EP3436686B1 - Ignition device for igniting an air fuel in a combustion chamber - Google Patents
Ignition device for igniting an air fuel in a combustion chamber Download PDFInfo
- Publication number
- EP3436686B1 EP3436686B1 EP17715623.9A EP17715623A EP3436686B1 EP 3436686 B1 EP3436686 B1 EP 3436686B1 EP 17715623 A EP17715623 A EP 17715623A EP 3436686 B1 EP3436686 B1 EP 3436686B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- electrode
- voltage source
- output
- ignition device
- spark plug
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002485 combustion reaction Methods 0.000 title claims description 20
- 239000000446 fuel Substances 0.000 title claims description 5
- 230000001681 protective effect Effects 0.000 claims description 17
- 239000000203 mixture Substances 0.000 claims description 7
- 230000015556 catabolic process Effects 0.000 claims description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000002800 charge carrier Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P3/00—Other installations
- F02P3/01—Electric spark ignition installations without subsequent energy storage, i.e. energy supplied by an electrical oscillator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P11/00—Safety means for electric spark ignition, not otherwise provided for
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P3/00—Other installations
- F02P3/02—Other installations having inductive energy storage, e.g. arrangements of induction coils
- F02P3/04—Layout of circuits
- F02P3/0407—Opening or closing the primary coil circuit with electronic switching means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P3/00—Other installations
- F02P3/02—Other installations having inductive energy storage, e.g. arrangements of induction coils
- F02P3/04—Layout of circuits
- F02P3/055—Layout of circuits with protective means to prevent damage to the circuit, e.g. semiconductor devices or the ignition coil
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P9/00—Electric spark ignition control, not otherwise provided for
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P9/00—Electric spark ignition control, not otherwise provided for
- F02P9/002—Control of spark intensity, intensifying, lengthening, suppression
- F02P9/007—Control of spark intensity, intensifying, lengthening, suppression by supplementary electrical discharge in the pre-ionised electrode interspace of the sparking plug, e.g. plasma jet ignition
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P3/00—Other installations
- F02P3/02—Other installations having inductive energy storage, e.g. arrangements of induction coils
- F02P3/04—Layout of circuits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P7/00—Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices
- F02P7/10—Drives of distributors or of circuit-makers or -breakers
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/46—Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
Definitions
- the invention relates to an ignition device for igniting an air-fuel mixture in a combustion chamber, in particular an internal combustion engine, with a spark plug.
- a corresponding high-frequency plasma ignition device comprises a series resonant circuit with an inductance and a capacitance, and a high-frequency source for the resonant excitation of this series resonant circuit.
- the capacitance is represented by inner and outer conductor electrodes with a dielectric in between. The extreme ends of these electrodes extend into the combustion chamber at a predetermined mutual distance.
- a method for ignition in which a spark plasma is generated by means of a high-voltage pulse, which is then further heated by means of an HF field and thereby transitions into a glow discharge.
- the high-voltage pulse and an output signal of an HF generator are fed together to a spark electrode of a spark plug.
- a counter electrode of the spark plug is grounded.
- the spark plug is a coaxial structure and essentially consists of a central electrode surrounded by an insulator and an outer electrode which is connected to the spark plug housing.
- the ignition coil supplies the spark plug with a high voltage pulse or high DC voltage pulse. A spark is created between the electrodes that initiates combustion.
- An alternative method in which, in addition to the high voltage applied to the ignition coil, a high-frequency voltage is applied to the spark plug, is in US Pat DE 10 2013 215 663 A1 A 1 described. The spark plasma is transformed into an HF plasma.
- the DE 11 2014 002666 T5 discloses a spark plug with two electrodes, a high voltage source and a high frequency voltage source.
- the two voltage sources share the same input and the same ground connection.
- the JP 2011 134636 describes a spark plug with three electrodes. A first electrode is connected to a high voltage source, a second electrode is connected to a high frequency voltage source and a third electrode serves as a ground connection.
- the spark plasma burns between two electrodes, an active "driven” electrode (also called a high-voltage electrode) and a passive electrode (also called a ground electrode), their potential on the ground (0 V) of the engine block and the complete body of one Automobile lies.
- the ground electrode can also be designed as a multiple electrode.
- the plasma is no longer heated.
- reactive species such as atomic oxygen
- the combustion takes place on considerably longer time scales, but lives from the previously generated atomic oxygen density.
- the object of the invention is to improve an ignition device with regard to the possibilities of influencing the parameters of the plasma between the electrodes of the spark plug.
- an ignition device with a spark plug that has exactly two electrodes, namely a first electrode and a second electrode, it is provided that the output of the high-frequency voltage source is electrically connected to the second electrode via a second electrical line path such that the high-frequency AC voltage is present at the second electrode.
- a particularly simple and functionally reliable ignition device is achieved in that the high voltage source is designed as an ignition coil.
- Protection of the high-frequency voltage source against overvoltage is achieved by electrically inserting a protective circuit in the second line path between the second electrode of the spark plug and the output of the high-frequency voltage source, which blocks the high-voltage pulse from breaking through from the high-voltage source to the output of the high-frequency voltage source.
- Frequency-selective transmission for example of only one desired frequency band, from the high-frequency voltage source to the second electrode of the spark plug is achieved by a separating element in the form of a frequency-selective filter, in particular, in the second electrical conduction path between the second electrode of the spark plug and the output of the high-frequency voltage source in the form of a bandpass filter, is electrically looped in.
