EP3423235A1 - Roue de meulage à centre renfoncé - Google Patents
Roue de meulage à centre renfoncéInfo
- Publication number
- EP3423235A1 EP3423235A1 EP17709891.0A EP17709891A EP3423235A1 EP 3423235 A1 EP3423235 A1 EP 3423235A1 EP 17709891 A EP17709891 A EP 17709891A EP 3423235 A1 EP3423235 A1 EP 3423235A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- abrasive particles
- shaped abrasive
- grinding wheel
- depressed center
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000227 grinding Methods 0.000 title claims abstract description 96
- 230000000994 depressogenic effect Effects 0.000 title claims abstract description 70
- 239000002245 particle Substances 0.000 claims abstract description 250
- 239000000463 material Substances 0.000 claims abstract description 54
- 239000011230 binding agent Substances 0.000 claims abstract description 46
- 230000003014 reinforcing effect Effects 0.000 claims abstract description 27
- 230000000717 retained effect Effects 0.000 claims abstract description 17
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 51
- 239000000203 mixture Substances 0.000 description 60
- 239000002243 precursor Substances 0.000 description 57
- 239000006185 dispersion Substances 0.000 description 34
- 238000000034 method Methods 0.000 description 27
- -1 for example Substances 0.000 description 20
- 238000004519 manufacturing process Methods 0.000 description 17
- 229920001568 phenolic resin Polymers 0.000 description 15
- 239000005011 phenolic resin Substances 0.000 description 15
- 229910052751 metal Inorganic materials 0.000 description 13
- 239000002184 metal Substances 0.000 description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 12
- 238000005245 sintering Methods 0.000 description 12
- 238000012360 testing method Methods 0.000 description 11
- 239000000654 additive Substances 0.000 description 10
- 239000007788 liquid Substances 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 238000000576 coating method Methods 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 238000009826 distribution Methods 0.000 description 8
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 7
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 7
- 238000001035 drying Methods 0.000 description 7
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 7
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 6
- 230000000996 additive effect Effects 0.000 description 6
- 239000000919 ceramic Substances 0.000 description 6
- 239000002131 composite material Substances 0.000 description 6
- 239000007822 coupling agent Substances 0.000 description 6
- 239000000835 fiber Substances 0.000 description 6
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 5
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 5
- 239000004743 Polypropylene Substances 0.000 description 5
- 229910001593 boehmite Inorganic materials 0.000 description 5
- 238000001354 calcination Methods 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- WMWXXXSCZVGQAR-UHFFFAOYSA-N dialuminum;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3] WMWXXXSCZVGQAR-UHFFFAOYSA-N 0.000 description 5
- 229920001155 polypropylene Polymers 0.000 description 5
- 229920001169 thermoplastic Polymers 0.000 description 5
- 229920003261 Durez Polymers 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- 239000011324 bead Substances 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 229910001610 cryolite Inorganic materials 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 239000010432 diamond Substances 0.000 description 4
- 229910003460 diamond Inorganic materials 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 229920003986 novolac Polymers 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920003987 resole Polymers 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000012815 thermoplastic material Substances 0.000 description 4
- 239000004416 thermosoftening plastic Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- 239000002253 acid Chemical class 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000000292 calcium oxide Substances 0.000 description 3
- 235000012255 calcium oxide Nutrition 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 239000011152 fibreglass Substances 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000000395 magnesium oxide Substances 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 239000006082 mold release agent Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000002667 nucleating agent Substances 0.000 description 3
- 235000014571 nuts Nutrition 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 235000019483 Peanut oil Nutrition 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000003082 abrasive agent Substances 0.000 description 2
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 2
- 235000012241 calcium silicate Nutrition 0.000 description 2
- 229910052918 calcium silicate Inorganic materials 0.000 description 2
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000010433 feldspar Substances 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 235000019198 oils Nutrition 0.000 description 2
- 239000000312 peanut oil Substances 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 150000004760 silicates Chemical class 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 235000017550 sodium carbonate Nutrition 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 1
- QYEXBYZXHDUPRC-UHFFFAOYSA-N B#[Ti]#B Chemical compound B#[Ti]#B QYEXBYZXHDUPRC-UHFFFAOYSA-N 0.000 description 1
- 229910052580 B4C Inorganic materials 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229910017344 Fe2 O3 Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910020261 KBF4 Inorganic materials 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- 241000276489 Merlangius merlangus Species 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 229910000503 Na-aluminosilicate Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- MXRIRQGCELJRSN-UHFFFAOYSA-N O.O.O.[Al] Chemical compound O.O.O.[Al] MXRIRQGCELJRSN-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229920001800 Shellac Polymers 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 229910033181 TiB2 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- 239000006061 abrasive grain Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229920005822 acrylic binder Polymers 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- RQPZNWPYLFFXCP-UHFFFAOYSA-L barium dihydroxide Chemical compound [OH-].[OH-].[Ba+2] RQPZNWPYLFFXCP-UHFFFAOYSA-L 0.000 description 1
- 229910001863 barium hydroxide Inorganic materials 0.000 description 1
- NFMAZVUSKIJEIH-UHFFFAOYSA-N bis(sulfanylidene)iron Chemical compound S=[Fe]=S NFMAZVUSKIJEIH-UHFFFAOYSA-N 0.000 description 1
- 229910021418 black silicon Inorganic materials 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 1
- 229910052810 boron oxide Inorganic materials 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- RNFNDJAIBTYOQL-UHFFFAOYSA-N chloral hydrate Chemical compound OC(O)C(Cl)(Cl)Cl RNFNDJAIBTYOQL-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000007799 cork Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- JYIMWRSJCRRYNK-UHFFFAOYSA-N dialuminum;disodium;oxygen(2-);silicon(4+);hydrate Chemical compound O.[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[Na+].[Na+].[Al+3].[Al+3].[Si+4] JYIMWRSJCRRYNK-UHFFFAOYSA-N 0.000 description 1
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 1
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 1
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000004924 electrostatic deposition Methods 0.000 description 1
- 229910001651 emery Inorganic materials 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000001815 facial effect Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 235000021323 fish oil Nutrition 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000011876 fused mixture Substances 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 239000002223 garnet Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- IOXPXHVBWFDRGS-UHFFFAOYSA-N hept-6-enal Chemical compound C=CCCCCC=O IOXPXHVBWFDRGS-UHFFFAOYSA-N 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 235000000396 iron Nutrition 0.000 description 1
- 229910000339 iron disulfide Inorganic materials 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 229910001947 lithium oxide Inorganic materials 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 239000004579 marble Substances 0.000 description 1
- 229910052960 marcasite Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 150000004682 monohydrates Chemical class 0.000 description 1
- 150000007518 monoprotic acids Chemical class 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 150000001282 organosilanes Chemical class 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N oxalic acid group Chemical group C(C(=O)O)(=O)O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 description 1
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical class [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 1
- 125000005489 p-toluenesulfonic acid group Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920003055 poly(ester-imide) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- CHWRSCGUEQEHOH-UHFFFAOYSA-N potassium oxide Chemical compound [O-2].[K+].[K+] CHWRSCGUEQEHOH-UHFFFAOYSA-N 0.000 description 1
- 229910001950 potassium oxide Inorganic materials 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- NIFIFKQPDTWWGU-UHFFFAOYSA-N pyrite Chemical compound [Fe+2].[S-][S-] NIFIFKQPDTWWGU-UHFFFAOYSA-N 0.000 description 1
- 229910052683 pyrite Inorganic materials 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 235000013874 shellac Nutrition 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000000429 sodium aluminium silicate Substances 0.000 description 1
- 235000012217 sodium aluminium silicate Nutrition 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229910001948 sodium oxide Inorganic materials 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 235000019794 sodium silicate Nutrition 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 239000012703 sol-gel precursor Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000001721 transfer moulding Methods 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000001238 wet grinding Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 235000014692 zinc oxide Nutrition 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D5/00—Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting only by their periphery; Bushings or mountings therefor
- B24D5/14—Zonally-graded wheels; Composite wheels comprising different abrasives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D7/00—Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting otherwise than only by their periphery, e.g. by the front face; Bushings or mountings therefor
- B24D7/14—Zonally-graded wheels; Composite wheels comprising different abrasives
Definitions
- the present disclosure relates to depressed center grinding wheels.
- Depressed center grinding wheels are often used in combination with a handheld portable grinder held by an operator, either at an angle of 90 degrees (e.g., when used as a cut of wheel) or at an angle of up to about 30 degrees (e.g., when used for grinding welding beads, flash, gate, and risers off of castings), more typically about 15 degrees, relative to the surface of the workpiece being abraded.
- Depressed center wheels may also be referred to in the abrasive art as raised hub wheels or by their shape designation of "Type" (e.g., Types 27, 28, and 29), with Type 27 being the most popular.
- Bonded abrasive articles have abrasive particles bonded together by a bonding medium.
- the bonding medium is typically an organic resin, but may also be an inorganic material such as a ceramic or glass (i.e., vitreous bonds).
- Examples of bonded abrasive articles include stones, hones, and abrasive wheels such as, for example, grinding wheels and cut-off wheels.
