EP3408208B1 - Kran und verfahren zum steuern eines solchen krans - Google Patents
Kran und verfahren zum steuern eines solchen krans Download PDFInfo
- Publication number
- EP3408208B1 EP3408208B1 EP17721521.7A EP17721521A EP3408208B1 EP 3408208 B1 EP3408208 B1 EP 3408208B1 EP 17721521 A EP17721521 A EP 17721521A EP 3408208 B1 EP3408208 B1 EP 3408208B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- crane
- tower
- movements
- deformations
- control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 10
- 230000033001 locomotion Effects 0.000 claims description 62
- 238000013016 damping Methods 0.000 claims description 56
- 239000000725 suspension Substances 0.000 claims description 18
- 230000001133 acceleration Effects 0.000 claims description 15
- 230000010355 oscillation Effects 0.000 claims description 15
- 238000004364 calculation method Methods 0.000 claims description 8
- 238000003384 imaging method Methods 0.000 claims description 6
- 238000001514 detection method Methods 0.000 claims description 5
- 238000011156 evaluation Methods 0.000 claims description 3
- 238000013499 data model Methods 0.000 claims description 2
- 230000000694 effects Effects 0.000 description 12
- 229910000831 Steel Inorganic materials 0.000 description 11
- 239000010959 steel Substances 0.000 description 11
- 238000010276 construction Methods 0.000 description 5
- 230000005489 elastic deformation Effects 0.000 description 5
- 230000003068 static effect Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 230000000454 anti-cipatory effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 231100000817 safety factor Toxicity 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C13/00—Other constructional features or details
- B66C13/04—Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
- B66C13/06—Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C13/00—Other constructional features or details
- B66C13/04—Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
- B66C13/06—Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads
- B66C13/063—Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads electrical
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C23/00—Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
- B66C23/16—Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes with jibs supported by columns, e.g. towers having their lower end mounted for slewing movements
Definitions
- the present invention relates to a crane in the form of a tower crane, with a load-handling device attached to a hoist rope, drive devices for moving several crane elements and methods of the load-handling device, a control device for controlling the drive devices in such a way that the load-handling device moves along a travel path, and a sway damping device for damping of pendulum movements of the load suspension device, said pendulum damping device having a control module for influencing the control of the drive devices as a function of pendulum-relevant criteria.
- the invention also relates to a method for controlling a crane, in which the control of the drive devices is influenced by a sway damping device as a function of parameters relevant to swaying.
- the mentioned drive devices are usually operated and controlled by the crane operator using appropriate operating elements such as joysticks, toggle switches, rotary knobs and sliders and the like, which experience has shown requires a lot of feeling and experience in order to approach the target points quickly and yet gently without major pendulum movements of the load hook .
- the aim is to drive as quickly as possible between the target points in order to achieve a high level of work performance, the aim is to stop gently at the respective target point without the load hook swinging with the load attached to it.
- Such sway damping devices for cranes are known in various designs, for example by controlling the slewing gear, luffing and trolley drives as a function of certain sensor signals, for example inclination and / or gyroscope signals.
- certain sensor signals for example inclination and / or gyroscope signals.
- the scriptures show DE 20 2008 018 260 U1 or DE 10 2009 032 270 A1 known load sway damping systems on cranes, the subject matter of which is expressly referred to in this respect, i.e. with regard to the fundamentals of the sway damping device.
- the cable angle relative to the vertical and its change in the form of the cable angular speed is measured by means of a gyroscope unit in order to automatically intervene in the control when a limit value for the cable angular speed relative to the vertical is exceeded.
- a load sway damping system for maritime cranes is known from the Liebherr company under the name "Cycoptronic", which calculates load movements and influences such as wind in advance and automatically initiates compensation movements on the basis of this pre-calculation in order to prevent the load from swinging.
- the cable angle relative to the vertical and its changes are recorded by means of gyroscopes in order to intervene in the control as a function of the gyroscope signals.
- the present invention is based on the object of creating an improved crane and an improved method for controlling it, avoiding the disadvantages of the prior art and further developing the latter in an advantageous manner.
- improved sway damping is to be achieved in tower cranes, which takes better account of the various influences of the crane structure.
- the pendulum-damping measures not only take into account the actual pendulum movement of the rope itself, but also the dynamics of the steel structure of the crane and its drive trains.
- the crane is no longer assumed to be an immovable rigid body that converts drive movements of the drive devices directly and identically, ie 1: 1 into movements of the suspension point of the hoist rope.
- the sway dampening device regards the crane as a soft structure with elasticity and flexibility in its steel components, such as the tower lattice, and in the drive trains shows and takes into account these dynamics of the structural parts of the crane in the sway-damping influence on the control of the drive devices.
- the pendulum damping device comprises determining means for determining dynamic deformations and movements of structural components under dynamic loads, the control module of the pendulum damping device, which influences the control of the drive device in a sway-damping manner, is designed to influence the control of the drive devices, the determined dynamic deformations of at least the tower and other structural components of the crane to be taken into account.
- the pendulum damping device does not consider the crane or machine structure as a rigid, so to speak infinitely stiff structure, but assumes an elastically deformable and / or flexible and / or relatively soft structure that - in addition to the adjusting axes of movement of the machine such as the boom luffing axis or the Tower axis of rotation - allows movements and / or changes in position due to deformation of the structural components.
- the steel construction is also spared and less stressed. In particular, shock loads are reduced by the control behavior.
- This method can also be used to define the influence of driving behavior.
- the knowledge of the structural dynamics and the control method can, in particular, reduce and dampen the pitching oscillation. As a result, the load behaves more calmly and no longer fluctuates up and down later in the rest position.
- the said determination means can include an estimation device that determines the deformations and movements of the machine structure under dynamic loads that occur as a function of control commands entered at the control station and / or as a function of certain control actions of the drive devices and / or as a function of certain speed and / or result in acceleration profiles of the drive devices, taking into account the circumstances characterizing the crane structure.
- Such an estimation device can, for example, access a data model in which structural parameters of the crane such as tower height, boom length, stiffness, area moments of inertia and the like are stored and / or linked to one another in order to then use a specific load situation, i.e. weight of the load picked up on the load hook and the current radius to estimate the dynamic effects, i.e. deformations in the steel construction and in the drive trains result for a specific actuation of a drive device.
- the pendulum damping device can then intervene in the control of the drive devices and influence the manipulated variables of the drive controllers of the drive devices in order to avoid or reduce pendulum movements of the load hook and the hoist rope.
- the determination device for determining such structural deformations can have a calculation unit which calculates these structural deformations and the resulting structural part movements on the basis of a stored calculation model as a function of the control commands entered at the control station.
- a model can be constructed similarly to a finite element model or a finite element model, but advantageously a model that is significantly simplified compared to a finite element model is used which, for example, empirically by detecting structural deformations under certain control commands and / or load conditions on the real crane or the real machine can be determined.
- Such a calculation model can work, for example, with tables in which certain control commands are assigned certain deformations, with intermediate values of the control commands being able to be converted into corresponding deformations by means of an interpolation device.
- the pendulum damping device can also comprise a suitable sensor system, by means of which such elastic deformations and movements of structural components are detected under dynamic loads.
- a sensor system can include, for example, deformation sensors such as strain gauges on the steel structure of the crane, for example the lattice framework of the tower and / or the boom.
- acceleration and / or speed sensors can be provided in order to detect certain movements of structural components such as, for example, pitching movements of the boom tip and / or rotational dynamic effects to be recorded on the boom.
- inclination sensors or gyroscopes can also be provided, for example on the tower, in particular on its upper section on which the boom is mounted, in order to detect the dynamics of the tower.
- jerky lifting movements lead to pitching movements of the boom, which are accompanied by bending movements of the tower, with post-swinging of the tower in turn leading to pitching vibrations of the boom, which is associated with corresponding load hook movements.
- motion and / or acceleration sensors can also be assigned to the drive trains in order to be able to detect the dynamics of the drive trains.
- rotary encoders can be assigned to the pulleys of the trolley for the hoist rope and / or pulleys for a guy rope of a luffing jib in order to be able to detect the actual rope speed at the relevant point.
- suitable movement and / or speed and / or acceleration sensors are also assigned to the drive devices themselves in order to be able to detect the drive movements of the drive devices accordingly and to be able to relate them to the estimated and / or recorded deformations of the structural components such as the steel structure and in the drive trains .
- the pendulum damping device in a further development of the invention can comprise a filter device or an observer who observes the crane reactions that occur with certain manipulated variables of the drive controller and taking into account predetermined regularities of a dynamic model of the crane, which can be fundamentally different, and through analysis and simulation of the steel construction can be obtained, influences the manipulated variables of the controller based on the observed crane reactions.
- Such a filter or observer device can in particular be designed in the form of a so-called Kalman filter, to which the manipulated variables of the drive controller of the crane and the crane movements, in particular the Load hook movement, in particular its pendulum movement, is supplied and which, from these input variables, uses Kalman equations that model the dynamic system of the crane structure, in particular its steel components and drive trains, to influence the control variables of the drive controller accordingly in order to achieve the desired sway dampening effect.
- Kalman filter to which the manipulated variables of the drive controller of the crane and the crane movements, in particular the Load hook movement, in particular its pendulum movement, is supplied and which, from these input variables, uses Kalman equations that model the dynamic system of the crane structure, in particular its steel components and drive trains, to influence the control variables of the drive controller accordingly in order to achieve the desired sway dampening effect.
- the position of the load hook in particular also its oblique pull relative to the vertical, that is, the deflection of the hoist rope relative to the vertical, is detected by means of a suitable sensor system and fed to the aforementioned Kalman filter.
- the detection device for detecting the position of the load hook can advantageously comprise an imaging sensor system, for example a camera, which looks essentially vertically downward from the suspension point of the hoist rope, for example the trolley.
- An image evaluation device can identify the crane hook in the image provided by the imaging sensor system and determine its eccentricity or its displacement from the image center, which is a measure of the deflection of the crane hook relative to the vertical and thus characterizes the swaying of the load.
- the position sensor system can advantageously be designed to detect the load relative to a fixed world coordinate system and / or the displacement control device can be designed to position the load relative to a fixed world coordinate system.