- Protection of the isolating element from overvoltage is also achieved in that the isolating element between the protective circuit and the output of the high-frequency voltage source is looped into the second electrical line path.
- the separating element between the protective circuit and the second electrode is looped into the second electrical line path.
- An improved transmission of the high voltage from the high voltage source to the spark plug is achieved in that a protective circuit which represents a ground reference for the HF is electrically inserted in the first electrical line path between the output of the high voltage source and the first electrode of the spark plug.
- a clear separation of the two active electrodes is achieved in that only the high-voltage pulse is applied to the first electrode and that only the high-frequency AC voltage is applied to the second electrode.
- the illustrated preferred embodiment of an ignition device 10 has a spark plug 12, a high-voltage source or high-DC voltage source 14 and a high-frequency voltage source 16.
- the spark plug 12 has a first electrode 18 (high-voltage electrode) and a second electrode 20 (high-frequency electrode).
- the electrodes 18, 20 project into a combustion chamber, not shown, for example in a working cylinder of an internal combustion engine, in which a fuel-air mixture is to be ignited.
- the high-voltage source 14 is designed as an ignition coil and generates a high-voltage pulse or high-DC voltage pulse (DC), which is present at an output 22 of the high-voltage source 14.
- DC high-voltage pulse
- high-voltage electrical pulse here denotes a high-voltage electrical voltage pulse of a few kV, such as 3 kV to 30 kV or 8 kV to 12 kV.
- the output 22 of the high-voltage source 14 is electrically connected to the first electrode 18 via a first electrical conduction path 24 such that the high-voltage pulse comes off the high voltage source 14 of the first electrode 18 of the spark plug 12 is supplied.
- the electrical high-voltage pulse is only applied to the first electrode (18).
- the high-frequency voltage source 16 generates a high-frequency AC voltage, which is present at an output 26 of the high-frequency voltage source 16.
- the output 26 of the high-frequency voltage source 16 is electrically connected to the second electrode 20 of the spark plug 12 via a second electrical conduction path 28 such that the high-frequency alternating voltage from the high-frequency voltage source 16 is supplied to the second electrode 20 of the spark plug 12.
- the high-frequency voltage source 16 is also electrically connected to an electrical ground potential 40.
- the high-frequency AC voltage is only applied to the second electrode (20).
- a protective circuit 30 is electrically looped into the second electrical line path 28.
- This protective circuit 30 is designed such that it prevents the high-voltage pulse from the high-voltage source 14 from passing through the second electrical line path 28 to the output 26 of the high-frequency voltage source 16 and the high-frequency AC voltage from the high-frequency voltage source 16 in the direction of the second electrode 20 Spark plug 12 forwards. In this way, the high-frequency voltage source 16 is protected against overvoltage.
- a separating element 32 is electrically looped in between the protective circuit 30 and the output 26 of the high-frequency voltage source 16 in the second electrical line path 28.
- This separating element 32 is designed as a frequency-selective filter, for example as a bandpass filter with a constant or variable capacitance 34 and a constant or variable inductance 36.
- This bandpass filter only allows a predetermined frequency band to pass from the high-frequency voltage source 16 via the second electrical conduction path 28 in the direction of the second electrode 20.
- the ignition device according to the invention is designed as a high-frequency plasma ignition system and contains two active electrodes in the spark plug 12, the high-voltage electrode as the first electrode 18 and the high-frequency electrode as the second electrode 20.
- a ground electrode as in conventional ignition systems, is not present.
- the ignition coil 14 generates a high voltage pulse or high DC voltage pulse (DC) which, when a breakdown voltage is reached between the high voltage electrode 18 and the high frequency electrode 20 of the spark plug 12, causes an initial plasma to burn in the space around the two electrodes 18, 20 (arrow 42).
- DC high DC voltage pulse
- This plasma is further supplied with energy by the subsequent supply of the high-frequency AC voltage from the high-frequency voltage source 16 (arrow 44) and is thus maintained for a certain time, so that the plasma is present longer than it is by the high-voltage pulse from the high-voltage source 14 would be the case.
- a plasma contains, among other things, electrons, ions, excited particles and neutral particles.
- the free charge carriers (electrons and ions) form a conductive plasma channel between the high-voltage electrode 18 and the high-frequency electrode 20 of the spark plug 12.
- the free charge carriers created by the plasma are used for the current transport of the high-frequency plasma between the high-frequency electrode 20 and the high-voltage electrode 18.
- the significantly increased amount of atomic oxygen ensures more effective combustion and allows, among other things, the safe ignition of lean fuel-air mixtures in the combustion chamber or an increased engine output with constant fuel consumption.
- the protective circuit 30 is provided between the high-frequency electrode 20 and the high-frequency voltage source 16.
- a big advantage of this ignition system is that the plasma is directly between the two active electrodes 18, 20 burns. The high-frequency voltage source is safely taken over in order to continue to actively couple energy into the plasma after the initial spark from the high-voltage pulse from the high-voltage source 14, since the initial spark in any case generates free charge carriers between the electrodes.
- the protective circuit 30 includes, for example, a gas-filled surge arrester, which has an insulating effect, as long as the voltage remains below a predetermined value of, for example, approximately 450 V.
- the gas-filled surge arrester does not interfere due to its small capacity of only about 2 pF. If the ignition voltage of the gas-filled surge arrester is exceeded, the resistance drops to very low values within microseconds, whereby current peaks of up to 100 kA, for example, can be derived.
