EP3426721A1 - Offenzellige polyolefinschäume - Google Patents
Offenzellige polyolefinschäumeInfo
- Publication number
- EP3426721A1 EP3426721A1 EP17708831.7A EP17708831A EP3426721A1 EP 3426721 A1 EP3426721 A1 EP 3426721A1 EP 17708831 A EP17708831 A EP 17708831A EP 3426721 A1 EP3426721 A1 EP 3426721A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- ethylene
- foam
- copolymers
- component
- foam according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000006260 foam Substances 0.000 title claims abstract description 129
- 229920000098 polyolefin Polymers 0.000 title claims abstract description 14
- 238000002844 melting Methods 0.000 claims abstract description 36
- 230000008018 melting Effects 0.000 claims abstract description 36
- 239000000203 mixture Substances 0.000 claims abstract description 36
- 229920000573 polyethylene Polymers 0.000 claims abstract description 36
- 238000000034 method Methods 0.000 claims abstract description 31
- 230000008569 process Effects 0.000 claims abstract description 24
- -1 polyethylenes Polymers 0.000 claims abstract description 20
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims abstract description 17
- 239000005977 Ethylene Substances 0.000 claims abstract description 17
- 239000004698 Polyethylene Substances 0.000 claims abstract description 16
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 12
- 229920001519 homopolymer Polymers 0.000 claims abstract description 10
- 229920000554 ionomer Polymers 0.000 claims abstract description 10
- 229920002725 thermoplastic elastomer Polymers 0.000 claims abstract description 10
- 239000004714 Polar ethylene copolymer Substances 0.000 claims abstract description 6
- 238000001125 extrusion Methods 0.000 claims description 23
- 229920001577 copolymer Polymers 0.000 claims description 21
- 229920000642 polymer Polymers 0.000 claims description 12
- 239000000654 additive Substances 0.000 claims description 10
- 239000002667 nucleating agent Substances 0.000 claims description 10
- 239000004712 Metallocene polyethylene (PE-MC) Substances 0.000 claims description 9
- 238000001816 cooling Methods 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 239000004793 Polystyrene Substances 0.000 claims description 7
- 239000007788 liquid Substances 0.000 claims description 7
- 229920002223 polystyrene Polymers 0.000 claims description 7
- 229920000468 styrene butadiene styrene block copolymer Polymers 0.000 claims description 7
- 238000010521 absorption reaction Methods 0.000 claims description 6
- QYMGIIIPAFAFRX-UHFFFAOYSA-N butyl prop-2-enoate;ethene Chemical compound C=C.CCCCOC(=O)C=C QYMGIIIPAFAFRX-UHFFFAOYSA-N 0.000 claims description 6
- 229920006245 ethylene-butyl acrylate Polymers 0.000 claims description 6
- 229920006225 ethylene-methyl acrylate Polymers 0.000 claims description 6
- 239000002253 acid Substances 0.000 claims description 5
- 239000000470 constituent Substances 0.000 claims description 5
- 238000005187 foaming Methods 0.000 claims description 5
- 239000000049 pigment Substances 0.000 claims description 5
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 4
- 239000002671 adjuvant Substances 0.000 claims description 4
- 229920006244 ethylene-ethyl acrylate Polymers 0.000 claims description 4
- 238000006386 neutralization reaction Methods 0.000 claims description 4
- 239000011701 zinc Substances 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 229920002379 silicone rubber Polymers 0.000 claims description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims description 2
- 239000006096 absorbing agent Substances 0.000 claims description 2
- 239000003963 antioxidant agent Substances 0.000 claims description 2
- 239000002216 antistatic agent Substances 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- FACXGONDLDSNOE-UHFFFAOYSA-N buta-1,3-diene;styrene Chemical compound C=CC=C.C=CC1=CC=CC=C1.C=CC1=CC=CC=C1 FACXGONDLDSNOE-UHFFFAOYSA-N 0.000 claims description 2
- 239000011575 calcium Substances 0.000 claims description 2
- 229910052791 calcium Inorganic materials 0.000 claims description 2
- 239000003063 flame retardant Substances 0.000 claims description 2
- 238000000265 homogenisation Methods 0.000 claims description 2
- 238000002347 injection Methods 0.000 claims description 2
- 239000007924 injection Substances 0.000 claims description 2
- 229910052744 lithium Inorganic materials 0.000 claims description 2
- 239000000314 lubricant Substances 0.000 claims description 2
- 239000011777 magnesium Substances 0.000 claims description 2
- 229910052749 magnesium Inorganic materials 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims description 2
- 239000011734 sodium Substances 0.000 claims description 2
- 229910052708 sodium Inorganic materials 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims 2
- 229920002554 vinyl polymer Polymers 0.000 claims 2
- 229920001971 elastomer Polymers 0.000 abstract description 2
- 239000000806 elastomer Substances 0.000 abstract description 2
- 210000004027 cell Anatomy 0.000 description 54
- 229920001684 low density polyethylene Polymers 0.000 description 15
- 239000004702 low-density polyethylene Substances 0.000 description 15
- 239000007789 gas Substances 0.000 description 13
- 239000005038 ethylene vinyl acetate Substances 0.000 description 11
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 10
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 239000004709 Chlorinated polyethylene Substances 0.000 description 7
