[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP3577347B1 - Turboverdichter mit rückführstömungskanälen - Google Patents

Turboverdichter mit rückführstömungskanälen Download PDF

Info

Publication number
EP3577347B1
EP3577347B1 EP18729651.2A EP18729651A EP3577347B1 EP 3577347 B1 EP3577347 B1 EP 3577347B1 EP 18729651 A EP18729651 A EP 18729651A EP 3577347 B1 EP3577347 B1 EP 3577347B1
Authority
EP
European Patent Office
Prior art keywords
flow
flow channels
turbocompressor
compressor stage
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18729651.2A
Other languages
English (en)
French (fr)
Other versions
EP3577347A1 (de
Inventor
Markus ENGERT
Angelika Klostermann
Daniel Conrad
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebm Papst Mulfingen GmbH and Co KG
Original Assignee
Ebm Papst Mulfingen GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebm Papst Mulfingen GmbH and Co KG filed Critical Ebm Papst Mulfingen GmbH and Co KG
Publication of EP3577347A1 publication Critical patent/EP3577347A1/de
Application granted granted Critical
Publication of EP3577347B1 publication Critical patent/EP3577347B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • F04D29/444Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • F04D17/122Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes

Definitions

  • the invention relates to a turbo compressor with a recirculation geometry for an optimized flow connection of a first and second compressor stage of the turbo compressor.
  • the invention is therefore based on the object of providing a recirculation geometry for a turbo compressor which reduces the risk of flow separation and minimizes the pressure loss.
  • a recirculation geometry of a turbo compressor which is designed for flow connection of a first and second compressor stage of the turbo compressor.
  • the recirculation geometry has a plurality of partial spirals which are arranged uniformly distributed in the circumferential direction and run at least partially in the circumferential direction.
  • the word component “geometry” is included in “return geometry”, but determines the resulting flow line due to the formation of the flow channels.
  • the plurality of flow channels reduces the flow cross section of each individual flow channel and offers a more even inflow into the second compressor stage.
  • the maximum extent, in particular in the radial direction, of each individual channel can be increased compared to a single rotationally symmetrical return channel without large-area flow separations or backflows being observed at operating points with low mass flow.
  • the flow channels form a plurality of elbows arranged one after the other, which repeatedly deflect the flow between the first and second compressor stages. In this way it is possible to realize an optimal axial flow against the compressor impeller of the second compressor stage from the radial outflow direction of the compressor impeller of the turbocompressor in the first compressor stage.
  • the elbows of the flow channels direct the flow from a radial outflow direction first into a first axial direction in the direction of the second compressor stage and then back into a radial inflow direction, which runs counter to the outflow direction.
  • the last elbow of the flow channels viewed in the flow direction, then directs the flow to the inflow direction in a second axial direction, which runs counter to the first axial direction.
  • the second axial direction corresponds to the intake direction of the compressor impeller of the second compressor stage, so that a predefined inflow exactly to the intake area via the flow channels of the compressor impeller of the second compressor stage can take place.
  • the bends each produce an essentially 90° deflection.
  • the compressor impeller of the second compressor stage can be arranged in the same direction as the compressor impeller of the previous compressor stage, i.e. the direction of entry is the same for both compressor impellers.
  • both compressor impellers can also be arranged in opposite directions, i.e. in a so-called back-to-back arrangement, which is mainly useful for two-stage turbo compressors, with the outflow geometry of the second compressor stage, which is designed as a spiral, for example, and the subsequent outlet pipe passing through the area between the individual Partial spirals of the return geometry can be performed.
  • the invention is not limited to two-stage turbo compressors, but can also be applied to multi-stage designs.
  • the flow channels of the partial spirals extend from an inlet area of the first compressor stage, in particular from the outlet area of the impeller of the first compressor stage, to an outlet area of the first compressor stage, in particular to the inlet area of the impeller of the second compressor stage, and in the Combine the outlet area to form a circumferentially symmetrical overall channel.
  • the overall channel then forms the inflow for or into the second compressor stage.
  • an exemplary embodiment of the return geometry is characterized in that the individual flow channels each have curved walls and/or curved twist struts in a transition to the overall channel exhibit.
  • the swirl struts are designed to impart a predefined swirl to the flow as it enters the overall channel, which effectively promotes intake through the compressor wheel of the second compressor stage.
  • the return geometry is designed according to the invention in such a way that the elbow formed in the flow channels, which deflects the flow from the radial outflow direction into the first axial direction in the direction of the second compressor stage, has a guide strut, which extends along the respective flow channel in Extends radially outward and in the first axial direction.
  • the guide struts divide the respective flow channel in the middle, so that both remaining parts of the respective flow channel are flown through with the same large mass flow. It is also provided in a development that the guide struts extend radially outside of a tongue radius of the return geometry, i.e. at a distance radially outwards from an inlet of the respective flow channel formed by the tongue radius.
  • the return geometry is also provided according to the invention, in which the flow channels have an axial section in which the flow is directed in the first axial direction in the direction of the second compressor stage, and the axial section of the flow channels is designed as a diffuser.
  • the respective axial section as a diffuser, the flow is decelerated, friction losses are reduced and static pressure is built up.
  • the axial section of the recirculation geometry advantageously runs parallel to an axis of rotation of the turbo compressor.
  • an embodiment of the recirculation geometry is favorable in which the flow channels can be assigned to one of the first compressor stage Inflow radial section and an outflow radial section that can be assigned to the second compressor stage, which direct the flow in each case in the inflow direction or in the outflow direction, before the flow fluid preferably flows out axially from the return geometry.
