[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP3553408B1 - Procédé de fonctionnement d'un appareil chauffant hybride et appareil chauffant hybride - Google Patents

Procédé de fonctionnement d'un appareil chauffant hybride et appareil chauffant hybride Download PDF

Info

Publication number
EP3553408B1
EP3553408B1 EP19160242.4A EP19160242A EP3553408B1 EP 3553408 B1 EP3553408 B1 EP 3553408B1 EP 19160242 A EP19160242 A EP 19160242A EP 3553408 B1 EP3553408 B1 EP 3553408B1
Authority
EP
European Patent Office
Prior art keywords
heating
heating source
heat
source
operated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19160242.4A
Other languages
German (de)
English (en)
Other versions
EP3553408A1 (fr
Inventor
Lars Thum
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vaillant GmbH
Original Assignee
Vaillant GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vaillant GmbH filed Critical Vaillant GmbH
Publication of EP3553408A1 publication Critical patent/EP3553408A1/fr
Application granted granted Critical
Publication of EP3553408B1 publication Critical patent/EP3553408B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/355Control of heat-generating means in heaters
    • F24H15/36Control of heat-generating means in heaters of burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/101Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/107Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using fluid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/144Measuring or calculating energy consumption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/238Flow rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/355Control of heat-generating means in heaters
    • F24H15/37Control of heat-generating means in heaters of electric heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • F24H9/2014Arrangement or mounting of control or safety devices for water heaters using electrical energy supply
    • F24H9/2028Continuous-flow heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/219Temperature of the water after heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/258Outdoor temperature

