EP3430633B1 - Cable for transmitting electrical signals - Google Patents
Cable for transmitting electrical signals Download PDFInfo
- Publication number
- EP3430633B1 EP3430633B1 EP17711090.5A EP17711090A EP3430633B1 EP 3430633 B1 EP3430633 B1 EP 3430633B1 EP 17711090 A EP17711090 A EP 17711090A EP 3430633 B1 EP3430633 B1 EP 3430633B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cable
- wires
- line
- dielectric
- relative permittivity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003989 dielectric material Substances 0.000 claims description 47
- 239000004020 conductor Substances 0.000 claims description 45
- 239000000463 material Substances 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 239000004698 Polyethylene Substances 0.000 claims description 4
- 239000004743 Polypropylene Substances 0.000 claims description 4
- 239000012777 electrically insulating material Substances 0.000 claims description 4
- -1 polypropylene Polymers 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- 229920000573 polyethylene Polymers 0.000 claims description 3
- 229920001155 polypropylene Polymers 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 230000005684 electric field Effects 0.000 description 3
- 230000008054 signal transmission Effects 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 238000004040 coloring Methods 0.000 description 2
- 239000000615 nonconductor Substances 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 210000003462 vein Anatomy 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B11/00—Communication cables or conductors
- H01B11/005—Quad constructions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B11/00—Communication cables or conductors
- H01B11/02—Cables with twisted pairs or quads
- H01B11/06—Cables with twisted pairs or quads with means for reducing effects of electromagnetic or electrostatic disturbances, e.g. screens
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B11/00—Communication cables or conductors
- H01B11/02—Cables with twisted pairs or quads
- H01B11/06—Cables with twisted pairs or quads with means for reducing effects of electromagnetic or electrostatic disturbances, e.g. screens
- H01B11/08—Screens specially adapted for reducing cross-talk
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
- H01B7/02—Disposition of insulation
- H01B7/0208—Cables with several layers of insulating material
- H01B7/0216—Two layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
- H01B7/02—Disposition of insulation
Definitions
- the invention relates to a cable for transmitting electrical signals with an outer jacket made of an electrically insulating material and at least N lines n with N ⁇ 2 and N ⁇ N . which are arranged inside the outer jacket, each line n with n ⁇ [1, N ] having a total of M wires made of an electrically conductive material with M ⁇ 1 and M ⁇ N .
- a cable for transmitting electrical signals contains wires made of a conductive material, each of which is surrounded by an electrical insulator for the purpose of mutual electrical insulation.
- Electrical insulators have dielectric properties and essentially determine the propagation or conduction properties of the cable for electrical signals, which are essentially are electromagnetic waves.
- An essential property of dielectric materials or a dielectric is their permittivity ⁇ .
- the permittivity ⁇ (from lat. Permittere: allow, leave, let through), also called “dielectric conductivity” or “dielectric function”, indicates the permeability of a material to electric fields.
- a permittivity is also assigned to the vacuum, since electric fields can also set in the vacuum or electromagnetic fields can spread.
- star quad cable In order to reduce the crosstalk of electric signals from one line to another line within a cable, without this necessarily an additional shielding casing for each line in the cable has to be the present, the so-called star quad cable has been proposed (engl .: T Wisted / Star Q uad (TQ); German: stranded star quad cable (hereinafter also referred to as "star quad").
- the star quad cable is like the STP cable (S hielded T Wisted P air; dt .: shielded twisted pair), and the UTP cable (U nshielded T Wisted P air; unshielded twisted pair) to the balanced copper cables.
- star quad cable two lines, each with two wires, each made of an electrically conductive material, are combined to form one cable.
- Each wire is surrounded by a dielectric and the four wires are stranded together in a cross shape, with opposite wires each forming a pair of wires in the cross-section of the star-quad cable, so that the star-quad cable has two wire pairs or lines.
- the four wires stranded together are surrounded by a common protective sheath, which can include braid or foil shielding.
- This mechanical structure determines the transmission parameters such as near and far crosstalk.
- This type of cable is characterized above all by its small diameter and the resulting small bending radius.
- a further advantage of star quad stranding is the higher packing density than with pair stranding.
- the star quad cable essentially corresponds to the UTP and STP cable and can be classified accordingly: Star quad cables in unshielded design are referred to as twisted quad (UTQ).
- UTQ twisted quad
- one wire with a jacket made of insulating material arranged around it forms a conductor and two wires or conductors each form a line.
- Two pairs of conductors or two lines are twisted together and then form two cross-stranded double conductors (one double conductor corresponds to one line).
- Two in the cross section of the star quad Opposing conductors or wires form a pair, an electrical signal being transmitted on each pair.
- the four conductors or wires in the cross section of the star quad are arranged at the corners of a square, the conductors or wires of a pair being arranged at diagonally opposite corners.
- conductor pairs or wire pairs standing perpendicular to one another it is meant that, seen in the cross section of the cable, a first straight line which runs through the center points of the conductors or wires of a pair is perpendicular to a second straight line which passes through the center points of the The other pair's conductor or wires run.
- pamphlet US 2010/307790 A1 relates to a cable with at least one pair of core conductors, each of which is formed from a conductor and a dielectric surrounding this conductor.
- the surrounding dielectric is formed in two parts with an inner dielectric and an outer dielectric.
- pamphlet US 2010/307790 A1 deals with the problem that the dielectrics of the two conductors should be colored differently. This is according to US 2010/307790 A1 problematic because the introduction of different color pigments into the respective dielectric results in different permittivities for the dielectrics.
- the core conductors are all identical and differ only in the color (“ hue ") of the outer dielectric.
- pamphlet JP H11 25765 A deals with the problem of different signal propagation times on different stranded wire pairs, if for different ones Wire pairs of different stranding lengths are formed. Runtime differences between stranded wire pairs with different stranding lengths are reduced in that the permittivity for the dielectric is chosen to be 0.1 or more greater for a wire pair with the greatest stranding length compared to a wire pair with the smallest stranding length in a cable with several stranded wire pairs becomes. This is said to improve the attenuation of the near-end crosstalk (crosstalk at the end of the cable at which the signal is fed in), since different stranding lengths can be maintained.
- the invention has for its object a cable of the above. kind of improving the crosstalk between two lines.
- the dielectrics of the wires of one line show a
- ⁇ r the relative permittivity of the respective dielectric surrounding the wires.
- the value for k (s) is different for different values for s ( k (1) ⁇ k (2) ... ⁇ k ( N - j ))
- the values of k (s) can also be identical for several subsets of values for s in the range from 1 to (Nj), so that, for example, there are three or more identical values for k (s) within a cable (if N is greater than or equal to) 4), the values for k (s) being different for different subsets.
- of approximately 0.3 can be achieved in a particularly simple and cost-effective manner in that the dielectric of the wires of at least one line made of polypropylene (PP; ⁇ r ⁇ 2.1) and the dielectric of the wires of at least one other line made of polyethylene (PE, ⁇ r ⁇ 2.4) is produced.
- PP polypropylene
- PE polyethylene
- a value that deviates in total for the relative permittivity ⁇ r of the dielectric of the wires of a line with a targeted setting of a value for k for the deviation of the value for the relative permittivity ⁇ r of the dielectric of the wires of another line can be achieved in a simple manner in that the dielectric of the wires of at least one line is made up of a concentric layer structure of two or more dielectric materials with different values for the relative permittivity ⁇ r .
- a particularly advantageous setting of the value for the relative permittivity ⁇ r of the dielectric of the wires of a line with high effectiveness is achieved in that with the wires of at least one line there is a space between the wires of this line and the outer jacket facing the wires of this line with a additional dielectric material is filled, which has a different value for the relative permittivity ⁇ r than the dielectric surrounding the wires of this line.
- the filling dielectric is in the area of high field strength densities and is therefore particularly effective.
- An alternative possibility of changing the relative permittivity ⁇ r of the wires of individual lines without having to change the mechanical structure of the individual wires for this purpose is achieved by coating on an inside of the outer jacket which faces the wires of a line an additional dielectric is provided, which has a value for the relative permittivity ⁇ r that differs from the dielectric surrounding the wires of this line.