- the demands on the dielectric strength of the separating element 32 are drastically reduced.
- the load on the high-voltage source 14 in the form of the ignition coil is considerably reduced by this step and the generation of the high voltage is significantly simplified.
- the generation of sufficiently high voltage pulses for safe ignition is an ever growing challenge.
- there are more degrees of freedom in the selection of the reactive components of the separating element since it is no longer necessary to pay attention to the lowest possible capacitive load on the ignition coil.
- the capacities of the isolating element can be increased and the inductivities reduced, which simplifies the implementation of the isolating element.
- Fig. 2 are functionally identical parts with the same reference numerals as in Fig. 1 referred to, so that to explain them to the above description of Fig. 1 is referred.
- the protection circuit 30 between the Separating element 32 and the output 26 of the high-frequency voltage source 16 are looped into the second electrical conduction path 28.
- the protective circuit 30 and / or the isolating element 32 additionally has an electrical connection to the ground potential 40, as with dashed lines in FIG Fig. 1 and 2nd shown.
- a protective circuit 31 with an electrical connection to ground potential 40 is electrically looped into the first electrical line path 24 between the output 22 of the high-voltage source 14 and the first electrode 18.
- This protection circuit 31 is in the Fig. 1 and 2nd accordingly indicated by dashed lines.
- the protective circuit is intended to be a reference to the HF and not to block the high voltage.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Ignition Installations For Internal Combustion Engines (AREA)
Description
Die Erfindung betrifft eine Zündvorrichtung zum Zünden eines Luft-Kraftstoffgemisches in einem Brennraum, insbesondere einer Brennkraftmaschine, mit einer Zündkerze.The invention relates to an ignition device for igniting an air-fuel mixture in a combustion chamber, in particular an internal combustion engine, with a spark plug.
So genannte Otto-Brennverfahren mit Direkteinspritzung des Brennstoffes besitzen durch die Möglichkeit eine Schichtladung im Verbrennungsraum darzustellen ein großes Potential hinsichtlich der Verbrauchsreduktion. Das nicht homogene Gemisch im Brennraum stellt jedoch erhöhte Anforderungen an das eingesetzte Zündverfahren hinsichtlich einer zuverlässigen Zündung zum geeigneten Zeitpunkt. Schwankungen jeglicher Art mindern beispielsweise die Qualität der Zündung und somit den Wirkungsgrad des gesamten Motors. Zum einen kann die Lage des zündfähigen Gemisches leicht variieren und zum anderen kann sich der Haken der Masseelektrode der Zündkerze störend auf die Gemischbildung auswirken. Hilfreich für ein direkt einspritzendes Brennverfahren ist ein Zündsystem mit einer größeren räumlichen Ausdehnung in den Verbrennungsraum hinein. Hierzu wird in der
Aus der
Moderne Zündanlagen für Ottomotoren weisen heute eine Zündkerze und eine Einzelzündspule mit elektronischer Ansteuereinheit auf. Die Zündkerze ist ein koaxialer Aufbau und besteht im Wesentlichen aus einer mittleren Elektrode umgeben von einem Isolator und einer äußeren Elektrode, die mit dem Zündkerzengehäuse verbunden ist. Die Zündspule liefert der Zündkerze einen Hochspannungsimpuls bzw. Hochgleichspannungsimpuls. Zwischen den Elektroden entsteht ein Funke der die Verbrennung einleitet. Ein alternatives Verfahren, in dem zusätzlich zur angelegten Hochspannung der Zündspule eine hochfrequente Spannung an die Zündkerze angelegt wird, ist in der
Die
Die
Bei den zuvor beschriebenen klassischen Zündkonzepten brennt das Funkenplasma zwischen zwei Elektroden, einer aktiven "getriebenen" Elektrode (auch Hochspannungselektrode genannt) und einer passiven Elektrode (auch Masseelektrode genannt), deren Potential auf der Masse (0 V) des Motorblocks sowie der vollständigen Karosserie eines Automobils liegt. Die Masseelektrode kann auch als Mehrfachelektrode ausgeführt sein. Diese Zündsysteme haben den Prinzip bedingten Nachteil einer mangelhaften Steuerbarkeit, da nach der Plasmazündung die in der Zündspule gespeicherte Energie auf einer Zeitskala von wenigen zehn Nanosekunden in das Plasma eingekoppelt wird. Der stark ansteigende Strom ist eine Folge der rasant steigenden Elektronendichte und damit verbundenen Steigerung der Leitfähigkeit des Plasmas. Alle nachwirkenden Prozesse im Plasma sind nur noch eine Folge dieses Energieeintrages und nicht mehr von außen beeinflussbar. Insbesondere findet keine Heizung des Plasmas mehr statt. Dies hat zur Folge, dass keine nennenswerte Erzeugung von freien Elektroden und damit einhergehend von reaktiven Spezies, wie beispielsweise von atomarem Sauerstoff, die die Verbrennung fördern, stattfindet. Die Verbrennung hingegen findet auf erheblich längeren Zeitskalen statt, lebt aber von der zuvor erzeugten atomaren Sauerstoffdichte.In the classic ignition concepts described above, the spark plasma burns between two electrodes, an active "driven" electrode (also called a high-voltage electrode) and a passive electrode (also called a ground electrode), their potential on the ground (0 V) of the engine block and the complete body of one Automobile lies. The ground electrode can also be designed as a multiple electrode. These ignition systems have the disadvantage, due to the principle, of poor controllability, since after the plasma ignition, the energy stored in the ignition coil is injected into the plasma on a time scale of a few tens of nanoseconds. The rapidly increasing current is a consequence of the rapidly increasing electron density and the associated increase in the conductivity of the plasma. All after-effects processes in the plasma are only a consequence of this energy input and can no longer be influenced from outside. In particular, the plasma is no longer heated. As a result, there is no significant generation of free electrodes and, as a result, of reactive species, such as atomic oxygen, which promote combustion. The combustion, on the other hand, takes place on considerably longer time scales, but lives from the previously generated atomic oxygen density.