  • the embodiment is advantageous in which the flow channels in the outflow radial section widen in terms of their cross section in the direction of flow, so that an acceleration of the flow in the outflow radial section is reduced or even avoided.
  • the flow channels of the partial spirals of the recirculation geometry are formed in a compact design by an intermediate disk housing of the turbo compressor, which separates the first compressor stage from the second compressor stage.
  • the flow channels may extend in the outer peripheral surface of the washer housing.
  • the flow channels of the partial spirals are formed by the intermediate disk housing and the turbo compressor housing, the flow channels being formed by a channel free space between an outer surface of the intermediate disk housing and an inner wall surface of the turbo compressor housing.
  • the flow channels run in the outer peripheral surface of the washer housing and are covered by the turbo compressor housing.
  • the turbo compressor housing and the intermediate disk housing can also be designed in multiple parts.
  • the intermediate disk housing has an axial opening for receiving the compressor impeller of the first compressor stage with an axial opening radius R1 and the flow channels of the partial spirals extend from the tongue radius R2 of the intermediate disk housing.
  • the tongue radius is set to be 1.4 - 1.8 times larger than the axial opening radius R1.
  • the outflow direction of the compressor impeller of the first compressor stage and the inflow direction into the flow channels can thus be matched to one another with regard to the outflow angle and inflow angle.
  • an advantageous embodiment provides that the ratio of the extension (a1) of the flow channels of the partial spirals in the circumferential direction to adjacent circumferential sections (a2) without flow channels is formed, so that 0.2 ⁇ a1/(a1 +a2) ⁇ 0.5.
  • a turbo compressor 1 is shown schematically with a turbo compressor housing 3 and an intermediate disc housing 2 accommodated therein.
  • a compressor impeller 6 of the first compressor stage is arranged on the intermediate disc housing 2 at the flow inlet 4, partially inserted into an axial opening, which sucks in a flow fluid axially and blows it out radially in the direction of the second compressor stage.
  • the compressor impeller 7 of the second compressor stage is arranged axially separated from the compressor impeller 6, which also sucks in the flow fluid axially and blows it out radially in the direction of the outlet 11 of the intermediate disc housing 2 and finally the outlet 12 on the turbo compressor housing 3.
  • the turbo compressor housing 3 and the intermediate disk housing 2 provide a recirculation geometry for the flow connection of the first and second compressor stages with several partial spirals arranged evenly distributed in the circumferential direction, the flow channels running separately from one another 5 for establishing the flow connection from the inlet area of the first compressor stage to the outlet area of the second compressor stage, as shown in the exploded view according to FIG figure 2 and 3 can be seen.
  • the flow channels 5 are each created by a channel free space between the outer surface of the intermediate disk housing 2 and the inner wall surface of the turbo compressor housing 3.
  • the geometry of the respective flow channels 5 can be determined by both components or, for example, only by the intermediate disk housing 2, as in the case shown.
  • the recirculation geometry for the flow connection of the first and second compressor stage is generated by seven partial spirals, each with identical flow channels 5, which extend radially outwards from the flow inlet 4 and at the same time in the circumferential direction.
  • the flow is deflected multiple times by the manifolds 15, 16 provided in the flow channels 5, namely through the first manifold 15 from a substantially radial outflow direction into a first axial direction in the direction of the second compressor stage and then through the second manifold 16 back into the radial direction Inflow direction, which runs counter to the outflow direction.
  • the third elbow of the flow channels 5 is located within the intermediate disc housing 2 and is therefore not visible, but then directs the flow to the inflow direction in a second axial direction, which runs counter to the first axial direction.
  • a guide strut 8 is provided in each of the flow channels 5, which extends in the radial and axial direction over the first bend 15 and divides the flow fluid in the respective flow channel 5 centrally during the first deflection.
  • the geometric shape of the intermediate disk housing 2 is designed in such a way that the flow channels 5 extend from the inlet area with the flow inlet 4 of the first compressor stage to the outlet area of the first compressor stage and in the outlet area to form a circumferentially symmetrical overall channel 9 with a radius R9 and a central section through which there is no flow extend the axis of rotation with a radius R10.
  • the ratio a1/(a1+2) is set in a range of 0.2-0.5.
  • all flow channels 5 have the same size and the same flow cross section, but they can also be designed differently from one another, so that, for example, the length a1 of each flow channel or some flow channels 5 varies, so that a1 1 +a2 1 ⁇ a1 2 + would apply a2 2 .
  • the individual flow channels 5 each have curved twist struts in the transition to the overall channel 9, which impart a twist to the flow as it enters the overall channel 9, so that the flow at the outlet into the second compressor stage has a predefined twist.
  • the twist struts are as a negative in the in 7 indicated flow with the reference numeral 22 'and have an opening angle a5.
  • the flow channels 5 are designed as diffusers in their axial section z, in which the flow is directed in the first axial direction in the direction of the second compressor stage, and have a diffuser angle a4, the condition [R5(z) 2 -R4(z) 2 ] (a1 ⁇ n)/360 ⁇ 2 ⁇ R2 b2 is satisfied.
  • R5 is the outer radius as a function of the axial coordinate z
  • R4 is the radius of the inner wall of the flow channel 5 as a function of the axial coordinate z
  • R2 is the tongue radius or outlet radius of the return geometry
  • b2 is the flow channel width in the outflow radial section.
  • the diffusion ratio R2/R1 is set in a range of 1.4-1.8.
  • the diffuser angle is formed in section z2 of the axial section z, which defines part of the straight axial extension z1.
  • the flow channel width b2 in the radial outflow direction section is smaller than the flow channel widths b6 and b7 in the opposite radial inflow direction section.
  • the radial deflection and merging of the flow 5' is designed in such a way that the flow velocities are changed as little as possible or not at all.
  • b6 is the flow channel width adjacent to the second bend 16 at radius R6 and b7 is the flow channel width immediately before the third bend at radius R7, according to FIG figure 6 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