- a particularly strong influence on the resulting relative permittivity ⁇ r for individual cores is achieved in that the additional dielectric is constructed as a layer sequence of dielectric materials with different values for the relative permittivity ⁇ r .
- a high effect of the dielectric is achieved in that the dielectric of at least one wire is arranged in a space between the wire and the outer sheath in such a way that the cross section of the cable is parabolically delimited from the adjacent wires. As a result, the dielectric fills a room with a high field line density.
- k (s) k ( s ) ⁇ [ -u, -w ] and k ( s ) ⁇ [ w, u ]
- w 0.01, 0.03, 0.1, 0.2, 0.3, 0.5 , 0.7, 0.9, 1.0, 1.2, 1.4 or 1.6
- u 0.1, 0.2, 0.3, 0.5, 0.7, 0.9, 1.0, 1.2, 1.4, 1.6 or 1.8
- Additional electromagnetic shielding is achieved by additionally providing a shield jacket made of an electrically conductive material, within which the lines are arranged.
- This shielding jacket is arranged, for example, radially outside or inside the outer jacket or integrated in the outer jacket.
- signal transmission with differential pairs of lines or differential conductor pairs is preferably used for fast data transmission.
- a typical cable for such an application is the star quad cable.
- a cable for electrical signal transmission has a tubular outer jacket made of an electrically insulating material. Furthermore, for example, a shield jacket made of an electrically conductive material is provided, which is coaxially surrounded by the outer jacket. Alternatively, the shield jacket is integrated in the outer jacket. Radially inside the shield jacket are N lines with N ⁇ 2 and N ⁇ N arranged, each line n with n ⁇ [1 , N ] a total of M wires made of an electrically conductive material with M ⁇ 1 and M ⁇ N . having.
- n ⁇ N is of a dielectric with a predetermined value for the relative permittivity ⁇ r (m, n)> 1 surrounded. It is preferred here that the dielectrics of the different wires are designed with different colors, so that the wires can be uniquely identified at each end of the cable.
- the value for the relative permittivity ⁇ r of the dielectrics of the total M cores of a line j deviates by a value k (s) from a value for the relative permittivity ⁇ r of the dielectrics of the M cores of at least one other line (j + s), for example the line (j + 1).
- ⁇ r (m, j) ⁇ r (m, j + s) - k (s) with m ⁇ [1 , M ] , m ⁇ N . j ⁇ [1, N - 1] , j ⁇ N .
- the value k (1) is a number whose amount
- the value of k (s) for two other lines can be different or identical.
- are, for example, 0.01, 0.03, 0.1, 0.2, 0.3, 0.5, 0.7, 0.9, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0.
- the wires 16, 18 thus form a first pair of conductors or the first line and the wires 20, 22 form a second pair of conductors or the second line.
- a first straight line 32 runs through the centers of the wires 16 and 18 of the first line and a second straight line 34 runs through the centers of the wires 20, 22 of the second line.
- the two straight lines 32, 34 are at each location in a sectional plane parallel to the representation or the drawing plane in FIG Fig. 1 perpendicular to each other.
- Each wire 16, 18, 20, 22 forms a conductor with the associated dielectric 24, 26, 28, 30.
- the conductors 16/24, 18/26, 20/28, 22/30 are twisted or twisted together in a cross shape in the axial direction in such a way that the known star-quad arrangement results.
- the conductors 16/24, 18/26, 20/28, 22/30 are stranded together around a central core 36.
- Fig. 2 shows the star quad cable as a 4-port with a first end 38 and a second end 40.
- the first line with the wires 16, 18 and the dielectrics 24, 26 ( Fig. 1 ) forms a first differential gate 42 at the first end 38 and a third differential gate 46 at the second end.
- the second line with the wires 20, 22 and the dielectrics 28, 30 ( Fig. 1 ) forms a second differential gate 44 at the first end 38 and a fourth differential gate 48 at the second end.
- the wave component measurable at the third gate 46 is a transmission.
- the part of the wave measurable at the second gate 44 is a so-called "crosstalk" at the near end 38 "NEXT” (Near End Crosstalk) i.e. it is a crosstalk from the first line with the wires 16, 18 to the second line with the wires 20, 22 which is reflected back to the first end 38.
- the shaft component that can be measured at the fourth gate is a so-called "crosstalk” at the far end 40 "FEXT” (Far End Crosstalk) i.e.
- Fig. 3 In order to check whether the difference in the relative permittivities ⁇ r (m, n) brings an improvement with respect to the FEXT, this FEXT was calculated with a cable model for a star quad cable designed according to the invention, as described above. The result is in Fig. 3 shown.
- Fig. 3 50 denotes a vertical axis on which the FEXT is plotted in [dB].
- 52 denotes a horizontal axis on which a frequency f of the input signal at the first gate 42 ( Fig. 2 ) is plotted in [MHz].
- a first graph 54 shows the course of the FEXT over the frequency with a conventional star quad cable, as it was actually measured.
- the transmission property of the cable 10 can be improved by a difference k (s) of the relative permittivity ⁇ r (m, n) of the dielectrics 24, 26, 28, 30 without an additional shield sheath for each individual conductor pair 16, 18 and 20, 22 is necessary.
- Fig. 4 shows a second preferred embodiment of a cable 10 according to the invention, parts having the same function having the same reference numerals as in FIG Fig. 1 , are referred to, so that to explain them refer to the above description of the Fig. 1 is referred.
- Fig. 4 show different hatching or fillings of the dielectrics 24, 26, 28, 30 different values for the relative permittivity ⁇ r (m, n).
- An outer jacket is in Fig. 4 not shown. It can thus be seen that the dielectrics 24, 26, 28, 30 are basically designed with the same value for the relative permittivity ⁇ r (m, n), but the dielectrics 24 and 26 are in two parts, each with two materials with different relative permittivity ⁇ r built up.
- a first material with the same relative permittivity ⁇ r as the dielectrics 28 and 30 encases the wire 16, 18, but in addition there is a second material 70 with a different value for the relative permittivity ⁇ r radially between the wire 16, 18 and the first material, so that the dielectrics 24, 26 effectively have a different value for the relative permittivity ⁇ r than the dielectrics 28 and 30.
- the first and second dielectric materials are arranged concentrically to one another and to the respective wires 16, 18.
- Fig. 5 shows a third preferred embodiment of a cable 10 according to the invention, parts having the same function having the same reference numerals as in FIG Fig. 1 and 4 , are referred to, so that to explain them refer to the above description of the Fig. 1 and 4 is referred.
- different hatches or fillings show different values for the relative permittivity ⁇ r .
- An outer jacket is in Fig. 5 not shown.
- the wires 16, 18, 20, 22 are surrounded by an identical dielectric, so that their relative permittivity ⁇ r is essentially identical.
- a respective intermediate space between the conductors 16/24, 18/26, 20/28 and 22/30 and the shield jacket 14 is additionally filled with a further first dielectric 72 and a further second dielectric 74, each of which is provided by the dielectrics 24, 26 , 28, 30 and other values for the relative permittivity ⁇ r .
- the effective value for the relative permittivity ⁇ r (m, n) of the line with wires 16, 18 differs from that for the relative permittivity ⁇ r (m, n) of the line with wires 20, 22.
- the filling with the further first and second dielectrics 72 and 74 is such that in cross-section they fill an area which is parabolic from the respectively adjacent conductors 16/24, 18/26, 20/28 and 22/30 is delimited. In this way, the other dielectrics 72 and 74 are located precisely in areas with an increased field line density and thus have a great effect.
- Fig. 6 shows a fourth preferred embodiment of a cable 10 according to the invention, parts with the same function having the same reference numerals as in FIG Fig. 1 . 4 and 5 , are referred to, so that to explain them refer to the above description of the Fig. 1 . 4 and 5 is referred.
- different hatches or fillings show different values for the relative permittivity ⁇ r .
- An outer jacket is in Fig. 6 not shown.