Der Erfindung liegt die Aufgabe zugrunde, eine Zündvorrichtung hinsichtlich der Einflussmöglichkeiten auf die Parameter des Plasmas zwischen den Elektroden der Zündkerze zu verbessern.The object of the invention is to improve an ignition device with regard to the possibilities of influencing the parameters of the plasma between the electrodes of the spark plug.
Diese Aufgabe wird erfindungsgemäß durch eine Zündvorrichtung gemäß Anspruch 1 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den weiteren Ansprüchen beschrieben.This object is achieved by an ignition device according to claim 1. Advantageous embodiments of the invention are described in the further claims.
Dazu ist es bei einer Zündvorrichtung mit einer Zündkerze, die genau zwei Elektroden und zwar eine erste Elektrode und eine zweite Elektrode besitzt, vorgesehen, dass der Ausgang der Hochfrequenzspannungsquelle mit der zweiten Elektrode über einen zweiten elektrischen Leitungspfad derart elektrisch verbunden ist, dass die Hochfrequenz-Wechselspannung an der zweiten Elektrode anliegt.For this purpose, in an ignition device with a spark plug that has exactly two electrodes, namely a first electrode and a second electrode, it is provided that the output of the high-frequency voltage source is electrically connected to the second electrode via a second electrical line path such that the high-frequency AC voltage is present at the second electrode.
Dies hat den Vorteil, dass zwei aktive Elektroden zur Verfügung stehen, so dass nach dem Zünden eines Plasmas zwischen den beiden Elektroden der Zündkerze durch den Hochspannungsimpuls sofort die Hochfrequenz-Wechselspannung bei einem wesentlich niedrigeren Niveau der elektrischen Spannung weiter Energie in das Plasma einkoppeln kann.This has the advantage that two active electrodes are available, so that after the ignition of a plasma between the two electrodes of the spark plug by the high-voltage pulse, the high-frequency AC voltage can continue to couple energy into the plasma at a significantly lower level of the electrical voltage.
Eine besonders einfache und funktionssichere Zündvorrichtung erzielt man dadurch, dass die Hochspannungsquelle als Zündspule ausgebildet ist.A particularly simple and functionally reliable ignition device is achieved in that the high voltage source is designed as an ignition coil.
Einen Schutz der Hochfrequenzspannungsquelle gegen Überspannung erzielt man dadurch, dass in dem zweiten Leitungspfad zwischen der zweiten Elektrode der Zündkerze und dem Ausgang der Hochfrequenzspannungsquelle eine Schutzschaltung elektrisch eingeschleift ist, welche ein Durchschlagen des Hochspannungsimpulses von der Hochspannungsquelle zum Ausgang der Hochfrequenzspannungsquelle blockiert.Protection of the high-frequency voltage source against overvoltage is achieved by electrically inserting a protective circuit in the second line path between the second electrode of the spark plug and the output of the high-frequency voltage source, which blocks the high-voltage pulse from breaking through from the high-voltage source to the output of the high-frequency voltage source.
Eine frequenzselektive Übertragung, beispielsweise von nur einem gewünschten Frequenzband, von der Hochfrequenzspannungsquelle zu der zweiten Elektrode der Zündkerze erzielt man dadurch, dass in dem zweiten elektrischen Leitungspfad zwischen der zweiten Elektrode der Zündkerze und dem Ausgang der Hochfrequenzspannungsquelle ein Trennelement in Form eines frequenzselektiven Filters, insbesondere in Form eines Bandpassfilters, elektrisch eingeschleift ist.Frequency-selective transmission, for example of only one desired frequency band, from the high-frequency voltage source to the second electrode of the spark plug is achieved by a separating element in the form of a frequency-selective filter, in particular, in the second electrical conduction path between the second electrode of the spark plug and the output of the high-frequency voltage source in the form of a bandpass filter, is electrically looped in.
Einen Schutz auch des Trennelementes vor Überspannung erzielt man dadurch, dass das Trennelement zwischen der Schutzschaltung und dem Ausgang der Hochfrequenzspannungsquelle in den zweiten elektrischen Leitungspfad eingeschleift ist.Protection of the isolating element from overvoltage is also achieved in that the isolating element between the protective circuit and the output of the high-frequency voltage source is looped into the second electrical line path.
In einer bevorzugten Weiterbildung der Erfindung ist das Trennelement zwischen der Schutzschaltung und der zweiten Elektrode in den zweiten elektrischen Leitungspfad eingeschleift. Dies hat den Vorteil, dass der Bandpass des Trennelementes die Energie außerhalb des Durchlassbereiches dämpft, wodurch die Realisierung der Schutzschaltung einfacher wird.In a preferred development of the invention, the separating element between the protective circuit and the second electrode is looped into the second electrical line path. This has the advantage that the bandpass of the isolating element dampens the energy outside the pass band, which makes it easier to implement the protective circuit.