- an inclined tension control By detecting the load position, an inclined tension control can be implemented which eliminates or at least reduces static deformation caused by the attached load.
- the pendulum damping device can be designed to correct the slewing gear and the trolley so that the rope is always perpendicular to the load as far as possible, even if the crane moves as a result of the increasing Load torque tends more and more forward.
- the crane's pitching motion as a result of its deformation under the load can be taken into account and the trolley under consideration the detected load position can be followed or positioned with predictive estimation of the pitching deformation so that the hoist rope is perpendicular to the load when the crane deformation occurs.
- the slewing gear can be followed up and / or positioned with anticipatory estimation of a transverse deformation, taking into account the detected load position, so that the hoist rope is perpendicular to the load in the event of the resulting crane deformation.
- Such a diagonal tension control can be reactivated at a later point in time by the operator, who can then use the crane as a manipulator. This means that the operator can only reposition the load by pushing and / or pulling. The diagonal tension control tries to follow the deflection caused by the operator. This enables manipulator control to be implemented.
- the mentioned pendulum damping device can monitor the input commands of the crane operator when the crane is operated manually by operating appropriate control elements such as joysticks and the like and override them if necessary, in particular in the sense that accelerations that are too strong, for example, are reduced by the crane operator or counter movements are automatically initiated if a crane movement specified by the crane operator has or would lead to a swinging of the load hook.
- the sway damping device can also be used for automated actuation of the crane, in which the control device of the crane automatically moves the crane's load suspension device between at least two target points along a travel path in the sense of an autopilot.
- the control device of the crane automatically moves the crane's load suspension device between at least two target points along a travel path in the sense of an autopilot.
- a travel path determination module of the control device determines a desired travel path, for example in the sense of a path control
- an automatic travel control module the control device controls the drive controller or drive devices in such a way that the load hook is moved along the specific travel path
- the sway damping device can intervene in the activation of the drive controller by the mentioned movement control module in order to move the crane hook without swaying or to dampen swaying movements.
- the crane can be designed as a tower crane.
- the in Fig. 1 The tower crane shown can, for example, in a manner known per se, have a tower 201 which carries a boom 202 which is supported by a counter-jib 203 is balanced, on which a counterweight 204 is provided.
- Said boom 202 can be rotated together with the counter-boom 203 about an upright axis of rotation 205, which can be coaxial to the tower axis, by a rotating mechanism.
- a trolley 206 can be moved on the boom 202 by a trolley drive, with a hoisting rope 207 running from the trolley 206 to which a load hook 208 is attached.
- the crane 2 can have an electronic control device 3, which can include, for example, a control computer arranged on the crane itself.
- the named control device 3 can control various actuators, hydraulic circuits, electric motors, drive devices and other working units on the respective construction machine. In the case of the crane shown, this can be, for example, its hoisting gear, its slewing gear, its trolley drive, its -ggf. existing - boom luffing drive or the like.
- Said electronic control device 3 can communicate with a terminal 4, which can be arranged at the control station or in the driver's cab and can, for example, have the form of a tablet with a touchscreen and / or joysticks, rotary knobs, slide switches and similar control elements, so that on the one hand different Information from the control computer 3 is displayed on the terminal 4 and, conversely, control commands can be entered into the control device 3 via the terminal 4.
- a terminal 4 can be arranged at the control station or in the driver's cab and can, for example, have the form of a tablet with a touchscreen and / or joysticks, rotary knobs, slide switches and similar control elements, so that on the one hand different Information from the control computer 3 is displayed on the terminal 4 and, conversely, control commands can be entered into the control device 3 via the terminal 4.
- Said control device 3 of crane 1 can in particular be designed to control said drive devices of the hoist, trolley and slewing gear even when a pendulum damping device 340 detects pendulum-relevant movement parameters.
- the crane 1 can have a detection device 60, which detects an oblique pull of the hoist rope 207 and / or deflections of the load hook 208 with respect to a vertical 61, which is caused by the suspension point of the load hook 208, ie, the trolley 206 is walking, detected.
- the cable pull angle ⁇ can be detected against the line of action of gravity, ie the vertical 62, cf. Fig. 1 .
- the determination means 62 of the detection device 60 can work optically, for example, in order to determine the said deflection.
- a camera 63 or another imaging sensor system can be attached to the trolley 206, which looks vertically downward from the trolley 206 so that when the load hook 208 is undeflected, its image reproduction is in the center of the image provided by the camera 63. If, however, the load hook 208 is deflected relative to the vertical 61, for example by jerking the trolley 206 or suddenly braking the slewing gear, the image reproduction of the load hook 208 moves out of the center of the camera image, which can be determined by an image evaluation device 64.
- control device 3 can control the slewing gear drive and the trolley drive with the aid of the pendulum damping device 340 in order to bring the trolley 206 more or less precisely over the load hook 208 again and to compensate for pendulum movements, or to reduce them or not to allow them to occur in the first place.
- the sway damping device 430 comprises determination means 342 for determining dynamic deformations of structural components, the control module 341 of the sway damping device 340, which influences the control of the drive device in a sway-damping manner, is designed to apply the determined dynamic deformations of the structural components of the crane when influencing the control of the drive devices consider.
- the determination means 342 can include an estimation device 343 that determines the deformations and movements of the machine structure under dynamic loads that are dependent on control commands entered at the control station and / or dependent on certain control actions of the drive devices and / or are estimated as a function of certain speed and / or acceleration profiles of the drive devices, taking into account conditions characterizing the crane structure.
- a calculation unit 348 can calculate the structural deformations and the resulting structural part movements on the basis of a stored calculation model as a function of the control commands entered at the control station.
- the sway damping device 340 can also include a suitable sensor system 344, by means of which such elastic deformations and movements of structural components are detected under dynamic loads.
- a sensor system 344 can include, for example, deformation sensors such as strain gauges on the steel structure of the crane, for example the lattice frameworks of the tower 201 or of the boom 202.
- acceleration and / or speed sensors can be provided in order to detect certain movements of structural components such as, for example, pitching movements of the boom tip or rotational dynamic effects on boom 202.
- inclination sensors or gyroscopes can also be provided, for example, on the tower 201, in particular on its upper section on which the boom is mounted, in order to detect the dynamics of the tower 201.
- motion and / or acceleration sensors can also be assigned to the drive trains in order to be able to detect the dynamics of the drive trains.
- rotary encoders can be assigned to the pulleys of the trolley 206 for the hoist rope and / or pulleys for a guy rope of a luffing jib in order to be able to detect the actual rope speed at the relevant point.
- pendulum damping device 340 has a filter device or an observer 345, which observes the crane reactions that occur with certain manipulated variables of the drive controller 347 and taking into account predetermined regularities of a dynamic model of the crane, which can be fundamentally different and through analysis and simulation of the Steel construction can be obtained, influences the manipulated variables of the controller on the basis of the observed crane reactions.
- Such a filter or observer device 345b can be designed in particular in the form of a so-called Kalman filter 346, to which the manipulated variables of the drive controller 347 of the crane and the crane movements, in particular the cable angle ⁇ relative to the vertical 62 and / or its change over time or the Angular velocity of the mentioned diagonal pull, and which from these input variables using Kaiman equations, which model the dynamic system of the crane structure, in particular its steel components and drive trains, influences the manipulated variables of the drive controller 347 accordingly in order to achieve the desired sway-damping effect.
- a so-called Kalman filter 346 to which the manipulated variables of the drive controller 347 of the crane and the crane movements, in particular the cable angle ⁇ relative to the vertical 62 and / or its change over time or the Angular velocity of the mentioned diagonal pull, and which from these input variables using Kaiman equations, which model the dynamic system of the crane structure, in particular its steel components and drive trains, influences the manipulated variables of the drive controller 347 accordingly in order to achieve the
- Fig. 3 are shown by way of example, the partial view a.) initially showing schematically a pitching deformation of the tower extension crane under load as a result of bending of the tower 201 with the associated lowering of the boom 202 and an associated diagonal pull of the hoist rope.
- the partial views show b.) And c.) Of Fig. 3 for example, in a schematic manner, a transverse deformation of the tower crane in a perspective illustration and in a plan view from above with the deformations of the tower 201 and the boom 202 occurring in the process.
- the sway damping device 430 can include a diagonal tension control.
- the position of the load hook 208, in particular also its oblique pull relative to the vertical, that is to say the deflection is determined by means of the determination means 62 of the hoist rope 207 detected relative to the vertical and fed to the aforementioned Kalman filter 346.
- the position sensor system can advantageously be designed to detect the load or the load hook 208 relative to a fixed world coordinate system and / or the sway damping device 430 can be designed to position the load relative to a fixed world coordinate system.
- an inclined tension control By detecting the load position, an inclined tension control can be implemented which eliminates or at least reduces static deformation caused by the attached load.
- the pendulum damping device 430 can be designed to correct the slewing gear and the trolley so that the rope is always perpendicular to the load, even if the crane moves through the increasing load torque tends more and more forward.
- the crane's pitching motion as a result of its deformation under the load can be taken into account and the trolley, taking into account the detected load position, can be tracked or positioned with a predictive estimation of the pitching deformation so that the hoist rope is vertical when the crane is deformed Perpendicular to the load. The greatest static deformation occurs at the point where the load leaves the ground. Then diagonal tension control is no longer necessary.
- the slewing gear can be followed up and / or positioned with anticipatory assessment of a transverse deformation, taking into account the detected load position, so that the hoist rope is perpendicular above the load in the event of the resulting crane deformation.