- the wires 16, 18, 20, 22 are surrounded by an identical dielectric 24, 26, 28, 30, so that their relative permittivity ⁇ r is essentially identical.
- the additional dielectrics 72 and 74 are arranged on the inside of the shielding jacket 14 and in each case in such a way that they are each located between a dielectric 24, 26, 28, 30 of the wires 16, 18, 20, 22 and the shielding jacket 14. In this way, the effective value for the relative permittivity ⁇ r (m, n) of the line with wires 16, 18 differs from that for the relative permittivity ⁇ r (m, n) of the line with wires 20, 22.
- Fig. 7 shows a fifth preferred embodiment of a cable 10 according to the invention, parts having the same function having the same reference numerals as in FIG Fig. 1 . 4 . 5 and 6 , are referred to, so that to explain them refer to the above description of the Fig. 1 . 4 . 5 and 6 is referred.
- different hatches or fillings show different values for the relative permittivity ⁇ r .
- An outer jacket is in Fig. 7 not shown.
- the wires 16, 18, 20, 22 are surrounded by an identical dielectric 24, 26, 28, 30, so that their relative permittivity ⁇ r is essentially identical.
- the additional dielectrics 72 and 74 are arranged on the inside of the shielding jacket 14 and in each case in such a way that they are each located between a dielectric 24, 26, 28, 30 of the wires 16, 18, 20, 22 and the shielding jacket 14. In contrast to the fourth embodiment according to Fig. 6 the additional dielectrics 72 and 74 are built up in layers with the further dielectric 70. In this way, the effective value for the relative permittivity ⁇ r (m, n) of the line with wires 16, 18 differs from that for the relative permittivity ⁇ r (m, n) of the line with wires 20, 22.
- Fig. 8 shows a sixth preferred embodiment of a cable 10 according to the invention, parts having the same function having the same reference numerals as in FIG Fig. 1 . 4 . 5 . 6 and 7 , are referred to, so that to explain them refer to the above description of the Fig. 1 . 4 . 5 . 6 and 7 is referred.
- different hatches or fillings show different values for the relative permittivity ⁇ r .
- An outer jacket is in Fig. 8 not shown.
- the wires 16, 18, 20, 22 are exclusively surrounded by the further dielectric 72 to 74 and the dielectric 72, 74 extends in each case analogously to the second embodiment in accordance with Fig.
- the effective values for the relative permittivity ⁇ r (m, n) of the line with wires 16, 18 differ from that for the relative permittivity ⁇ r (m, n) of the line with wires 20, 22 and the dielectrics 72, 74 fill exactly that space within the shield jacket 14 in which the highest field line density occurs.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Communication Cables (AREA)
- Insulated Conductors (AREA)
Description
Die Erfindung betrifft ein Kabel zum Übertragen von elektrischen Signalen mit einem Außenmantel aus einem elektrisch isolierenden Werkstoff und mindestens N Leitungen n mit N ≥ 2 und
Ein Kabel zum Übertragen von elektrischen Signalen beinhaltet Adern aus einem leitfähigen Werkstoff, die zum Zwecke der gegenseitigen elektrischen Isolation jeweils von einem elektrischen Isolator umgeben sind. Elektrische Isolatoren haben dielektrische Eigenschaften und bestimmen maßgeblich die Ausbreitungs- bzw. Leitungseigenschaften des Kabels für elektrische Signale, die im Wesentlichen elektromagnetische Wellen sind. Eine wesentliche Eigenschaft von dielektrischen Werkstoffen bzw. eines Dielektrikums ist deren Permittivität ε.A cable for transmitting electrical signals contains wires made of a conductive material, each of which is surrounded by an electrical insulator for the purpose of mutual electrical insulation. Electrical insulators have dielectric properties and essentially determine the propagation or conduction properties of the cable for electrical signals, which are essentially are electromagnetic waves. An essential property of dielectric materials or a dielectric is their permittivity ε.
Die Permittivität ε (von lat. permittere: erlauben, überlassen, durchlassen), auch "dielektrische Leitfähigkeit" oder "dielektrische Funktion" genannt, gibt die Durchlässigkeit eines Materials für elektrische Felder an. Auch dem Vakuum ist eine Permittivität zugewiesen, da sich auch im Vakuum elektrische Felder einstellen oder elektromagnetische Felder ausbreiten können.The permittivity ε (from lat. Permittere: allow, leave, let through), also called "dielectric conductivity" or "dielectric function", indicates the permeability of a material to electric fields. A permittivity is also assigned to the vacuum, since electric fields can also set in the vacuum or electromagnetic fields can spread.
Die relative Permittivität εr eines Mediums, auch Permittivitäts- oder Dielektrizitätszahl genannt, ist das Verhältnis seiner Permittivität ε zu der des Vakuums (elektrische Feldkonstante ε0):
Sie ist ein Maß für die feldschwächenden Effekte der dielektrischen Polarisation des Mediums und hängt eng mit der elektrischen Suszeptibilität χe = εr - 1 zusammen. In der englischsprachigen Literatur und in der Halbleitertechnik wird die relative Permittivität auch mit κ (kappa) oder - wie etwa bei den Low-k-Dielektrika - mit k bezeichnet. Als Synonym für die relative Permittivität ist auch noch die frühere Bezeichnung "Dielektrizitätszahl" gebräuchlich.It is a measure of the field-weakening effects of the dielectric polarization of the medium and is closely related to the electrical susceptibility χ e = ε r - 1. In English-language literature and in semiconductor technology, the relative permittivity is also denoted by κ (kappa) or - as with the low-k dielectrics - by k. The earlier term "dielectric constant" is also used as a synonym for relative permittivity.
Zur elektromagnetischen Abschirmung eines Kabels zum Übertragen von elektrischen Signalen ist es üblich, das Kabel mit einem Schirmmantel aus einem elektrisch leitfähigen Werkstoff zu umgeben. Dies reduziert ein ungehindertes Austreten von elektrischen bzw. elektromagnetischen Signalen, die über das Kabel übertragen werden, aus dem Kabel heraus und gleichzeitig wird auch ein Eintreten von elektromagnetischen Signalen von außen in die Leitungen des Kabels hinein reduziert. Beim Übertragen von mehreren elektrischen Signalen über verschiedene Leitungen eines Kabels ergibt sich neben steigendem Durchmesser und Gewicht des Kabels zusätzlich das Problem, dass in unerwünschter Weise elektrische Signale von einer Leitung des Kabels in eine andere Leitung des Kabels übersprechen. Um dies zu verhindern ist es bekannt, auch die einzelnen Leitungen des Kabels mit einem Schirmmantel aus einem elektrisch leitfähigen Werkstoff zu versehen. Dies macht die Kabel jedoch teuer sowie unflexibel in der Verlegung, da das Kabel insgesamt sehr starr wird und gewisse Biegeradien nicht unterschritten werden dürfen, um die Schirmmäntel der Leitungen nicht zu beschädigen.For electromagnetic shielding of a cable for the transmission of electrical signals, it is customary to surround the cable with a shielding jacket made of an electrically conductive material. This reduces an unhindered emergence of electrical or electromagnetic signals, which are transmitted via the cable, out of the cable and, at the same time, the entry of electromagnetic signals from outside into the lines of the cable is also reduced. When several electrical signals are transmitted via different lines of a cable, in addition to the increasing diameter and weight of the cable, there is also the problem that electrical signals crosstalk from one line of the cable into another line of the cable. To prevent this, it is known to also provide the individual lines of the cable with a shielding jacket made of an electrically conductive material. However, this makes the cable expensive and inflexible to lay because the cable overall is very rigid and certain bending radii must not be undercut, so as not to damage the shield sheaths of the cables.
