1989-11-07 | 1995-05-15 | Pioneer Hi Bred Int | Larven abtötende lektine und darauf beruhende pflanzenresistenz gegen insekten. |
UA48104C2 (uk) | 1991-10-04 | 2002-08-15 | Новартіс Аг | Фрагмент днк, який містить послідовність,що кодує інсектицидний протеїн, оптимізовану для кукурудзи,фрагмент днк, який забезпечує направлену бажану для серцевини стебла експресію зв'язаного з нею структурного гена в рослині, фрагмент днк, який забезпечує специфічну для пилку експресію зв`язаного з нею структурного гена в рослині, рекомбінантна молекула днк, спосіб одержання оптимізованої для кукурудзи кодуючої послідовності інсектицидного протеїну, спосіб захисту рослин кукурудзи щонайменше від однієї комахи-шкідника |
US5530195A (en) | 1994-06-10 | 1996-06-25 | Ciba-Geigy Corporation | Bacillus thuringiensis gene encoding a toxin active against insects |
ATE296539T1 (de) | 2000-08-25 | 2005-06-15 | Syngenta Participations Ag | Hybriden von crystal proteinen aus bacillus thurigiensis |
US7230167B2 (en) | 2001-08-31 | 2007-06-12 | Syngenta Participations Ag | Modified Cry3A toxins and nucleic acid sequences coding therefor |
WO2003052073A2 (fr) | 2001-12-17 | 2003-06-26 | Syngenta Participations Ag | Nouvel evenement du mais |
JP6107377B2 (ja) * | 2012-04-27 | 2017-04-05 | 住友化学株式会社 | テトラゾリノン化合物及びその用途 |
EP2892341B1 (fr) * | 2012-09-07 | 2017-04-26 | Bayer CropScience AG | Combinaisons de composés actifs |
JP2015532914A (ja) * | 2012-09-07 | 2015-11-16 | バイエル・クロップサイエンス・アクチェンゲゼルシャフト | 活性化合物組合せ |
SI3025586T1 (sl) * | 2013-07-22 | 2019-06-28 | Sumitomo Chemical Company Limited | Sestavek za obvladovanje rastlinskih bolezni in njegova uporaba |
SI3025584T1 (en) * | 2013-07-22 | 2018-04-30 | Sumitomo Chemical Company, Limited | Composition for the control of plant diseases and its use |
WO2015012243A1 (fr) * | 2013-07-22 | 2015-01-29 | 住友化学株式会社 | Composition de lutte contre les maladies des plantes et son application |
US10729388B2 (en) | 2013-10-28 | 2020-08-04 | Dexcom, Inc. | Devices used in connection with continuous analyte monitoring that provide the user with one or more notifications, and related methods |
EP2865265A1 (fr) | 2014-02-13 | 2015-04-29 | Bayer CropScience AG | Combinaisons de composés actifs comprenant des composés phénylamidine et agents de lutte biologique |
EP2865267A1 (fr) | 2014-02-13 | 2015-04-29 | Bayer CropScience AG | Combinaisons de composés actifs comprenant des composés phénylamidine et agents de lutte biologique |
KR102469841B1 (ko) * | 2014-07-14 | 2022-11-22 | 바스프 에스이 | 살충 조성물 |
WO2016015979A1 (fr) * | 2014-07-31 | 2016-02-04 | Syngenta Participations Ag | Compositions fongicides |
PL3214937T3 (pl) * | 2014-11-07 | 2024-10-14 | Basf Se | Mieszaniny szkodnikobójcze |
WO2016071246A1 (fr) * | 2014-11-07 | 2016-05-12 | Basf Se | Mélanges pesticides |
WO2016091675A1 (fr) * | 2014-12-12 | 2016-06-16 | Basf Se | Procédé d'amélioration de la santé de plante |
-
2017
- 2017-09-06 CN CN201780055898.4A patent/CN109788758A/zh active Pending
- 2017-09-06 BR BR112019003759-4A patent/BR112019003759A2/pt not_active Application Discontinuation
- 2017-09-06 WO PCT/EP2017/072334 patent/WO2018050508A1/fr unknown
- 2017-09-06 EP EP17761102.7A patent/EP3512339A1/fr not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
WO2018050508A1 (fr) | 2018-03-22 |
BR112019003759A2 (pt) | 2019-05-21 |
CN109788758A (zh) | 2019-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3648604B1 (fr) | Mélanges fongicides de méfentrifluconazole | |
EP3214937B1 (fr) | Mélanges de pesticides | |
EP3512339A1 (fr) | Mélanges pesticides | |
EP3419423A1 (fr) | Mélanges fongicides comprenant du fluxapyroxad | |
WO2019042800A1 (fr) | Mélanges pesticides | |
WO2018011112A1 (fr) | Mélanges fongicides contenant un carboxamide | |
WO2020078797A1 (fr) | Mélanges ternaires contenant des inhibiteurs de fenpropimorphe, de succinate déshydrogénase et un autre composé | |
WO2019007717A1 (fr) | Mélanges pesticides | |
WO2018189001A1 (fr) | Mélanges fongicides destinés à être utilisés dans le riz | |
EP4255189B1 (fr) | Mélanges contenant du métarylpicoxamide | |
EP3412150A1 (fr) | Mélanges de meptyldinocap avec fongicides sdhi | |
US20210251232A1 (en) | Use of fungicidal active compound i derivative and mixtures thereof in seed application and treatment methods | |
WO2019166252A1 (fr) | Mélanges fongicides comprenant de la fenpropidine | |
US20190208783A1 (en) | Fungicidal Mixtures Comprising a Formamidine | |
WO2020007646A1 (fr) | Mélanges pesticides | |
EP3698633A1 (fr) | Mélanges de pesticides | |
EP3643175A1 (fr) | Mélanges pesticides ternaires contenant du metyltetraprole et du fenpropimorphe | |
EP3533331A1 (fr) | Melanges fongicides comprenant du pydiflumetofen | |
EP3533333A1 (fr) | Mélanges fongicides comprenant du pydiflumetofène | |
EP3817553B1 (fr) | Mélanges pesticides | |
EP3698634A1 (fr) | Mélanges de pesticides | |
EP3530116A1 (fr) | Mélanges fongicides contenant du xemium | |
EP3530118A1 (fr) | Mélanges fongicides | |
EP3536150A1 (fr) | Mélanges fongicides contenant du fluxapyroxade | |
WO2022128554A1 (fr) | Mélanges contenant du n-méthoxy-n-[[4-[5-(trifluorométhyl)-1,2,4-oxadiazol-3-yl]phényl]méthyl]cyclopropanecarboxamide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20190415 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20191112 |