- Grinding wheels are of various shapes may be, for example, driven by a stationary-mounted motor such as, for example, a bench grinder, or attached and driven by a hand-operated portable grinder.
- Hand-operated portable grinders are typically held at a slight angle relative to the workpiece surface, and may be used to grind, for example, welding beads, flash, gates, and risers off castings.
- the present disclosure solves this technical problem in the case of depressed center grinding wheels by providing a depressed center grinding wheel comprising an abrasive disc having a working surface and a back surface opposite the working surface, wherein the working surface has a depressed center portion, and wherein the abrasive disc comprises:
- a working layer comprising first abrasive particles retained in a first binder material, the first abrasive particles comprising first shaped abrasive particles, wherein the first shaped abrasive particles comprise from 40 to 100 weight percent of the first abrasive particles;
- a back layer comprising second abrasive particles retained in a second binder material comprising first crushed abrasive particles and essentially free of shaped abrasive particles;
- an intermediate layer disposed between the working layer and the back layer, the intermediate layer comprising third abrasive particles retained in a third binder material, the intermediate layer comprising second shaped abrasive particles and second crushed abrasive particles, wherein the second shaped abrasive particles comprise 25 to 75 weight percent of the second abrasive particles;
- first reinforcing scrim sandwiched between the back layer and the intermediate layer; and a second reinforcing scrim adjacent one of:
- Depressed center grinding wheels according to the present disclosure are useful; for example, for abrading a surface of a workpiece.
- the present disclosure provides a method of abrading a workpiece, the method comprising contacting a workpiece with the working surface of a depressed center grinding wheel according to the present disclosure and moving the working surface relative to the workpiece to abrade the workpiece.
- the term "nominal” means: of, being, or relating to a designated or theoretical size and/or shape that may vary somewhat from the actual (e.g., within a manufacturing process tolerance).
- shaped abrasive particle refers to an abrasive particle (e.g., a ceramic abrasive particle) with at least a portion of the abrasive particle having a nominal predetermined shape corresponding to a mold cavity used to form a precursor shaped abrasive particle, which is then calcined and sintered to form the shaped abrasive particle.
- Shaped abrasive particle as used herein excludes abrasive particles shaped solely by a mechanical crushing process.
- crushed abrasive particle refers to an abrasive particle shaped solely by a mechanical crushing process.
- the term "essentially free of means containing less than 5 weight percent of (preferably less than 1 weight percent of, or even free of).
- Fig. 1 is a schematic side view of an exemplary depressed center grinding wheel 100 according to the present disclosure.
- Figs. 2A-2F are schematic cross-sectional representations showing various exemplary configurations of scrim placement in exemplary depressed center grinding wheels lOOa-lOOf.
- Fig. 3 is a schematic perspective view of exemplary shaped abrasive particle 300.
- Fig. 4 is a schematic side view showing a depressed center grinding wheel 100 abrading a workpiece 400 according to the present disclosure.
- depressed center grinding wheel 100 comprises an abrasive disc 1 10 having a working surface 122 and a back surface 142 opposite the working surface 122.
- Working surface 1 12 has a depressed center portion 1 14.
- Abrasive disc 1 10 comprises working layer 120, intermediate layer 130, and back layer 140.
- Working layer 120 comprises first abrasive particles 124 retained in a first binder material 126.
- the first abrasive particles 124 comprise first shaped abrasive particles 125.
- the first shaped abrasive particles 125 comprise from 40 to 100 weight percent of the first abrasive particles 124.
- the first abrasive particles 124 may also comprise crushed abrasive particles, if desired, in amounts of up to about 60 percent by weight (e.g., 5 to 60 percent by weight, 20 to 60 percent by weight, or 40 to 60 percent by weight), based on the total weight of the first abrasive particles.
- the first shaped abrasive particles 125 may all be of the same size and shape or they may be a mixture of various shaped abrasive particles with different sizes, shapes, and/or compositions. In some preferred embodiments, the first abrasive particles are all shaped abrasive particles having the same nominal size and shape. The first shaped abrasive particles 125 may all be of the same size and shape or they may be a mixture of various shaped abrasive particles with different sizes and/or shapes. Likewise, any optional crushed abrasive particles included in the first abrasive particles may have any size distribution and/or compositional distribution.
- Back layer 140 comprises second abrasive particles 144 retained in a second binder material 146 comprises first crushed abrasive particles 148, and is essentially free of shaped abrasive particles (e.g., first shaped abrasive particles, second shaped abrasive particles, or other shaped abrasive particles).
- shaped abrasive particles e.g., first shaped abrasive particles, second shaped abrasive particles, or other shaped abrasive particles.
- the second abrasive particles 144 comprise at least 95 percent by weight of first crushed abrasive particles, preferably at least 99 percent by weight, and more preferably about 100 percent by weight of first crushed abrasive particles, based on the total weight of second abrasive particles. Accordingly, the back layer is essentially free of shaped abrasive particles.
- the second abrasive particles 144 may be of any size.
- the second abrasive particles 144 may have any size distribution and/or compositional distribution.
- Intermediate layer 130 is disposed between the working layer 120 and the back layer 140.
- the intermediate layer 130 comprises third abrasive particles 134 retained in a third binder material 136.
- the intermediate layer 130 comprises second shaped abrasive particles 135 and second crushed abrasive particles 138.
- the second shaped abrasive particles 135 comprise 25 to 75 weight percent (e.g., 30 to 60 weight percent, or 40 to 60 percent) of the second abrasive particles.
- the second shaped abrasive particles 135 may all be of the same size and shape or they may be a mixture of various shaped abrasive particles with different sizes, shapes, and/or compositions.
- the second abrasive particles include second shaped abrasive particles having the same nominal size and shape.
- the second shaped abrasive particles 135 may all be of the same size and shape or they may be a mixture of various shaped abrasive particles with different sizes and/or shapes.
- the second crushed abrasive particles may have any size distribution and/or compositional distribution.
- the first and second shaped abrasive particles are the same (i.e., same compositional, shape, and size distribution); however, they may be different in other embodiments, if desired.
- the first and second crushed abrasive particles are preferably the same (i.e., same compositional and size distribution); however, they may be different in other embodiments, if desired.
- shaped abrasive particles in Fig. 1 are shown as vertically aligned triangles, this is for illustration purposes only, and the shaped abrasive particles may have any orientation (e.g., randomly aligned or aligned parallel to the backing).
- depressed center grinding wheels include at least two reinforcing scrims deployed at various locations throughout the grinding wheel.
- First reinforcing scrim 150 is sandwiched between back layer 140 and intermediate layer 130.
- Second reinforcing scrim 152 (not shown) is positioned adjacent to one of: a) back layer 140 opposite intermediate layer 130; b) intermediate layer 130 opposite back layer 140; or c) working layer 120 opposite intermediate layer 130.
- Optional centrally disposed arbor hole 170 extends through abrasive disc 1 10.
- Optional attachment member 175 is centrally disposed, and optionally secured by nut 180, to back surface 142 of abrasive disc 1 10, although this is not a requirement.
- the second reinforcing scrim 152 is sandwiched between the working layer 120 and the intermediate layer 130. Examples include the embodiments shown in Fig. 2B (shown as 152b), Fig. 2D (shown as 152d), and Fig. 2F (shown as 152f).
- a third reinforcing scrim 156 is bonded to the working layer 1 10 opposite the intermediate layer (e.g., see 156b in Fig. 2B).
- second reinforcing scrim 152 is secured to the back layer opposite the intermediate layer. Examples are shown in Fig. 2A (shown as 152a), Fig. 2C (shown as 152c), and Fig. 2E (shown as 152e).
- third reinforcing scrim 156 is sandwiched between the intermediate layer and the working layer (e.g., shown as 156e in Fig. 2E).
- an optional fourth reinforcing scrim 169 is bonded to working layer 120 opposite intermediate layer 130 (e.g., shown as 169e in Fig. 2E).
- optional third scrim 156c is secured to working layer 120 opposite the intermediate layer 130.
- optional third scrim 156f is secured to working layer 120 opposite the intermediate layer 130.
- Depressed center grinding wheels according to the present disclosure are generally made by compression molding, injection molding, transfer molding, or the like. The molding can be done either by hot or cold pressing or any suitable manner known to those skilled in the art. During the
- the individual components are typically layered up into a green body that is then subjected to curing conditions.
- the green body typically contains one or more binder material precursors, either liquid organic, powdered inorganic, powdered organic, or a combination of thereof, mixed with abrasive particles (i.e., shaped abrasive particles and crushed abrasive particles selected and positioned as described herein), and reinforcing scrims (positioned at desired locations in the wheel).
- a liquid medium either resin or a solvent
- the wetted particles are mixed with a powdered medium.
- the various binder materials in the working layer, intermediate layer, and back layer typically comprise a glassy inorganic material (e.g., as in the case of vitrified abrasive wheels), metal, or an organic resin (e.g., as in the case of resin-depressed center grinding wheels) .
- Glassy vitreous binders may be made from a mixture of different metal oxides.