Eine verbesserte Übertragung der Hochspannung von der Hochspannungsquelle zur Zündkerze wird dadurch erzielt, dass in dem ersten elektrischen Leitungspfad zwischen dem Ausgang der Hochspannungsquelle und der ersten Elektrode der Zündkerze eine Schutzschaltung elektrisch eingeschleift ist, welche einen Massebezug für die HF darstellt.An improved transmission of the high voltage from the high voltage source to the spark plug is achieved in that a protective circuit which represents a ground reference for the HF is electrically inserted in the first electrical line path between the output of the high voltage source and the first electrode of the spark plug.
Eine klare Trennung der beiden aktiven Elektroden erzielt man dadurch, dass an der ersten Elektrode einzig der Hochspannungsimpuls anliegt und dass an der zweiten Elektrode einzig die Hochfrequenz-Wechselspannung anliegt.A clear separation of the two active electrodes is achieved in that only the high-voltage pulse is applied to the first electrode and that only the high-frequency AC voltage is applied to the second electrode.
Die Erfindung wird im Folgenden anhand der Zeichnung näher erläutert. Diese zeigt in
- Fig. 1
- eine schematische Darstellung einer bevorzugten Ausführungsform einer erfindungsgemäßen Zündvorrichtung und
- Fig. 2
- eine schematische Darstellung einer alternativen bevorzugten Ausführungsform einer erfindungsgemäßen Zündvorrichtung.
- Fig. 1
- a schematic representation of a preferred embodiment of an ignition device according to the invention and
- Fig. 2
- is a schematic representation of an alternative preferred embodiment of an ignition device according to the invention.
Die in
Die Hochfrequenzspannungsquelle 16 erzeugt eine Hochfrequenz-Wechselspannung, welche an einem Ausgang 26 der Hochfrequenzspannungsquelle 16 anliegt. Der Ausgang 26 der Hochfrequenzspannungsquelle 16 ist über einen zweiten elektrischen Leitungspfad 28 mit der zweiten Elektrode 20 der Zündkerze 12 elektrisch derart verbunden, dass die Hochfrequenz-Wechselspannung aus der Hochfrequenzspannungsquelle 16 der zweiten Elektrode 20 der Zündkerze 12 zugeführt wird. Die Hochfrequenzspannungsquelle 16 ist weiterhin mit einem elektrischen Massepotential 40 elektrisch verbunden. Hierbei liegt die Hochfrequenz-Wechselspannung einzig an der zweiten Elektrode (20) an.The high-
In dem zweiten elektrischen Leitungspfad 28 ist eine Schutzschaltung 30 elektrisch eingeschleift. Diese Schutzschaltung 30 ist derart ausgebildet, dass sie einerseits den Hochspannungsimpuls von der Hochspannungsquelle 14 daran hindert, über den zweiten elektrischen Leitungspfad 28 bis zum Ausgang 26 der Hochfrequenzspannungsquelle 16 durchzuschlagen und andererseits die Hochfrequenz-Wechselspannung aus der Hochfrequenzspannungsquelle 16 in Richtung der zweiten Elektrode 20 der Zündkerze 12 weiterleitet. Auf diese Weise ist die Hochfrequenzspannungsquelle 16 vor Überspannung geschützt.A
Weiterhin ist in dem zweiten elektrischen Leitungspfad 28 ein Trennelement 32 zwischen der Schutzschaltung 30 und dem Ausgang 26 der Hochfrequenzspannungsquelle 16 elektrisch eingeschleift. Dieses Trennelement 32 ist als ein frequenzselektives Filter, beispielswese als ein Bandpassfilter mit einer konstanten oder variablen Kapazität 34 und einer konstanten oder variablen Induktivität 36, ausgebildet. Dieses Bandpassfilter lässt nur ein vorbestimmtes Frequenzband von der Hochfrequenzspannungsquelle 16 über den zweiten elektrischen Leitungspfad 28 in Richtung der zweiten Elektrode 20 passieren. Mit dem Trennelement 32 kann die eingekoppelte Frequenz der Hochfrequenz-Wechselspannung ständig angepasst werden, so dass ein optimaler Energieeintrag in das gezündete Plasma erzielt wird.Furthermore, a separating
Die erfindungsgemäße Zündvorrichtung ist als Hochfrequenz-Plasma-Zündsystem ausgebildet und beinhaltet in der Zündkerze 12 zwei aktive Elektroden, die Hochspannungselektrode als erste Elektrode 18 und die Hochfrequenzelektrode als zweite Elektrode 20. Eine Masseelektrode, wie bei herkömmlichen Zündsystemen, ist nicht vorhanden. Die Zündspule 14 erzeugt einen Hochspannungsimpuls bzw. Hochgleichspannungsimpuls (DC), der bei Erreichen einer Durchbruchspannung zwischen der Hochspannungselektrode 18 und der Hochfrequenzelektrode 20 der Zündkerze 12 ein initiales Plasma im Raum um die beiden Elektroden 18, 20 brennen lässt (Pfeil 42). Dieses Plasma wird durch anschließendes Zuführen der Hochfrequenz-Wechselspannung von der Hochfrequenzspannungsquelle 16 weiter mit Energie versorgt (Pfeil 44) und dadurch für eine gewisse Zeit aufrecht erhalten, so dass das Plasma länger vorhanden ist, als es alleine durch den Hochspannungsimpuls aus der Hochspannungsquelle 14 der Fall wäre.The ignition device according to the invention is designed as a high-frequency plasma ignition system and contains two active electrodes in the