- Such a diagonal tension control can be reactivated at a later point in time by the operator, who can then use the crane as a manipulator. This means that the operator can only reposition the load by pushing and / or pulling. The diagonal tension control tries to follow the deflection caused by the operator. A manipulator control can thereby be implemented.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Control And Safety Of Cranes (AREA)
Description
- Die vorliegende Erfindung betrifft einen Kran in Form eines Turmdrehkrans, mit einem an einem Hubseil angebrachten Lastaufnahmemittel, Antriebseinrichtungen zum Bewegen mehrerer Kranelemente und Verfahren des Lastaufnahmemittels, einer Steuervorrichtung zum Steuern der Antriebseinrichtungen derart, dass das Lastaufnahmemittel entlang eines Verfahrwegs verfährt, sowie einer Pendeldämpfungseinrichtung zum Dämpfen von Pendelbewegungen des Lastaufnahmemittels, wobei die genannte Pendeldämpfungseinrichtung einen Steuerbaustein zum Beeinflussen der Ansteuerung der Antriebseinrichtungen in Abhängigkeit von pendelrelevanten Kriterien aufweist. Die Erfindung betrifft ferner auch ein Verfahren zum Steuern eines Krans, bei dem die Ansteuerung der Antriebseinrichtungen von einer Pendeldämpfungseinrichtung in Abhängigkeit von pendelrelevanten Parametern beeinflusst wird.
- Aus der Schrift
DE 100 64 182 A1 und der SchriftEP 18 80 971 A2 sind jeweils Hafenmobilkrane bekannt, bei denen eine Pendeldämpfungseinrichtung in die Ansteuerung der Antriebe eingreift, um ein Pendeln des Lasthakens zu vermeiden. Dabei wird vorgeschlagen, die Biegung und die Wippwinkelgeschwindigkeit des wippbaren Auslegers zu berücksichtigen. Die SchriftDE 10 2011 001 112 A1 , die die Merkmale der Oberbegriffe der Ansprüche 1 und 14 offenbart, beschreibt einen Turmdrehkran mit einer Pendeldämpfungseinrichtung, die zur Reduzierung von Schwingungen in der Kranstruktur die Eigenfrequenz sowie die Dämpfungsrate des Kransystems berechnet und diese bei der Ansteuerung der Antriebe berücksichtigt. Weitere Krane mit Pendeldämpfung sind aus der SchriftDE 43 15 005 A1 bekannt. - Um den Lasthaken eines Krans entlang eines Verfahrwegs bzw. zwischen zwei Zielpunkten verfahren zu können, müssen üblicherweise diverse Antriebseinrichtungen betätigt und gesteuert werden. Bei einem Turmdrehkran, bei dem das Hubseil von einer Laufkatze abläuft, die am Ausleger des Krans verfahrbar ist, muss üblicherweise das Drehwerk, mittels dessen der Turm mit dem darauf vorgesehenen Ausleger bzw. der Ausleger relativ zum Turm um eine aufrechte Drehachse verdreht werden, sowie der Katzantrieb, mittels dessen die Laufkatze entlang des Auslegers verfahren werden kann, und das Hubwerk, mittels dessen das Hubseil verstellt und damit der Lasthaken angehoben und abgesenkt werden kann, jeweils betätigt und gesteuert werden. Die genannten Antriebseinrichtungen werden hierbei üblicherweise vom Kranführer über entsprechende Bedienelemente wie beispielsweise in Form von Joysticks, Kippschaltern, Drehknöpfen und Schiebern und dergleichen betätigt und gesteuert, was erfahrungsgemäß viel Gefühl und Erfahrung benötigt, um die Zielpunkte rasch und dennoch sanft ohne größere Pendelbewegungen des Lasthakens anzufahren. Während zwischen den Zielpunkten möglichst rasch gefahren werden soll, um eine hohe Arbeitsleistung zu erzielen, soll am jeweiligen Zielpunkt sanft angehalten werden, ohne dass der Lasthaken mit der daran angeschlagenen Last nachpendelt.
- Ein solches Steuern der Antriebseinrichtungen eines Krans ist angesichts der erforderlichen Konzentration für den Kranführer ermüdend, zumal oft immer wiederkehrende Verfahrwege und monotone Aufgaben zu erledigen sind, beispielsweise wenn beim Betonieren ein am Kranhaken aufgenommener Betonkübel vielfach zwischen einem Betonmischer, an dem der Betonkübel befüllt wird, und einem Betonbereich, in dem der Betonkübel entleert wird, hin und her verfahren werden muss. Zum anderen kommt es bei nachlassender Konzentration oder auch bei einer nicht ausreichenden Erfahrung mit dem jeweiligen Krantyp zu größeren Pendelbewegungen der aufgenommenen Last und damit zu einem entsprechenden Gefährdungspotenzial, wenn der Kranführer die Bedienhebel bzw. -elemente des Krans nicht feinfühlig genug bedient.
- Um der Problematik unerwünschter Pendelbewegungen zu begegnen, wurde bereits vorgeschlagen, die Steuervorrichtung des Krans mit Pendeldämpfeinrichtungen zu versehen, die mittels Steuerungsbausteinen in die Steuerung eingreifen und das Ansteuern der Antriebseinrichtungen beeinflussen, beispielsweise zu große Beschleunigungen einer Antriebseinrichtung durch zu schnelles oder zu starkes Betätigen des Bedienhebels verhindern oder abschwächen oder bestimmte Verfahrgeschwindigkeiten bei größeren Lasten beschränken oder in ähnlicher Weise in die Verfahrbewegungen eingreifen, um ein zu starkes Pendeln des Lasthakens zu verhindern.
- Solche Pendeldämpfungseinrichtungen für Krane sind in verschiedenen Ausführungen bekannt, beispielsweise durch Ansteuerung der Drehwerk-, Wipp- und Laufkatzenantriebe in Abhängigkeit von bestimmten Sensorsignalen, beispielsweise Neigungs- und/oder Gyroskopsignalen. Beispielsweise zeigen die Schriften
DE 20 2008 018 260 U1 oderDE 10 2009 032 270 A1 bekannte Lastpendeldämpfungen an Kranen, auf deren Gegenstand insoweit, das heißt hinsichtlich der Grundlagen der Pendeldämpfungseinrichtung, ausdrücklich Bezug genommen wird. Bei derDE 20 2008 018 206 U1 wird beispielsweise mittels einer Gyroskopeinheit der Seilwinkel relativ zur Vertikalen und dessen Änderung in Form der Seilwinkelgeschwindigkeit gemessen, um bei Überschreiten eines Grenzwerts für die Seilwinkelgeschwindigkeit gegenüber der Vertikalen automatisch in die Steuerung einzugreifen. - Ferner ist von der Firma Liebherr unter dem Namen "Cycoptronic" ein Lastpendeldämpfungssystem für maritime Krane bekannt, welches Lastbewegungen und Einflüsse wie Wind im Voraus berechnet und auf Basis dieser Vorausberechnung automatisch Kompensationsbewegungen einleitet, um ein Schwingen der Last zu vermeiden. Konkret werden auch bei diesem System mittels Gyroskopen der Seilwinkel gegenüber der Vertikalen und dessen Änderungen erfasst, um in Abhängigkeit der Gyroskopsignale in die Steuerung einzugreifen.
- Bei langen, schlanken Kranstrukturen mit ambitionierter Traglastauslegung, wie dies inbesondere bei Turmdrehkranen der Fall ist, ist es mit herkömmlichen Pendeldämpfungseinrichtungen jedoch bisweilen schwierig, in der richtigen Art und Weise in die Ansteuerung der Antriebe einzugreifen, um die gewünschte, pendeldämpfende Wirkung zu erzielen. Hierbei kommt es im Bereich der Strukturteile, insbesondere des Turms zu dynamischen Effekten und elastischem Verformen der Strukturteile, wenn ein Antrieb beschleunigt oder abgebremst wird, sodass sich Eingriffe in die Antriebseinrichtungen - beispielsweise Abbremsen oder Beschleunigen des Katzantriebs oder des Drehwerks - nicht direkt in der gewünschten Weise auf die Pendelbewegung des Lasthakens auswirken. Zum einen kann es durch dynamische Wirkungen in den Strukturteilen zu Zeitverzögerungen bei der Übertragung auf das Hubseil und den Lasthaken kommen, wenn Antriebe pendeldämpfend betätigt werden. Zum anderen können die genannten dynamischen Effekte auch übermäßige oder sogar kontraproduktive Auswirkungen auf ein Lastpendel haben. Wenn beispielsweise eine Last durch zunächst zu schnelles Betätigen des Laufkatzantriebs nach hinten zum Turm hin pendelt und die Pendeldämpfungseinrichtung gegensteuert, indem der Katzantrieb verzögert wird, kann es zu einer Nickbewegungen des Auslegers kommen, da sich der Turm entsprechend verformt, wodurch die gewünschte pendeldämpfende Wirkung beeinträchtigt werden kann. Hiervon ausgehend liegt der vorliegenden Erfindung die Aufgabe zugrunde, einen verbesserten Kran sowie ein verbessertes Verfahren zu dessen Steuerung zu schaffen, die Nachteile des Standes der Technik vermeiden und letzteren in vorteilhafter Weise weiterbilden. Insbesondere soll eine verbesserte Pendeldämpfung bei Turmdrehkranen erzielt werden, die die mannigfachen Einflüsse der Kranstruktur besser berücksichtigt.
- Erfindungsgemäß wird die genannte Aufgabe durch einen Kran gemäß Anspruch 1 sowie ein Verfahren gemäß Anspruch 14 gelöst. Bevorzugte Ausgestaltungen der Erfindungen sind Gegenstand der abhängigen Ansprüche.
- Es wird also vorgeschlagen, bei den pendeldämpfenden Maßnahmen nicht nur die eigentliche Pendelbewegung des Seils an sich zu berücksichtigen, sondern auch die Dynamik des Stahlbaus des Krans und dessen Antriebsstränge. Der Kran wird nicht mehr als unbeweglicher Starrkörper angenommen, der Antriebsbewegungen der Antriebseinrichtungen unmittelbar und identisch, d.h. 1:1 in Bewegungen des Aufhängungspunktes des Hubseils umsetzt. Stattdessen betrachtet die Pendeldämpfungseinrichtung den Kran als weiche Struktur, die in ihren Stahlbauteilen wie beispielsweise dem Turmgitter, und in Antriebssträngen Elastizitäten und Nachgiebigkeiten bei Beschleunigungen zeigt, und berücksichtigt diese Dynamik der Strukturteile des Krans bei der pendeldämpfenden Beeinflussung der Ansteuerung der Antriebseinrichtungen.