  • Die Erfindung betrifft einen Turboverdichter mit einer Rückführgeometrie zur optimierten Strömungsverbindung einer ersten und zweiten Verdichterstufe des Turboverdichters.
  • Aus dem Stand der Technik sind Lösungen zur Verbindung der ersten und zweiten Verdichterstufe bei Turboverdichtern bekannt, bei denen als Rückführgeometrie rotationssymmetrische Rückführkanäle (auch bekannt als sog. "return channels") verwendet werden.
  • Sie bestehen meist aus einer nach dem Verdichterlaufrad der ersten Verdichterstufe angeordneten Rückführgeometrie, einem 180°-Krümmer, einer meist mit Leiträdern versehene radialen Düse und einer 90°-Umlenkung zum Eintritt in den Bereich des nachfolgenden Verdichterlaufrads. Ein entsprechender Aufbau ist beispielsweise aus der Druckschrift EP 3056741 A1 oder der EP 2918848 A1 bekannt.
  • US984189 A offenbart einen Turboverdichter gemäß dem Oberbegriff des Anspruchs 1.
  • Bei den aus dem Stand der Technik bekannten Turboverdichtern entsteht ein unerwünschter Drall bei der Strömung in der ersten Verdichterstufe. Zudem ist die Zuströmung in die zweite Verdichterstufe ungleichmäßig. Weiterhin ist nachteilig, dass es bei geringen Massenströmen innerhalb des einen vorgesehenen rotationssymmetrischen Rückführkanals zur unerwünschten Strömungsablösung kommen kann. Ferner ist der Druckverlust im Rückführkanal vergleichsweise hoch.
  • Der Erfindung liegt deshalb die Aufgabe zugrunde, eine Rückführgeometrie für einen Turboverdichter bereit zu stellen, der das Risiko der Strömungsablösung verringert und den Druckverlust minimiert.
  • Diese Aufgabe wird durch die Merkmalskombination gemäß Patentanspruch 1 gelöst.
  • Erfindungsgemäß wird eine Rückführgeometrie eines Turboverdichters vorgeschlagen, der ausgebildet ist zur Strömungsverbindung einer ersten und zweiten Verdichterstufe des Turboverdichters. Die Rückführgeometrie weist mehrere in Umfangsrichtung gleichmäßig verteilt angeordnete, zumindest teilweise in Umfangsrichtung verlaufende Teilspiralen auf, die zumindest abschnittsweise getrennt voneinander verlaufende Strömungskanäle zur Strömungsverbindung der ersten und zweiten Verdichterstufe bilden. In "Rückführgeometrie" ist der Wortbestandteil "-geometrie" enthalten, bestimmt jedoch die sich ergebende Strömungsleitung durch die Ausbildung der Strömungskanäle.
  • Die Mehrzahl an Strömungskanälen verringert den Strömungsquerschnitt jedes einzelnen Strömungskanals und bietet eine gleichmäßigere Zuströmung in die zweite Verdichterstufe. Zudem kann die maximale Erstreckungsweite, insbesondere in radialer Richtung, jedes einzelenden Kanals gegenüber einem einzelnen rotationssymmetrischen Rückführkanal vergrößert werden, ohne dass bei Betriebspunkten mit geringem Massenstrom großflächige Strömungsablösungen oder Rückströmungen zu verzeichnen wären.
  • Erfindungsgemäß ist vorgesehen, dass die Strömungskanäle mehrere nacheinander angeordnete Krümmer ausbilden, welche die Strömung zwischen der ersten und zweiten Verdichterstufe mehrfach umlenken. Auf diese Weise ist es möglich, aus der radialen Abströmrichtung des Verdichterlaufrads des Turboverdichteres in der ersten Verdichterstufe eine optimale axiale Anströmung des Verdichterlaufrads der zweiten Verdichterstufe zu realisieren.
  • Erfindungsgemäß ist eine Ausführung der Rückführgeometrie, bei der die Krümmer der Strömungskanäle die Strömung aus einer radialen Ausströmrichtung zunächst in eine erste Axialrichtung in Richtung der zweiten Verdichterstufe und anschließend zurück in eine radiale Einströmrichtung, welche der Ausströmrichtung entgegenläuft, leiten. Noch vorteilhafter ist die Ausbildung, bei der der in Strömungsrichtung gesehen letzte Krümmer der Strömungskanäle die Strömung anschließend zur Einströmrichtung in eine zweite Axialrichtung leitet, welche der ersten Axialrichtung entgegenläuft. Die zweite Axialrichtung entspricht dabei der Ansaugrichtung des Verdichterlaufrads der zweiten Verdichterstufe, so dass über die Strömungskanäle eine vordefinierte Zuströmung genau zum Ansaugbereich des Verdichterlaufrads der zweiten Verdichterstufe erfolgen kann. Die Krümmer erzeugen dabei jeweils eine im Wesentlichen 90°-Umlenkung.
  • Je nach Bauart des Turboverdichters kann das Verdichterlaufrad der zweiten Verdichterstufe in gleicher Richtung wie das Verdichterlaufrad der vorherigen Verdichterstufe angeordnet sein, d.h. die Richtung des Eintritts ist bei beiden Verdichterlaufrädern gleich. Ebenso können beide Verdichterlaufräder auch in entgegengesetzter Richtung angeordnet sein, d.h. in sog. Rücken an Rücken Anordnung, die überwiegend bei zweistufigen Turboverdichtern sinnvoll ist, wobei die beispielsweise als Spirale ausgebildete Ausströmgeometrie der zweiten Verdichterstufe und das sich daran anschließende Austrittsrohr durch den Bereich zwischen den einzelnen Teilspiralen der Rückführgeometrie geführt werden können. Grundsätzlich ist die Erfindung nicht auf zweistufige Turboverdichter beschränkt, sonder auch auf mehrstufige Ausführungen anwendbar.