Um das Übersprechen von elektrischen Signalen von einer Leitung in eine andere Leitung innerhalb eines Kabels zu reduzieren, ohne dass hierfür notwendigerweise ein zusätzlicher Schirmmantel für jede Leitung in dem Kabel vorhanden sein muss, ist das sogenannte Sternvierer-Kabel vorgeschlagen worden (engl.: Twisted/Star Quad (TQ); dt.: verseiltes Sternvierer-Kabel; nachfolgend auch kurz "Sternvierer" genannt). Das Sternvierer-Kabel gehört wie das STP-Kabel (Shielded Twisted Pair; dt.: geschirmtes verdrilltes Leitungspaar) und das UTP-Kabel (Unshielded Twisted Pair; ungeschirmtes verdrilltes Leitungspaar) zu den symmetrischen Kupferkabeln. Beim Sternvierer-Kabel sind zwei Leitungen mit je zwei Adern aus jeweils einem elektrisch leitfähigen Werkstoff zu einem Kabel zusammen gefasst. Jede Ader ist von einem Dielektrikum umgeben und die vier Adern sind miteinander kreuzförmig verseilt, wobei im Querschnitt des Sternvierer-Kabels gegenüberliegende Adern jeweils ein Adernpaar bilden, so dass das Sternvierer-Kabel zwei Adernpaare bzw. Leitungen aufweist. Die miteinander verseilten vier Adern werden von einem gemeinsamen Schutzmantel umgeben, der eine Geflecht- oder Folienschirmung umfassen kann. Dieser mechanische Aufbau bestimmt die übertragungstechnischen Parameter wie das Nah- und Fernnebensprechen. Dieser Kabeltyp zeichnet sich vor allem durch den geringen Durchmesser aus und den daraus resultierenden geringen Biegeradius. Ein weiterer Vorteil der Sternviererverseilung ist neben der mechanischen Stabilisierung der Anordnung der Leiter bzw. Adern relativ zueinander die höhere Packdichte als bei einer Paarverseilung.In order to reduce the crosstalk of electric signals from one line to another line within a cable, without this necessarily an additional shielding casing for each line in the cable has to be the present, the so-called star quad cable has been proposed (engl .: T Wisted / Star Q uad (TQ); German: stranded star quad cable (hereinafter also referred to as "star quad"). The star quad cable is like the STP cable (S hielded T Wisted P air; dt .: shielded twisted pair), and the UTP cable (U nshielded T Wisted P air; unshielded twisted pair) to the balanced copper cables. With the star quad cable, two lines, each with two wires, each made of an electrically conductive material, are combined to form one cable. Each wire is surrounded by a dielectric and the four wires are stranded together in a cross shape, with opposite wires each forming a pair of wires in the cross-section of the star-quad cable, so that the star-quad cable has two wire pairs or lines. The four wires stranded together are surrounded by a common protective sheath, which can include braid or foil shielding. This mechanical structure determines the transmission parameters such as near and far crosstalk. This type of cable is characterized above all by its small diameter and the resulting small bending radius. In addition to the mechanical stabilization of the arrangement of the conductors or wires relative to one another, a further advantage of star quad stranding is the higher packing density than with pair stranding.
Das Sternvierer-Kabel entspricht im Wesentlichen dem UTP- und STP-Kabel und kann entsprechend klassifiziert werden: Sternvierer-Kabel in nichtgeschirmter Ausführung werden als Twisted Quad (UTQ) bezeichnet.The star quad cable essentially corresponds to the UTP and STP cable and can be classified accordingly: Star quad cables in unshielded design are referred to as twisted quad (UTQ).
Bei dem Sternvierer-Kabel bildet eine Ader mit einem darum angeordneten Mantel aus isolierendem Werkstoff einen Leiter und zwei Adern bzw. Leiter bilden jeweils eine Leitung. Es sind zwei Paare von Leitern bzw. zwei Leitungen miteinander verdrillt und bilden dann zwei kreuzförmig verseilte Doppelleiter (ein Doppelleiter entspricht einer Leitung). Zwei im Querschnitt des Sternviererkabels gegenüberliegende Leiter bzw. Adern bilden ein Paar, wobei auf einem Paar jeweils ein elektrisches Signal übertragen wird. Mit anderen Worten sind die vier Leiter bzw. Adern im Querschnitt des Sternvierers an den Ecken eines Quadrates angeordnet, wobei die Leiter bzw. Adern eines Paares an diagonal gegenüberliegenden Ecken angeordnet sind. Durch die hierdurch senkrecht zueinander stehenden Leiterpaare bzw. Aderpaare ergibt sich eine gewünschte hohe Übersprechdämpfung von einem Paar zu dem anderen Paar bzw. findet nur sehr geringes Übersprechen von einem Paar zu dem anderen Paar statt. Mit dem Ausdruck "senkrecht zueinander stehende Leiterpaare bzw. Aderpaare" ist gemeint, dass im Querschnitt des Kabels gesehen eine erste Gerade, welche durch die Mittelpunkte der Leiter bzw. Adern eines Paares verläuft, senkrecht auf einer zweiten Geraden steht, welche durch die Mittelpunkte der Leiter bzw. Adern des anderen Paares verläuft.In the star quad cable, one wire with a jacket made of insulating material arranged around it forms a conductor and two wires or conductors each form a line. Two pairs of conductors or two lines are twisted together and then form two cross-stranded double conductors (one double conductor corresponds to one line). Two in the cross section of the star quad Opposing conductors or wires form a pair, an electrical signal being transmitted on each pair. In other words, the four conductors or wires in the cross section of the star quad are arranged at the corners of a square, the conductors or wires of a pair being arranged at diagonally opposite corners. As a result of the mutually perpendicular conductor pairs or wire pairs, there is a desired high crosstalk attenuation from one pair to the other pair or there is only very low crosstalk from one pair to the other pair. By the expression "conductor pairs or wire pairs standing perpendicular to one another" it is meant that, seen in the cross section of the cable, a first straight line which runs through the center points of the conductors or wires of a pair is perpendicular to a second straight line which passes through the center points of the The other pair's conductor or wires run.
Druckschrift
Druckschrift
Der Erfindung liegt die Aufgabe zugrunde, ein Kabel der o.g. Art hinsichtlich des Übersprechens zwischen zwei Leitungen zu verbessern.The invention has for its object a cable of the above. Kind of improving the crosstalk between two lines.
Diese Aufgabe wird erfindungsgemäß durch ein Kabel der o.g. Art mit den in Anspruch 1 gekennzeichneten Merkmalen gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den weiteren Ansprüchen beschrieben.This object is achieved by a cable of the above. Kind with the features characterized in claim 1 solved. Advantageous embodiments of the invention are described in the further claims.
Dazu ist es bei einem Kabel der o.g. Art erfindungsgemäß vorgesehen, dass das Kabel ein Sternviererkabel mit M = 2 und N = 2 ist, bei dem die vier Adern der zwei Leitungen kreuzförmig miteinander verdrillt sind.For this it is with a cable of the above. Art provided according to the invention that the cable is a star quad cable with M = 2 and N = 2, in which the four wires of the two lines are twisted together in a cross shape.
Die Dielektrikas der Adern einer Leitung weisen im Vergleich zu den Adern einer anderen Leitung einen um |k(s)| zwischen 0.01 bis 2.0 unterschiedlichen Wert für die relative Permittivität εr der jeweiligen die Adern umgebenden Dielektrika auf. Dies hat unterschiedliche Ausbreitungsgeschwindigkeiten für elektrische Signale auf diesen Leitungen mit unterschiedlichen Dielektrika um die Adern zur Folge. Der Wert für k(s) ist für unterschiedliche Werte für s beispielsweise unterschiedlich (k(1) ≠ k(2) ... ≠ k(N - j)), jedoch können alternativ die Werte für k(s) für einige oder alle Werte für s auch identisch sein (k(1) = k(2) = ... = k(N - j)). Die Werte von k(s) können auch für mehrere Teilmengen von Werten für s im Bereich von 1 bis (N-j) identisch sein, so dass beispielsweise drei oder mehr identische Werte für k(s) innerhalb eines Kabels vorliegen (wenn N größer oder gleich 4), wobei die Werte für k(s) für unterschiedliche Teilmengen unterschiedlich sind.The dielectrics of the wires of one line show a | k (s) | compared to the wires of another line between 0.01 to 2.0 different value for the relative permittivity ε r of the respective dielectric surrounding the wires. This results in different speeds of propagation for electrical signals on these lines with different dielectrics around the wires. For example, the value for k (s) is different for different values for s ( k (1) ≠ k (2) ... ≠ k ( N - j )) , but alternatively the values for k (s) can be different for some or all values for s should also be identical ( k (1) = k (2) = ... = k ( N - j )) . The values of k (s) can also be identical for several subsets of values for s in the range from 1 to (Nj), so that, for example, there are three or more identical values for k (s) within a cable (if N is greater than or equal to) 4), the values for k (s) being different for different subsets.