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 6
- HSEMFIZWXHQJAE-UHFFFAOYSA-N hexadecanamide Chemical compound CCCCCCCCCCCCCCCC(N)=O HSEMFIZWXHQJAE-UHFFFAOYSA-N 0.000 description 6
- LYRFLYHAGKPMFH-UHFFFAOYSA-N octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(N)=O LYRFLYHAGKPMFH-UHFFFAOYSA-N 0.000 description 6
- 229920003182 Surlyn® Polymers 0.000 description 5
- 239000000454 talc Substances 0.000 description 5
- 229910052623 talc Inorganic materials 0.000 description 5
- 229920002633 Kraton (polymer) Polymers 0.000 description 4
- 210000002421 cell wall Anatomy 0.000 description 4
- 239000005043 ethylene-methyl acrylate Substances 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229920003945 DuPont™ Surlyn® 1705-1 Polymers 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Inorganic materials O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 3
- 238000007664 blowing Methods 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 3
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 230000006911 nucleation Effects 0.000 description 3
- 238000010899 nucleation Methods 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229940037312 stearamide Drugs 0.000 description 3
- YEAUATLBSVJFOY-UHFFFAOYSA-N tetraantimony hexaoxide Chemical compound O1[Sb](O2)O[Sb]3O[Sb]1O[Sb]2O3 YEAUATLBSVJFOY-UHFFFAOYSA-N 0.000 description 3
- QLZJUIZVJLSNDD-UHFFFAOYSA-N 2-(2-methylidenebutanoyloxy)ethyl 2-methylidenebutanoate Chemical compound CCC(=C)C(=O)OCCOC(=O)C(=C)CC QLZJUIZVJLSNDD-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 150000001335 aliphatic alkanes Chemical class 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 210000003850 cellular structure Anatomy 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000005042 ethylene-ethyl acrylate Substances 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 229920006728 mPE Polymers 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229920001935 styrene-ethylene-butadiene-styrene Polymers 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 1
- 239000004604 Blowing Agent Substances 0.000 description 1
- 229920003941 DuPont™ Surlyn® 1652 Polymers 0.000 description 1
- 229920003947 DuPont™ Surlyn® 1707 Polymers 0.000 description 1
- 229920003951 DuPont™ Surlyn® 1901 Polymers 0.000 description 1
- 239000004594 Masterbatch (MB) Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- HGVPOWOAHALJHA-UHFFFAOYSA-N ethene;methyl prop-2-enoate Chemical compound C=C.COC(=O)C=C HGVPOWOAHALJHA-UHFFFAOYSA-N 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- 239000013538 functional additive Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000001282 iso-butane Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229920001526 metallocene linear low density polyethylene Polymers 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004209 oxidized polyethylene wax Substances 0.000 description 1
- 235000013873 oxidized polyethylene wax Nutrition 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920002742 polystyrene-block-poly(ethylene/propylene) -block-polystyrene Polymers 0.000 description 1
- 229920002743 polystyrene-poly(ethylene-ethylene/propylene) block-polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229920002397 thermoplastic olefin Polymers 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000012855 volatile organic compound Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/0061—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/26—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
- C08L23/28—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment by reaction with halogens or halogen-containing compounds
- C08L23/286—Chlorinated polyethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L9/00—Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
- C08L9/06—Copolymers with styrene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2201/00—Foams characterised by the foaming process
- C08J2201/02—Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
- C08J2201/03—Extrusion of the foamable blend
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/04—Homopolymers or copolymers of ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/04—Homopolymers or copolymers of ethene
- C08J2323/08—Copolymers of ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2353/00—Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2400/00—Characterised by the use of unspecified polymers
- C08J2400/22—Thermoplastic resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2400/00—Characterised by the use of unspecified polymers
- C08J2400/26—Elastomers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2423/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2423/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2423/04—Homopolymers or copolymers of ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2423/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2423/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2423/04—Homopolymers or copolymers of ethene
- C08J2423/08—Copolymers of ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2453/00—Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2207/00—Properties characterising the ingredient of the composition
- C08L2207/06—Properties of polyethylene
- C08L2207/066—LDPE (radical process)
Definitions
- the present invention relates to flexible foams of open cell polyolefins, a method of manufacturing such foams, and the resulting products.