  • In einer Weiterbildung der Rückführgeometrie ist vorgesehen, dass sich die Strömungskanäle der Teilspiralen von einem Eintrittsbereich der ersten Verdichterstufe, insbesondere vom Austrittsbereich des Laufrads der ersten Verdichterstufe, zu einem Austrittsbereich der ersten Verdichterstufe, insbesondere zum Eintrittsbereich des Laufrads der zweiten Verdichterstufe, erstrecken und sich im Austrittsbereich zu einem umfangssymmetrischen Gesamtkanal vereinigen. Der Gesamtkanal bildet dann die Zuströmung für die bzw. in die zweite Verdichterstufe. Dies funktioniert besonders vorteilhaft bei einer Ausführung bei der sich die Strömungskanäle in Strömungsrichtung nach dem in Strömungsrichtung gesehen letzten Krümmer, der die Strömung in die zweite Axialrichtung leitet, zu dem Gesamtkanal vereinigen.
  • Ferner ist ein Ausführungsbeispiel der Rückführgeometrie dadurch gekennzeichnet, dass die einzelnen Strömungskanäle in einem Übergang zu dem Gesamtkanal jeweils gekrümmte Wände und/oder gekrümmte Drallstreben aufweisen. Die Drallstreben sind ausgebildet, der Strömung beim Eintritt in den Gesamtkanal einen vordefinierten Drall zu verleihen, der die Ansaugung durch das Verdichterrad der zweiten Verdichterstufe effektiv begünstigt.
  • Zur Unterstützung der Strömungsumlenkung wird erfindungsgemäß die Rückführgeometrie derart ausgebildet, dass der in den Strömungskanälen jeweils gebildete Krümmer, der die Strömung aus der radialen Ausströmrichtung in die erste Axialrichtung in Richtung der zweiten Verdichterstufe umlenkt, jeweils eine Leitstrebe aufweist, welche sich entlang des jeweiligen Strömungskanals in Radialrichtung nach außen und in die erste Axialrichtung erstreckt. Die Leitstreben unterteilen den jeweiligen Strömungskanal in einer vorteilhaften Ausführung mittig, so dass beide verbleibenden Teile des jeweiligen Strömungskanals mit gleich großem Massenstrom durchströmt werden. Auch wird in einer Weiterbildung vorgesehen, dass sich die Leitstreben radial außerhalb eines Zungenradius der Rückführgeometrie erstrecken, d.h. gegenüber einem durch den Zungenradius gebildeten Eintritt des jeweiligen Strömungskanals nach radial außen beabstandet.
  • Strömungstechnisch ist ferner erfindungsgemäß die Rückführgeometrie vorgesehen, bei der die Strömungskanäle einen Axialabschnitt aufweisen, in denen die Strömung in die erste Axialrichtung in Richtung der zweiten Verdichterstufe geleitet wird, und der Axialabschnitt der Strömungskanäle als Diffusor ausgebildet ist. Durch die Ausbildung des jeweiligen Axialabschnitts als Diffusor wird die Strömung verzögert, Reibungsverluste werden reduziert und ein statischer Druck aufgebaut. Der Axialabschnitt der Rückführgeometrie verläuft vorteilhaferweise parallel zu einer Rotationsachse des Turboverdichters.
  • Weiterhin ist eine Ausführung der Rückführgeometrie günstig, bei der die Strömungskanäle einen der ersten Verdichterstufe zuordenbaren Einströmradialabschnitt und einen der zweiten Verdichterstufe zuordenbaren Ausströmradialabschnitt aufweisen, welche die Strömung jeweils in die Einströmrichtung bzw. in die Ausströmrichtung leiten, bevor das Strömungsfluid vorzugsweise axial aus der Rückführgeometrie ausströmt. Strömungstechnisch ist dabei die Ausführung von Vorteil, bei der sich die Strömungskanäle im Ausströmradialabschnitt bezüglich ihres Querschnitts in Strömungsrichtung aufweiten, so dass eine Beschleunigung der Strömung im Ausströmradialabschnitt verringert oder gar vermieden wird.
  • Gebildet werden die Strömungskanäle der Teilspiralen der Rückführgeometrie in einer kompakten Ausführung durch ein Zwischenscheibengehäuse des Turboverdichters, der die erste Verdichterstufe von der zweiten Verdichterstufe trennt. Die Strömungskanäle können sich in der Außenumfangsfläche des Zwischenscheibengehäuses erstrecken. In einer Weiterbildung werden die Strömungskanäle der Teilspiralen gebildet durch das Zwischenscheibengehäuse und das Turboverdichtergehäuse, wobei die Strömungskanäle durch einen Kanalfreiraum zwischen einer Außenfläche des Zwischenscheibengehäuses und einer Innenwandfläche des Turboverdichtergehäuses gebildet sind. Beispielsweise verlaufen die Strömungskanäle in der Außenumfangsfläche des Zwischenscheibengehäuses und werden von dem Turboverdichtergehäuse abgedeckt. In alternativen Ausführungen können das Turboverdichtergehäuse und das Zwischenscheibengehäuse auch mehrteilig ausgebildet werden.