- these metal oxide vitreous binders include silica, alumina, calcia, iron oxide, titania, magnesia, sodium oxide, potassium oxide, lithium oxide, manganese oxide, boron oxide, phosphorous oxide, and the like.
- vitreous binders based upon weight include, for example, 47.61 percent Si0 2 , 16.65 percent A1 2 0 3 , 0.38 percent Fe 2 O3, 0.35 percent Ti0 2 , 1.58 percent CaO, 0.10 percent MgO, 9,63 percent Na 2 0, 2.86 percent K 2 0, 1.77 percent Li 2 0, 19.03 percent B 2 C>3, 0.02 percent Mn0 2 , and 0.22 percent P 2 C>5 ; and 63 percent Si0 2 , 12 percent A1 2 C>3, 1.2 percent CaO, 6.3 percent Na 2 0, 7.5 percent
- vitreous binder in powder form may be mixed with a temporary binder, typically an organic temporary binder.
- the vitrified binders may also be formed from a frit, for example anywhere from about one to 100 percent frit, but generally 20 to 100 percent frit.
- Some examples of common materials used in frit binders include feldspar, borax, quartz, soda ash, zinc oxide, whiting, antimony trioxide, titanium dioxide, sodium silicofluoride, flint, cryolite, boric acid, and combinations thereof. These materials are usually mixed together as powders, fired to fuse the mixture and then the fused mixture is cooled.
- the cooled mixture is crushed and screened to a very fine powder to then be used as a frit vitreous binder precursor.
- the temperature at which the frit vitreous binder precursor is matured to form a vitreous binder is dependent upon its chemistry, but typically ranges from about 600° C to about 1800° C, although this is not a requirement.
- metal binders examples include tin, copper, aluminum, nickel, and combinations thereof.
- Metal binder materials can be formed by sintering metal powders, optionally containing a temporary organic binder material that burns off during sintering.
- Organic binder materials are typically included in an amount of from 5 to 30 percent, more typically 10 to 25, and more typically 15 to 24 percent by weight, based of the total weight of the depressed center grinding wheel.
- Phenolic resin is the most commonly used organic binder material, and may be used in both the powder form and liquid state.
- phenolic resins are widely used, it is within the scope of this disclosure to use other organic binder materials including, for example, epoxy resins, urea-formaldehyde resins, rubbers, shellacs, and acrylic binders.
- the organic binder material may also be modified with other binder materials to improve or alter the properties of the binder material.
- Useful phenolic resins include novolac and resole phenolic resins.
- Novolac phenolic resins are characterized by being acid-catalyzed and having a ratio of formaldehyde to phenol of less than one, typically between 0.5: 1 and 0.8: 1.
- Resole phenolic resins are characterized by being alkaline catalyzed and having a ratio of formaldehyde to phenol of greater than or equal to one, typically from 1 : 1 to 3 : 1.
- Novolac and resole phenolic resins may be chemically modified (e.g., by reaction with epoxy
- Exemplary acidic catalysts suitable for curing phenolic resins include sulfuric, hydrochloric, phosphoric, oxalic, and p-toluenesulfonic acids.
- Alkaline catalysts suitable for curing phenolic resins include sodium hydroxide, barium hydroxide, potassium hydroxide, calcium hydroxide, organic amines, or sodium carbonate.
- Phenolic resins are well-known and readily available from commercial sources. Examples of commercially available novolac resins include DUREZ 1364, a two-step, powdered phenolic resin (marketed by Durez Corporation of Addison, Texas under the trade designation VARCUM (e.g., 29302), or HEXION AD5534 RESIN (marketed by Hexion Specialty Chemicals, Inc. of Louisville, Kentucky). Examples of commercially available resole phenolic resins useful in practice of the present disclosure include those marketed by Durez Corporation under the trade designation VARCUM (e.g., 29217, 29306, 29318, 29338, 29353); those marketed by Ashland Chemical Co.
- VARCUM e.g., 29217, 29306, 29318, 29338, 29353
- AEROFENE e.g., AEROFENE 295
- PHENOLITE e.g., PHENOLITE TD-2207
- Curing temperatures of organic binder material precursors will generally vary with the material chosen and wheel design. Selection of suitable conditions is within the capability of one of ordinary skill in the art. Exemplary conditions for a phenolic binder may include an applied pressure of about 20 tons per 4 inches diameter (224 kg/cm ⁇ ) at room temperature followed by heating at temperatures up to about 185 °C (degrees Celsius) for sufficient time to cure the organic binder material precursor.
- the depressed center grinding wheels include from about 10 to 60 percent by weight of abrasive particles; typically 30 to 60 percent by weight, and more typically 40 to 60 percent by weight, based on the total weight of the binder material(s) and abrasive particles.
- Shaped abrasive particles composed of crystallites of alpha alumina, magnesium alumina spinel, and a rare earth hexagonal aluminate may be prepared using sol-gel precursor alpha alumina particles according to methods described in, for example, U.S. Patent No. 5,213,591 (Celikkaya et al.) and U.S. Publ. Patent Appl. Nos. 2009/0165394 Al (Culler et al.) and 2009/0169816 Al (Erickson et al.).
- alpha-alumina-based shaped abrasive particles can be made according to a multistep process.
- the method comprises the steps of making either a seeded or non-seeded sol- gel alpha alumina precursor dispersion that can be converted into alpha alumina; filling one or more mold cavities having the desired outer shape of the shaped abrasive particle with the sol-gel, drying the sol-gel to form precursor shaped abrasive particles; removing the precursor shaped abrasive particles from the mold cavities; calcining the precursor shaped abrasive particles to form calcined, precursor shaped abrasive particles, and then sintering the calcined, precursor shaped abrasive particles to form shaped abrasive particles.
- the process will now be described in greater detail.
- the first process step involves providing either a seeded or non-seeded dispersion of an alpha alumina precursor that can be converted into alpha alumina.
- the alpha alumina precursor dispersion often comprises a liquid that is a volatile component.
- the volatile component is water.
- the dispersion should comprise a sufficient amount of liquid for the viscosity of the dispersion to be sufficiently low to enable filling mold cavities and replicating the mold surfaces, but not so much liquid as to cause subsequent removal of the liquid from the mold cavity to be prohibitively expensive.
- the alpha alumina precursor dispersion comprises from 2 percent to 90 percent by weight of the particles that can be converted into alpha alumina, such as particles of aluminum oxide monohydrate (boehmite), and at least 10 percent by weight, or from 50 percent to 70 percent, or 50 percent to 60 percent, by weight of the volatile component such as water.
- the alpha alumina precursor dispersion in some embodiments contains from 30 percent to 50 percent, or 40 percent to 50 percent, by weight solids.
- Boehmite can be prepared by known techniques or can be obtained commercially. Examples of commercially available boehmite include products having the trade designations "DISPERAL”, and “DISPAL”, both available from Sasol North America, Inc. of Houston, Texas, or "HiQ-40” available from BASF Corporation of Florham Park, New Jersey. These aluminum oxide monohydrates are relatively pure; that is, they include relatively little, if any, hydrate phases other than monohydrates, and have a high surface area.
- the physical properties of the resulting shaped abrasive particles will generally depend upon the type of material used in the alpha alumina precursor dispersion.
- the alpha alumina precursor dispersion is in a gel state.
- a "gel” is a three dimensional network of solids dispersed in a liquid.
- the alpha alumina precursor dispersion may contain a modifying additive or precursor of a modifying additive.
- the modifying additive can function to enhance some desirable property of the abrasive particles or increase the effectiveness of the subsequent sintering step.
- Modifying additives or precursors of modifying additives can be in the form of soluble salts, typically water soluble salts.
- They typically consist of a metal-containing compound and can be a precursor of oxide of magnesium, zinc, iron, silicon, cobalt, nickel, zirconium, hafnium, chromium, yttrium, praseodymium, samarium, ytterbium, neodymium, lanthanum, gadolinium, cerium, dysprosium, erbium, titanium, and mixtures thereof.
- concentrations of these additives that can be present in the alpha alumina precursor dispersion can be varied based on skill in the art.
- the introduction of a modifying additive or precursor of a modifying additive will cause the alpha alumina precursor dispersion to gel.
- the alpha alumina precursor dispersion can also be induced to gel by application of heat over a period of time.
- the alpha alumina precursor dispersion can also contain a nucleating agent (seeding) to enhance the transformation of hydrated or calcined aluminum oxide to alpha alumina.
- Nucleating agents suitable for this disclosure include fine particles of alpha alumina, alpha ferric oxide or its precursor, titanium oxides and titanates, chrome oxides, or any other material that will nucleate the transformation. The amount of nucleating agent, if used, should be sufficient to effect the transformation of alpha alumina. Nucleating such alpha alumina precursor dispersions is disclosed in U.S. Patent No. 4,744,802 (Schwabel).
- a peptizing agent can be added to the alpha alumina precursor dispersion to produce a more stable hydrosol or colloidal alpha alumina precursor dispersion.