Definitions

  • the invention relates to a method for operating a hybrid heating device and a hybrid heating device.
  • a hybrid heater in the context of this invention is a heater that generates heat both from the combustion of a fossil fuel such as natural gas and from an electrical energy source and makes it available for heating a building.
  • the modulation range can be extended downwards, i.e. in the range of lower powers.
  • Modulation ranges or power ratios between minimum and maximum power of 1:20 are very good values according to the state of the art.
  • this object is achieved with a hybrid heater with a burner according to the prior art and an additional electric heater according to the method according to claim 1.
  • DE 3109990 A1 shows a comparable heating cartridge outside of the radiator, but also outside of the heater.
  • the DE 3109990 A1 teaches to use the electric heating cartridge when there is little heating demand.
  • the frost protection function during absence or operation outside of the normal heating periods is explicitly mentioned here. Here, too, an either-or operation is provided.
  • the DE 3325822 A1 shows a boiler with an electrical preheater. This serves to avoid condensation.
  • the patent application EP 2 189 729 A2 discloses a method for operating a heating system with two heat generators, one for the base load and one for the peak load.
  • the invention is directed to the coordination of the services when switching on the peak load heat generator.
  • the base load heat generator is a heat pump and the peak load heat generator is a boiler.
  • the patent application EP 2 615 385 A1 describes a method for regulating an energy converter for several offers of heating or cooling power in order to supply several heat sinks in an energy-efficient manner.
  • a heater with burner and primary heat exchanger in which an electrical auxiliary heater provided in the flow or return of the heat transfer medium is operated to expand the modulation range below the minimum output of the burner or additionally above the maximum output range.
  • the additional heater is operated as soon as the heat demand falls below the minimum output of the burner or exceeds the maximum output.
  • the object of the invention is to provide an alternative method for operating a heater with a burner and an electrical auxiliary heater to expand the modulation range.
  • frequent switching back and forth between the burner and the electrical auxiliary heater should be avoided in the transition area.
  • the current heat demand can be defined, for example, by a target flow temperature of the heat transfer medium in the heating circuit.
  • a target flow temperature is determined depending on the outside temperature and the desired room temperature on the basis of a mathematical building model (heating curve).
  • a heater adjusts its output by means of a controller so that the actual flow temperature corresponds to the target flow temperature. The method according to the invention is therefore carried out on the basis of the flow temperature.
  • the first heat source is not operated below its minimum output.
  • the switchover to the first heat source according to claim 2 or 3 is carried out according to two alternative method variants.
  • the second heat source is operated with a maximum of the minimum power or a power slightly above the minimum power of the first heat source.
  • An increased heat requirement leads to a decrease in the flow temperature, which, according to the method described above, leads to a certain difference being exceeded over a certain period of time.
  • the output of the second heat source can also be increased beyond the minimum output of the first heat source. If the second heat source is operated over a certain period of time with an output above the minimum output of the first heat source, this leads, according to the invention, to the second heat source being switched off and the first heat source being switched on.
  • the differential amounts of the flow temperatures are preferably less than 1 K, particularly preferably less than 0.5 K.
  • the measurement periods within which the temperature deviation of the actual flow temperature must be greater than the difference in order to switch the heat source is preferably at least the period of circulation of the heat transfer medium in the heating circuit.
  • the period of circulation is understood to be that which is required for complete circulation of the heat transfer medium in the heating circuit. This time depends on the volume flow of the circulation pump and the total volume of the heating circuit.
  • the minimum power and the maximum power of the first heat source is determined by measured variables that are already known in the system. This is the speed of the fan, an air mass flow calculated from the speed of the fan and the current consumption of the fan, an air mass flow measured by a volume or mass flow sensor.
  • a device for performing the method is protected according to the independent device claim.
  • FIG. 1 shows an apparatus for performing the method according to the invention.
  • the heating device 1 comprises the first heat source 3 and the second heat source 4.
  • the first heat source 3 is a burner operated with fuel gas, to which a fuel gas-air mixture is fed via a fan 2.
  • the exhaust gases are discharged via an exhaust pipe (not shown here).
  • the heat generated by the combustion is transferred to a heat transfer medium that circulates in a heating circuit 11 with the aid of a circulation pump 12.
  • the heat transfer medium transfers the heat to a heat sink 8, for example a heater for a building or to a heat sink 9, for example a hot water storage tank for domestic water.
  • the heating circuit 11 can be adjusted via a three-way valve 12 so that the heated Heat transfer medium is passed either through the heat sink 8 or through the secondary heat exchanger 6, which transfers the heat to the heat sink hot water tank 9.
  • a second heat source 4 is arranged behind the first heat source 3 in the flow direction of the heat transfer medium.
  • it is an electrical heater in the form of a heating cartridge, for example, around which the heat transfer medium flows.
  • the second heat source 4 can alternately or together with the first heat source 3 transfer heat to the heat transfer medium.
  • a control device 5 controls the heat source 3 and the heat source 4 via the fan 2.
  • the control device 5 has the information about the current flow temperature via the flow temperature sensor 13.
  • the control device 5 is set up to specify the current heat demand via an outside temperature sensor 7, the selected room temperature and a mathematical model of the building. This can be done, for example, in the form of a target flow temperature. By comparison with the actual flow temperature measured by means of the flow temperature sensor, the first heat source 3 and the second heat source 4 can be controlled.
  • the first heat source 3 is designed so that it has a minimum power and a maximum power.
  • the heat source 3 cannot deliver heat below the minimum power without being switched off periodically.
  • the second heat source 4 is connected in series behind the first heat source 3, which can heat the heat transfer medium with low power with the aid of electrical energy.
  • Figure 2 and 3 show, on the basis of graphically represented courses of heat demand 101, deviation in flow temperature 102 and heating outputs 103, 104 of the first 3 and second heat sources 4.
  • the Figures 2 and 3 differ in the different method variants switching from the second heat source 4 to the first heat source 3 at time t4. Below are the Figures 2 and 3 described together and pointed out to differences.
  • the description is based on a heat demand 101 which is initially above the minimum power P 1, min and below the maximum power P 2, max of the first heat source 3.
  • the heat demand is initially covered exclusively by the first heat source 3.
  • the heat demand initially sings continuously.
  • the heat demand falls below the minimum power P 1, min of the first heat source 3.
  • the power of the first heat source 3 cannot be reduced any further, so that the deviation in the flow temperature increases slowly.
  • the flow temperature exceeds a first difference ⁇ T 1 .
  • After this first difference ⁇ T 1 is present over a minimum period of time ⁇ t 1 , it is recognized at time t2 that there is a lower heat demand over a certain period of time ⁇ t 1 .
  • the first heat source 3 is switched off, the course of the graph 103 falls to zero.
  • the second heat source 4 is put into operation, so that the graph 104 increases from zero. Since there is already an excess temperature of the flow temperature, the output of the second heat source 4 only slowly approaches the course of the heat demand.
  • the described threshold values in the form of the first exhibition space ⁇ t 1 and the first difference ⁇ T 1 serve to ensure that the switchover from the first heat source 3 to the second heat source 4 only takes place when the heat demand 101 has definitely decreased. This avoids frequent switching back and forth between heat sources 3 and 4 in the transition area.
  • the heat demand 101 then rises again and exceeds the minimum output of the first heat source at time t3.
  • the maximum power of the second heat source is limited to the minimum power of the first heat source.
  • a certain period of time is awaited in which the actual flow temperature falls below the target flow temperature by the difference ⁇ T 2 .
  • the second heat source 4 is then switched off at time t4, so that the graph 104 falls to zero.
  • the first heat source is switched on again, so that the graph 103 rises from zero and initially shoots beyond the curve of the graph of the heat demand 101 in order to compensate for the deviation in the flow temperature.
  • the graph 103 of the heating power of the first heat source 3 then follows the graph 101 of the heat demand.
  • the heat demand 101 exceeds the maximum power P 1, max of the first heat source 3.
  • the second heat source 4 is now operated in addition to the first heat source 3, which can be seen from the rising graph 104.
  • the outputs 103 of the first heat source 3 and 104 of the second heat source 4 cover the total heat demand 101.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Claims (8)