Ein Plasma beinhaltet unter anderem Elektronen, Ionen, angeregte Teilchen und Neutralteilchen. Die freien Ladungsträger (Elektronen und Ionen) bilden einen leitfähigen Plasmakanal zwischen der Hochspannungselektrode 18 und der Hochfrequenzelektrode 20 der Zündkerze 12. Die durch das Plasma entstandenen freien Ladungsträger werden für den Stromtransport des Hochfrequenzplasmas zwischen der Hochfrequenzelektrode 20 und der Hochspannungselektrode 18 genutzt. Somit kann durch das zusätzliche Anlegen einer Hochfrequenzspannung aus der Hochfrequenzspannungsquelle 16 an der Hochfrequenzelektrode 20 mehr Leistung über einen längeren Zeitraum in das Plasma eingebracht werden. Dadurch werden kontinuierlich Elektronen erzeugt und die freie Elektronendichte im Plasma bleibt länger erhalten, womit eine permanente Erzeugung von reaktiven Spezies (vor allem von atomarem Sauerstoff) einhergeht. Die deutlich erhöhte Menge von atomarem Sauerstoff sorgt für eine effektivere Verbrennung und erlaubt u.a. das sichere Entflammen von mageren Kraftstoff-Luft-Gemischen im Brennraum bzw. eine erhöhte Motorleistung bei konstantem Kraftstoffverbrauch. Damit die Hochfrequenzspannungsquelle 16 vor dem Hochspannungsimpuls aus der Hochspannungsquelle 14 geschützt ist, ist zwischen der Hochfrequenzelektrode 20 und Hochfrequenzspannungsquelle 16 die Schutzschaltung 30 vorgesehen. Ein großer Vorteil dieses Zündsystems liegt darin, dass das Plasma direkt zwischen den beiden aktiven Elektroden 18, 20 brennt. Eine sichere Übernahme der Hochfrequenzspannungsquelle, um nach dem initialen Funken durch den Hochspannungsimpuls aus der Hochspannungsquelle 14 weiterhin aktiv Energie in das Plasma einzukoppeln, ist gegeben, da der initiale Funken in jedem Fall freie Ladungsträger zwischen den Elektroden generiert.A plasma contains, among other things, electrons, ions, excited particles and neutral particles. The free charge carriers (electrons and ions) form a conductive plasma channel between the high-
Die Schutzschaltung 30 beinhaltet beispielsweise einen gasgefüllten Überspannungsableiter, welcher isolierend wirkt, solange die Spannung unter einem vorbestimmten Wert von beispielsweise etwa 450 V bleibt. Der gasgefüllte Überspannungsableiter stört wegen seiner geringen Kapazität von nur etwa 2 pF nicht. Wird die Zündspannung des gasgefüllten Überspannungsableiters überschritten, fällt der Widerstand innerhalb von Mikrosekunden auf sehr geringe Werte, wobei Stromspitzen von beispielsweise bis zu 100 kA abgeleitet werden können.The
Durch die Trennung von Hochspannungs- und Hochfrequenzpotential werden die Anforderungen an die Spannungsfestigkeit des Trennelementes 32 drastisch reduziert. Gleichzeitig wird durch diesen Schritt die Belastung der Hochspannungsquelle 14 in Form der Zündspule erheblich herabgesetzt und die Erzeugung der Hochspannung deutlich vereinfacht. Vor dem Hintergrund immer stärker aufgeladener und kleinvolumiger Otto-Motoren ist die Erzeugung von ausreichend hohen Spannungsimpulsen zur sicheren Entflammung eine immer weiter wachsende Herausforderung. Des Weiteren ergeben sich mehr Freiheitsgrade bei der Wahl der reaktiven Bauelemente des Trennelementes, da auf eine möglichst geringe kapazitive Belastung der Zündspule nicht mehr geachtet werden muss. Die Kapazitäten des Trennelementes können im Gegensatz zu bisherigen Schaltungskonzepten erhöht und die Induktivitäten gesenkt werden, was die Realisierung des Trennelementes vereinfacht.By separating high-voltage and high-frequency potential, the demands on the dielectric strength of the separating
In
Optional weist die Schutzschaltung 30 und/oder das Trennelement 32 zusätzlich eine elektrische Verbindung mit dem Massepotential 40 auf, wie mit gestrichelten Linien in
Optional ist in dem ersten elektrischen Leitungspfad 24 zwischen dem Ausgang 22 der Hochspannungsquelle 14 und der ersten Elektrode 18 eine Schutzschaltung 31 mit elektrischer Verbindung mit dem Massepotential 40 elektrisch eingeschleift. Diese Schutzschaltung 31 ist in den
Claims (8)
- Ignition device (10) for igniting an air/fuel mixture in a combustion chamber, in particular of an internal combustion engine, having a spark plug (12) which has exact two electrodes (18, 20), namely a first electrode (18) and a second electrode (20), having a high voltage source (14) for generating an electrical high voltage pulse at an output (22) of the high voltage source and having a high frequency voltage source (16) for generating an electrical high frequency alternating voltage at an output (26) of the high frequency voltage source (16), wherein the output (22) of the high voltage source (14) is connected electrically to the first electrode (18) of the spark plug (12) via a first electrical conduction path (24) in such a way that the high voltage pulse is present at the first electrode (18), and wherein
the output (26) of the high frequency voltage source (16) is connected electrically to the second electrode (20) via a second electrical conduction path (28) in such a way that the high frequency alternating voltage is present at the second electrode (20). - Ignition device (10) according to claim 1, characterised in that the high voltage source (14) is designed in the form of an ignition coil.