- Suitable peptizing agents are monoprotic acids or acid compounds such as acetic acid, hydrochloric acid, formic acid, and nitric acid. Multiprotic acids can also be used but they can rapidly gel the alpha alumina precursor dispersion, making it difficult to handle or to introduce additional components thereto.
- Some commercial sources of boehmite contain an acid titer (such as absorbed formic or nitric acid) that will assist in forming a stable alpha alumina precursor dispersion.
- the alpha alumina precursor dispersion can be formed by any suitable means, such as, for example, by simply mixing aluminum oxide monohydrate with water containing a peptizing agent or by forming an aluminum oxide monohydrate slurry to which the peptizing agent is added.
- the alpha alumina abrasive particles may contain silica and iron oxide as disclosed in U.S. Patent No. 5,645,619 (Erickson et al.).
- the alpha alumina abrasive particles may contain zirconia as disclosed in U.S. Patent No. 5,551,963 (Larmie).
- the alpha alumina abrasive particles can have a microstructure or additives as disclosed in U.S. Patent No. 6,277,161 (Castro).
- the second process step involves providing a mold having at least one mold cavity, and preferably a plurality of cavities.
- the mold can have a generally planar bottom surface and a plurality of mold cavities.
- the plurality of cavities can be formed in a production tool.
- the production tool can be a belt, a sheet, a continuous web, a coating roll such as a rotogravure roll, a sleeve mounted on a coating roll, or die.
- the production tool comprises polymeric material.
- suitable polymeric materials include thermoplastics such as polyesters, polycarbonates, poly(ether sulfone), poly(methyl methacrylate), polyurethanes, poly(vinyl chloride), polyolefin, polystyrene, polypropylene, polyethylene or combinations thereof, or thermosetting materials.
- the entire tooling is made from a polymeric or thermoplastic material.
- the surfaces of the tooling in contact with the sol-gel while drying, such as the surfaces of the plurality of cavities comprises polymeric or thermoplastic materials and other portions of the tooling can be made from other materials.
- a suitable polymeric coating may be applied to a metal tooling to change its surface tension properties by way of example.
- a polymeric or thermoplastic tool can be replicated off a metal master tool.
- the master tool will have the inverse pattern desired for the production tool.
- the master tool can be made in the same manner as the production tool.
- the master tool is made out of metal, e.g., nickel and is diamond turned.
- the polymeric sheet material can be heated along with the master tool such that the polymeric material is embossed with the master tool pattern by pressing the two together.
- a polymeric or thermoplastic material can also be extruded or cast onto the master tool and then pressed.
- the thermoplastic material is cooled to solidify and produce the production tool. If a thermoplastic production tool is utilized, then care should be taken not to generate excessive heat that may distort the thermoplastic production tool limiting its life.
- Access to cavities can be from an opening in the top surface or bottom surface of the mold.
- the cavities can extend for the entire thickness of the mold.
- the cavities can extend only for a portion of the thickness of the mold.
- the top surface is substantially parallel to bottom surface of the mold with the cavities having a substantially uniform depth.
- At least one side of the mold, that is, the side in which the cavities are formed, can remain exposed to the surrounding atmosphere during the step in which the volatile component is removed.
- the cavities have a specified three-dimensional shape to make the shaped abrasive particles.
- the depth dimension is equal to the perpendicular distance from the top surface to the lowermost point on the bottom surface.
- the depth of a given cavity can be uniform or can vary along its length and/or width.
- the cavities of a given mold can be of the same shape or of different shapes.
- the third process step involves filling the cavities in the mold with the alpha alumina precursor dispersion (e.g., by a conventional technique).
- a knife roll coater or vacuum slot die coater can be used.
- a mold release can be used to aid in removing the particles from the mold if desired.
- Typical mold release agents include oils such as peanut oil or mineral oil, fish oil, silicones, polytetrafluoroethylene, zinc stearate, and graphite.
- mold release agent such as peanut oil
- a liquid such as water or alcohol
- mold release agent such as peanut oil
- a liquid such as water or alcohol
- the top surface of the mold is coated with the alpha alumina precursor dispersion.
- the alpha alumina precursor dispersion can be pumped onto the top surface.
- a scraper or leveler bar can be used to force the alpha alumina precursor dispersion fully into the cavity of the mold.
- the remaining portion of the alpha alumina precursor dispersion that does not enter cavity can be removed from top surface of the mold and recycled.
- a small portion of the alpha alumina precursor dispersion can remain on the top surface and in other embodiments the top surface is substantially free of the dispersion.
- the pressure applied by the scraper or leveler bar is typically less than 100 psi (0.7 MPa), less than 50 psi (0.3 MPa), or even less than 10 psi (69 kPa).
- no exposed surface of the alpha alumina precursor dispersion extends substantially beyond the top surface to ensure uniformity in thickness of the resulting shaped abrasive particles.
- the fourth process step involves removing the volatile component to dry the dispersion.
- the volatile component is removed by fast evaporation rates.
- removal of the volatile component by evaporation occurs at temperatures above the boiling point of the volatile component.
- An upper limit to the drying temperature often depends on the material the mold is made from.
- the temperature should be less than the melting point of the plastic.
- the drying temperatures can be between about 90 °C to about 165 °C, or between about 105 °C to about 150 °C, or between about 105 °C to about 120 °C. Higher temperatures can lead to improved production speeds but can also lead to degradation of the polypropylene tooling limiting its useful life as a mold.
- the fifth process step involves removing resultant precursor shaped abrasive particles with from the mold cavities.
- the precursor shaped abrasive particles can be removed from the cavities by using the following processes alone or in combination on the mold: gravity, vibration, ultrasonic vibration, vacuum, or pressurized air to remove the particles from the mold cavities.
- the precursor abrasive particles can be further dried outside of the mold. If the alpha alumina precursor dispersion is dried to the desired level in the mold, this additional drying step is not necessary. However, in some instances it may be economical to employ this additional drying step to minimize the time that the alpha alumina precursor dispersion resides in the mold.
- the precursor shaped abrasive particles will be dried from 10 to 480 minutes, or from 120 to 400 minutes, at a temperature from 50 °C to 160 °C, or at 120 °C to 150 °C.
- the sixth process step involves calcining the precursor shaped abrasive particles.
- calcining essentially all the volatile material is removed, and the various components that were present in the alpha alumina precursor dispersion are transformed into metal oxides.
- the precursor shaped abrasive particles are generally heated to a temperature from 400 °C to 800 °C, and maintained within this temperature range until the free water and over 90 percent by weight of any bound volatile material are removed.
- a water-soluble salt can be introduced by impregnation into the pores of the calcined, precursor shaped abrasive particles. Then the precursor shaped abrasive particles are pre-fired again.
- the seventh process step involves sintering the calcined, precursor shaped abrasive particles to form alpha alumina particles.
- the calcined, precursor shaped abrasive particles Prior to sintering, the calcined, precursor shaped abrasive particles are not completely densified and thus lack the desired hardness to be used as shaped abrasive particles.
- Sintering takes place by heating the calcined, precursor shaped abrasive particles to a temperature of from 1,000 °C to 1,650 °C and maintaining them within this temperature range until substantially all of the alpha alumina monohydrate (or equivalent) is converted to alpha alumina and the porosity is reduced to less than 15 percent by volume.
- the length of time to which the calcined, precursor shaped abrasive particles must be exposed to the sintering temperature to achieve this level of conversion depends upon various factors but usually from five seconds to 48 hours is typical.
- the duration for the sintering step ranges from one minute to 90 minutes.
- the shaped abrasive particles can have a Vickers hardness of 10 GPa, 16 GPa, 18 GPa, 20 GPa, or greater.
- Shaped abrasive particles used in the present disclosure may comprise plates, rods, or a combination thereof, for example.
- the shaped abrasive particles have shapes that can be characterized as thin bodies having triangular, rectangular (including square), or other geometric shapes with sharp points.
- Such shaped abrasive particles have a front face and a back face, both of which faces have substantially the same geometric shape. The faces are separated by the thickness of the particle.
- the ratio of the length of the shortest facial dimension of an abrasive particle to its thickness is at least 1 to 1, preferably at least 2 to 1, more preferably at least 5 to 1, and most preferably at least 6 to 1.
- Preferred shaped abrasive particles are shaped as rectangular (including square), or triangular plates, preferably having a sloping sidewall; for example, triangular particles having a sloping sidewall as described in U.S. Patent No. 8,142,531 (Adefris et al.).
- Fig. 3 shows an exemplary such shaped abrasive particle 300 having the shape of a truncated triangular pyramid.
- Patent Nos. 8,764,865 (Adefris et al.), 8, 142,532 (Adefris et al.), 8,123,828 (Adefris et al.), 8,142,891 (Culler et al.), 5,366,523 (Rowenhorst et al.), and 5,204,916 (Berg et al), and in U.S. Publ. Patent Appln. No. 2009/0165394 Al (Culler et al.) and 2013/0040537 Al (Erickson et al.).
- the shaped abrasive particles used in the present disclosure can typically be made using tools (i.e., molds) cut using diamond tooling, which provides higher feature definition than other fabrication alternatives such as, for example, stamping or punching.