Dies hat den Vorteil, dass sich in überraschender Weise durch die unterschiedliche Ausbreitungsgeschwindigkeit der elektrischen Signale in den beiden Leitungen mit unterschiedlichem Wert der Permittivität der Dielektrikas der jeweiligen Adern ein geringeres Übersprechen von Signalen der einen Leitung in die andere Leitung ergibt.This has the advantage that, surprisingly, the different propagation speed of the electrical signals in the two lines with a different value of the permittivity of the dielectric of the respective wires results in less crosstalk of signals from one line into the other line.
Einen unterschiedlichen Wert für die relative Permittivität εr(m,n) des Dielektrikums der Adern verschiedener Leitungen mit einem Wert |k| von etwa 0.3 erzielt man auf besonders einfache und kostengünstig herstellbare Weise dadurch, dass das Dielektrikum der Adern mindestens einer Leitung aus dem Werkstoff Polypropylen (PP; εr ≈ 2.1) und das Dielektrikum der Adern mindestens einer anderen Leitung aus dem Werkstoff Polyethylen (PE, εr ≈ 2.4) hergestellt ist.A different value for the relative permittivity ε r (m, n) of the dielectric of the wires of different lines with a value | k | of approximately 0.3 can be achieved in a particularly simple and cost-effective manner in that the dielectric of the wires of at least one line made of polypropylene (PP; ε r ≈ 2.1) and the dielectric of the wires of at least one other line made of polyethylene (PE, ε r ≈ 2.4) is produced.
Ein in Summe abweichender Wert für die relative Permittivität εr des Dielektrikums der Adern einer Leitung mit gezielter Einstellung eines Wertes für k für die Abweichung des Wertes für die relative Permittivität εr des Dielektrikums der Adern einer anderen Leitung erzielt man auf einfache Weise dadurch, dass das Dielektrikum der Adern mindestens einer Leitung aus einem konzentrischen Schichtaufbau von zwei oder mehr dielektrischen Werkstoffen mit unterschiedlichem Wert für die relative Permittivität εr aufgebaut ist.A value that deviates in total for the relative permittivity ε r of the dielectric of the wires of a line with a targeted setting of a value for k for the deviation of the value for the relative permittivity ε r of the dielectric of the wires of another line can be achieved in a simple manner in that the dielectric of the wires of at least one line is made up of a concentric layer structure of two or more dielectric materials with different values for the relative permittivity ε r .
Eine besonders vorteilhafte Einstellung des Wertes für die relative Permittivität εr des Dielektrikums der Adern einer Leitung mit hoher Wirksamkeit, erzielt man dadurch, dass bei den Adern mindestens einer Leitung ein Zwischenraum zwischen den Adern dieser Leitung und dem den Adern dieser Leitung zugewandten Außenmantel mit einem zusätzlichen dielektrischen Werkstoff gefüllt ist, welcher einen abweichenden Wert für die relative Permittivität εr aufweist als das die Adern dieser Leitung umgebende Dielektrikum. Hierbei befindet sich das auffüllende Dielektrikum im Bereich hoher Feldstärkedichten und ist deshalb besonders wirksam.A particularly advantageous setting of the value for the relative permittivity ε r of the dielectric of the wires of a line with high effectiveness is achieved in that with the wires of at least one line there is a space between the wires of this line and the outer jacket facing the wires of this line with a additional dielectric material is filled, which has a different value for the relative permittivity ε r than the dielectric surrounding the wires of this line. The filling dielectric is in the area of high field strength densities and is therefore particularly effective.
Eine alternative Möglichkeit der Veränderung der relativen Permittivität εr der Adern einzelner Leitungen, ohne hierfür den mechanischen Aufbau der einzelnen Adern verändern zu müssen, erzielt man dadurch, dass an einer Innenseite des Außenmantels, welche den Adern einer Leitung zugewandt ist, eine Beschichtung mit einem zusätzlichen Dielektrikum vorgesehen ist, welches einen abweichenden Wert für die relative Permittivität εr aufweist als das die Adern dieser Leitung umgebende Dielektrikum.An alternative possibility of changing the relative permittivity ε r of the wires of individual lines without having to change the mechanical structure of the individual wires for this purpose is achieved by coating on an inside of the outer jacket which faces the wires of a line an additional dielectric is provided, which has a value for the relative permittivity ε r that differs from the dielectric surrounding the wires of this line.
Eine besonders starke Beeinflussung der resultierenden relativen Permittivität εr für einzelne Adern erzielt man dadurch, dass das zusätzliche Dielektrikum als Schichtfolge von dielektrischen Werkstoffen mit jeweils unterschiedlichem Wert für die relativen Permittivität εr aufgebaut ist.A particularly strong influence on the resulting relative permittivity ε r for individual cores is achieved in that the additional dielectric is constructed as a layer sequence of dielectric materials with different values for the relative permittivity ε r .
Eine hohe Wirkung des Dielektrikums erzielt man dadurch, dass das Dielektrikum mindestens einer Ader in einem Raum zwischen der Ader und dem Außenmantel derart angeordnet ist, dass dieser Raum im Querschnitt des Kabels parabelförmig von den benachbarten Adern abgegrenzt ist. Hierdurch füllt das Dielektrikum einen Raum mit hoher Feldliniendichte.A high effect of the dielectric is achieved in that the dielectric of at least one wire is arranged in a space between the wire and the outer sheath in such a way that the cross section of the cable is parabolically delimited from the adjacent wires. As a result, the dielectric fills a room with a high field line density.
Bevorzugt ist für mögliche Wertebereiche von k(s) folgendes: k(s) ∈ [-u,-w] und k(s) ∈ [w,u], wobei w = 0.01, 0.03, 0.1, 0.2, 0.3, 0.5, 0.7, 0.9, 1.0, 1.2, 1.4 oder 1.6 ist und u = 0.1, 0.2, 0.3, 0.5, 0.7, 0.9, 1.0, 1.2, 1.4, 1.6 oder 1.8 und |w|<|u| ist. Beispielsweise 0.01 < k(s) < 1.0; 0.03 < k(s) < 0.3 oder 0.1 < k(s) <0.2.The following is preferred for possible value ranges of k (s): k ( s ) ∈ [ -u, -w ] and k ( s ) ∈ [ w, u ] , where w = 0.01, 0.03, 0.1, 0.2, 0.3, 0.5 , 0.7, 0.9, 1.0, 1.2, 1.4 or 1.6 and u = 0.1, 0.2, 0.3, 0.5, 0.7, 0.9, 1.0, 1.2, 1.4, 1.6 or 1.8 and | w | <| u | is. For example 0.01 <k (s) <1.0; 0.03 <k (s) <0.3 or 0.1 <k (s) <0.2.
Eine zusätzliche elektromagnetische Abschirmung erzielt man dadurch, dass zusätzlich ein Schirmmantel aus einem elektrisch leitfähigen Werkstoff vorgesehen ist, innerhalb dessen die Leitungen angeordnet sind. Dieser Schirmmantel ist beispielsweise radial außerhalb oder innerhalb des Außenmantels angeordnet oder in den Außenmantels integriert.Additional electromagnetic shielding is achieved by additionally providing a shield jacket made of an electrically conductive material, within which the lines are arranged. This shielding jacket is arranged, for example, radially outside or inside the outer jacket or integrated in the outer jacket.