- Erfindungsgemäß umfasst die Pendeldämpfungseinrichtung Bestimmungsmittel zum Bestimmen von dynamischen Verformungen und Bewegungen von Strukturbauteilen unter dynamischen Lasten, wobei der Steuerbaustein der Pendeldämpfungseinrichtung, der das Ansteuern der Antriebseinrichtung pendeldämpfend beeinflusst, dazu ausgebildet ist, beim Beeinflussen der Ansteuerung der Antriebseinrichtungen die bestimmten dynamischen Verformungen zumindest des Turms und weiterer Strukturbauteile des Krans zu berücksichtigen.
- Die Pendeldämpfungseinrichtung betrachtet also die Kran- bzw. Maschinenstruktur nicht als starre, sozusagen unendlich steife Struktur, sondern geht von elastisch verformbaren und/oder nachgiebigen und/oder relativ weichen Struktur aus, die - zusätzlich zu den Stellbewegungsachsen der Maschine wie beispielsweise der Auslegerwippachse oder der Turmdrehachse - Bewegungen und/oder Positionsänderungen durch Verformungen der Strukturbauteile zulässt.
- Die Berücksichtigung der Beweglichkeit der Maschinenstruktur infolge von Strukturverformungen unter Last oder dynamischen Belastungen ist gerade bei langgestreckten, schlanken und von den statischen und dynamischen Randbedingungen her bewusst - unter Berücksichtigung der notwendigen Sicherheiten - ausgereizten Strukturen wie bei Turmdrehkranen von Bedeutung, da hier spürbare Bewegungsanteile beispielsweise für den Ausleger und damit die Lasthakenposition durch die Verformungen der Strukturbauteile hinzukommen. Um die Pendelursachen besser bekämpfen zu können, berücksichtigt die Pendeldämpfung solche Verformungen und Bewegungen der Maschinenstruktur unter dynamischen Belastungen.
- Hierdurch können beträchtliche Vorteile erreicht werden:
Zunächst wird die Schwingungsdynamik der Strukturbauteile durch das Regelverhalten der Steuereinrichtung reduziert. Dabei wird durch das Fahrverhalten die Schwingung aktiv gedämpft bzw. durch das Regelverhalten erst gar nicht angeregt. - Ebenso wird der Stahlbau geschont und weniger beansprucht. Insbesondere Stoßbelastungen werden durch das Regelverhalten reduziert.
- Ferner kann durch dieses Verfahren der Einfluss des Fahrverhaltens definiert werden.
- Durch die Kenntnisse der Strukturdynamik und das Reglerverfahren kann insbesondere die Nickschwingung reduziert und gedämpft werden. Dadurch verhält sich die Last ruhiger und schwankt später in Ruhelage nicht mehr auf und ab.
- Die vorgenannten elastischen Verformungen und Bewegungen der Strukturbauteile und Antriebsstränge und die sich hierdurch einstellenden Eigenbewegungen können grundsätzlich in verschiedener Art und Weise bestimmt werden. In Weiterbildung der Erfindung können die genannten Bestimmungsmittel eine Schätzeinrichtung umfassen, die die Verformungen und Bewegungen der Maschinenstruktur unter dynamischen Belastungen, die sich in Abhängigkeit von am Steuerstand eingegegebenen Steuerbefehlen und/oder in Abhängigkeit von bestimmten Ansteueraktionen der Antriebseinrichtungen und/oder in Abhängigkeit bestimmter Geschwindigkeits- und/oder Beschleunigungsprofile der Antriebseinrichtungen ergeben, unter Berücksichtigung von die Kranstruktur charakterisierenden Gegebenheiten abschätzt.
- Eine solche Schätzeinrichtung kann beispielsweise auf ein Datenmodell zugreifen, in dem Strukturgrößen des Krans wie Turmhöhe, Auslegerlänge, Steifigkeiten, Flächenträgheitsmomente und ähnliches abgelegt und/oder miteinander verknüpft sind, um dann anhand einer konkreten Lastsituation, also Gewicht der am Lasthaken aufgenommenen Last und momentane Ausladung, abzuschätzen, welche dynamischen Effekte, das heißt Verformungen im Stahlbau und in den Antriebssträngen für eine bestimmte Betätigung einer Antriebseinrichtung ergeben. In Abhängigkeit einer solchermaßen geschätzten dynamischen Wirkung kann die Pendeldämpfungseinrichtung dann in die Ansteuerung der Antriebseinrichtungen eingreifen und die Stellgrößen der Antriebsregler der Antriebseinrichtungen beeinflussen, um Pendelbewegungen des Lasthakens und des Hubseils zu vermeiden bzw. zu reduzieren.
- Insbesondere kann die Bestimmungseinrichtung zur Bestimmung solcher Strukturverformungen eine Berechnungseinheit aufweisen, die diese Strukturverformungen und sich daraus ergebende Strukturteilbewegungen anhand eines gespeicherten Berechnungsmodells in Abhängigkeit der am Steuerstand eingegebenen Steuerbefehle berechnet. Ein solches Modell kann ähnlich einem Finite-Elemente-Modell aufgebaut sein oder ein Finite-Elemente-Modell sein, wobei vorteilhafterweise jedoch ein gegenüber einem Finite-Elemente-Modell deutlich vereinfachtes Modell verwendet wird, das beispielsweise empirisch durch Erfassung von Strukturverformungen unter bestimmten Steuerbefehlen und/oder Belastungszuständen am echten Kran bzw. der echten Maschine bestimmt werden kann. Ein solches Berechnungsmodell kann beispielsweise mit Tabellen arbeiten, in denen bestimmten Steuerbefehlen bestimmte Verformungen zugeordnet sind, wobei Zwischenwerte der Steuerbefehle mittels einer Interpolationsvorrichtung in entsprechende Verformungen umgerechnet werden können.
- Alternativ oder zusätzlich zu einem Abschätzen oder Berechnen der elastischen Verformungen und dynamischen Bewegungen der Strukturbauteile kann die Pendeldämpfungseinrichtung auch eine geeignete Sensorik umfassen, mittels derer solche elastischen Verformungen und Bewegungen von Strukturbauteilen unter dynamischen Belastungen erfasst werden. Eine solche Sensorik kann beispielsweise Verformungssensoren wie Dehnungsmessstreifen am Stahlbau des Krans, beispielsweise den Gitterfachwerken des Turms und/oder des Auslegers umfassen. Alternativ oder zusätzlich können Beschleunigungs- und/oder Geschwindigkeitssensoren vorgesehen sein, um bestimmte Bewegungen von Strukturbauteilen wie beispielsweise Nickbewegungen der Auslegerspitze und/oder rotatorische Dynamikeffekte am Ausleger zu erfassen. Alternativ oder zusätzlich können auch Neigungssensoren oder Gyroskope beispielsweise am Turm, insbesondere an dessen oberen Abschnitt, an dem der Ausleger gelagert ist, vorgesehen sein, um die Dynamik des Turms zu erfassen. Beispielsweise führen ruckartige Hubbewegungen zu Nickbewegungen des Auslegers, die mit Biegebewegungen des Turm einhergehen, wobei eine Nachschwingen des Turm wiederum zu Nickschwingungen des Auslegers führt, was mit entsprechenden Lasthakenbewegungen einhergeht. Alternativ oder zusätzlich können auch den Antriebssträngen Bewegungs- und/oder Beschleunigungssensoren zugeordnet sein, um die Dynamik der Antriebsstränge erfassen zu können. Beispielsweise können den Umlenkrollen der Laufkatze für das Hubseil und/oder Umlenkrollen für ein Abspannseil eines Wippauslegers Drehgeber zugeordnet sein, um die tatsächliche Seilgeschwindigkeit am relevanten Punkt erfassen zu können.
- Vorteilhafterweise sind auch den Antriebseinrichtungen selbst geeignete Bewegungs- und/oder Geschwindigkeits- und/oder Beschleunigungssensoren zugeordnet, um die Antriebsbewegungen der Antriebseinrichtungen entsprechend erfassen und in Zusammenhang mit den abgeschätzten und/oder erfassten Verformungen der Strukturbauteile wie des Stahlbaus und in den Antriebssträngen setzen zu können.
- Insbesondere kann die Pendeldämpfungseinrichtung in Weiterbildung der Erfindung eine Filtereinrichtung bzw. einen Beobachter umfassen, der die Kranreaktionen beobachtet, die sich bei bestimmten Stellgrößen der Antriebsregler einstellen und unter Berücksichtigung vorbestimmter Gesetzmäßigkeiten eines Dynamikmodells des Krans, das grundsätzlich verschieden beschaffen sein kann und durch Analyse und Simulation des Stahlbaus gewonnen werden kann, anhand der beobachteten Kran-reaktionen die Stellgrößen des Reglers beeinflusst.
- Eine solche Filter- bzw. Beobachtereinrichtung kann insbesondere in Form eines sogenannten Kalmanfilters ausgebildet sein, dem als Eingangsgröße die Stellgrößen der Antriebsregler des Krans und die Kranbewegungen, insbesondere die Lasthakenbewegung, insbesondere deren Pendelbewegung, zugeführt wird und der aus diesen Eingangsgrößen anhand von Kalman-Gleichungen, die das Dynamiksystem der Kranstruktur, insbesondere dessen Stahlbauteile und Antriebsstränge, modellieren, die Stellgrößen der Antriebsregler entsprechend beeinflusst, um die gewünschte pendeldämpfende Wirkung zu erzielen.
- Insbesondere wird mittels einer geeigneten Sensorik die Position des Lasthakens, insbesondere auch dessen Schrägzug gegenüber der Vertikalen, das heißt die Auslenkung des Hubseils gegenüber der Vertikalen erfasst und dem genannten Kalmanfilter zugeführt. Die Erfassungseinrichtung für die Positionserfassung des Lasthakens kann vorteilhafterweise eine bildgebende Sensorik, beispielsweise eine Kamera umfassen, die vom Aufhängungspunkt des Hubseils, beispielsweise der Laufkatze, im Wesentlichen senkrecht nach unten blickt. Eine Bildauswerteeinrichtung kann in dem von der bildgebenden Sensorik bereitgestellten Bild den Kranhaken identifizieren und dessen Exzentrizität bzw. dessen Verschiebung aus dem Bildzentrum heraus bestimmen, welche ein Maß für die Auslenkung des Kranhakens gegenüber der Vertikalen ist und damit das Lastpendeln charakterisiert.