- the cavities in the tool surface have planar faces that meet along sharp edges, and form the sides and top of a truncated pyramid.
- the resultant shaped abrasive particles have a respective nominal average shape that corresponds to the shape of cavities (e.g., truncated pyramid) in the tool surface; however, variations (e.g., random variations) from the nominal average shape may occur during manufacture, and shaped abrasive particles exhibiting such variations are included within the definition of shaped abrasive particles as used herein.
- the shaped abrasive particles are typically selected to have a length in a range of from 0.001 mm to 26 mm, more typically 0.1 mm to 10 mm, and more typically 0.5 mm to 5 mm, although other lengths may also be used.
- the length may be expressed as a fraction of the thickness of the depressed center grinding wheel in which it is contained.
- the shaped abrasive particle may have a length greater than half the thickness of the depressed center grinding wheel.
- the length may be greater than the thickness of the depressed center grinding wheel.
- the shaped abrasive particles are typically selected to have a width in a range of from 0.001 mm to 26 mm, more typically 0.1 mm to 10 mm, and more typically 0.5 mm to 5 mm, although other lengths may also be used.
- the shaped abrasive particles are typically selected to have a thickness in a range of from 0.005 mm to 1.6 mm, more typically, from 0.2 to 1.2 mm.
- the shaped abrasive particles may have an aspect ratio (length to thickness) of at least 2, 3, 4, 5, 6, or more.
- the first abrasive particles may contain solely of first shaped abrasive particles, or first shaped abrasive particles in combination with an amount of third crushed abrasive particles.
- the second abrasive particles i.e., in the intermediate layer may contain solely of second shaped abrasive particles, or second shaped abrasive particles in combination with an amount of second crushed abrasive particles.
- the ratio of the weight percent of the first shaped abrasive particles in the first abrasive particles to the weight percent of the second shaped abrasive particles in the second abrasive particles is from 40:60 to 60:40, preferably from 45 :55 to 55 :45.
- the first and/or second abrasive particles may comprise more than one size or shape of shaped abrasive particles, although a single size and shape is typically preferred.
- the first and second abrasive particles may be the same or different, preferably the same, with regard to shape, size, and/or composition.
- Surface coatings on the shaped abrasive particles may be used to improve the adhesion between the shaped abrasive particles and a binder material in abrasive articles, or can be used to aid in electrostatic deposition of the shaped abrasive particles.
- surface coatings as described in U.S. Patent No. 5,352,254 (Celikkaya) in an amount of 0.1 to 2 percent surface coating to shaped abrasive particle weight may be used. Such surface coatings are described in U.S. Patent Nos.
- the surface coating may prevent the shaped abrasive particle from capping.
- Capping is the term to describe the phenomenon where metal particles from the workpiece being abraded become welded to the tops of the shaped abrasive particles.
- Surface coatings to perform the above functions are known to those of skill in the art.
- Useful crushed abrasive particles include, for example, crushed particles of fused aluminum oxide, heat treated aluminum oxide, white fused aluminum oxide, ceramic aluminum oxide materials such as those commercially available under the trade designation 3M CERAMIC ABRASIVE GRAIN from 3M Company of St.
- sol-gel derived abrasive particles can be found in U.S. Patent Nos. 4,314,827 (Leitheiser et al.), 4,623,364 (Cottringer et al.); 4,744,802 (Schwabel), 4,770,671 (Monroe et al.); and 4,881,951 (Monroe et al.). It is also contemplated that the abrasive particles could comprise abrasive agglomerates such, for example, as those described in U.S. Patent Nos. 4,652,275 (Bloecher et al.) or 4,799,939 (Bloecher et al.).
- conventional crushed abrasive particles are independently sized according to an abrasives industry recognized specified nominal grade.
- Exemplary abrasive industry recognized grading standards include those promulgated by ANSI (American National Standards Institute), FEPA
- Such industry accepted grading standards include, for example: ANSI 4, ANSI 6, ANSI 8, ANSI 16, ANSI 24, ANSI 30, ANSI 36, ANSI 40, ANSI 50, ANSI 60, ANSI 80, ANSI 100, ANSI 120, ANSI 150, ANSI 180, ANSI 220, ANSI 240, ANSI 280, ANSI 320, ANSI 360, ANSI 400, and ANSI 600; FEPA P8, FEPA P12, FEPA P16, FEPA P24, FEPA P30, FEPA P36, FEPA P40, FEPA P50, FEPA P60, FEPA P80, FEPA P100, FEPA P120, FEPA P150, FEPA P180, FEPA P220, FEPA P320, FEPA P400, FEPA P500, FEPA P600, FEPA P800, FEPA P1000, FEPA P
- the crushed aluminum oxide particles and the non-seeded sol-gel derived alumina-based abrasive particles are independently sized to ANSI 60 and 80, or FEPA F36, F46, F54 and F60 or FEPA P60 and P80 grading standards.
- shaped abrasive particles can be graded to a nominal screened grade using U.S.A. Standard Test Sieves conforming to ASTM E-l 1 "Standard Specification for Wire Cloth and Sieves for Testing Purposes".
- ASTM E-l 1 prescribes the requirements for the design and construction of testing sieves using a medium of woven wire cloth mounted in a frame for the classification of materials according to a designated particle size.
- a typical designation may be represented as -18+20 meaning that the shaped abrasive particles pass through a test sieve meeting ASTM E-l 1 specifications for the number
- the shaped abrasive particles have a particle size such that most of the particles pass through an 18 mesh test sieve and can be retained on a 20, 25, 30, 35, 40, 45, or 50 mesh test sieve.
- the shaped abrasive particles can have a nominal screened grade
- a custom mesh size could be used such as -90+100.
- some or all of the abrasive particles are treated with a coupling agent (e.g., an organosilane coupling agent) to enhance adhesion of the abrasive particles to the binder.
- a coupling agent e.g., an organosilane coupling agent
- Coupling agents are well-known to those of skill in the abrasive arts. Examples of coupling agents include trialkoxysilanes (e.g., gamma-aminopropyltriethoxysilane), titanates, and zirconates.
- the abrasive particles may be treated before combining them with the binder material, or they may be surface treated in situ by including a coupling agent to the binder material.
- depressed center grinding wheels contain additional grinding aids such as, for example, polytetrafluoroethylene particles, cryolite, sodium chloride, FeS2 (iron disulfide), or KBF4; typically in amounts of from 1 to 25 percent by weight, more typically 10 to 20 percent by weight, subject to weight range requirements of the other constituents being met. Grinding aids are added to improve the cutting characteristics of the cut-off wheel, generally by reducing the temperature of the cutting interface.
- the grinding aid may be in the form of single particles or an agglomerate of grinding aid particles. Examples of precisely shaped grinding aid particles are taught in U.S. Patent Publ. No. 2002/0026752 Al (Culler et al.).
- the organic binder materials may contain plasticizer such as, for example, that available as SANTICIZER 154 PLASTICIZER from UNIVAR USA, Inc. of Chicago, Illinois.
- Depressed center grinding wheels according to the present disclosure may contain additional components such as, for example, filler particles, subject to weight range requirements of the other constituents being met. Filler particles may be added to occupy space and/or provide porosity. Porosity enables the depressed center grinding wheel to shed used or worn abrasive particles to expose new or fresh abrasive particles.
- Depressed center grinding wheels according to the present disclosure have any range of porosity; for example, from about 1 percent to 50 percent, typically 1 percent to 40 percent by volume.
- fillers include bubbles and beads (e.g., glass, ceramic (alumina), clay, polymeric, metal), cork, gypsum, marble, limestone, flint, silica, aluminum silicate, and combinations thereof.
- Depressed center grinding wheels according to the present disclosure are useful, for example, as
- Type 27 (e.g., as in American National Standards Institute standard ANSI B7.1-2000 (2000) in section 1.4.14) depressed-center grinding wheels.
- Depressed center grinding wheels are typically 0.80 millimeter (mm) to 16 mm in thickness, more typically 1 mm to 8 mm, and typically have a diameter between 2.5 cm and 100 cm (40 inches), more typically between about 7 cm and 13 cm, although other dimensions may also be used (e.g., wheels as large as 100 cm in diameter are known).
- An optional center hole may be used to attaching the depressed center grinding wheel to a power driven tool. If present, the center hole is typically 0.5 cm to 2.5 cm in diameter, although other sizes may be used.
- the optional center hole may be reinforced; for example, by a metal flange.
- a mechanical fastener may be axially secured to one surface of the cut-off wheel. Examples include threaded posts, threaded nuts, Tinnerman nuts, and bayonet mount posts.
- depressed center grinding wheels include at least two scrims that reinforce the depressed center grinding wheel.
- scrims include woven or knitted cloth, mesh, and screens.
- the scrim may comprise glass fibers (e.g., fiberglass), organic fibers such as polyamide, polyester, or polyimide.
- the scrim may comprise an open mesh selected from the group consisting of woven, nonwoven, or knitted fiber mesh; synthetic fiber mesh; natural fiber mesh; metal fiber mesh; molded thermoplastic polymer mesh; molded thermoset polymer mesh; perforated sheet materials; slit and stretched sheet materials; and combinations thereof.