  • Bei einer Weiterbildung der Rückführgeometrie ist vorgesehen, dass das Zwischenscheibengehäuse eine Axialöffnung zur Aufnahme des Verdichterlaufrads der ersten Verdichterstufe mit einem Axialöffnungsradius R1 aufweist und die Strömungskanäle der Teilspiralen sich ausgehend von dem Zungenradius R2 des Zwischenscheibengehäuse erstecken. Der Zungenradius wird dabei um den Faktor 1,4 - 1,8 größer ist als der Axialöffnungsradius R1 festgelegt. Eine weitere Vergrößerung würde das Risiko einer zu vermeidenden Strömungsablösung bergen.
  • In einer Ausführungsvariante der Rückführgeometrie erstrecken sich die Teilspiralen an dem durch den Zungenradius R2 bestimmten Eintritt der Strömungskanäle mit einem Winkel a3 = 60° - 80° gegenüber einer Radialebene im Umfangsrichtung verlaufend nach radial außen. Die Abströmrichtung des Verdichterlaufrads der ersten Verdichterstufe und die Einströmrichtung in die Strömungskanäle kann somit bezüglich der Abströmwinkel und Einströmwinkel aufeinander abgestimmt werden.
  • Bezüglich der Größe der Strömungskanäle der Rückführgeometrie ist in einer vorteilhaften Ausführung vorgesehen, dass das Verhältnis der Erstreckung (a1) der Strömungskanäle der Teilspiralen in Umfangsrichtung gegenüber angrenzenden Umfangsabschnitten (a2) ohne Strömungskanäle gebildet wird, so dass gilt 0,2 ≤ a1/(a1+a2) ≤ 0,5.
  • Andere vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet bzw. werden nachstehend zusammen mit der Beschreibung der bevorzugten Ausführung der Erfindung anhand der Figuren näher dargestellt. Es zeigen:
  • Fig. 1
    eine schematische Ansicht eines Turboverdichters;
    Fig. 2
    eine Explosionsdarstellung der Teile des Turboverdichters aus Fig. 1;
    Fig. 3
    eine Draufsicht auf ein Zwischenscheibengehäuse aus Fig. 2 mit Teilspiralen, welche die Strömungskanäle bilden;
    Fig. 4
    eine einlassseitige Draufsicht auf eine schematisch dargestellte, sich durch einen Strömungsverlauf ergebende Strömungsgeometrie;
    Fig. 5
    eine seitliche Schnittansicht der Strömungsgeometrie aus Fig. 4;
    Fig. 6
    eine rückseitige Draufsicht der Strömungsgeometrie aus Fig. 4;
    Fig. 7
    eine Seitenansicht der Strömungsgeometrie aus Fig. 4.
  • Die Figuren sind beispielhaft schematisch und dienen zum besseren Verständnis der Erfindung. Gleiche Bezugszeichen benennen gleiche Teile in allen Ansichten.
  • In Figur 1 ist schematisch ein Turboverdichter 1 mit einem Turboverdichtergehäuse 3 und einem darin aufgenommenem Zwischenscheibengehäuse 2 dargestellt. An dem Zwischenscheibengehäuse 2 ist am Strömungseinlass 4, teilweise in eine Axialöffnung eingesetzt, ein Verdichterlaufrad 6 der ersten Verdichterstufe angeordnet, das ein Strömungsfluid axial ansaugt und radial in Richtung der zweiten Verdichterstufe ausbläst. In dem Zwischenscheibengehäuse 2 ist axial getrennt zum Verdichterlaufrad 6 das Verdichterlaufrad 7 der zweiten Verdichterstufe angeordnet, welches das Strömungsfluid ebenfalls axial ansaugt und radial in Richtung des Auslasses 11 des Zwischenscheibengehäuses 2 und schließlich des Austritts 12 am Turboverdichtergehäuse 3 ausbläst.
  • Das Turboverdichtergehäuse 3 und das Zwischenscheibengehäuse 2 stellen eine Rückführgeometrie zur Strömungsverbindung der ersten und zweiten Verdichterstufe mit mehrere in Umfangsrichtung gleichmäßig verteilt angeordneten Teilspiralen bereit, die getrennt voneinander verlaufende Strömungskanäle 5 zur Herstellung der Strömungsverbindung vom Eintrittsbereich der ersten Verdichterstufe zum Austrittsbereich der zweiten Verdichterstufe bilden, wie es in der Explosionsdarstellung gemäß Figur 2 und 3 zu erkennen ist. Die Strömungskanäle 5 sind jeweils erzeugt durch einen Kanalfreiraum zwischen der Außenfläche des Zwischenscheibengehäuses 2 und der Innenwandfläche des Turboverdichtergehäuses 3. Die Geometrie der jeweiligen Strömungskanäle 5 kann dabei von beiden Bauteilen oder beispielsweise auch nur durch das Zwischenscheibengehäuse 2, wie im gezeigten Fall, bestimmt werden.
  • In der in den Figuren 2 und 3 dargestellten Ausführung wird die Rückführgeometrie zur Strömungsverbindung der ersten und zweiten Verdichterstufe durch sieben Teilspiralen mit jeweils identischen Strömungskanälen 5 erzeugt, die sich vom Strömungseinlass 4 nach radial außen und gleichzeitig in Umfangsrichtung erstrecken. Die Strömung wird von durch in den Strömungskanälen 5 vorgesehene Krümmer 15, 16 mehrfach umgelenkt, und zwar durch den ersten Krümmer 15 aus einer im Wesentlichen radialen Ausströmrichtung in eine erste Axialrichtung in Richtung der zweiten Verdichterstufe und anschließend durch den zweiten Krümmer 16 zurück in die radiale Einströmrichtung, welche der Ausströmrichtung entgegenläuft. Der dritte Krümmer der Strömungskanäle 5 liegt innerhalb des Zwischenscheibengehäuses 2 und ist deshalb nicht zu erkennen, leitet die Strömung jedoch anschließend zur Einströmrichtung in eine zweite Axialrichtung, welche der ersten Axialrichtung entgegenläuft.