- Vorteilhafterweise kann die Positionssensorik dazu ausgebildet sein, die Last relativ zu einem fixem Weltkoordinatensystem zu erfassen und/oder die Verfahr-Steuereinrichtung dazu ausgebildet sein, die Last relativ zu einem fixem Weltkoordinatensystem zu postionieren.
- Durch die Lastpositionserfassung kann dabei eine Schrägzugreglung realisiert werden, welche eine statische Verformung durch die angehängte Last eliminiert bzw. zumindest reduziert. Um eine Schwingungsdynamik zu reduzieren bzw. gar nicht erst entstehen zu lassen, kann die Pendeldämpfungseinrichtung dazu ausgebildet sein, das Drehwerk und das Katzfahrwerk so zu korrigieren, dass das Seil möglichst immer im senkrechten Lot zur Last steht, auch wenn sich der Kran durch das zunehmende Lastmoment immer mehr nach vorne neigt. Beispielsweise kann beim Anheben einer Last vom Boden die Nickbewegung des Krans infolge seiner Verformung unter der Last berücksichtigt und das Katzfahrwerk unter Berücksichtigung der erfassten Lastposition so nachgefahren bzw. unter vorausschauender Abschätzung der Nickverformung so positioniert werden, dass das Hubseil bei der sich ergebenden Kranverformung im senkrechten Lot über der Last steht. Die größte statische Verformung tritt dabei an dem Punkt auf, an dem die Last den Boden verlässt. Dann ist keine Schrägzugregelung mehr notwendig. In entsprechender Weise kann alternativ oder zusätzlich auch das Drehwerk unter Berücksichtuigung der erfassten Lastposition so nachgefahren und/oder unter vorausschauender Abschätzung einer Querverformung so positioniert werden, dass das Hubseil bei der sich ergebenden Kranverformung im senkrechten Lot über der Last steht.
- Eine solche Schrägzugregelung kann zu einem späteren Zeitpunkt vom Bediener wieder aktiviert werden, der dadurch den Kran als Manipulator verwenden kann. Hierddurch kann dieser die Last nur durch Drücken und/oder Ziehen nachpositionieren. Die Schrägzugregelung versucht dabei der Auslenkung, welche vom Bediener hervorgerufen wird, zu folgen. Dadurch kann eine Manipulatorsteuerung realisiert werden.
- Die genannte Pendeldämpfeinrichtung kann bei manueller Betätigung des Krans durch Betätigung entsprechender Bedienelemente wie Joysticks und dergleichen die Eingabebefehle des Kranführers überwachen und bei Bedarf übersteuern, insbesondere in dem Sinne, dass vom Kranführer beispielsweise zu stark vorgegebene Beschleunigungen reduziert werden oder auch Gegenbewegungen automatisch eingeleitet werden, wenn eine vom Kranführer vorgegebene Kranbewegung zu einem Pendeln des Lasthakens geführt hat oder führen würde.
- Alternativ oder zusätzlich kann die Pendeldämpfungseinrichtung auch bei einer automatisierten Betätigung des Krans eingesetzt werden, bei der die Steuervorrichtung des Krans im Sinne eines Autopiloten das Lastaufnahmemittel des Krans automatisch zwischen zumindest zwei Zielpunkten entlang eines Verfahrwegs verfährt. Bei einem solchen Automatikbetrieb, bei dem ein Verfahrweg-Bestimmungsmodul der Steuervorrichtung einen gewünschten Verfahrweg beispielsweise im Sinne einer Bahnsteuerung bestimmt und ein automatisches Verfahrsteuermodul der Steuervorrichtung die Antriebsregler bzw. Antriebseinrichtungen so ansteuert, dass der Lasthaken entlang des bestimmten Verfahrwegs verfahren wird, kann die Pendeldämpfungseinrichtung in die Ansteuerung der Antriebsregler durch das genannte Verfahrsteuermodul eingreifen, um den Kranhaken pendelfrei zu verfahren bzw. Pendelbewegungen zu dämpfen.
- Die Erfindung wird nachfolgend anhand eines bevorzugten Ausführungsbeispiels und zugehöriger Zeichnungen näher erläutert. In den Zeichnungen zeigen:
- Fig. 1:
- eine schematische Darstellung eines Turmdrehkrans, bei dem die Last-hakenposition und ein Seilwinkel gegenüber der Vertikalen durch eine bildgebende Sensorik erfasst wird, und bei dem eine Pendeldämpfungseinrichtung die Ansteuerung der Antriebseinrichtungen beeinflusst, um Pendelbewegungen des Lasthakens und dessen Hubseils zu verhindern,
- Fig. 2:
- eine schematische Darstellung eines Kalmanfilters der Pendeldämp-fungseinrichtung und die von diesem vorgenommene Beeinflussung der Stellgrößen der Antriebsregler,
- Fig. 3:
- eine schematische Darstellung von Verformungen und Schwingungsformen eines Turmdrehkrans unter Last und deren Dämpfung bzw. Ver-meidung durch eine Schrägzugregelung, wobei die Teilansicht a.) eine Nickverformung des Turmdehkrans unter Last und einen damit verknüpf-ten Schrägzug des Hubseils zeigt, die Teilansichten b.) und c.) eine Querverformung des Turmdrehkrans in perspektivischer Darstellung so-wie in Draufsicht von oben zeigen, und die Teilansichten d.) und e.) ei-nen mit solchen Querverformungen verknüpften Schrägzug des Hubseils zeigen.
- Wie
Fig. 1 zeigt, kann der Kran als Turmdrehkran ausgebildet sein. Der inFig. 1 gezeigte Turmdrehkran kann beispielsweise in an sich bekannter Weise einen Turm 201 aufweisen, der einen Ausleger 202 trägt, der von einem Gegenausleger 203 ausbalanciert wird, an dem ein Gegengewicht 204 vorgesehen ist. Der genannte Ausleger 202 kann zusammen mit dem Gegenausleger 203 um eine aufrechte Drehachse 205, die koaxial zur Turmachse sein kann, durch ein Drehwerk verdreht werden. An dem Ausleger 202 kann eine Laufkatze 206 durch einen Katzantrieb verfahren werden, wobei von der Laufkatze 206 ein Hubseil 207 abläuft, an dem ein Lasthaken 208 befestigt ist. - Wie
Fig. 1 ebenfalls zeigt, kann der Kran 2 dabei eine elektronische Steuervorrichtung 3 aufweisen, die beispielsweise einen am Kran selbst angeordneten Steuerungsrechner umfassen kann. Die genannte Steuervorrichtung 3 kann hierbei verschiedene Stellglieder, Hydraulikkreise, Elektromotoren, Antriebsvorrichtungen und andere Arbeitsaggregate an der jeweiligen Baumaschine ansteuern. Dies können beispielsweise bei dem gezeigten Kran dessen Hubwerk, dessen Drehwerk, dessen Katzantrieb, dessen -ggf. vorhandener - Ausleger-Wippantrieb oder dergleichen sein. - Die genannte elektronische Steuervorrichtung 3 kann hierbei mit einem Endgerät 4 kommunizieren, das am Steuerstand bzw. in der Führerkabine angeordnet sein kann und beispielsweise die Form eines Tablets mit Touchscreen und/oder Joysticks, Drehknöpfe, Schiebeschalter und ähnliche Bedienelemente aufweisen kann, so dass einerseits verschiedene Informationen vom Steuerungsrechner 3 an dem Endgerät 4 angezeigt und umgekehrt Steuerbefehle über das Endgerät 4 in die Steuervorrichtung 3 eingegeben werden können.
- Die genannte Steuervorrichtung 3 des Krans 1 kann insbesondere dazu ausgebildet sein, die genannten Antriebsvorrichtungen des Hubwerks, der Laufkatze und des Drehwerks auch dann anzusteuern, wenn eine Pendeldämpfungseinrichtung 340 pendelrelevante Bewegungsparameter erfaßt.
- Hierzu kann der Kran 1 eine Erfassungseinrichtung 60 aufweisen, die einen Schrägzug des Hubseils 207 und/oder Auslenkungen des Lasthakens 208 gegenüber einer Vertikalen 61, die durch den Aufhängungspunkt des Lasthakens 208, d.h. die Laufkatze 206 geht, erfasst. Insbesondere kann der Seilzugwinkel ϕ gegen die Schwerkraftwirklinie, d.h. die Vertikale 62 erfaßt werden, vgl.
Fig. 1 . - Die hierzu vorgesehenen Bestimmungsmittel 62 der Erfassungseinrichtung 60 können beispielsweise optisch arbeiten, um die genannte Auslenkung zu bestimmen. Insbesondere kann an der Laufkatze 206 eine Kamera 63 oder eine andere bildgebende Sensorik angebracht sein, die von der Laufkatze 206 senkrecht nach unten blickt, so dass bei unausgelenktem Lasthaken 208 dessen Bildwiedergabe im Zentrum des von der Kamera 63 bereitgestellten Bilds liegt. Wird indes der Lasthaken 208 gegenüber der Vertikalen 61 ausgelenkt, beispielsweise durch ruckhaftes Anfahren der Laufkatze 206 oder abruptes Bremsen des Drehwerks, wandert die Bildwiedergabe des Lasthakens 208 aus dem Zentrum des Kamerabilds heraus, was durch eine Bildauswerteeinrichtung 64 bestimmt werden kann.
- In Abhängigkeit der erfassten Auslenkung gegenüber der Vertikalen 61, insbesondere unter Berücksichtigung der Richtung und Größe der Auslenkung, kann die Steuervorrichtung 3 mithilfe der Pendeldämpfungseinrichtung 340 den Drehwerksantrieb und den Laufkatzenantrieb ansteuern, um die Laufkatze 206 wieder mehr oder minder exakt über den Lasthaken 208 zu bringen und Pendelbewegungen zu kompensieren, bz. Zu reduzieren oder gar nicht erst eintreten zu lassen.