- the open cell polyolefin foams are interesting to obtain a more flexible product than the corresponding quality with predominantly closed cells.
- a limitation of the foams of the state of the art e) lies in the temperature resistance of the foam, since polyethylene copolymers are initially chosen to be less crystalline than a homopolymer of ethylene, such as the LDPE.
- CPE chlorinated polyethylene
- These additives reduce the size of the cells, in favor of the flexibility of the foam, but to the detriment of the margin of maneuver for obtaining larger cell-size foams or the addition of other functional additives, such as fire-fighting agents, when they themselves have a pronounced nucleating power.
- Some pigments or additives also have a significant nucleating power, so the use of CPE can prevent reaching the desired dosage of these other additives.
- An object of the present invention is therefore to provide different foam compositions for obtaining open cell foams with good flexibility that are not subject to the disadvantages mentioned above or at least to a lesser extent .
- the present invention proposes, in a first aspect, a polyolefin-based foam comprising a mixture of the components
- thermoplastic elastomer (b) at least one styrenic block thermoplastic elastomer (TPE-S or TPS), and / or at least one thermoplastic elastomer containing a crosslinked silicone type elastomer phase;
- the invention relates to the use of a foam as described in this document for the manufacture of seals, liquid absorption foams, filters, sound absorption elements,. ..
- the present invention therefore particularly relates to seals, liquid absorbing foams, filters and sound absorption elements comprising a foam as described herein.
- the invention relates to a method of manufacturing a foam as described herein, the method comprising the following steps:
- other polymers such as metallocene polyethylene having no melting point of at least 5 ° C that component (a) having the lowest melting point, or customary additives and adjuvants, premixed or individually dosed, to the feed of an extruder;
- thermoplastic elastomers and ionomers with homopolymers of ethylene and / or polar copolymers of ethylene as described herein, it becomes possible to produce foams. with very flexible open cells of quality at least equivalent to known foams.
- the useful temperature range that is to say the temperature range in which it is possible to produce a homogeneous foam without holes with a regular external appearance, is much wider than in certain known processes (see below). above), is usually at least one degree Celsius, often more.
- the extrusion results are very reproducible, whether in terms of the external appearance, the proportion of open cells or density.
- the foams can furthermore be manufactured with quite common installations without any particular modification.
- no additional intervention online or offline is required to achieve the desired degree of flexibility (including function density and the proportion of open cells).
- the foams according to the invention have a rapid recovery of their initial dimensions after compression and relaxation of the stress.
- Foams according to the invention are preferably foams comprising a high proportion of open cells, generally more than 50%, preferably more than 60%, more preferably more than 70%, and particularly preferably more 80%.
- the proportion of open cells can be varied by controlling the temperature of the mass at the exit of the extrusion tool, the die, in step (vi) (in conjunction with the cooling of step (v)).
- the proportion of open cells for flexible foams can be determined for example according to the following measurement method:
- the difference in weight represents the amount of water absorbed by the porosity of the foam.
- ethylene polymers with a density between 0.910 - 0.925 kg / m 3 such as for example low density polyethylene (LDPE), preferably having a melt index (Melt Flow Index, MFI [190 ° C]). -2.16kg]) from 0.1 to 25, more preferably from 0.25 to 15, more preferably from 0.5 to 8 g / 10 min.
- Polar copolymers of ethylene manufactured by a high-pressure process of component (a) are especially copolymers of ethylene ethyl acrylate (EEA), ethylene vinyl acetate (EVA), ethylene butyl acrylate (EBA) ), ethylene methyl acrylate (EMA), ....
- the melt index [190 ° C.-2.16kg] of these copolymers may vary from 0.1 to 25, preferably from 0.7 to 15, more particularly preferably from 0.5. at 8 g / 10 min.