  • In jedem der Strömungskanäle 5 ist eine Leitstrebe 8 vorgesehen, die sich in radialer und axialer Richtung über den ersten Krümmer 15 hinweg erstreckt und das Strömungsfluid in dem jeweiligen Strömungskanal 5 während der ersten Umlenkung mittig aufteilt.
  • Die geometrische Gestaltung der Strömungsverbindung der Rückführgeometrie ist in den Figuren 4 - 7 anhand der sich ergebenden Strömungsgeometrie dargestellt, d.h. in den Figuren 4 - 7 sind keine Bauteile, sondern die sich durch den Aufbau des Turboverdichtergehäuses 3 und insbesondere des Zwischenscheibengehäuses 2 ergebende geometrische Form der frei durchströmbaren Rückführgeometrie und mithin der sich ergebenden Strömung von der ersten zur zweiten Verdichterstufe gezeigt. Deshalb wird die die Form der Strömungskanäle 5 repräsentierende Strömung in den Figuren 4 - 7 mit 5' gekennzeichnet. Die geometrische Form des Zwischenscheibengehäuses 2 ist dabei so gestaltet, dass sich die Strömungskanäle 5 von dem Eintrittsbereich mit dem Strömungseinlass 4 der ersten Verdichterstufe zu dem Austrittsbereich der ersten Verdichterstufe erstrecken und im Austrittsbereich zu einem umfangssymmetrischen Gesamtkanal 9 mit einem Radius R9 und einem undurchströmten Zentralabschnitt um die Rotationsachse mit einem Radius R10 erstrecken.
  • Die Rückführgeometrie teilt sich in einen Anzahl n Strömungskanäle 5 (im vorliegenden Fall n=7) mit jeweils umfänglicher Ausdehnung a1 auf, die Zwischenbereiche ohne Strömungskanäle sind mit a2 gekennzeichnet. Das Verhältnis a1/(a1+2) wird in einem Bereich von 0,2-0,5 festgelegt. Im gezeigten Ausführungsbeispiel weisen alle Strömungskanäle 5 dieselbe Größe und denselben Strömungsquerschnitt auf, jedoch können diese auch abweichend voneinander ausgebildet werden, so dass beispielsweise die Längen a1 jedes Strömungskanals oder mancher Strömungskanäle 5 variiert, so dass gleten würde a11+a21≠a12+a22.
  • Die einzelnen Strömungskanäle 5 weisen im Übergang zu dem Gesamtkanal 9 jeweils gekrümmte Drallstreben auf, die der Strömung beim Eintritt in den Gesamtkanal 9 einen Drall verleihen, so dass die Strömung am Auslass in die zweite Verdichterstufe einen vordefinierten Drall aufweist. Die Drallstreben sind als Negativ in der in Fig. 7 gezeigten Strömung mit dem Bezugszeichen 22' gekennzeichnet und weisen einen Öffnungswinkel a5 auf.
  • Die Strömungskanäle 5 sind in ihrem Axialabschnitt z, in denen die Strömung in die erste Axialrichtung in Richtung der zweiten Verdichterstufe geleitet wird, als Diffusor ausgebildet und weisen einen Diffusorwinkel a4 auf, wobei die Bedingung [R5(z)2-R4(z)2] (a1·π·n)/360 ≤ 2·π·R2·b2 erfüllt wird. Dabei ist R5 der Außenradius als Funktion der axialen Koordinate z, R4 der Radius der Innenwandung des Strömungskanals 5 als Funktion der axialen Koordinate z, R2 der Zungenradius oder Austrittsradius der Rückführgeometrie und b2 die Strömungskanalbreite im Ausströmradialabschnitt. Das Diffusionsverhältnis R2/R1 wird in einem Bereich von 1,4-1,8 festgelegt. An den Zungenradius R2 anschließend folgen die Teilspiralen der Strömungskanäle 5 mit einem Zungenwinkel a3 zwischen 60° und 80° mit dem Zungenradius R11 sowie einer am Eintritt kleinsten durchströmten Fläche 27. Die zur Verbesserung der Umlenkung angebrachte Leitstrebe 8 beginnt bei R3>R2, so dass die kleinste durchströmte Fläche im jeweiligen Strömungskanal 5 nicht weiter verengt wird. Der Diffusorwinkel ist ausgebildet im Abschnitt z2 des Axialabschnitts z, der einen Teil der geraden Axialerstreckung z1 bestimmt. Die Strömungskanalbreite b2 im radialen Ausströmrichtungsabschnitt ist geringer als die Strömungskanalbreiten b6 und b7 im gegenüberliegenden radialen Einströmrichtungsabschnitt.
  • Die radiale Umlenkung und Zusammenführung der Strömung 5' ist so gestaltet, dass die Strömungsgeschwindigkeiten möglichst nicht oder nur wenig verändert werden. In dem gezeigten Ausführungsbeispiel ist deshalb die Bedingung erfüllt, dass b6·R6·a1/360·n = b7·R7. Dabei ist b6 die Strömungskanalbreite angrenzend an den zweiten Krümmer 16 beim Radius R6 und b7 die Strömungskanalbreite unmittelbar vor dem dritten Krümmer beim Radius R7, gemäß Figur 6.