- Hierzu umfasst die Pendeldämpfungseinrichtung 430 Bestimmungsmittel 342 zum Bestimmen von dynamischen Verformungen von Strukturbauteilen, wobei der Steuerbaustein 341 der Pendeldämpfungseinrichtung 340, der das Ansteuern der Antriebseinrichtung pendeldämpfend beeinflusst, dazu ausgebildet ist, beim Beeinflussen der Ansteuerung der Antriebseinrichtungen die bestimmten dynamischen Verformungen der Strukturbauteile des Krans zu berücksichtigen.
- Dabei können die Bestimmungsmittel 342 eine Schätzeinrichtung 343 umfassen, die die Verformungen und Bewegungen der Maschinenstruktur unter dynamischen Belastungen, die sich in Abhängigkeit von am Steuerstand eingegegebenen Steuerbefehlen und/oder in Abhängigkeit von bestimmten Ansteueraktionen der Antriebseinrichtungen und/oder in Abhängigkeit bestimmter Geschwindigkeits-und/oder Beschleunigungsprofile der Antriebseinrichtungen ergeben, unter Berücksichtigung von die Kranstruktur charakterisierenden Gegebenheiten abschätzt. Insbesondere kann eine Berechnungseinheit 348 die Strukturverformungen und sich daraus ergebende Strukturteilbewegungen anhand eines gespeicherten Berechnungsmodells in Abhängigkeit der am Steuerstand eingegebenen Steuerbefehle berechnen.
- Alternativ oder zusätzlich kann die Pendeldämpfungseinrichtung 340 auch eine geeignete Sensorik 344 umfassen, mittels derer solche elastischen Verformungen und Bewegungen von Strukturbauteilen unter dynamischen Belastungen erfasst werden. Eine solche Sensorik 344 kann beispielsweise Verformungssensoren wie Dehnungsmessstreifen am Stahlbau des Krans, beispielsweise den Gitterfachwerken des Turms 201 oder des Auslegers 202 umfassen. Alternativ oder zusätzlich können Beschleunigungs- und/oder Geschwindigkeitssensoren vorgesehen sein, um bestimmte Bewegungen von Strukturbauteilen wie beispielsweise Nickbewegungen der Auslegerspitze oder rotatorische Dynamikeffekte am Ausleger 202 zu erfassen. Alternativ oder zusätzlich können auch Neigungssensoren oder Gyroskope beispielsweise am Turm 201, insbesondere an dessen oberen Abschnitt, an dem der Ausleger gelagert ist, vorgesehen sein, um die Dynamik des Turms 201 zu erfassen. Alternativ oder zusätzlich können auch den Antriebssträngen Bewegungs- und/oder Beschleunigungssensoren zugeordnet sein, um die Dynamik der Antriebsstränge erfassen zu können. Beispielsweise können den Umlenkrollen der Laufkatze 206 für das Hubseil und/oder Umlenkrollen für ein Abspannseil eines Wippauslegers Drehgeber zugeordnet sein, um die tatsächliche Seilgeschwindigkeit am relevanten Punkt erfassen zu können.
- Wie
Fig. 2 zeigt, besitzt Pendeldämpfungseinrichtung 340 eine Filtereinrichtung bzw. einen Beobachter 345, der die Kranreaktionen beobachtet, die sich bei bestimmten Stellgrößen der Antriebsregler 347 einstellen und unter Berücksichtigung vorbestimmter Gesetzmäßigkeiten eines Dynamikmodells des Krans, das grundsätzlich verschieden beschaffen sein kann und durch Analyse und Simulation des Stahlbaus gewonnen werden kann, anhand der beobachteten Kranreaktionen die Stellgrößen des Reglers beeinflusst. - Eine solche Filter- bzw. Beobachtereinrichtung 345b kann insbesondere in Form eines sogenannten Kalmanfilters 346 ausgebildet sein, dem als Eingangsgröße die Stellgrößen der Antriebsregler 347 des Krans und die Kranbewegungen, insbesondere der Seilzugwinkel ϕ gegenüber der Vertikalen 62 und/oder dessen zeitliche Änderung bzw. die Winkelgeschwindigkeit des genannten Schrägzugs, zugeführt wird und der aus diesen Eingangsgrößen anhand von Kaiman-Gleichungen, die das Dynamiksystem der Kranstruktur, insbesondere dessen Stahlbauteile und Antriebsstränge, modellieren, die Stellgrößen der Antriebsregler 347 entsprechend beeinflusst, um die gewünschte pendeldämpfende Wirkung zu erzielen.
- Mithilfe einer solchen Schrägzugregelung können insbesondere Verformungen und Schwingungsformen des Turmdrehkrans unter Last gedämpft bzw. von Anfang an vermieden werden, wie sie in
Fig. 3 beispielhaft gezeigt sind, wobei dort die Teilansicht a.) zunächst schematisch eine Nickverformung des Turmdehkrans unter Last infolge eines Durchbiegens des Turms 201 mit dem damit einhergenden Absenken des Auslegers 202 und einen damit verknüpften Schrägzug des Hubseils zeigt,. - Ferner zeigen die Teilansichten b.) und c.) der
Fig. 3 beispielhaft in schematischer Weise eine Querverformung des Turmdrehkrans in perspektivischer Darstellung sowie in Draufsicht von oben mit den dabei auftretenden Verformungen des Turms 201 und des Auslegers 202. - Schließlich zeigt die
Fig. 3 in ihren Teilansichten d.) und e.) einen mit solchen Querverformungen verknüpften Schrägzug des Hubseils. - Um der entsprechenden Schwingungsdynamik entgegenzuwirken, kann die Pendeldämpfungseinrichtung 430 eine Schrägzugregelung umfassen. Insbesondere wird mittels der Bestimmungsmittel 62 die Position des Lasthakens 208, insbesondere auch dessen Schrägzug gegenüber der Vertikalen, das heißt die Auslenkung des Hubseils 207 gegenüber der Vertikalen erfasst und dem genannten Kalmanfilter 346 zugeführt.
- Vorteilhafterweise kann die Positionssensorik dazu ausgebildet sein, die Last bzw. den Lasthaken 208 relativ zu einem fixem Weltkoordinatensystem zu erfassen und/oder die Pendeldämpfungseinrichtung 430 dazu ausgebildet sein, die Last relativ zu einem fixem Weltkoordinatensystem zu postionieren.
- Durch die Lastpositionserfassung kann dabei eine Schrägzugreglung realisiert werden, welche eine statische Verformung durch die angehängte Last eliminiert bzw. zumindest reduziert. Um eine Schwingungsdynamik zu reduzieren bzw. gar nicht erst entstehen zu lassen, kann die Pendeldämpfungseinrichtung 430 dazu ausgebildet sein, das Drehwerk und das Katzfahrwerk so zu korrigieren, dass das Seil möglichst immer im senkrechten Lot zur Last steht, auch wenn sich der Kran durch das zunehmende Lastmoment immer mehr nach vorne neigt.
- Beispielsweise kann beim Anheben einer Last vom Boden die Nickbewegung des Krans infolge seiner Verformung unter der Last berücksichtigt und das Katzfahrwerk unter Berücksichtigung der erfassten Lastposition so nachgefahren bzw. unter vorausschauender Abschätzung der Nickverformung so positioniert werden, dass das Hubseil bei der sich ergebenden Kranverformung im senkrechten Lot über der Last steht. Die größte statische Verformung tritt dabei an dem Punkt auf, an dem die Last den Boden verlässt. Dann ist keine Schrägzugregelung mehr notwendig. In entsprechender Weise kann alternativ oder zusätzlich auch das Drehwerk unter Berücksichtuigung der erfassten Lastposition so nachgefahren und/oder unter vorausschauender Abschätzung einer Querverformung so positioniert werden, dass das Hubseil bei der sich ergebenden Kranverformung im senkrechten Lot über der Last steht.
- Eine solche Schrägzugregelung kann zu einem späteren Zeitpunkt vom Bediener wieder aktiviert werden, der dadurch den Kran als Manipulator verwenden kann. Hierddurch kann dieser die Last nur durch Drücken und/oder Ziehen nachpositionieren. Die Schrägzugregelung versucht dabei der Auslenkung, welche vom Bediener hervorgerufen wird, zu folgen. Dadurch kann eine Manipulatorsteuerung realisiert werden.
Claims (15)
- Turmdrehkran mit einem Turm (201), der einen Ausleger (202) trägt, an dem eine Laufkatze verfahrbar ist, von der ein Hubseil (207) abläuft, einem an dem Hubseil (207) angebrachten Lastaufnahmemittel (208), Antriebseinrichtungen zum Bewegen mehrerer Kranelemente und Verfahren des Lastaufnahmemittels (208), einer Steuervorrichtung (3) zum Steuern der Antriebseinrichtungen derart, dass das Lastaufnahmemittel (208) entlang eines Verfahrwegs verfährt, sowie einer Pendeldämpfungseinrichtung (340) zum Dämpfen von Pendelbewegungen des Lastaufnahmemittels (208) und/oder des Hubseils (207), wobei die Pendeldämpfungseinrichtung (340) einen Steuerbaustein (341) zum Beeinflussen der Ansteuerung der Antriebseinrichtungen in Abhängigkeit von pendelrelevanten Parametern aufweist, dadurch gekennzeichnet, dass die Pendeldämpfungseinrichtung (340) Bestimmungsmittel (342) zum Bestimmen von Verformungen des Turms (201) und weiterer Strukturbauteile des Krans infolge dynamischer Belastungen aufweist, wobei der Steuerbaustein (341) der Pendeldämpfungseinrichtung (340) dazu ausgebildet ist, beim Beeinflussen der Ansteuerung der Antriebseinrichtungen die bestimmten Verformungen des Turms und weiterer Strukturbauteile infolge dynamischer Belastungen zu berücksichtigen.
- Turmdrehkran nach dem vorhergehenden Anspruch, wobei die Strukturbauteile einen Ausleger (202) umfassen und die Bestimmungsmittel (342) dazu ausgebildet sind, Verformungen und/oder Belastungen des Turms (201) und des Auslegers (202) infolge dynamischer Belastungen zu bestimmen.