- Polar copolymers of ethylene manufactured by a high pressure process that can be used in component (c), also designated “second" polar copolymers in order to distinguish it from those of component (a), may in principle be of the same type as those last but have a melting point at least 5 ° C lower than component (a) having the lowest melting point (that component (a) is composed of a homopolymer or a polar copolymer of ethylene or of a mixture of several of these).
- EVA, ⁇ , ⁇ are preferably used as polar copolymers of ethylene, in particular in component (c).
- Component (b) comprises at least one styrenic block thermoplastic elastomer (TPE-S or TPS), in particular a styrene-butadiene-styrene copolymer (SBS, such as KRATON D 101), a styrene-ethylene-butylene copolymer.
- TPE-S or TPS styrenic block thermoplastic elastomer
- SBS styrene-butadiene-styrene copolymer
- KRATON D 101 styrene-ethylene-butylene copolymer
- SEBS polystyrene-b-polyisoprene-b-polystyrene
- SIS polystyrene-b-polyisoprene-b-polystyrene
- SEPS polystyrene-b-poly (ethylene-propylene) -b-polystyrene
- SEEPS polystyrene copolymer poly (ethylene-ethylene / propylene) -b-polystyrene (SEEPS)
- SEEPS polystyrene copolymer poly (ethylene-ethylene / propylene) -b-polystyrene
- SEEPS thermoplastic elastomer containing a crosslinked silicone elastomer phase, in particular mixtures of a thermoplastic (polyolefin, polyurethane, polyesters, etc.) with a crosslinked silicone rubber phase, see US Pat. No. 6,447,9580B1, preferably TPSiV.
- the components (a), (b) and (c) preferably each represent 5 to 85% by weight of the total composition.
- Component (a) is preferably present from 5% to 80%, still more preferably from 10% to 70%, more preferably from 20% to 60% by weight of the total composition.
- Component (b) is present preferably from 5% to 80%, still more preferably from 10% to 70%, more preferably from 20% to 60% by weight of the total composition.
- Component (c) is present preferably from 5% to 80%, still more preferably from 10% to 70%, more preferably from 20% to 60% by weight of the total composition.
- the ionomer (s) are preferably chosen from the group of polymers comprising acid groups at least partially neutralized by monovalent or divalent counterions. In particularly preferred embodiments, these are copolymers of ethylene and methacrylic acid.
- the percentage of acid groups i.e., acid group monomers relative to the other monomers of the ionomeric polymer
- Monovalent or divalent counterions are preferentially chosen from sodium, lithium, calcium, magnesium and / or zinc, but other counterions may also be suitable.
- the degree of neutralization of the acidic groups may vary depending on the components used and the desired degree of flexibility, preferably the degree of neutralization is less than 80%.
- the amount of counter-ions may be higher or even be in excess of stoichiometry, i.e. the degree of neutralization may exceed 100%.
- the ionomer (s) represent 0.1 to 85% by weight of the total composition, preferably 0.5 to 70% by weight and more preferably 0.75 to 50% by weight, particularly preferably 1 to 30% by weight, in particular 1 to 30% by weight. From 5 to 20% by weight or even 2 to 10% by weight.
- Particularly suitable ionomers are the SURLYN 1705-1, SURLYN 1652, SURLYN 9520 or SURLYN 9650 ionomers, others may also be suitable, for example SURLYN 1707, SURLYN 1901, SURLYN 9721, SURLYN 7940 or SURLYN 9945.
- the foams may further comprise one or more additional metallocene polyethylenes not having a melting point at least 5 ° C lower than that of the component (a) having the lowest melting point, that is, metallocene polyethylenes different from those usable as or in component (c), preferably in an amount of 1 to 50% by weight based on the total composition.
- metallocene polyethylenes are homopolymers obtained by a metallocene catalytic process (and therefore by a process different from the high pressure process, which is by radical polymerization) and comprise little or no long type connection.
- mPEs generally exhibit a relatively narrow molecular weight distribution.
- suitable metallocene polyethylenes have a density of less than 925 kg / m 3 , preferably less than 920 kg / m 3 .
- the metallocene polyethylenes which are usable in or as component (c) have a melting point at least 5 ° C lower than that of the component (a) having the lowest Fusion point.
- the foams can therefore include other additional metallocene polyethylenes provided that their melting point is not at least 5 ° C lower than that of the component (a) having the lowest melting point.