- the scrim need not be woven in a uniform pattern but may also include a nonwoven random pattern. Thus, the openings may either be in a pattern or randomly spaced.
- the scrim network openings may be rectangular or they may have other shapes including a diamond shape, a triangular shape, an octagonal shape or a combination of shapes.
- Depressed center grinding wheels according to the present disclosure are useful, for example, for abrading a workpiece.
- the depressed center grinding wheel can be used dry or wet.
- the wheel is used in conjunction with water, oil-based lubricants, or water-based lubricants.
- Depressed center grinding wheels according to the present disclosure may be particularly useful on various workpiece materials such as, for example, carbon steel sheet or bar stock and more exotic metals (e.g., stainless steel or titanium), or on softer more ferrous metals (e.g., mild steel, low alloy steels, or cast irons).
- Depressed center grinding wheels according to the present disclosure are useful for grinding a workpiece at an acute angle with the workpiece. Such an abrading process is shown in Fig. 4, wherein depressed center grinding wheel 100 abrades workpiece 400. During grinding, the working, intermediate, and back layers experience wear and participate in the abrading of the workpiece.
- the present disclosure provides a depressed center grinding wheel comprising an abrasive disc having a working surface and a back surface opposite the working surface, wherein the working surface has a depressed center portion, and wherein the abrasive disc comprises: a working layer comprising first abrasive particles retained in a first binder material, the first abrasive particles comprising first shaped abrasive particles, wherein the first shaped abrasive particles comprise from 40 to 100 weight percent of the first abrasive particles;
- a back layer comprising second abrasive particles retained in a second binder material comprising first crushed abrasive particles and essentially free of shaped abrasive particles;
- an intermediate layer disposed between the working layer and the back layer, the intermediate layer comprising third abrasive particles retained in a third binder material, the intermediate layer comprising second shaped abrasive particles and second crushed abrasive particles, wherein the second shaped abrasive particles comprise 25 to 75 weight percent of the second abrasive particles;
- first reinforcing scrim sandwiched between the back layer and the intermediate layer; and a second reinforcing scrim adjacent one of:
- the present disclosure provides a depressed center grinding wheel according to the first embodiment, wherein the second reinforcing scrim is sandwiched between the working layer and the intermediate layer.
- the present disclosure provides a depressed center grinding wheel according to the second embodiment, further comprising a third reinforcing scrim bonded to the working layer opposite the intermediate layer.
- the present disclosure provides a depressed center grinding wheel according to the first embodiment, wherein the second reinforcing scrim is secured to the back layer opposite the intermediate layer.
- the present disclosure provides a depressed center grinding wheel according to the fourth embodiment, further comprising a third reinforcing scrim sandwiched between the intermediate layer and the working layer.
- the present disclosure provides a depressed center grinding wheel according to the fourth or fifth embodiment, further comprising a fourth reinforcing scrim bonded to the working layer opposite the intermediate layer.
- the present disclosure provides a depressed center grinding wheel according to any one of the first to sixth embodiments, wherein the first shaped abrasive particles comprise triangular shaped abrasive particles.
- the present disclosure provides a depressed center grinding wheel according to any one of the first to seventh embodiments, wherein the second shaped abrasive particles comprise triangular shaped abrasive particles.
- the present disclosure provides a depressed center grinding wheel according to any one of the first to eighth embodiments, wherein the ratio of the weight percent of the first shaped abrasive particles in the first abrasive particles to the weight percent of the second shaped abrasive particles in the second abrasive particles is from 40:60 to 60:40.
- the present disclosure provides a depressed center grinding wheel according to any one of the first to eighth embodiments, wherein the ratio of the weight percent of the first shaped abrasive particles in the first abrasive particles to the weight percent of the second shaped abrasive particles in the second abrasive particles is from 45:55 to 55:45.
- the present disclosure provides a depressed center grinding wheel according to any one of the first to tenth embodiments, wherein the first and second shaped abrasive particles comprise alpha alumina.
- the present disclosure provides a depressed center grinding wheel according to any one of the first to eleventh embodiments, further comprising a centrally disposed arbor hole extending through the abrasive disc.
- the present disclosure provides a depressed center grinding wheel according to any one of the first to twelfth embodiments, further comprising an attachment member centrally disposed on the back surface of the abrasive disc.
- VARCUM 29302 trade designation "VARCUM 29302" from Durez Corporation, Dallas, Texas.
- Shaped abrasive particles were prepared according to the disclosure of U.S. Pat. No. 8, 142,531 (Adefris et al.).
- the shaped abrasive particles were prepared by molding alumina sol gel in equilateral triangle-shaped polypropylene mold cavities of 0.028 inch (0.71 millimeter) depth and 0.11 inch (0.28 millimeter) on each side. The draft angle a between the sidewall and bottom of the mold was 98 degrees. After drying and firing, the shaped particles were calcined at approximately 650 °C, and then saturated with a magnesium nitrate solution (10.5 percent by weight as magnesium oxide, and having 0.02 percent by weight of HC5 dispersed therein).
- the applied load was the grinder weight of 9 pounds (4.1 kg) and the abrasive wheel was held at an angle of 15 degrees relative to the surface (i.e., 0 degrees).
- the steel bar was weighed before and after each cycle, and the weight loss (i.e., cut) was recorded.
- the steel bar was traversed 16 times from end to end per cycle. Weight loss from the grinding disc (i.e., disc wear) was recorded after each 10-cycle test.
- Mixes were prepared according to the amounts and components listed in Table 1.
- Mix 1, Mix 2 and Mix 4 were prepared by combining the indicated components using a paddle-type mixer (obtained as "CUISINAPvT SM-70" from Conair Corporation, East Windsor, New Jersey, operated at speed 1) for 10 minutes.
- Mix 3 was prepared by combining Mix 1 and Mix 2 using a paddle-type mixer for 10 minutes.
- Mix 5 was prepared by combining Mix 4 and Mix 2 using a paddle-type mixer for 10 minutes.
- Mix 6 was prepared by combining 50% Mix 1 and 50% Mix 4 using a paddle-type mixer for 10 minutes.
- a Type 27 depressed-center composite grinding wheel was prepared as follows. A 4.5-inch (11.4 centimeters) diameter disc of SCRIM1 was placed into a 4.5-inch (11.4 centimeters) diameter cavity die. Mix 3 (50 grams) was spread out evenly. A second 4-inch (10.2 centimeters) diameter of SCRIM2 was placed on top of Mix 3. Mix 6 (50 grams) of was spread out evenly and a third 4-inch (10.2 centimeters) diameter of SCRIM2 was placed on top of Mix 6. Then Mix 5 (50 grams) of was spread out evenly. The filled cavity mold was then pressed at a pressure of 40 tons/38 square inches (14.5 megapascals).
- the resulting wheel was removed from the cavity mold and placed on a spindle between depressed center aluminum plates in order to be pressed into a Type 27 depressed-center grinding wheel.
- the wheel was compressed at 5 ton/38 square inches (1.8 megapascals) to shape the disc.
- the wheel was then placed in an oven to cure for 7 hours at 79 °C, 3 hours at 107 °C, 18 hours at 185 °C, and a temperature ramp-down over 4 hours to 27 °C.
- the dimensions of the final grinding wheel were 180 millimeter diameter x 7 millimeter thickness.
- the center hole was 7/8 inch (2.2 centimeters) in diameter.
- the resultant depressed-center composite grinding wheel was configured such that a layer of Mix 5 was the working layer.
- Comparative Example A was a Type 27 depressed-center grinding wheel prepared according to the procedure of Example 1, except that Mix 5 was used instead of Mix 6 in middle layer (so that Mix 5 was used in both middle and top layers).
- the resultant depressed-center composite grinding wheel was configured such that a layer of Mix 5 was the working layer.
- Comparative Example B was a Type 27 depressed-center grinding wheel prepared according to the procedure of Example 1, except that Mix 6 was used instead of Mix 5 in top layer (so that Mix 6 was used in both middle and top layers).
- the resultant depressed-center composite grinding wheel was configured such that a layer of Mix 6 was the working layer.
- Mixes were prepared according to the amounts and components listed in Table 3.
- Mix 7, Mix 8 and Mix 10 were prepared by combining the indicated components using a paddle-type mixer
- Mix 9 was prepared by combining Mix 7 and Mix 8 using a paddle-type mixer for 10 minutes.
- Mix 11 was prepared by combining Mix 10 and Mix 8 using a paddle-type mixer for 10 minutes.
- Mix 12 was prepared by combining 25% Mix 9 and 75% Mix 11 using a paddle-type mixer for 10 minutes.
- Mix 13 was prepared by combining 50% Mix 9 and 50% Mix 11 using a paddle-type mixer for 10 minutes.
- Mix 14 was prepared by combining 75% Mix 9 and 25% Mix 1 1 using a paddle-type mixer for 10 minutes.
- a Type 27 depressed-center composite grinding wheel was prepared for each Example in
- Examples 2-7 and Comparative Examples C-E as follows. Mixes used in each Example as bottom, middle and top layers and their amounts are reported in Table 4.