- Turmdrehkran nach einem der beiden vorhergehenden Ansprüche, wobei die Strukturbauteile Antriebsstrangteile wie Drehwerksteile, Katzantriebsteile und dergleichen, umfassen und die Bestimmungsmittel (342) dazu ausgebildet sind, Verformungen und/oder Bewegungen der Antriebsstrangteile infolge dynamischer Belastungen zu bestimmen.
- Turmdrehkran nach einem der vorhergehenden Ansprüche, wobei die Bestimmungsmittel (342) eine Schätzeinrichtung (343) zum Schätzen der Verformungen und/oder Bewegungen der Strukturbauteile infolge dynamischer Lasten auf Basis von digitalen Daten eines die Kranstruktur beschreibenden Datenmodells aufweisen.
- Turmdrehkran nach einem der vorhergehenden Ansprüche, wobei die Bestimmungsmittel (342) eine Berechnungseinheit (348) aufweisen, die Strukturverformungen und sich daraus ergebende Strukturteilbewegungen anhand eines gespeicherten Berechnungsmodells in Abhängigkeit von am Steuerstand eingegebenen Steuerbefehle berechnet.
- Turmdrehkran nach einem der vorhergehenden Ansprüche, wobei die Bestimmungsmittel (342) eine Sensorik (344) zum Erfassen der Verformungen und/oder Dynamikparameter der Strukturbauteile aufweisen.
- Turmdrehkran nach dem vorhergehenden Anspruch, wobei die Sensorik (344) einen Neigungs- und/oder Beschleunigungssensor zum Erfassen von Turmneigungen und/oder -geschwindigkeiten, einen Drehgeschwindigkeits-und/oder -beschleunigungssensor zum Erfassen der Drehgeschwindigkeit und/oder -beschleunigung eines Auslegers und/oder einen Nickbewegungssensor zum Erfassen von Nickbewegungen und/oder -beschleunigungen des Auslegers, und/oder einen Seilgeschwindigkeits-und/oder -beschleunigungssensor zum Erfassen von Seilgeschwindigkeiten und/oder -beschleunigungen des Hubseils (207) aufweist.
- Turmdrehkran nach einem der vorhergehenden Ansprüche, wobei eine Erfassungseinrichtung (60) zum Erfassen einer Auslenkung (ϕ) des Hubseils (207) und/oder des Lastaufnahmemittels (208) gegenüber einer Vertikalen (61) vorgesehen ist, wobei der Steuerbaustein (341) der Pendeldämpfungseinrichtung (340) dazu ausgebildet ist, die Ansteuerung der Antriebseinrichtungen in Abhängigkeit der ermittelten Auslenkung des Hubseils (207) und/oder des Lastaufnahmemittels (208) gegenüber der Vertikalen (61) zu beeinflussen.
- Turmdrehkran nach dem vorhergehenden Anspruch, wobei die Erfassungseinrichtung (60) eine bildgegebende Sensorik, insbesondere eine Kamera (62) aufweist, die im Bereich eines Aufhängepunktes des Hubseils (207), insbesondere einer Laufkatze (206), im Wesentlichen senkrecht nach unten blickt, wobei eine Bildauswerteeinrichtung (64) zum Auswerten eines von der bildgebenden Sensorik bereitgestellten Bilds hinsichtlich der Position des Lastaufnahmemittels (208) in dem bereitgestellten Bild und Bestimmung der Auslenkung (ϕ) des Lastaufnahmemittels (208) und/oder des Hubseils (207) und/oder der Auslenkungsgeschwindigkeit gegenüber der Vertikalen (61) vorgesehen ist.
- Turmdrehkran nach einem der vorhergehenden Ansprüche, wobei die Pendeldämpfungseinrichtung (340) eine Filter- und/oder Beobachtereinrichtung (345) zum Beeinflussen der Stellgrößen von Antriebsreglern (347) zum Ansteuern der Antriebseinrichtungen aufweist, wobei die genannte Filter- und/oder Beobachtereinrichtung (345) dazu ausgebildet ist, als Eingangsgrößen die Stellgrößen der Antriebsregler (347) und die erfassten und/oder geschätzten Bewegungen von Kranelementen und/oder Verformungen und/oder Bewegungen von Strukturbauteilen, die infolge dynamischer Belastungen auftreten, zu erhalten und in Abhängigkeit der für bestimmte Reglerstellgrößen erhaltenen dynamikinduzierten Bewegungen von Kranelementen und/oder Verformungen von Strukturbauteilen die Reglerstellgrößen zu beeinflussen.
- Turmdrehkran nach dem vorhergehenden Anspruch, wobei die Filter-und/oder Beobachtereinrichtung (345) als Kalman-Filter (346) ausgebildet ist, wobei in dem Kalman-Filter (346) erfasste und/oder geschätzte und/oder berechnete und/oder simulierte Funktionen, die die Dynamik der Strukturbauteile des Krans charakterisieren, implementiert sind.
- Turmdrehkran nach einem der vorhergehenden Ansprüche, wobei die Pendeldämpfungseinrichtung (340) eine Positionssensorik umfaßt, die dazu ausgebildet ist, das Lastaufnahmemittel (208) relativ zu einem fixem Weltkoordinatensystem zu erfassen, und/oder dazu ausgebildet ist, das Lastaufnahmemittel (208) relativ zu einem fixem Weltkoordinatensystem zu postionieren.
- Turmdrehkran nach einem der vorhergehenden Ansprüche, wobei die Pendeldämpfungseinrichtung (340) einen Schrägzuregler umfasst und dazu ausgebildet ist, die Antriebseinrichtungen zum Bewegen der Kranelemente und Verfahren des Lastaufnahmemittels (208) so zu betätigen, dass das Hubseil (207) möglichst immer im senkrechten Lot zur Last steht, auch wenn sich der Kran durch das zunehmende Lastmoment und/oder durch zunehmende Querkräfte und/oder zunehmende Querverwindungsmomente immer mehr verformt.
- Verfahren zum Steuern eines Turmdrehkrans, dessen an einem Hubseil (207) angebrachtes Lastaufnahmemittel (208) durch Antriebseinrichtungen verfahren wird, welche Antriebseinrichtungen von einer Steuervorrichtung (3) des Krans angesteuert werden, wobei die Ansteuerung der Antriebseinrichtungen von einer Pendeldämpfungseinrichtung (340) in Abhängigkeit von pendelrelevanten Parametern beeinflusst wird, dadurch gekennzeichnet, dass die Pendeldämpfungseinrichtung (340) Verformungen des Turms (201) und weiterer Strukturbauteile des Krans, die infolge dynamischer Belastungen auftreten, bestimmt und beim Beeinflussen der Ansteuerung der Antriebseinrichtungen berücksichtigt.
- Verfahren nach dem vorhergehenden Anspruch, wobei die Pendeldämpfungseinrichtung (340) einen Kalman-Filter (346) aufweist, dem als Eingangsgrößen die Stellgrößen von Antriebsreglern (347) zum Ansteuern der Antriebseinrichtungen sowie sich bei diesen Stellgrößen einstellende Kranbewegungen und/oder Verformungen und/oder dynamikinduzierte Bewegungen der Strukturteile als Eingangsgrößen zugeführt werden, wobei der Kalman-Filter (346) in Abhängigkeit der genannten Eingangsgrößen eine Beeinflussung der Stellgrößen der Antriebsregler (347) vornimmt.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102016004350.4A DE102016004350A1 (de) | 2016-04-11 | 2016-04-11 | Kran und Verfahren zum Steuern eines solchen Krans |
PCT/EP2017/000450 WO2017178106A1 (de) | 2016-04-11 | 2017-04-07 | Kran und verfahren zum steuern eines solchen krans |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3408208A1 EP3408208A1 (de) | 2018-12-05 |
EP3408208B1 true EP3408208B1 (de) | 2021-09-29 |
Family
ID=58671561
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17721521.7A Active EP3408208B1 (de) | 2016-04-11 | 2017-04-07 | Kran und verfahren zum steuern eines solchen krans |
Country Status (8)
Country | Link |
---|---|
US (1) | US11919749B2 (de) |
EP (1) | EP3408208B1 (de) |
CN (1) | CN108883913B (de) |
BR (1) | BR112018068971A2 (de) |
DE (1) | DE102016004350A1 (de) |
ES (1) | ES2901160T3 (de) |
RU (1) | RU2728315C2 (de) |
WO (1) | WO2017178106A1 (de) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102017114789A1 (de) * | 2017-07-03 | 2019-01-03 | Liebherr-Components Biberach Gmbh | Kran und Verfahren zum Steuern eines solchen Krans |
DE102018105139A1 (de) * | 2018-03-06 | 2019-09-12 | Konecranes Global Corporation | Verfahren zur Steuerung und insbesondere Überwachung eines Aktors, insbesondere einer Winde, eines Hebezeugs oder eines Krans und System zur Durchführung eines solchen Verfahrens |
DE102018005068A1 (de) * | 2018-06-26 | 2020-01-02 | Liebherr-Components Biberach Gmbh | Kran und Verfahren zum Steuern eines solchen Krans |
JP7151223B2 (ja) * | 2018-07-09 | 2022-10-12 | 株式会社タダノ | クレーンおよびクレーンの制御方法 |
JP7172256B2 (ja) * | 2018-07-31 | 2022-11-16 | 株式会社タダノ | クレーン |
DE102018221436A1 (de) * | 2018-12-11 | 2020-06-18 | Robert Bosch Gmbh | Verfahren zur Bestimmung des Einflusses von Wind auf einen Kran |
DE202019102393U1 (de) * | 2019-03-08 | 2020-06-09 | Liebherr-Werk Biberach Gmbh | Kran sowie Vorrichtung zu dessen Steuerung |
DE102019109448B4 (de) * | 2019-04-10 | 2022-09-08 | Josef Morosin | Anordnung mit einem Kran |
CN111597623A (zh) * | 2020-05-26 | 2020-08-28 | 中建安装集团有限公司 | 一种石化装置模块化设计方法 |
DE102020126504A1 (de) | 2020-10-09 | 2022-04-14 | Liebherr-Werk Biberach Gmbh | Hebezeug wie Kran sowie Verfahren und Vorrichtung zum Steuern eines solchen Hebezeugs |
CN113387284A (zh) * | 2021-06-23 | 2021-09-14 | 湖南三一塔式起重机械有限公司 | 一种塔机回转速度的控制方法、系统及塔式起重机 |
DE102023110203A1 (de) | 2023-04-21 | 2024-10-24 | Liebherr-Werk Biberach Gmbh | Kran sowie Verfahren zum automatisierten Positionieren und/oder Verfahren des Lastaufnahmemittels eines solchen Krans |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3153486A (en) * | 1961-06-13 | 1964-10-20 | Link Belt Co | Tower crane |