- the additional metallocene polyethylenes may have a melting point equal to or greater than that of component (a) having the lowest melting point.
- the melting point of the optional additional metallocene polyethylenes may even be equal to or greater than that of each of the polymers constituting component (a).
- the foams according to the invention may contain other components, in particular common additives and adjuvants, for example chosen from the group comprising cell nucleating agents, cell denucleation agents, dimensional stability control agents, antistatic agents, pigments, antioxidants, antiUV agents, lubricants, flame retardants and infrared reflector / absorber pigments, crystallization (accelerating) agents.
- common additives and adjuvants for example chosen from the group comprising cell nucleating agents, cell denucleation agents, dimensional stability control agents, antistatic agents, pigments, antioxidants, antiUV agents, lubricants, flame retardants and infrared reflector / absorber pigments, crystallization (accelerating) agents.
- nucleating agents such as, for example, talc, calcium carbonate, silica or calcium stearate, may be used.
- active nucleating agents such as the combinations of sodium bicarbonate and / or citric acid available on the market (“HYDROCEROL” from CLARIANT, "SAFOAM” from REEDY, “TRACEL” from TRAMACO, can be used, ... and related), which release gas by decomposing under the action of the temperature during the implementation, allows to obtain a particularly fine and regular cellular structure on all the section of the foam.
- active agents are available in the form of masterbatches, based on the appropriate resin (polyethylene, ethylene copolymer, metallocene polyethylene, etc.).
- resin polyethylene, ethylene copolymer, metallocene polyethylene, etc.
- passive nucleating agents such as those mentioned above and “active” nucleating agents are used together to optimize the cell structure and the cost of the formulation, the “active” nucleating agents generally being more expensive than the “passive” nucleating agents.
- the dosage of these nucleants will be adapted according to the desired cellular structure. For example, from 0.1 to 10% by weight active nucleating agents, including or not passive nucleants previously defined.
- Additives may be added to enlarge the size of the cells of the foam, such as oxidized waxes of polyolefins, polar paraffins, ....
- the gases used for direct gassing foaming are known to those skilled in the art; it is generally volatile organic compounds having a boiling point (at 1 atmosphere) lower than the melting point of the base resin.
- alkanes hydrocarbons CO2, atmosphere gas (N 2, Ar, ).
- alkanes are preferred physical blowing agents, especially alkanes C3 and C4. More particularly, isobutane is used.
- the extruded foam is preferably guided, by a virtually voltage-free stretching machine, in a cooling section (air or water or both) between the die and the drawing machine, to freeze the desired structure.
- the extruder may be any suitable extruder, including a single-screw extruder, co-rotating or counter-rotating double screw.
- foams from the compositions of the present invention of multiple shapes: round shapes, squares, concave or convex irregular shapes, solid bodies or hollow, etc.. It suffices to extrude the polymer + gas mixture through a die having the design and shape required to give the desired expanded final shape.
- the polymer + gas mixture bypassing the needle (if appropriate cooled by air or a suitable heat transfer liquid) in the molten state, to solidify once in the open air while cooling.
- Sb2O3 allows to obtain a fire classification of the foam. But the combined nucleation effect of Sb2O3 and CPE requires the addition of oxidized polyethylene wax, which makes it possible to control the cell size (EP1527132B1).
- the foam is fine-celled ( ⁇ 1000 / cm 2 ), the quality is difficult to stabilize because the composition is very sensitive to temperature variations.
- the temperature of the mass entering the extrusion tool is 1 15.5 ° C, the pressure at the tool is 39 bar.
- the density of the foam is 30 kg / m 3 .
- the temperature adjustment range to keep an open cell consistency and acceptable dimensions is only a few tenths degrees (° C), that is close to the control possibilities of the temperature control of the process zones.
- Example 2 (representative of the invention):
- the foam does not contain Sb2O3.
- the ease of obtaining the quality of open cells is greater than that of Example 1.
- the temperature range in which a compliant foam is obtained is very wide, since between 14.4 ° C and 12.6 ° C (mass entering the extrusion tool).
- the pressure at the tool is 60 bar, the density of 29.4 kg / m 3 , the cell size is ⁇ 350 / cm 2 .
- the pressure reserve certainly allows a significant drop in density.
- the metallocene polyethylene improves the resistance to the elongation of the foam.
- the cell structure is partially open, the density is 24 kg / m 3 , the pressure at the die is 16 bar.