Claims (12)

  1. Turboverdichter (1) in Radialbauweise mit einer Ruckführgeometrie zur Strömungsverbindung einer ersten und zweiten Verdichterstufe des Turboverdichters (1), wobei die Rückführgeometrie mehrere in Umfangsrichtung gleichmäßig oder ungleichmäßig verteilt angeordnete, zumindest teilweise in Umfangsrichtung verlaufende Teilspiralen aufweist, die zumindest abschnittsweise getrennt voneinander verlaufende Strömungskanäle (5) zur Strömungsverbindung der ersten und zweiten Verdichterstufe bilden, wobei die Strömungskanäle (5) mehrere nacheinander angeordnete Krümmer (15, 16) ausbilden, welche die Strömung zwischen der ersten und zweiten Verdichterstufe mehrfach umlenken,
    wobei die Krümmer der Strömungskanäle (5) die Strömung aus einer radialen Ausströmrichtung in eine erste Axialrichtung in Richtung der zweiten Verdichterstufe und anschließend zurück in eine radiale Einströmrichtung, welche der Ausströmrichtung entgegenläuft, leiten, wobei die Strömungskanäle (5) einen Axialabschnitt aufweisen, in denen die Strömung in die erste Axialrichtung in Richtung der zweiten Verdichterstufe geleitet wird, wobei der Axialabschnitt der Strömungskanäle (5) als Diffusor ausgebildet ist,
    dadurch gekennzeichnet, dass
    der in den Strömungskanälen (5) jeweils gebildete Krümmer (15), der die Strömung aus der radialen Ausströmrichtung in die erste Axialrichtung in Richtung der zweiten Verdichterstufe umlenkt, jeweils eine Leitstrebe (8) aufweist, welche sich entlang des jeweiligen Strömungskanals in Radialrichtung nach außen und in die erste Axialrichtung erstreckt.
  2. Turboverdichter nach Anspruch 1, dadurch gekennzeichnet, dass einer der Krümmer der Strömungskanäle (5) die Strömung anschließend zur Einströmrichtung in eine zweite Axialrichtung leitet, welche der ersten Axialrichtung entgegenläuft.
  3. Turboverdichter nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass sich die Strömungskanäle (5) von einem der ersten Verdichterstufe zuordenbaren Eintrittsbereich zu einem der ersten Verdichterstufe zuordenbaren Austrittsbereich erstrecken und sich im Austrittsbereich zu einem umfangssymmetrischen Gesamtkanal (9) vereinigen.
  4. Turboverdichter nach den vorigen Ansprüche 2 und 3, dadurch gekennzeichnet, dass sich die Strömungskanäle (5) in Strömungsrichtung nach dem Krümmer, der die Strömung in die zweite Axialrichtung leitet, zu dem Gesamtkanal (9) vereinigen.
  5. Turboverdichter nach dem vorigen Anspruch, dadurch gekennzeichnet, dass die einzelnen Strömungskanäle (5) in einem Übergang zu dem Gesamtkanal (9) jeweils gekrümmte Wände oder gekrümmte Drallstreben aufweisen, welche ausgebildet sind, der Strömung beim Eintritt in den Gesamtkanal (9) einen Drall zu verleihen, so dass die Strömung am Auslass in die zweite Verdichterstufe einen vordefinierten Drall aufweist.
  6. Turboverdichter nach einem der vorigen Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Strömungskanäle (5) einen der ersten Verdichterstufe zuordenbaren Einströmradialabschnitt und einen der zweiten Verdichterstufe zuordenbaren Ausströmradialabschnitt aufweisen, welche die Strömung in die Einströmrichtung und in die Ausströmrichtung leiten, wobei sich die Strömungskanäle (5) im Ausströmradialabschnitt bezüglich ihres Querschnitts in Strömungsrichtung aufweiten..
  7. Turboverdichter nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass er gebildet wird durch ein Zwischenscheibengehäuse (2) eines Turboverdichters (1), der die erste Verdichterstufe von der zweiten Verdichterstufe trennt.
  8. Turboverdichter nach dem vorigen Anspruch, dadurch gekennzeichnet, dass die Strömungskanäle (5) der Teilspiralen gebildet werden durch das Zwischenscheibengehäuse (2) und ein Turboverdichtergehäuse (3), wobei die Strömungskanäle (5) durch einen Kanalfreiraum zwischen einer Außenfläche des Zwischenscheibengehäuses (2) und einer Innenwandfläche des Turboverdichtergehäuses (3) gebildet sind.
  9. Turboverdichter nach einem der vorigen beiden Ansprüche, dadurch gekennzeichnet, dass das Zwischenscheibengehäuse (2) eine Axialöffnung zur Aufnahme des Verdichterlaufrads der ersten Verdichterstufe mit einem Axialöffnungsradius R1 aufweist und die Strömungskanäle (5) der Teilspiralen sich ausgehend von einem Zungenradius R2 des Zwischenscheibengehäuse (2) erstecken, wobei der Zungenradius um den Faktor 1,4 - 1,8 größer ist als der Axialöffnungsradius R1.
  10. Turboverdichter nach dem vorigen Anspruch, dadurch gekennzeichnet, dass sich die Teilspiralen an einem durch den Zungenradius R2 bestimmten Eintritt der Strömungskanäle (5) mit einem Winkel a3 = 60° - 80° gegenüber einer Radialebene im Umfangsrichtung verlaufend nach radial außen erstrecken.
  11. Turboverdichter nach einem der vorigen beiden Ansprüche, dadurch gekennzeichnet, dass ein Verhältnis der Erstreckung (a1) der Strömungskanäle (5) der Teilspiralen in Umfangsrichtung gegenüber angrenzenden Umfangsabschnitten (a2) ohne Strömungskanäle gebildet wird, dass gilt 0,2 ≤ a1/(a1+a2) ≤ 0,5.
  12. Turboverdichter nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass zumindest zwei der Strömungskanäle (5) zur Strömungsverbindung der ersten und zweiten Verdichterstufe voneinander einen unterschiedlichen Gesamt-Strömungsquerschnitt aufweisen.
EP18729651.2A 2017-06-27 2018-06-05 Turboverdichter mit rückführstömungskanälen Active EP3577347B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017114232.0A DE102017114232A1 (de) 2017-06-27 2017-06-27 Rückführgeometrie eines Turboverdichters
PCT/EP2018/064772 WO2019001910A1 (de) 2017-06-27 2018-06-05 Rückführstömungskanäle für einen mehrstufigen turboverdichter