Die Erfindung wird im Folgenden anhand der Zeichnung näher erläutert. Diese zeigt in
- Fig. 1
- eine erste bevorzugte Ausführungsform eines erfindungsgemäßen Kabels in perspektivischer Schnittansicht;
- Fig. 2
- ein erfindungsgemäßes Kabel als Vier-Tor.;
- Fig. 3
- eine graphische Darstellung der rechnerischen Ermittlung des Übersprechens eines elektrischen Signals von einer Leitung in eine andere Leitung mit verschiedenen Werten für k(s) auf Basis eines Kabelmodells;
- Fig. 4
- eine zweite bevorzugte Ausführungsform eines erfindungsgemäßen Kabels in Schnittansicht;
- Fig. 5
- eine dritte bevorzugte Ausführungsform eines erfindungsgemäßen Kabels in Schnittansicht;
- Fig. 6
- eine vierte bevorzugte Ausführungsform eines erfindungsgemäßen Kabels in Schnittansicht;
- Fig. 7
- eine fünfte bevorzugte Ausführungsform eines erfindungsgemäßen Kabels in Schnittansicht und
- Fig. 8
- eine sechste bevorzugte Ausführungsform eines erfindungsgemäßen Kabels in Schnittansicht.
- Fig. 1
- a first preferred embodiment of a cable according to the invention in a perspective sectional view;
- Fig. 2
- an inventive cable as a four-gate .;
- Fig. 3
- a graphical representation of the computational determination of the crosstalk of an electrical signal from one line to another line with different values for k (s) based on a cable model;
- Fig. 4
- a second preferred embodiment of a cable according to the invention in sectional view;
- Fig. 5
- a third preferred embodiment of a cable according to the invention in sectional view;
- Fig. 6
- a fourth preferred embodiment of a cable according to the invention in sectional view;
- Fig. 7
- a fifth preferred embodiment of a cable according to the invention in sectional view and
- Fig. 8
- a sixth preferred embodiment of a cable according to the invention in sectional view.
Bei der Signalübertragung in Mehrleiter-Kabeln bzw. Kabeln mit mehreren Adern kommt für eine schnelle Datenübertragung bevorzugt die Signalübertragung mit differentiellen Paaren von Leitungen bzw. differentiellen Leiterpaaren zum Einsatz. Ein typisches Kabel für eine derartige Anwendung ist das Sternvierer-Kabel.In the case of signal transmission in multi-conductor cables or cables with multiple cores, signal transmission with differential pairs of lines or differential conductor pairs is preferably used for fast data transmission. A typical cable for such an application is the star quad cable.
Allgemein weist ein Kabel zur elektrischen Signalübertragung einen schlauchförmigen Außenmantel aus einem elektrisch isolierenden Werkstoff auf. Weiterhin ist beispielsweise ein Schirmmantel aus einem elektrisch leitenden Werkstoff vorgesehen, wobei dieser von dem Außenmantel koaxial umgeben ist. Alternativ ist der Schirmmantel in den Außenmantel integriert. Radial innerhalb des Schirmmantels sind N Leitungen mit N ≥ 2 und
Mit anderen Worten soll für jede Leitung n der Wert der relativen Permittivität εr der Dielektrikas der M Adern dieser Leitung n bis auf herstellungsbedingte Abweichungen identisch sein, so dass gilt εr(p,n) = εr(p+q,n), wobei p ∈ [1,M - 1],
Erfindungsgemäß ist es vorgesehen, dass der Wert für die relative Permittivität εr der Dielektrikas der insgesamt M Adern einer Leitung j um einen Wert k(s) abweichend ist von einem Wert für die relative Permittivität εr der Dielektrikas der M Adern mindestens einer anderen Leitung (j+s), beispielsweise der Leitung (j+1). Für mindestens zwei verschiedene Leitungen gilt dabei εr(m,j) = εr(m,j+s) - k(s) mit m ∈ [1,M],
Der Wert k(1) ist hierbei eine Zahl, deren Betrag |k(1)| größer ist als die oben erwähnte unerwünschte Abweichung von beispielsweise 5/1000 zwischen den Werten von relativen Permittivitäten εr die im Wesentlichen identisch sein sollen. Gleichzeitig kann der Wert von k(s) für zwei andere Leitungen (anderer Wert für s) unterschiedlich oder identisch sein. Bevorzugte Werte für |k(s)| sind beispielsweise 0.01, 0.03, 0.1, 0.2, 0.3, 0.5, 0.7, 0.9, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0.The value k (1) is a number whose amount | k (1) | is greater than the above-mentioned undesired deviation of, for example, 5/1000 between the values of relative permittivities ε r which are said to be essentially identical. At the same time, the value of k (s) for two other lines (different value for s) can be different or identical. Preferred values for | k (s) | are, for example, 0.01, 0.03, 0.1, 0.2, 0.3, 0.5, 0.7, 0.9, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0.
Die Adern 16, 18 bilden also ein erstes Leiterpaar bzw. die erste Leitung und die Adern 20, 22 bilden ein zweites Leiterpaar bzw. die zweite Leitung.The
Im Querschnitt des Kabels betrachtet verläuft eine erste Gerade 32 durch die Mittelpunkte der Adern 16 und 18 der ersten Leitung und eine zweite Gerade 34 durch Mittelpunkte der Adern 20, 22 der zweiten Leitung. Die beiden Geraden 32, 34 stehen an jedem Ort in einer Schnittebene parallel zu der Darstellung bzw. der Zeichnungsebene in
Jede Ader 16, 18, 20, 22 bildet mit dem dazugehörigen Dielektrikum 24, 26, 28, 30 je einen Leiter. Die Leiter 16/24, 18/26, 20/28, 22/30 sind in axialer Richtung kreuzförmig miteinander derart verseilt bzw. verdrillt, dass sich die bekannte Sternvierer-Anordnung ergibt. Die Leiter 16/24, 18/26, 20/28, 22/30 sind um einen zentralen Kern 36 miteinander verseilt.Each
Für dieses Beispiel des Sternvierer-Kabels (M = 2, N = 2) lauten die obigen Gleichungen für die relative Permittivität εr(m,n) der Dielektrika 24, 26, 28, 30 der Adern 16, 18, 20, 22 mit m = 1, 2 und n = 1, 2 und j = 1 und s = 1 wie folgt:
Wird nun am ersten Ende 38 am ersten Tor 42 der ersten Leitung mit den Adern 16, 18 eine Welle eingespeist, so ist an dem zweiten, dritten und vierten Tor 44, 46, 48 ein Teil der Welle messbar. Der am dritten Tor 46 messbare Wellenanteil ist eine Transmission. Der am zweiten Tor 44 messbare Wellenanteil ist ein sogenannter "crosstalk" am nahen Ende 38 "NEXT" (Near End Crosstalk) d.h. es handelt sich um ein Übersprechen (crosstalk) von der ersten Leitung mit den Adern 16, 18 auf die zweite Leitung mit den Adern 20, 22 welches zum ersten Ende 38 zurück reflektiert wird. Der am vierten Tor messbare Wellenanteil ist ein sogenannter "crosstalk" am fernen Ende 40 "FEXT" (Far End Crosstalk) d.h. es handelt sich um ein Übersprechen (crosstalk) von der ersten Leitung mit den Adern 16, 18 auf die zweite Leitung mit den Adern 20, 22 welche zum zweiten Ende 40 übertragen wird. Dieser "FEXT" ist ein unerwünschter Effekt, der vermieden werden soll. Dementsprechend verbessert eine Verringerung dieses Wellenanteils "FEXT" am zweiten Ende 40 die Übertragungseigenschaften des Kabels 10.If a shaft is now fed in at the