- a 4.5-inch (11.4-cm) diameter disc of SCRIMl was placed into a 4.5-inch (11.4-cm) diameter cavity die. Bottom layer mix was spread out evenly.
- a second 4.0-inch (10.2-cm) diameter of SCRIM2 was placed on top of bottom layer mix. The middle layer mix was spread out evenly and then top layer mix was spread out evenly.
- a third 3-inch (7.6-cm) diameter of SCRIM2 was placed on top of top layer mix. The filled cavity mold was then pressed at a pressure of 40 tons/38 square inches (14.5 mPa).
- the resulting wheel was removed from the cavity mold and placed on a spindle between depressed center aluminum plates in order to be pressed into a Type 27 depressed-center grinding wheel.
- the wheel was compressed at 5 ton/38 square inches (1.8 mPa) to shape the disc.
- the wheel was then placed in an oven to cure for 7 hours at 79 °C, 3 hours at 107 °C, 18 hours at 185 °C, and a temperature ramp-down over 4 hours to 27 °C.
- the dimensions of the final grinding wheel were 180 millimeter diameter x 7 millimeter thickness.
- the center hole was 7/8 inch (2.2 cm) in diameter.
- the resultant depressed-center composite grinding wheel was configured such that a top layer was the working layer.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Polishing Bodies And Polishing Tools (AREA)
Abstract
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662302977P | 2016-03-03 | 2016-03-03 | |
PCT/US2017/019670 WO2017151498A1 (fr) | 2016-03-03 | 2017-02-27 | Roue de meulage à centre renfoncé |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3423235A1 true EP3423235A1 (fr) | 2019-01-09 |
EP3423235B1 EP3423235B1 (fr) | 2022-08-24 |
Family
ID=58264644
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17709891.0A Active EP3423235B1 (fr) | 2016-03-03 | 2017-02-27 | Roue de meulage à centre renfoncé |
Country Status (8)
Country | Link |
---|---|
US (1) | US20190030684A1 (fr) |
EP (1) | EP3423235B1 (fr) |
JP (1) | JP7092435B2 (fr) |
KR (1) | KR20180120711A (fr) |
CN (1) | CN108778629A (fr) |
CA (1) | CA3016197A1 (fr) |
MX (1) | MX2018010142A (fr) |
WO (1) | WO2017151498A1 (fr) |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101736755B1 (ko) | 2011-12-30 | 2017-05-17 | 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 | 복합 형상화 연마입자들 및 이의 형성방법 |
EP2797715A4 (fr) | 2011-12-30 | 2016-04-20 | Saint Gobain Ceramics | Particule abrasive façonnée et procédé de formation de celle-ci |
EP3705177A1 (fr) | 2012-01-10 | 2020-09-09 | Saint-Gobain Ceramics & Plastics Inc. | Particules abrasives dotées de formes complexes et méthodes pour former les mêmes |
KR20150020199A (ko) | 2012-05-23 | 2015-02-25 | 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 | 형상화 연마입자들 및 이의 형성방법 |
US10106714B2 (en) | 2012-06-29 | 2018-10-23 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive particles having particular shapes and methods of forming such particles |
CN108015685B (zh) | 2012-10-15 | 2020-07-14 | 圣戈班磨料磨具有限公司 | 具有特定形状的磨粒 |
CA2984232C (fr) | 2013-03-29 | 2021-07-20 | Saint-Gobain Abrasives, Inc. | Particules abrasives ayant des formes particulieres et procedes de formation de telles particules |
CN110591645A (zh) | 2013-09-30 | 2019-12-20 | 圣戈本陶瓷及塑料股份有限公司 | 成形磨粒及其形成方法 |
KR101870617B1 (ko) | 2013-12-31 | 2018-06-26 | 생-고뱅 어브레이시브즈, 인코포레이티드 | 형상화 연마 입자들을 포함하는 연마 물품 |
US9771507B2 (en) | 2014-01-31 | 2017-09-26 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particle including dopant material and method of forming same |
EP3131706B8 (fr) | 2014-04-14 | 2024-01-10 | Saint-Gobain Ceramics & Plastics, Inc. | Article abrasif comprenant des particules abrasives façonnées |
US9902045B2 (en) | 2014-05-30 | 2018-02-27 | Saint-Gobain Abrasives, Inc. | Method of using an abrasive article including shaped abrasive particles |
US9914864B2 (en) | 2014-12-23 | 2018-03-13 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particles and method of forming same |
EP3277459B1 (fr) | 2015-03-31 | 2023-08-16 | Saint-Gobain Abrasives, Inc. | Articles abrasifs fixes et procédés pour les former |
TWI634200B (zh) | 2015-03-31 | 2018-09-01 | 聖高拜磨料有限公司 | 固定磨料物品及其形成方法 |
CN107864637B (zh) | 2015-06-11 | 2022-11-22 | 圣戈本陶瓷及塑料股份有限公司 | 包括经成形研磨颗粒的研磨制品 |
KR102422875B1 (ko) | 2016-05-10 | 2022-07-21 | 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 | 연마 입자들 및 그 형성 방법 |
PL3455321T3 (pl) | 2016-05-10 | 2022-12-12 | Saint-Gobain Ceramics&Plastics, Inc. | Sposób formowania cząstek ściernych |
WO2018064642A1 (fr) | 2016-09-29 | 2018-04-05 | Saint-Gobain Abrasives, Inc. | Articles abrasifs fixes et procédés pour les former |
US10563105B2 (en) | 2017-01-31 | 2020-02-18 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
US10759024B2 (en) | 2017-01-31 | 2020-09-01 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
WO2018236989A1 (fr) | 2017-06-21 | 2018-12-27 | Saint-Gobain Ceramics & Plastics, Inc. | Matériaux particulaires et leurs procédés de formation |
BE1025501B1 (nl) * | 2017-08-22 | 2019-03-27 | Cibo N.V. | Schuurelement en werkwijze voor het vervaardigen van een schuurelement |
EP4081609A4 (fr) | 2019-12-27 | 2024-06-05 | Saint-Gobain Ceramics & Plastics Inc. | Articles abrasifs et leurs procédés de formation |
WO2021133901A1 (fr) | 2019-12-27 | 2021-07-01 | Saint-Gobain Ceramics & Plastics, Inc. | Articles abrasifs et leurs procédés de formation |
US11494716B2 (en) | 2020-04-07 | 2022-11-08 | Husqvarna Ab | System, apparatus, and method for determining a surfacing or cutting consumable products |
WO2022147435A1 (fr) * | 2020-12-28 | 2022-07-07 | Saint-Gobain Abrasives, Inc. | Article abrasif lié |
CN113477686A (zh) * | 2021-05-27 | 2021-10-08 | 王文锋 | 一种去内环除硫磺砂轮回收处理装置 |
Family Cites Families (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2084513A (en) * | 1930-09-26 | 1937-06-22 | Carborundum Co | Abrasive article |
US1910444A (en) | 1931-02-13 | 1933-05-23 | Carborundum Co | Process of making abrasive materials |
US3041156A (en) | 1959-07-22 | 1962-06-26 | Norton Co | Phenolic resin bonded grinding wheels |
GB1181782A (en) * | 1966-03-11 | 1970-02-18 | Norton Abrasives Ltd | Improvements relating to Grinding |
US3868793A (en) * | 1973-06-18 | 1975-03-04 | Norton Co | Internally safety reinforced cup grinding wheel |
US3867795A (en) * | 1973-10-16 | 1975-02-25 | Norton Co | Composite resinoid bonded abrasive wheels |
JPS5115886A (ja) * | 1974-07-30 | 1976-02-07 | Isamu Akita | Kensakukenmayokaitentoishi |
JPS5617170Y2 (fr) * | 1979-01-16 | 1981-04-21 | ||
US4314827A (en) | 1979-06-29 | 1982-02-09 | Minnesota Mining And Manufacturing Company | Non-fused aluminum oxide-based abrasive mineral |
US4623364A (en) | 1984-03-23 | 1986-11-18 | Norton Company | Abrasive material and method for preparing the same |
CA1254238A (fr) | 1985-04-30 | 1989-05-16 | Alvin P. Gerk | Procede sol-gel pour l'obtention de grains d'abrasif et de produits abrasifs ceramiques durables a base d'alumine |
US4652275A (en) | 1985-08-07 | 1987-03-24 | Minnesota Mining And Manufacturing Company | Erodable agglomerates and abrasive products containing the same |
DE3545308A1 (de) * | 1985-12-20 | 1987-06-25 | Feldmuehle Ag | Schleifscheibe mit daempfung |
US4770671A (en) | 1985-12-30 | 1988-09-13 | Minnesota Mining And Manufacturing Company | Abrasive grits formed of ceramic containing oxides of aluminum and yttrium, method of making and using the same and products made therewith |
US4799939A (en) | 1987-02-26 | 1989-01-24 | Minnesota Mining And Manufacturing Company | Erodable agglomerates and abrasive products containing the same |
US4881951A (en) | 1987-05-27 | 1989-11-21 | Minnesota Mining And Manufacturing Co. | Abrasive grits formed of ceramic containing oxides of aluminum and rare earth metal, method of making and products made therewith |
AU604899B2 (en) | 1987-05-27 | 1991-01-03 | Minnesota Mining And Manufacturing Company | Abrasive grits formed of ceramic, impregnation method of making the same and products made therewith |
CH675250A5 (fr) | 1988-06-17 | 1990-09-14 | Lonza Ag | |