- Ignition device (10) according to claim 1 or 2, characterised in that a protective circuit (30) is looped electrically into the second electrical conduction path (28) between the second electrode (20) of the spark plug (12) and the output (26) of the high frequency voltage source (16) which blocks a breakdown of the high voltage pulse from the high voltage source (14) to the output (26) of the high frequency voltage source (16).
- Ignition device (10) according to at least one of the preceding claims, characterised in that an isolating element (32) in the form of a frequency-selective filter, in particular in the form of a band pass filter, is looped electrically into the second electrical conduction path (28) between the second electrode (20) of the spark plug (12) and the output (26) of the high frequency voltage source (16).
- Ignition device (10) according to claims 3 and 4, characterised in that the isolating element (32) is looped into the second electrical conduction path (28) between the protective circuit (30) and the output (26) of the high frequency voltage source (16).
- Ignition device (10) according to claims 3 and 4, characterised in that the isolating element (32) is looped into the second electrical conduction path (28) between the protective circuit (30) and the second electrode (20).
- Ignition device according to at least one of the preceding claims, characterised in that a protective circuit (31) is looped electrically into the first electrical conduction path (24) between the output (22) of the high voltage source (14) and the first electrode (18) of the spark plug (12), which represents a ground reference for the HF.
- Ignition device according to at least one of the preceding claims, characterised in that only the high voltage pulse is present at the first electrode (18) and that only the high frequency alternating voltage is present at the second electrode (20).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102016003793.8A DE102016003793A1 (en) | 2016-03-29 | 2016-03-29 | Ignition device for igniting an air-fuel mixture in a combustion chamber |
PCT/EP2017/000363 WO2017167438A1 (en) | 2016-03-29 | 2017-03-23 | Ignition device for igniting an air/fuel mixture in a combustion chamber |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3436686A1 EP3436686A1 (en) | 2019-02-06 |
EP3436686B1 true EP3436686B1 (en) | 2020-07-29 |
Family
ID=58489281
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17715623.9A Active EP3436686B1 (en) | 2016-03-29 | 2017-03-23 | Ignition device for igniting an air fuel in a combustion chamber |
Country Status (8)
Country | Link |
---|---|
US (1) | US10982641B2 (en) |
EP (1) | EP3436686B1 (en) |
JP (1) | JP2019511670A (en) |
KR (1) | KR20180124908A (en) |
CN (1) | CN109312707B (en) |
DE (1) | DE102016003793A1 (en) |
TW (1) | TW201734304A (en) |
WO (1) | WO2017167438A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110500222A (en) * | 2019-09-20 | 2019-11-26 | 韦伟平 | A high-frequency resonance ignition circuit of a lean-burn engine and its operation and control method |
CN114109692B (en) * | 2021-11-26 | 2022-09-27 | 山东大学 | Fast pulse multipoint discharge system and engine combustion control method |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1335797A (en) * | 1920-04-06 | of toledo | ||
JPS5328568B1 (en) * | 1971-03-06 | 1978-08-15 | ||
JPS5152653Y2 (en) * | 1971-09-02 | 1976-12-16 | ||
US3934566A (en) * | 1974-08-12 | 1976-01-27 | Ward Michael A V | Combustion in an internal combustion engine |
US4297983A (en) * | 1978-12-11 | 1981-11-03 | Ward Michael A V | Spherical reentrant chamber |
US4369756A (en) * | 1980-01-11 | 1983-01-25 | Nissan Motor Co., Ltd. | Plasma jet ignition system for internal combustion engine |
DE3145169A1 (en) * | 1981-11-13 | 1983-05-26 | Marcel 68390 Sausheim-Battenheim Blanchard | Arrangement for producing a high voltage |
US5777867A (en) * | 1995-09-14 | 1998-07-07 | Suitomo Electric Industries, Ltd. | Electric discharge method and apparatus |
DE19723784C1 (en) * | 1997-06-06 | 1998-08-20 | Daimler Benz Ag | Circuit for ignition system of IC engine supplying high voltage to spark plug electrodes |
DE102004058925A1 (en) | 2004-12-07 | 2006-06-08 | Siemens Ag | High-frequency plasma ignition device for internal combustion engines, in particular for directly injecting gasoline engines |
JP2008082286A (en) * | 2006-09-28 | 2008-04-10 | Toyota Central R&D Labs Inc | Internal combustion engine and ignition device thereof |
DE102008051185A1 (en) | 2008-02-14 | 2009-11-12 | Stanislav Tkadlec | Ignition method for generating discharge plasma by high frequency field and direct current impulse, particularly for internal combustion engine, involves supplying high frequency voltage on spark electrode and counter electrode |
JP5152653B2 (en) * | 2008-05-20 | 2013-02-27 | 株式会社エーイーティー | Ignition system using spark discharge ignition method and microwave plasma ignition method in combination |
JP5413186B2 (en) * | 2009-12-25 | 2014-02-12 | 株式会社デンソー | High frequency plasma ignition device |
WO2012032846A1 (en) | 2010-09-07 | 2012-03-15 | 日本特殊陶業株式会社 | Ignition system and spark plug |
WO2012099027A1 (en) | 2011-01-18 | 2012-07-26 | イマジニアリング株式会社 | Plasma generation device and internal combustion engine |
WO2012124671A2 (en) * | 2011-03-14 | 2012-09-20 | イマジニアリング株式会社 | Internal combustion engine |
JP5954812B2 (en) | 2011-10-31 | 2016-07-20 | ダイハツ工業株式会社 | Control device for spark ignition internal combustion engine |
JP5469229B1 (en) * | 2012-10-26 | 2014-04-16 | 三菱電機株式会社 | Ignition coil device for high frequency discharge |
JP5805125B2 (en) | 2013-03-18 | 2015-11-04 | 三菱電機株式会社 | Ignition device |