Um nun zu prüfen, ob die Differenz der relativen Permittivitäten εr(m,n) eine Verbesserung bezüglich des FEXT bringt, wurde mit einem Kabelmodell dieses FEXT für ein erfindungsgemäß ausgebildetes Sternvierer-Kabel, wie zuvor beschrieben, berechnet. Das Ergebnis ist in
Ein erster Graph 54 zeigt den Verlauf des FEXT über die Frequenz bei einem herkömmlichen Sternvierer-Kabel, wie er real gemessen wurde.A
Ein zweiter Graph 56 zeigt den Verlauf des FEXT über die Frequenz bei einem herkömmlichen Sternvierer-Kabel, wie er aus dem Kabelmodell mit k(1) = 0 berechnet wurde. Hierbei wurde bei der Berechnung mittels des Kabelmodells von folgenden Werten für die relativen Permittivitäten εr(m,n) der Dielektrikas 24, 26, 28. 30 ausgegangen:
Für die relativen Permittivitäten εr(m,n) der Dielektrikas 24, 26, 28. 30 wurde hierbei von einer Streuung der Werte aufgrund Ungenauigkeiten bei der Herstellung und Einflüsse der Einfärbung der Dielektrika mit einer Abweichung von 5/1000 ausgegangen. Hierbei bestätigt der Verlauf des zweiten Graphen 56 nahe am ersten Graphen 54, dass das Kabelmodell brauchbar ist.For the relative permittivities ε r (m, n) of the
Ein dritter Graph 58 zeigt den Verlauf des FEXT über die Frequenz bei einem erfindungsgemäßen Sternvierer-Kabel, wie er aus dem Kabelmodell mit k(1) = 0.1 berechnet wurde. Hierbei wurde bei der Berechnung mittels des Kabelmodells von folgenden Werten für die relative Permittivität εr(m,n) der Dielektrikas 24, 26, 28. 30 ausgegangen:
Ein vierter Graph 60 zeigt den Verlauf des FEXT über die Frequenz bei einem erfindungsgemäßen Sternvierer-Kabel, wie er aus dem Kabelmodell mit k(1) = 0.3 berechnet wurde. Hierbei wurde bei der Berechnung mittels des Kabelmodells von folgenden Werten für die relative Permittivität εr(m,n) der Dielektrikas 24, 26, 28. 30 ausgegangen:
Ein fünfter Graph 62 zeigt den Verlauf des FEXT über die Frequenz bei einem erfindungsgemäßen Sternvierer-Kabel, wie er aus dem Kabelmodell mit k(1) = 0.5 berechnet wurde. Hierbei wurde bei der Berechnung mittels des Kabelmodells von folgenden Werten für die relative Permittivität εr(m,n) der Dielektrikas 24, 26, 28. 30 ausgegangen:
Ein sechster Graph 64 zeigt den Verlauf des FEXT über die Frequenz bei einem erfindungsgemäßen Sternvierer-Kabel, wie er aus dem Kabelmodell mit k(1) = 0.7 berechnet wurde. Hierbei wurde bei der Berechnung mittels des Kabelmodells von folgenden Werten für die relative Permittivität εr(m,n) der Dielektrikas 24, 26, 28. 30 ausgegangen:
Ein siebter Graph 66 zeigt den Verlauf des FEXT über die Frequenz bei einem erfindungsgemäßen Sternvierer-Kabel, wie er aus dem Kabelmodell mit k(1) = 0.9 berechnet wurde. Hierbei wurde bei der Berechnung mittels des Kabelmodells von folgenden Werten für die relative Permittivität εr(m,n) der Dielektrikas 24, 26, 28. 30 ausgegangen:
Je stärker der nominelle Wert der relativen Permittivität εr(m,n) zwischen den beiden Leitungen voneinander abweicht, desto geringer ist das Übersprechen (FEXT) in die jeweils andere Leitung. Somit kann also in überraschender Weise durch eine Differenz k(s) der relativen Permittivität εr(m,n) der Dielektrika 24, 26, 28. 30 die Übertragungseigenschaft des Kabels 10 verbessert werden, ohne dass hierfür ein zusätzlicher Schirmmantel für jedes einzelne Leiterpaar 16, 18 und 20, 22 notwendig ist.The more the nominal value of the relative permittivity ε r (m, n) deviates from one another between the two lines, the less the crosstalk (FEXT) into the other line. Thus, surprisingly, the transmission property of the
Claims (11)
- Cable (10) for transmitting electrical signals with an outer sheath (12) made of an electrically insulating material and at least N lines n with N ≥ 2 and
characterised in that the cable (10) is a star quad cable with M = 2 and N = 2, wherein the four wires (16, 18, 20, 22) of the two lines are twisted with one another in a cruciform manner. - Cable (10) according to claim 1, characterised in that the dielectric (24, 26, 28, 30) of the wires (16, 18, 20, 22) of at least one line is made of the material polypropylene (PP) and the dielectric (24, 26, 28, 30) of the wires (16, 18, 20, 22) of at least one other line is made of the material polyethylene (PE).
- Cable (10) according to claim 1 or 2, characterised in that the dielectric (24, 26, 28, 30) of the wires (16, 18, 20, 22) of at least one line is structured as a concentric layered structure of two or more dielectric materials (70) with different values for the relative permittivity εr.
- Cable (10) according to one of the preceding claims, characterised in that in the case of the wires (16, 18, 20, 22) of at least one line a space between the wires (16, 18, 20, 22) of this line and the outer sheath (12) facing the wires (16, 18, 20, 22) of this line is filled with a dielectric material (72, 74) which has a different value for the relative permittivity εr than the dielectric (24, 26, 28, 30) surrounding the wires (16, 18, 20, 22) of this line.
- Cable (10) according to one of the preceding claims, characterised in that a coating with an additional dielectric (70, 72, 74) is provided on an inner side of the outer sheath (12) which faces the wires (16, 18, 20, 22) of a line, said coating having a different value for the relative permittivity εr than the dielectric (24, 26, 28, 30) surrounding the wires (16, 18, 20, 22) of this line.
- Cable (10) according to claim 5, characterised in that the additional dielectric is structured as a sequence of layers of dielectric materials (70, 72, 74) with in each case different values for the relative permittivity εr.
- Cable (10) according to one of the preceding claims, characterised in that the dielectric (24, 26, 28, 30) of at least one wire (16, 18, 20, 22) is arranged in a space between the wire (16, 18, 20, 22) and the outer sheath (12) such that, within the cross section of the cable (10), this space is delimited parabolically from the adjacant wires (16, 18, 20, 22).
- Cable (10) according to one of the preceding claims, characterised in that k ∈ [-u,-w] and k ∈ [w,u], where w = 0.01, 0.03, 0.1, 0.2, 0.3, 0.5, 0.7, 0.9, 1.0, 1.2, 1.4 or 1.6 and u = 0.03, 0.1, 0.2, 0.3, 0.5, 0.7, 0.9, 1.0, 1.2, 1.4, 1.6 or 1.8 and lwl<lu|.
- Cable (10) according to one of the preceding claims, characterised in that, in addition, a shield sheath (14) made of an electrically conductive material is provided within which the lines are arranged.
- Cable (10) according to claim 9, characterised in that the shield sheath (14) is arranged radially outside of or within the outer sheath (12).