Publications (2)

Publication Number Publication Date
EP3577347A1 EP3577347A1 (de) 2019-12-11
EP3577347B1 true EP3577347B1 (de) 2022-04-27

Family

ID=62323080

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18729651.2A Active EP3577347B1 (de) 2017-06-27 2018-06-05 Turboverdichter mit rückführstömungskanälen

Country Status (5)

Country Link
US (1) US11519424B2 (de)
EP (1) EP3577347B1 (de)
CN (1) CN207406386U (de)
DE (1) DE102017114232A1 (de)
WO (1) WO2019001910A1 (de)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US984189A (en) * 1908-06-27 1911-02-14 William C Brown Centrifugal and turbine pump and the like.

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2748713A (en) * 1952-03-21 1956-06-05 Buchi Alfred Multi-stage centrifugal pump or blower
US2900126A (en) * 1953-08-29 1959-08-18 Austin Motor Co Ltd Centrifugal compressors
CH331941A (de) * 1955-01-27 1958-08-15 Buechi Alfred J Dipl Ing Verfahren zur Herstellung eines Satzes von Zentrifugalfördermaschinen und nach diesem Verfahren hergestellter Maschinensatz
GB854127A (en) * 1957-06-28 1960-11-16 Power Jets Res & Dev Ltd Improvements in or relating to radial-flow compressors and turbines
US3171353A (en) * 1962-02-27 1965-03-02 Kenton D Mcmahan Centrifugal fluid pump
US4531356A (en) * 1981-06-15 1985-07-30 The Garrett Corporation Intake vortex whistle silencing apparatus and methods
US6062028A (en) * 1998-07-02 2000-05-16 Allied Signal Inc. Low speed high pressure ratio turbocharger
US6540481B2 (en) * 2001-04-04 2003-04-01 General Electric Company Diffuser for a centrifugal compressor
WO2003004244A1 (fr) 2001-07-03 2003-01-16 Kabushiki Kaisha Top Procede de fabrication du tube externe d'un injecteur
US20070036662A1 (en) * 2005-08-05 2007-02-15 C.R.F Societa Consortilla Per Azioni Multistage motor-compressor for the compression of a fluid
US8181462B2 (en) * 2009-06-23 2012-05-22 Honeywell International Inc. Turbocharger with two-stage compressor, including a twin-wheel parallel-flow first stage
JP5611307B2 (ja) 2012-11-06 2014-10-22 三菱重工業株式会社 遠心回転機械のインペラ、遠心回転機械
JP6133748B2 (ja) 2013-10-09 2017-05-24 三菱重工業株式会社 インペラ及びこれを備える回転機械
AT516978B1 (de) * 2015-03-26 2018-04-15 Avl List Gmbh Mehrstufiger abgasturbolader

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US984189A (en) * 1908-06-27 1911-02-14 William C Brown Centrifugal and turbine pump and the like.

Also Published As

Publication number Publication date
US20200080569A1 (en) 2020-03-12
EP3577347A1 (de) 2019-12-11
DE102017114232A1 (de) 2018-12-27
US11519424B2 (en) 2022-12-06
WO2019001910A1 (de) 2019-01-03
CN207406386U (zh) 2018-05-25

Similar Documents

Publication Publication Date Title
DE3322295C2 (de) Axialventilator
EP0690206B1 (de) Diffusor für Turbomaschine
DE69405806T2 (de) Kreiselverdichter und Diffusor mit Schaufeln
DE69501372T2 (de) Ein Gasturbinentriebwerk und ein Diffusor dafür
DE60319606T2 (de) Abblassystem für die Statorstufe eines Verdichters
DE10037684A1 (de) Niederdruckdampfturbine mit Mehrkanal-Diffusor
DE102010038020A1 (de) Abgasdiffusor
DE112008000850T5 (de) Ringlüfter- und Lüfterkragen-Luftführungssystem
EP3824190B1 (de) Ventilator und leiteinrichtung für einen ventilator
DE1528762B2 (de) Mehrstufiger Radialverdichter
EP3408503A1 (de) Strömungsmaschine mit beschaufeltem diffusor
CH704212A1 (de) Axialkompressor.
DE102008036633B4 (de) Turbolader mit einem Einlegeblech
EP3404269B1 (de) Gebläseanordnung mit strömungsteilungsdüse
EP3568597B1 (de) Rückführstufe und radialturbofluidenergiemaschine
WO2016083382A1 (de) Kreiselpumpe mit einer leiteinrichtung
EP3592987B1 (de) Halbspiralgehäuse
DE102004042295A1 (de) Rotor für ein Triebwerk
EP3577347B1 (de) Turboverdichter mit rückführstömungskanälen
EP3390832B1 (de) Rückführstufe einer radialturbofluidenergiemaschine
DE202009003880U1 (de) Multi-Inlet-Vakuumpumpe
DE202017103825U1 (de) Rückführgeometrie eines Turboverdichters
EP3577346B1 (de) Turboverdichter mit integrierten strömungskanälen
EP4063663A1 (de) Schaufelloser strömungsdiffusor
EP4063662A1 (de) Mehrstufiger axiallüfter

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190903

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220104

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1487120

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018009508

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220829

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220728

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220827

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018009508

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

26N No opposition filed

Effective date: 20230130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220605

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220605

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180605

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240620

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240617

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240619

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240617

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240621

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240628

Year of fee payment: 7