JP5980423B2 (en) * | 2013-06-04 | 2016-08-31 | 三菱電機株式会社 | Ignition device for spark ignition internal combustion engine |
-
2016
- 2016-03-29 DE DE102016003793.8A patent/DE102016003793A1/en not_active Withdrawn
-
2017
- 2017-03-23 JP JP2018550705A patent/JP2019511670A/en active Pending
- 2017-03-23 CN CN201780022449.XA patent/CN109312707B/en active Active
- 2017-03-23 EP EP17715623.9A patent/EP3436686B1/en active Active
- 2017-03-23 US US16/087,738 patent/US10982641B2/en active Active
- 2017-03-23 KR KR1020187028984A patent/KR20180124908A/en unknown
- 2017-03-23 WO PCT/EP2017/000363 patent/WO2017167438A1/en active Application Filing
- 2017-03-28 TW TW106110380A patent/TW201734304A/en unknown
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
CN109312707B (en) | 2019-11-26 |
TW201734304A (en) | 2017-10-01 |
JP2019511670A (en) | 2019-04-25 |
US10982641B2 (en) | 2021-04-20 |
EP3436686A1 (en) | 2019-02-06 |
KR20180124908A (en) | 2018-11-21 |
CN109312707A (en) | 2019-02-05 |
US20200011283A1 (en) | 2020-01-09 |
DE102016003793A1 (en) | 2017-10-05 |
WO2017167438A1 (en) | 2017-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3137239C2 (en) | Plasma ignition device for an internal combustion engine | |
EP3465849B1 (en) | Spark plug for a high-frequency ignition system | |
DE3222496C2 (en) | Plasma ignition system for a multi-cylinder internal combustion engine | |
EP0118789B1 (en) | Sparking plugs for internal-combustion engines | |
DE3221990C2 (en) | Plasma ignition system for a multi-cylinder internal combustion engine | |
EP2058909B1 (en) | Resonant assembly | |
DE102010015344B4 (en) | A method for igniting a fuel-air mixture of a combustion chamber, in particular in an internal combustion engine by generating a corona discharge | |
DE102010045171A1 (en) | An igniter for igniting a fuel-air mixture in a combustion chamber, in particular in an internal combustion engine, by generating a corona discharge | |
EP3436688A1 (en) | Ignition device for igniting an air-fuel mixture in a combustion chamber | |
DE10331418A1 (en) | Plasma jet spark plug | |
WO2012130649A1 (en) | Method and device for extending the combustion duration of a spark ignited by a spark plug in an internal combustion engine | |
DE102013105682B4 (en) | Method for controlling a corona ignition device | |
EP3436686B1 (en) | Ignition device for igniting an air fuel in a combustion chamber | |
EP2847456B1 (en) | High-frequency plasma ignition device | |
DE2628509A1 (en) | CAPACITY DISCHARGE IGNITION SYSTEM, ESPECIALLY FOR THROTTLE MACHINES | |
DE102010045174B4 (en) | Circuit arrangement for an HF ignition of internal combustion engines | |
DE102012210391B4 (en) | detonator | |
EP4148988A1 (en) | Pulse generator for a hpem pulse | |
DE102013102290A1 (en) | ignition system | |
DE102013112039B4 (en) | Corona ignition system for an internal combustion engine and method for controlling a corona ignition system | |
DE102014116586A1 (en) | Corona ignition system for an internal combustion engine | |
DE102015112217B3 (en) | Method for controlling a corona ignition device | |
DE1751892C3 (en) | Electrical pulse generator | |
DE102014110432A1 (en) | Method for igniting a fuel-air mixture, ignition system and glow plug | |
WO2017108389A1 (en) | Ignition device for igniting a fuel-air mixture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180925 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20191108 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
INTC | Intention to grant announced (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200429 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1296102 Country of ref document: AT Kind code of ref document: T Effective date: 20200815 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502017006422 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20200729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201130 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201030 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201029 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201029 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201129 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502017006422 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 |
|
26N | No opposition filed |
Effective date: 20210430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210331 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210331 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210323 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210331 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20230323 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1296102 Country of ref document: AT Kind code of ref document: T Effective date: 20220323 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20230317 Year of fee payment: 7 Ref country code: IT Payment date: 20230321 Year of fee payment: 7 Ref country code: GB Payment date: 20230321 Year of fee payment: 7 Ref country code: DE Payment date: 20230328 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230527 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20170323 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220323 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502017006422 Country of ref document: DE Representative=s name: KANDLBINDER, MARKUS, DIPL.-PHYS., DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502017006422 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20240323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20241001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240323 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240331 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20241001 |