DE4315005A1 (de) * | 1993-05-06 | 1994-11-10 | Deutsche Aerospace | Vorrichtung zur meßtechnischen Erfassung von Winkellagen eines bewegten Gegenstandes gegenüber seiner Ausgangsstellung |
US7627393B2 (en) * | 2000-10-19 | 2009-12-01 | Liebherr-Werk Nenzing Gmbh | Crane or digger for swinging a load hanging on a support cable with damping of load oscillations |
DE10064182A1 (de) | 2000-10-19 | 2002-05-08 | Liebherr Werk Nenzing | Kran oder Bagger zum Umschlagen von einer an einem Lastseil hängenden Last mit Lastpendelungsdämpfung |
US6826452B1 (en) * | 2002-03-29 | 2004-11-30 | The Penn State Research Foundation | Cable array robot for material handling |
DE102006033277A1 (de) * | 2006-07-18 | 2008-02-07 | Liebherr-Werk Nenzing Gmbh, Nenzing | Verfahren zum Steuern der Orientierung einer Kranlast |
DE102007039408A1 (de) * | 2007-05-16 | 2008-11-20 | Liebherr-Werk Nenzing Gmbh | Kransteuerung, Kran und Verfahren |
DE102007043750A1 (de) | 2007-09-13 | 2009-03-19 | Rheinkalk Gmbh | Fahrzeug zum Einbringen alkalischer Stoffe in Gewässer |
DE102008024513B4 (de) * | 2008-05-21 | 2017-08-24 | Liebherr-Werk Nenzing Gmbh | Kransteuerung mit aktiver Seegangsfolge |
US8195368B1 (en) * | 2008-11-07 | 2012-06-05 | The United States Of America As Represented By The Secretary Of The Navy | Coordinated control of two shipboard cranes for cargo transfer with ship motion compensation |
DE102009032269A1 (de) * | 2009-07-08 | 2011-01-13 | Liebherr-Werk Nenzing Gmbh | Kransteuerung zur Ansteuerung eines Hubwerkes eines Kranes |
DE102009032270A1 (de) | 2009-07-08 | 2011-01-13 | Liebherr-Werk Nenzing Gmbh | Verfahren zur Ansteuerung eines Antriebs eines Kranes |
CN201553560U (zh) * | 2009-09-07 | 2010-08-18 | 上海海得控制系统股份有限公司 | 龙门吊防倾倒控制系统 |
NO337712B1 (no) * | 2010-03-24 | 2016-06-06 | Nat Oilwell Varco Norway As | Anordning og fremgangsmåte for å redusere dynamiske laster i kraner |
DE102011001112A1 (de) * | 2011-03-04 | 2012-09-06 | Schneider Electric Automation Gmbh | Verfahren und Steuerungseinrichtung zur schwingungsarmen Bewegung eines bewegbaren Kranelementes eines Kransystems |
DE112012000169T5 (de) * | 2011-07-05 | 2013-07-18 | Trimble Navigation Limited | Kranmanöverunterstützung |
EP2562125B1 (de) * | 2011-08-26 | 2014-01-22 | Liebherr-Werk Nenzing GmbH | Kransteuervorrichtung |
US9041595B2 (en) * | 2011-12-19 | 2015-05-26 | Trimble Navigation Limited | Determining the location of a load for a tower crane |
DE102012004739A1 (de) * | 2012-03-08 | 2013-09-12 | Liebherr-Werk Nenzing Gmbh | Kran und Verfahren zur Kransteuerung |
DE202012012116U1 (de) * | 2012-12-17 | 2014-03-19 | Liebherr-Components Biberach Gmbh | Turmdrehkran |
CN203295057U (zh) * | 2013-04-28 | 2013-11-20 | 郑州铁路装备制造有限公司 | 一种新型集装箱吊具减摇装置 |
DE102013012019B4 (de) * | 2013-07-19 | 2019-10-24 | Tadano Faun Gmbh | Kran, insbesondere Mobilkran |
DE102015202734A1 (de) * | 2015-02-16 | 2016-08-18 | Terex Cranes Germany Gmbh | Kran und Verfahren zum Beeinflussen einer Verformung eines Auslegersystems eines derartigen Krans |
DE102016001684A1 (de) * | 2016-02-12 | 2017-08-17 | Liebherr-Werk Biberach Gmbh | Verfahren zur Überwachung wenigstens eines Krans |
RU2734966C2 (ru) * | 2016-04-08 | 2020-10-26 | Либхерр-Компонентс Биберах Гмбх | Кран |
JP6766608B2 (ja) * | 2016-11-14 | 2020-10-14 | コベルコ建機株式会社 | 建設機械のバックストップ装置 |
DE102017114789A1 (de) * | 2017-07-03 | 2019-01-03 | Liebherr-Components Biberach Gmbh | Kran und Verfahren zum Steuern eines solchen Krans |
-
2016
- 2016-04-11 DE DE102016004350.4A patent/DE102016004350A1/de active Pending
-
2017
- 2017-04-07 RU RU2018139354A patent/RU2728315C2/ru active
- 2017-04-07 US US16/092,550 patent/US11919749B2/en active Active
- 2017-04-07 BR BR112018068971A patent/BR112018068971A2/pt active Search and Examination
- 2017-04-07 ES ES17721521T patent/ES2901160T3/es active Active
- 2017-04-07 CN CN201780021862.4A patent/CN108883913B/zh active Active
- 2017-04-07 EP EP17721521.7A patent/EP3408208B1/de active Active
- 2017-04-07 WO PCT/EP2017/000450 patent/WO2017178106A1/de active Application Filing
Also Published As
Publication number | Publication date |
---|---|
RU2728315C2 (ru) | 2020-07-29 |
EP3408208A1 (de) | 2018-12-05 |
US11919749B2 (en) | 2024-03-05 |
CN108883913A (zh) | 2018-11-23 |
RU2018139354A (ru) | 2020-05-12 |
BR112018068971A2 (pt) | 2019-01-22 |
WO2017178106A1 (de) | 2017-10-19 |
US20190119078A1 (en) | 2019-04-25 |
RU2018139354A3 (de) | 2020-05-19 |
DE102016004350A1 (de) | 2017-10-12 |
ES2901160T3 (es) | 2022-03-21 |
CN108883913B (zh) | 2021-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3408208B1 (de) | Kran und verfahren zum steuern eines solchen krans | |
EP3649072B1 (de) | Kran und verfahren zum steuern eines solchen krans | |
EP3408211B1 (de) | Kran | |
WO2020001991A1 (de) | Kran und verfahren zum steuern eines solchen krans | |
EP4013713B1 (de) | Kran und verfahren zum steuern eines solchen krans | |
EP2502871B1 (de) | Kransteuerung, Kran und Verfahren | |
EP2298687B1 (de) | System zum Erfassen der Lastmasse einer an einem Hubseil eines Kranes hängenden Last | |
EP2272784B1 (de) | Kran zum Umschlagen einer an einem Lastseil hängenden Last | |
EP2524892B1 (de) | Kransteuerung | |
AT520008B1 (de) | Verfahren zum Dämpfen von Drehschwingungen eines Lastaufnahmeelements einer Hebeeinrichtung | |
WO2009030586A1 (de) | Regelungseinrichtung zur dämpfung von pendelbewegungen einer seilgeführten last | |
DE112013005508T5 (de) | Vorrichtung zum langsamen Anhalten der Arbeitsmaschine | |
DE102005042721A1 (de) | Gelenkleiter oder Hubbühne mit Bahnsteuerung und aktiver Schwingungsdämpfung | |
EP1834920A1 (de) | Verfahren zum automatischen Umschlagen von einer Last eines Kranes mit Lastpendelungsdämpfung und Bahnplaner | |
DE102017124278A1 (de) | System zum Bedienen eines Lasthandling-Krans sowie Lasthandling-Kran und Verfahren zu dessen Bedienung | |
DE102006052956B4 (de) | Verfahren und Vorrichtung zum Bewegen einer freischwingenden Last von einem Start- zu einem Zielpunkt | |
EP3326957A1 (de) | Betriebsverfahren für einen kran | |
WO2024156497A1 (de) | Verfahren und vorrichtung zum betreiben eines auslegerdrehkrans sowie auslegerdrehkran | |
DE102021121818A1 (de) | Turmdrehkran, Verfahren und Steuerungseinheit zum Betreiben eines Turmdrehkrans, Laufkatze und Katzfahrwerk |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180830 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20200903 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210429 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502017011601 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1434043 Country of ref document: AT Kind code of ref document: T Effective date: 20211015 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211229 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211229 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210929 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211230 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2901160 Country of ref document: ES Kind code of ref document: T3 Effective date: 20220321 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220129 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220131 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502017011601 Country of ref document: DE |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: LIEBHERR-WERK BIBERACH GMBH |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20220630 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502017011601 Country of ref document: DE Owner name: LIEBHERR-WERK BIBERACH GMBH, DE Free format text: FORMER OWNER: LIEBHERR-COMPONENTS BIBERACH GMBH, 88400 BIBERACH, DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: PC Ref document number: 1434043 Country of ref document: AT Kind code of ref document: T Owner name: LIEBHERR-WERK BIBERACH GMBH, DE Effective date: 20221018 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20220407 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220407 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220407 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220407 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230704 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20170407 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240425 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240501 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240503 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240423 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240426 Year of fee payment: 8 Ref country code: FR Payment date: 20240423 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 |