- the amount of open cells increases, but the foam surface becomes less beautiful, the foam collapses a little. It is not possible to find a satisfactory compromise.
- Example 4 (representative of the invention):
- the foam is extruded at a mass temperature entering the extruder 106.0 ° C (SEBS has a temperature resistance a little higher than the SBS).
- SEBS has a temperature resistance a little higher than the SBS.
- the pressure in the die is 20.8 bar, the foam is very beautiful and the amount of open cells as good as in Example 4 representative of the invention.
- the density is 23.6 kg / m 3 .
- Example 5 (representative of the invention):
- the mass temperature entering the die passes 103.9 ° C, the cell structure closes a little.
- the density is 21.6 kg / m 3 , the pressure at the die is 17.7 bar. It should be seen here the less pronounced internal lubrication effect of glycerol monostearate compared to the mixture of fatty acid amides.
- the temperature of the mass entering the extrusion tool is increased to 104.4 ° C, the amount of open cells increases, becoming quite comparable to that of Example 4, the density increases to 26.7 kg / m 3 .
- the surface of the foam remains beautiful, the foam does not collapse.
- the foam is extruded at a mass temperature entering the extruder tool 1 1 1 .5 ° C, the pressure at the tool is 22 bar.
- the density of the foam is 27.1 kg / m 3 , the pressure at the tool is however too low to be able to increase the proportion of gas in order to lower the density, by risk of pre-foaming (there would then be more enough pressure to maintain the foaming gas in solution before the foam is released to the atmosphere).
- the foam is very difficult to adjust from the point of view of the amount of open cells (compressibility of the foam) because the temperature has a great influence on this composition (a few tenths of a degree are enough to change the content into open / closed cells).
- Example 7 (representative of the invention):
- the metallocene polyethylene is used to improve the tensile strength of the formulation.
- the EVA copolymer used is of lower crystallinity than in Comparative Example 6, which increases the flexibility of the formulation.
- the foam is extruded at a mass temperature entering the extruder tool of 1 10.7 ° C, the pressure at the tool is 23 bar.
- the density of the foam is 22.1 kg / m 3 (there is more gas than in Comparative Example 6 and the pressure at the tool is however at least equal).
- the foam is very easy to adjust from the point of view of the amount of open cells (compressibility of the foam), the quality of open cells is quite comparable to that of the foam of Comparative Example 6.
- talc cell nucleation being much lower than that of Comparative Example 6 (which contains chlorinated polyethylene, very nucleating because of the additives it contains).
- the foam is extruded at a mass temperature entering the extruder tool of 106.4 ° C, the pressure at the tool is 35 bar.
- the density of the foam is 23 kg / m 3 .
- the foam is very flexible, the cells are well open, very easy to adjust in terms of the amount of open cells, the quality of open cells is quite comparable to that of the foam of Examples 1 and 2.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BE2016/5180A BE1023927B1 (de) | 2016-03-11 | 2016-03-11 | Offenzellige schaumstoffe aus polylefinen |
BE2016/5739A BE1024635B1 (de) | 2016-10-05 | 2016-10-05 | Offenzellige schaumstoffe aus polyolefinen |
PCT/EP2017/055510 WO2017153508A1 (fr) | 2016-03-11 | 2017-03-09 | Mousses de polyoléfines à cellules ouvertes |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3426721A1 true EP3426721A1 (de) | 2019-01-16 |
Family
ID=58228169
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17708831.7A Withdrawn EP3426721A1 (de) | 2016-03-11 | 2017-03-09 | Offenzellige polyolefinschäume |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3426721A1 (de) |
WO (1) | WO2017153508A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE1031187A1 (de) | 2022-12-22 | 2024-07-16 | Nmc Sa | Wasserabdichtende abschlussleiste |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54944B1 (de) | 1969-12-11 | 1979-01-18 | ||