- Cable (10) according to claim 9, characterised in that the shield sheath (14) is integrated in the outer sheath (12).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102016003134.4A DE102016003134A1 (en) | 2016-03-15 | 2016-03-15 | Cable for transmitting electrical signals |
PCT/EP2017/000339 WO2017157521A1 (en) | 2016-03-15 | 2017-03-15 | Cable for transmitting electrical signals |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3430633A1 EP3430633A1 (en) | 2019-01-23 |
EP3430633B1 true EP3430633B1 (en) | 2020-01-22 |
Family
ID=58347311
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17711090.5A Active EP3430633B1 (en) | 2016-03-15 | 2017-03-15 | Cable for transmitting electrical signals |
Country Status (8)
Country | Link |
---|---|
US (1) | US10347397B2 (en) |
EP (1) | EP3430633B1 (en) |
JP (1) | JP2019508858A (en) |
KR (1) | KR20180121535A (en) |
CN (1) | CN108885925B (en) |
DE (1) | DE102016003134A1 (en) |
TW (1) | TW201805959A (en) |
WO (1) | WO2017157521A1 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT201800010156A1 (en) * | 2018-11-08 | 2020-05-08 | Prysmian Spa | Fire resistant railway signaling cable |
DE102019112926A1 (en) * | 2019-05-16 | 2020-11-19 | Friedrich-Alexander-Universität Erlangen-Nürnberg | Multicable made up of a plurality of dielectric waveguides |
US11075488B2 (en) | 2019-11-25 | 2021-07-27 | TE Connectivity Services Gmbh | Impedance control connector with dielectric seperator rib |
US11146010B2 (en) | 2019-12-09 | 2021-10-12 | TE Connectivity Services Gmbh | Overmolded contact assembly |
US11011875B1 (en) | 2019-12-10 | 2021-05-18 | TE Connectivity Services Gmbh | Electrical cable braid positioning clip |
US10978832B1 (en) | 2020-02-07 | 2021-04-13 | TE Connectivity Services Gmbh | Protection member to protect resilient arms of a contact assembly from stubbing |
US11296464B2 (en) | 2020-02-14 | 2022-04-05 | TE Connectivity Services Gmbh | Impedance control connector |
KR20230034435A (en) * | 2020-09-11 | 2023-03-09 | 미쓰비시덴키 가부시키가이샤 | cable signal transmission system |
US11915839B2 (en) * | 2022-01-26 | 2024-02-27 | Dell Products L.P. | Data communications cable that utilizes multiple dielectric materials associated with different relative permittivities |
IT202200010544A1 (en) | 2022-05-20 | 2023-11-20 | Prysmian Spa | DATA TRANSMISSION CABLE |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB609558A (en) * | 1945-03-30 | 1948-10-04 | Standard Telephones Cables Ltd | Communication cables and method of making them |
DE1106385B (en) * | 1955-02-19 | 1961-05-10 | Siemens Ag | Process for the production of twisted telecommunication cable core groups, in particular star fours, with foam-insulated cores |
DE9218768U1 (en) * | 1992-04-28 | 1995-10-26 | Dätwyler AG Kabel und Systeme, Altdorf | electric wire |
US6169251B1 (en) * | 1997-03-31 | 2001-01-02 | The Whitaker Corporation | Quad cable |
GB9707300D0 (en) * | 1997-04-10 | 1997-05-28 | Plastic Insulated Cables Ltd | Communications cable |
JPH1125765A (en) * | 1997-06-27 | 1999-01-29 | Furukawa Electric Co Ltd:The | Pairs of cables |
US6403887B1 (en) * | 1997-12-16 | 2002-06-11 | Tensolite Company | High speed data transmission cable and method of forming same |
GB9930509D0 (en) * | 1999-12-24 | 2000-02-16 | Plastic Insulated Cables Ltd | Communications cable |
US7030321B2 (en) * | 2003-07-28 | 2006-04-18 | Belden Cdt Networking, Inc. | Skew adjusted data cable |
CN1902717B (en) * | 2003-10-31 | 2010-05-12 | Adc公司 | Offset filler, and Cable and cable set including the offset filler |
CN100396165C (en) * | 2003-11-08 | 2008-06-18 | 鸿富锦精密工业(深圳)有限公司 | Differential wire assembling method for eliminating high speed board interferes |
US7763802B2 (en) * | 2006-09-13 | 2010-07-27 | Schlumberger Technology Corporation | Electrical cable |
CN101536119A (en) * | 2006-11-06 | 2009-09-16 | 纳幕尔杜邦公司 | Periodic variation of velocity of propagation to reduce additive distortion along cable length |
US8445787B2 (en) * | 2009-05-06 | 2013-05-21 | Panduit Corp. | Communication cable with improved electrical characteristics |
JP5012854B2 (en) * | 2009-06-08 | 2012-08-29 | 住友電気工業株式会社 | Balanced cable |
US8981216B2 (en) * | 2010-06-23 | 2015-03-17 | Tyco Electronics Corporation | Cable assembly for communicating signals over multiple conductors |
DE202011005273U1 (en) * | 2011-04-14 | 2011-08-23 | Rosenberger Hochfrequenztechnik Gmbh & Co. Kg | Star quad cable with screen |
-
2016
- 2016-03-15 DE DE102016003134.4A patent/DE102016003134A1/en not_active Withdrawn
-
2017
- 2017-03-14 TW TW106108350A patent/TW201805959A/en unknown
- 2017-03-15 WO PCT/EP2017/000339 patent/WO2017157521A1/en active Application Filing
- 2017-03-15 EP EP17711090.5A patent/EP3430633B1/en active Active
- 2017-03-15 JP JP2018548329A patent/JP2019508858A/en active Pending
- 2017-03-15 CN CN201780017431.0A patent/CN108885925B/en active Active
- 2017-03-15 US US16/084,478 patent/US10347397B2/en active Active
- 2017-03-15 KR KR1020187026371A patent/KR20180121535A/en unknown
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP3430633A1 (en) | 2019-01-23 |
KR20180121535A (en) | 2018-11-07 |
CN108885925B (en) | 2019-11-19 |
WO2017157521A1 (en) | 2017-09-21 |
US10347397B2 (en) | 2019-07-09 |
US20190080823A1 (en) | 2019-03-14 |
TW201805959A (en) | 2018-02-16 |
JP2019508858A (en) | 2019-03-28 |
DE102016003134A1 (en) | 2017-09-21 |
CN108885925A (en) | 2018-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3430633B1 (en) | Cable for transmitting electrical signals | |
DE875054C (en) | Electrical conductor | |
EP2697804B1 (en) | Star-quad cable with shield | |
EP3172741B1 (en) | Data cable for high-speed data transmissions | |
DE112016006142T5 (en) | COMMUNICATION CABLE | |
EP3132513B1 (en) | Cable arrangement | |
EP0915486B1 (en) | Data transmission cable | |
DE3008953A1 (en) | PROTECTED MULTI-WIRE CABLE | |
DE102014223119B4 (en) | Data cable and method for producing a data cable | |
DE112018000634T5 (en) | communication cable | |
DE29703112U1 (en) | Data cable | |
WO2021185983A1 (en) | Cable | |
EP2989641B1 (en) | High-speed data cable | |
EP2697803B1 (en) | Star-quad cable having a shield | |
EP0568048A2 (en) | Data transmission cable | |
WO2018228911A1 (en) | Data cable for areas at risk of explosion | |
EP3595099B1 (en) | Conductor crosser | |
DE102018103607B4 (en) | Two-wire cable with nested insulation, and method and device for producing a two-wire cable | |
DE102016221661A1 (en) | Cables, in particular data cables | |
DE892007C (en) | Telecommunication cable with several unshielded twisted wire groups for multiple carrier frequency transmission over long distances | |
DE202011002731U1 (en) | Cable with stranded conductor pairs | |
DE2503463A1 (en) | Telecommunications cable with core of several three-conductor strands - having sufficient tensile strength without use of conventional reinforcements | |
DD290737A5 (en) | HIGH FREQUENCY MULTIPLE LINE | |
DE2653668A1 (en) | ELEMENT OF A TELEPHONE CABLE | |
DE1101553B (en) | Multi-conductor telecommunications cable and process for its manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180917 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01B 7/02 20060101ALI20190827BHEP Ipc: H01B 11/00 20060101AFI20190827BHEP Ipc: H01B 3/30 20060101ALN20190827BHEP |
|
INTG | Intention to grant announced |
Effective date: 20190911 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1227446 Country of ref document: AT Kind code of ref document: T Effective date: 20200215 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502017003530 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20200122 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200122 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200122 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200614 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200422 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200122 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200422 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200522 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200122 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200122 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200423 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502017003530 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200122 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200122 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200122 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200122 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200122 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200122 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200122 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200122 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200122 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200331 |
|
26N | No opposition filed |
Effective date: 20201023 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200315 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200315 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200122 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200122 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200122 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200122 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200122 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200122 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200122 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1227446 Country of ref document: AT Kind code of ref document: T Effective date: 20220315 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230527 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220315 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502017003530 Country of ref document: DE Representative=s name: KANDLBINDER, MARKUS, DIPL.-PHYS., DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240328 Year of fee payment: 8 Ref country code: GB Payment date: 20240319 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20240326 Year of fee payment: 8 Ref country code: IT Payment date: 20240321 Year of fee payment: 8 Ref country code: FR Payment date: 20240326 Year of fee payment: 8 |