  1. Procédé de fonctionnement d'un appareil de chauffage hybride (1), dans lequel l'appareil de chauffage (1) comprend une première source de chaleur (3) sur la base de la combustion d'un mélange de gaz combustible et d'air, dans lequel le mélange ou l'air est fourni par un ventilateur (2), dans lequel l'appareil de chauffage (1) comprend une deuxième source de chaleur (4) sur la base de l'énergie électrique, dans laquelle la première (3) et la deuxième source de chaleur (4) transmet la chaleur à un fluide caloporteur qui circule au moyen d'une pompe de circulation (12) entre l'appareil de chauffage (1) et un ou plusieurs dissipateurs de chaleur (8, 9) dans un circuit de chauffage (11), dans lequel un dispositif de commande (5) commande la première (3) et la deuxième source de chaleur (4) de sorte qu'un besoin en chaleur prédéterminé des dissipateurs de chaleur (8, 9) est satisfait, et dans lequel la première source de chaleur (3) présente une puissance minimale (P1,min) et une puissance maximale (P1,max), dans laquelle le besoin en chaleur actuel ou une grandeur caractéristique pour le besoin en chaleur actuel est déterminé en continu et la deuxième source de chaleur (4) est exploitée avec le besoin en chaleur lorsque le besoin en chaleur actuel est inférieur à la puissance minimale (P1,min) de la première source de chaleur (3), ou la première source de chaleur (3) fonctionne avec le besoin en chaleur lorsque le besoin en chaleur actuel est supérieur ou égal à la puissance minimale (Pi,min) de la première source de chaleur (3) ou la première source de chaleur (3) fonctionne avec la puissance maximale (P1,max) et la deuxième source de chaleur (4) fonctionne avec la différence entre le besoin en chaleur actuel et la puissance maximale (P1,max) de la première source de chaleur (3) lorsque le besoin en chaleur est supérieur à la puissance maximale (P1,max) de la première source de chaleur (3), caractérisée en ce que le besoin en chaleur actuel est défini par une température de départ de consigne du fluide caloporteur et que le dispositif de commande (5) règle la puissance de la première (3) ou de la deuxième source de chaleur (4) de sorte que la température de départ réelle soit adaptée à la température de départ de consigne, dans laquelle,dans le cas où la première source de chaleur (3) est exploitée à la puissance minimale (P1,min) et où la température de départ réelle est supérieure à la température de départ de consigne d'au moins une première différence (ΔT1) au moins sur une première période de mesure (Δt1), la première source de chaleur (3) est désactivée et la deuxième source de chaleur (4) est exploitée.
  2. Procédé selon la revendication 1, caractérisé en ce que la deuxième source de chaleur (4) est exploitée à une puissance maximale égale ou supérieure à la puissance minimale (P1,min) de la première source de chaleur (3) et en ce que, dans le cas où la deuxième source de chaleur (4) est exploitée à la puissance maximale et où la température de départ réelle est inférieure à la température de départ de consigne d'au moins une deuxième différence (ΔT2) au moins pendant une deuxième période de mesure (Δt2), la deuxième source de chaleur est désactivée et la première source de chaleur (3) est exploitée.
  3. Procédé selon la revendication 1, caractérisé en ce que, dans le cas où la deuxième source de chaleur (4) est exploitée avec une puissance supérieure à la puissance minimale (P1,min) de la première source de chaleur (3) pendant une troisième période de mesure (Δt3), la deuxième source de chaleur (4) est désactivée et la première source de chaleur est exploitée.
  4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la première et/ou la deuxième différence (ΔT1, ΔT2) est inférieure à 1 K.
  5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la première et/ou la deuxième différence (ΔT1, ΔT2) est inférieure à 0,5 K.
  6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que la première (Δt1) et/ou la deuxième (Δt2) et/ou la troisième période de mesure (Δt3) est au moins la durée de circulation du fluide caloporteur dans le circuit de chauffage (11).
  7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la puissance minimale (P1,min) ou la puissance maximale (P1,max) de la première source de chaleur (3) est déterminée par la vitesse de rotation du ventilateur (2), par une valeur caractéristique de débit massique formée à partir de la vitesse de rotation et de la puissance absorbée du ventilateur (2) ou par un débit volumique ou massique de l'air, du gaz ou du mélange gaz-air mesuré au moyen d'un capteur de débit volumique ou massique.
  8. Appareil de chauffage hybride (1) avec une première source de chaleur (3) sur la base de la combustion d'un mélange de gaz combustible et d'air, dans lequel le mélange ou l'air est fourni par un ventilateur (2), dans lequel et la première source de chaleur (3) présente une puissance minimale (P1,min) et une puissance maximale (P1,max), avec une deuxième source de chaleur (4) sur la base de l'énergie électrique, dans laquelle la première (3) et la deuxième source de chaleur (4) transmet la chaleur à un fluide caloporteur avec une pompe de circulation (12) qui, en fonctionnement, fait circuler le fluide caloporteur entre l'appareil de chauffage (1) et un ou plusieurs dissipateurs de chaleur (8, 9) qui peuvent être raccordés à l'appareil de chauffage (1) dans un circuit de chauffage (11), et avec une unité de commande (5) qui commande la première (3) et la deuxième source de chaleur (4), dans laquelle la deuxième source de chaleur (4) est disposée dans le circuit de chauffage (11) en série derrière première source de chaleur (3) dans la direction de transport de la pompe de circulation (12), caractérisée en ce que l'unité de commande (5) est conçue pour exécuter le procédé selon l'une quelconque des revendications 1 à 7.
EP19160242.4A 2018-04-13 2019-03-01 Procédé de fonctionnement d'un appareil chauffant hybride et appareil chauffant hybride Active EP3553408B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018108800.0A DE102018108800A1 (de) 2018-04-13 2018-04-13 Verfahren zum Betreiben eines hybriden Heizgerätes und hybrides Heizgerät