US5011508A (en) | 1988-10-14 | 1991-04-30 | Minnesota Mining And Manufacturing Company | Shelling-resistant abrasive grain, a method of making the same, and abrasive products |
JPH02224977A (ja) * | 1989-02-23 | 1990-09-06 | Kosoku Denki Kk | 低騒音レヂノイドオフセット研削砥石 |
YU32490A (en) | 1989-03-13 | 1991-10-31 | Lonza Ag | Hydrophobic layered grinding particles |
US4997461A (en) | 1989-09-11 | 1991-03-05 | Norton Company | Nitrified bonded sol gel sintered aluminous abrasive bodies |
US5085671A (en) | 1990-05-02 | 1992-02-04 | Minnesota Mining And Manufacturing Company | Method of coating alumina particles with refractory material, abrasive particles made by the method and abrasive products containing the same |
US5152917B1 (en) | 1991-02-06 | 1998-01-13 | Minnesota Mining & Mfg | Structured abrasive article |
US5204916A (en) | 1991-08-06 | 1993-04-20 | Eastman Kodak Company | Tile-oriented technique for collectively performing image rotation, scaling and digital halftone screening |
US5366523A (en) | 1992-07-23 | 1994-11-22 | Minnesota Mining And Manufacturing Company | Abrasive article containing shaped abrasive particles |
US5213591A (en) | 1992-07-28 | 1993-05-25 | Ahmet Celikkaya | Abrasive grain, method of making same and abrasive products |
WO1994007809A1 (fr) | 1992-09-25 | 1994-04-14 | Minnesota Mining And Manufacturing Company | Grains abrasifs contenant de l'oxyde d'aluminium et de la zircone |
US5435816A (en) | 1993-01-14 | 1995-07-25 | Minnesota Mining And Manufacturing Company | Method of making an abrasive article |
AU679968B2 (en) | 1993-09-13 | 1997-07-17 | Minnesota Mining And Manufacturing Company | Abrasive article, method of manufacture of same, method of using same for finishing, and a production tool |
US5645619A (en) | 1995-06-20 | 1997-07-08 | Minnesota Mining And Manufacturing Company | Method of making alpha alumina-based abrasive grain containing silica and iron oxide |
US5975987A (en) | 1995-10-05 | 1999-11-02 | 3M Innovative Properties Company | Method and apparatus for knurling a workpiece, method of molding an article with such workpiece, and such molded article |
US6475253B2 (en) | 1996-09-11 | 2002-11-05 | 3M Innovative Properties Company | Abrasive article and method of making |
US5946991A (en) | 1997-09-03 | 1999-09-07 | 3M Innovative Properties Company | Method for knurling a workpiece |
US6277161B1 (en) | 1999-09-28 | 2001-08-21 | 3M Innovative Properties Company | Abrasive grain, abrasive articles, and methods of making and using the same |
DE10359747A1 (de) * | 2003-12-19 | 2005-07-14 | August Rüggeberg Gmbh & Co. Kg | Schrupp-Schleifscheibe |
CN1994678A (zh) * | 2006-01-06 | 2007-07-11 | 张洪杰 | 一种专用于加工针头的砂轮 |
CN201044950Y (zh) * | 2007-04-27 | 2008-04-09 | 上海树脂砂轮厂 | 树脂切割砂轮 |
EP2178697B1 (fr) * | 2007-08-13 | 2014-03-26 | 3M Innovative Properties Company | Disque en stratifié abrasif revêtu et procédé de fabrication de celui-ci |
BRPI0821437B1 (pt) | 2007-12-27 | 2019-01-22 | 3M Innovative Properties Co | método de fabricar uma pluralidade de cacos abrasivos e artigo abrasivo |
US8123828B2 (en) | 2007-12-27 | 2012-02-28 | 3M Innovative Properties Company | Method of making abrasive shards, shaped abrasive particles with an opening, or dish-shaped abrasive particles |
CN201264220Y (zh) * | 2008-10-08 | 2009-07-01 | 杨建良 | 改良的组合砂轮结构 |
CA3012625C (fr) | 2008-12-17 | 2020-07-07 | 3M Innovative Properties Company | Particules abrasives mises en forme comportant des rainures |
US8142891B2 (en) | 2008-12-17 | 2012-03-27 | 3M Innovative Properties Company | Dish-shaped abrasive particles with a recessed surface |
US8142531B2 (en) | 2008-12-17 | 2012-03-27 | 3M Innovative Properties Company | Shaped abrasive particles with a sloping sidewall |
US8142532B2 (en) | 2008-12-17 | 2012-03-27 | 3M Innovative Properties Company | Shaped abrasive particles with an opening |
BRPI0923722A2 (pt) | 2008-12-30 | 2017-07-11 | Saint Gobain Abrasives Inc | Ferramentas abrasivas coladas reforçadas |
CA2791475C (fr) * | 2010-03-03 | 2018-05-15 | 3M Innovative Properties Company | Meule abrasive liee |
US9573250B2 (en) | 2010-04-27 | 2017-02-21 | 3M Innovative Properties Company | Ceramic shaped abrasive particles, methods of making the same, and abrasive articles containing the same |
CN103189164B (zh) * | 2010-11-01 | 2016-07-06 | 3M创新有限公司 | 用于制备成形陶瓷磨粒的激光法、成形陶瓷磨粒以及磨料制品 |
CN103764348B (zh) | 2011-09-07 | 2017-12-29 | 3M创新有限公司 | 研磨工件的方法 |
IN2014CN03358A (fr) * | 2011-11-09 | 2015-07-03 | 3M Innovative Properties Co | |
CN103372817A (zh) * | 2012-04-26 | 2013-10-30 | 圣戈班磨料磨具(上海)有限公司 | 一种改良工具 |
CN103567858B (zh) * | 2012-07-31 | 2016-10-12 | 圣戈班磨料磨具有限公司 | 研磨轮及其制备和使用方法 |
EP3052271B1 (fr) * | 2013-10-04 | 2021-04-21 | 3M Innovative Properties Company | Articles abrasifs agglomérés et procédés |
CN205588163U (zh) * | 2016-03-24 | 2016-09-21 | 庄培琼 | 一种石材打磨用砂轮磨片 |
-
2017
- 2017-02-27 CN CN201780014379.3A patent/CN108778629A/zh active Pending
- 2017-02-27 EP EP17709891.0A patent/EP3423235B1/fr active Active
- 2017-02-27 MX MX2018010142A patent/MX2018010142A/es unknown
- 2017-02-27 US US16/077,120 patent/US20190030684A1/en not_active Abandoned
- 2017-02-27 JP JP2018545997A patent/JP7092435B2/ja active Active
- 2017-02-27 KR KR1020187027643A patent/KR20180120711A/ko unknown
- 2017-02-27 CA CA3016197A patent/CA3016197A1/fr not_active Abandoned
- 2017-02-27 WO PCT/US2017/019670 patent/WO2017151498A1/fr active Application Filing
Also Published As
Publication number | Publication date |
---|---|
EP3423235B1 (fr) | 2022-08-24 |
JP7092435B2 (ja) | 2022-06-28 |
CN108778629A (zh) | 2018-11-09 |
KR20180120711A (ko) | 2018-11-06 |
JP2019511375A (ja) | 2019-04-25 |
US20190030684A1 (en) | 2019-01-31 |
CA3016197A1 (fr) | 2017-09-08 |
MX2018010142A (es) | 2018-11-29 |
WO2017151498A1 (fr) | 2017-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3423235B1 (fr) | Roue de meulage à centre renfoncé | |
CA2857088C (fr) | Roue de poncage composite | |
EP2563549B1 (fr) | Particules céramiques abrasives façonées, procédés de fabrication associés et articles abrasifs contenant ces particules | |
EP3536454B1 (fr) | Meule abrasive agglomérée | |
EP2753457B1 (fr) | Procédé d'abrasion d'une pièce à travailler | |
EP3558587A1 (fr) | Article abrasif et son procédé de fabrication | |
US20200290174A1 (en) | Bonded abrasive article and method of making the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180822 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20220324 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602017060959 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1513319 Country of ref document: AT Kind code of ref document: T Effective date: 20220915 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20220824 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221226 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221124 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221224 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602017060959 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230530 |
|
26N | No opposition filed |
Effective date: 20230525 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20230228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230227 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230228 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230228 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: UEP Ref document number: 1513319 Country of ref document: AT Kind code of ref document: T Effective date: 20220824 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230227 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230227 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230228 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240125 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240123 Year of fee payment: 8 Ref country code: GB Payment date: 20240123 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240123 Year of fee payment: 8 |