US4171411A (en) * | 1977-01-31 | 1979-10-16 | Tuxis Corporation | Insulative and cushioning interliner for garments and the like |
US4931484A (en) | 1988-10-13 | 1990-06-05 | Applied Extrusion Technologies, Inc. | Extruded ethylenic polymer foam containing both open and closed cells |
US6541533B2 (en) * | 2001-01-10 | 2003-04-01 | Jsp Corporation | Extruded polyolefin resin foam |
US6479580B1 (en) | 2001-04-30 | 2002-11-12 | Dow Corning Corporation | Polyolefin thermoplastic silicone elastomers employing radical cure |
EP1388568A1 (de) | 2002-08-09 | 2004-02-11 | Nmc S.A. | Polyolefinschaum |
EP1449876A1 (de) | 2003-02-20 | 2004-08-25 | Nmc S.A. | Hochflexibler Polyolefinschaumstoff enthaltend chloriertes Polyethylen |
EP1449877A1 (de) * | 2003-02-20 | 2004-08-25 | Nmc S.A. | Hochflexibler Polyolefinschaumstoff enthaltend Metallocen-Polyethylen |
DE102004042297A1 (de) | 2004-09-01 | 2006-03-02 | Trocellen Gmbh | Offenzelliger und vernetzter Polymerschaum aus Polyolefinen und Polystyrol |
US7291382B2 (en) * | 2004-09-24 | 2007-11-06 | Kimberly-Clark Worldwide, Inc. | Low density flexible resilient absorbent open-cell thermoplastic foam |
US20060205832A1 (en) * | 2005-03-09 | 2006-09-14 | Dean David M | Polymer-ionomer blends and foams thereof |
-
2017
- 2017-03-09 EP EP17708831.7A patent/EP3426721A1/de not_active Withdrawn
- 2017-03-09 WO PCT/EP2017/055510 patent/WO2017153508A1/fr active Application Filing
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE1031187A1 (de) | 2022-12-22 | 2024-07-16 | Nmc Sa | Wasserabdichtende abschlussleiste |
Also Published As
Publication number | Publication date |
---|---|
WO2017153508A1 (fr) | 2017-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0816427B1 (de) | Zusammensetzung auf der Basis von Polyolefin und Kopolymeren von Ethylen-Vinylacetat | |
CA2378244C (fr) | Compositions souples a base de polymeres du propylene | |
US8648122B2 (en) | Method of foaming polyolefin using acrylated epoxidized fatty acid and foam produced therefrom | |
JP2009504858A (ja) | ポリオレフィン発泡体 | |
EP1976927A2 (de) | Extrusionsmittel auf basis von heterogenem pvdf | |
EP2235096B1 (de) | Flammwidrige schaumstoffzusammensetzungen | |
JP2010535274A (ja) | 向上したバブル安定性を有するポリエチレンフィルム | |
MX2013005234A (es) | Proceso para la produccion de perlas termoplasticas expandibles con una capacidad de expansion mejorada. | |
BE1013703A3 (fr) | Articles en composition de resine polypropylene expanse inmould. | |
JP2003504502A (ja) | 熱可塑性樹脂から独立気泡マイクロフォームを含む物品を形成するための方法 | |
JP5707048B2 (ja) | 樹脂発泡シート及び樹脂発泡シートの製造方法 | |
FR2548083A1 (fr) | Procede de fabrication d'une mousse reticulee | |
WO2017153508A1 (fr) | Mousses de polyoléfines à cellules ouvertes | |
CA2242682C (fr) | Composition a base de polymeres du propylene pour granules expanses, procede pour son obtention et utilisation | |
CN112839986A (zh) | 高弹性挤压泡沫的组合物 | |
EP3500620A1 (de) | Polymerschaumstoffe mit verbesserter temperaturbeständigkeit | |
EP1594919B1 (de) | Hochflexibler polyolefinschaumstoff enthaltend chloriertes polyethylen | |
BE1008979A3 (fr) | Compositions a base de polymere du propylene et de copolymere ethylene-acetate de vinyle, procede pour leur mise en oeuvre, feuilles obtenues a partir de ces compositions. | |
EP1594918B1 (de) | Ultraflexibler polyolefinschaumstoff mitmetallocen-polyethylen | |
WO2013190069A1 (fr) | Mousses à base de butène et d´éthylène | |
EP1628818A1 (de) | Verfahren zur kontinuierlichen herstellung eines vollen, hohlen oder offenen profils | |
Douibi et al. | Synergic Effect of a combined use of two Chemical Blowing Agents on the Foaming Efficiency of an Extruded Rigid PVC Compound | |
JP4097446B2 (ja) | ベール状オレフィン系エラストマーの製造方法 | |
JPWO2009001959A1 (ja) | ポリオレフィン系樹脂非架橋発泡体の製造方法 | |
FR3122846A1 (fr) | Filament pour imprimer une mousse par impression 3d |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180927 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20191010 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20210622 |