Publications (2)

Publication Number Publication Date
EP3553408A1 EP3553408A1 (fr) 2019-10-16
EP3553408B1 true EP3553408B1 (fr) 2020-12-16

Family

ID=65657355

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19160242.4A Active EP3553408B1 (fr) 2018-04-13 2019-03-01 Procédé de fonctionnement d'un appareil chauffant hybride et appareil chauffant hybride

Country Status (3)

Country Link
EP (1) EP3553408B1 (fr)
DE (1) DE102018108800A1 (fr)
ES (1) ES2863534T3 (fr)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3109990A1 (de) 1981-03-14 1982-09-23 Wella Ag, 6100 Darmstadt Elektrischer durchlauferhitzer als zusatz-heizeinrichtung fuer zentralheizungsanlagen
DE3325822C2 (de) 1983-07-18 1986-02-13 Hans Dr.h.c. 3559 Battenberg Vießmann Heizungskessel
DE8909394U1 (de) 1989-08-03 1989-11-09 Bossert, Gerdi, 7730 Villingen-Schwenningen Zusatzheizeinrichtung
DE102004029376B4 (de) * 2004-06-17 2006-09-14 Robert Bosch Gmbh Verfahren zum Betreiben eines Heizgerätes mit elektrischer Zusatzheizung
DE102008058928A1 (de) * 2008-11-25 2010-05-27 Viessmann Werke Gmbh & Co Kg Verfahren zum Betrieb einer Heizungsanlage
EP2615385B1 (fr) * 2012-01-13 2021-06-23 STIEBEL ELTRON GmbH & Co. KG Gestionnaire système pour convertisseurs d'énergie réglés en fonction de la puissance
DE102012023008A1 (de) 2012-11-26 2014-05-28 Vaillant Gmbh Brenngas-Luft-Mischvorrichtung
CA2901659C (fr) * 2015-08-25 2021-01-05 Miclau-S.R.I. Inc. Chauffe-eau au gaz bienergie/multienergie

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102018108800A1 (de) 2019-10-17
ES2863534T3 (es) 2021-10-11
EP3553408A1 (fr) 2019-10-16

Similar Documents

Publication Publication Date Title
EP2530391A1 (fr) Dispositif de pompe à chaleur et procédé de commande d'un dispositif de pompe à chaleur
DE102015009086B4 (de) Verfahren und Vorrichtung zum Betreiben eines Mini/Mikro-Blockheizkraftwerkes für Einfamilienhäuser
EP1898160B1 (fr) Procédé de regulation d'une installation de chauffage et installation de chauffage permettant le mettre en oeuvre
EP3553408B1 (fr) Procédé de fonctionnement d'un appareil chauffant hybride et appareil chauffant hybride
EP3139103B1 (fr) Procédé de préparation de boissons chaudes
DE102012108496A1 (de) Energiewandlervorrichtung und Verfahren zum Bereitstellen von Regelleistung
EP2369244A1 (fr) Procédé d'obtention à temps de températures de consigne par le biais d'un ou plusieurs procédés de chauffage dans une installation de chauffage de bâtiment
DE102020204276A1 (de) Heizungsvorrichtung und Verfahren zum Betrieb einer Heizungsvorrichtung
EP2655980B1 (fr) Procédé de réglage optimisé d'une régulation de chauffage d'un système de chauffage et eventuellement de production d'eau chaude sanitaire, ainsi que système de chauffage et eventuellement de production d'eau chaude sanitaire
CH667717A5 (de) Verfahren zur leistungsmaessig gesteuerten inbetriebnahme bzw. abschaltung von heizkesseln.
EP2918943A1 (fr) Procédé et dispositif d'augmentation du volume de ballons d'eau dans des installations destinées au chauffage de bâtiments et/ou au chauffage de l'eau potable et/ou sanitaire
EP1003089B2 (fr) Régulation en fonction de la demande pour un dispositif de transfert de chaleur
DE3539328A1 (de) Verfahren zum aufheizen wenigstens zweier verbraucher
DE3538934A1 (de) Verfahren zur absenkung eines temperaturniveaus
DE102010056301A1 (de) Verfahren zur automatischen Optimierung eines Heizsystems sowie Heizsystem
EP3023709B1 (fr) Procede de chauffage d'un fluide dans un reservoir dans une installation de chauffage et installation de chauffage associee
EP1508751A1 (fr) Procédé et dispositif pour adapter la temperature de départ d'un générateur de chaleur à la charge respective du circuit de chauffage d'une installation de chauffage connectée en aval
AT503582A4 (de) Verfahren zum betreiben mehrerer durchlauferhitzer
DE102015113340A1 (de) Heizungsanlage und Verfahren zum Betreiben einer Heizungsanlage
DE2928520A1 (de) Verfahren und vorrichtung zur heizung von raeumen und von brauchwasser mittels eines fluessigen waermetraegers
EP0171014A1 (fr) Procédé et dispositif d'amélioration du rendement d'une centrale thermique, basé sur la capacité de stockage thermique du système de chauffage à distance
DE3702080A1 (de) Verfahren zum steuern der umschaltung eines waermeaufnehmenden verbrauchers zwischen einer brennstoff- oder strombeheizten waermequelle und einer waermepumpe und einrichtung zur durchfuehrung des verfahrens
EP4187163A1 (fr) Procédé de fonctionnement d'un dispositif de chauffage
EP2863135A1 (fr) Optimisation de température de consigne pour une partie en attente dans des installations de chauffage, en particulier pour le chauffage d'eau potable
DE102008063860B4 (de) Verfahren und Vorrichtung zum Regeln einer Wärmeerzeugungseinrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200326

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

D17P Request for examination filed (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200731

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

INTG Intention to grant announced

Effective date: 20200731

R17P Request for examination filed (corrected)

Effective date: 20200403

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019000521

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1345956

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210115

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 36724

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210316

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210416

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019000521

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210416

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2863534

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20211011

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

26N No opposition filed

Effective date: 20210917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210301

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20190301

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240228

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240228

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240228

Year of fee payment: 6

Ref country code: CZ

Payment date: 20240226

Year of fee payment: 6

Ref country code: GB

Payment date: 20240228

Year of fee payment: 6

Ref country code: SK

Payment date: 20240223

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240227

Year of fee payment: 6

Ref country code: IT

Payment date: 20240327

Year of fee payment: 6

Ref country code: FR

Payment date: 20240321

Year of fee payment: 6

Ref country code: BE

Payment date: 20240228

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240401

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240401

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216