[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP3405974A1 - Procede de fabrication d'une interconnexion comprenant un via s' etendant au travers d'un substrat - Google Patents

Procede de fabrication d'une interconnexion comprenant un via s' etendant au travers d'un substrat

Info

Publication number
EP3405974A1
EP3405974A1 EP17701653.2A EP17701653A EP3405974A1 EP 3405974 A1 EP3405974 A1 EP 3405974A1 EP 17701653 A EP17701653 A EP 17701653A EP 3405974 A1 EP3405974 A1 EP 3405974A1
Authority
EP
European Patent Office
Prior art keywords
chamber
copper
substrate
layer
deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP17701653.2A
Other languages
German (de)
English (en)
Inventor
Julien VITIELLO
Fabien PIALLAT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobus SAS
Original Assignee
Kobus SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobus SAS filed Critical Kobus SAS
Publication of EP3405974A1 publication Critical patent/EP3405974A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76898Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4405Cleaning of reactor or parts inside the reactor by using reactive gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • C25D7/123Semiconductors first coated with a seed layer or a conductive layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02046Dry cleaning only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28202Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a nitrogen-containing ambient, e.g. nitride deposition, growth, oxynitridation, NH3 nitridation, N2O oxidation, thermal nitridation, RTN, plasma nitridation, RPN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/7685Barrier, adhesion or liner layers the layer covering a conductive structure
    • H01L21/76852Barrier, adhesion or liner layers the layer covering a conductive structure the layer also covering the sidewalls of the conductive structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/7687Thin films associated with contacts of capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76897Formation of self-aligned vias or contact plugs, i.e. involving a lithographically uncritical step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53228Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
    • H01L23/53238Additional layers associated with copper layers, e.g. adhesion, barrier, cladding layers

Definitions

  • the present invention relates to a method of manufacturing an interconnection comprising a via extending through a substrate.
  • TSV through vias
  • the manufacture of such an interconnection typically comprises:
  • the titanium or tantalum nitride layer has a barrier function to prevent diffusion of copper into the substrate.
  • the deposited layers must be consistent and of good quality.
  • “compliant layer” is meant a layer whose thickness measured in a direction perpendicular to a surface on which it is deposited is constant. In other words, the surface of said layer is parallel to the surface on which it is deposited.
  • PVD Physical vapor deposition
  • CMP chemical mechanical polishing
  • “Chemical Vapor Deposition” provides better compliance than the PVD process but it has the disadvantage of introducing contaminants (including carbon) which reduce the quality of the layer formed.
  • An object of the invention is to design a method of manufacturing an interconnection comprising a via extending through a substrate that avoids the aforementioned problems and which allows in particular to improve the compliance of the deposited layers and to avoid the deposition of an excess thickness of material to be removed from the main surface of the substrate.
  • Another object of the invention is also to provide interconnections whose reliability over time is increased.
  • an interconnection comprising a via extending through a substrate, comprising successively:
  • step (a) the substrate is arranged in a first deposition chamber and in that said step (a) comprises injecting a precursor of titanium or tantalum in the gas phase into the deposition chamber by a first injection route according to a first pulse sequence and the injection of a nitrogen-based reactive gas into the deposition chamber by a second injection route distinct from the first injection path according to a second pulse sequence, the first pulse sequence and the second pulse sequence being out of phase.
  • the deposition of the titanium nitride or tantalum layer allows a faster chemical reaction but also a better compliance than the conventional CVD process. Moreover, it promotes the reaction on the surface of the substrate and thus limits any contamination of said surface due to parasitic reactions.
  • width is meant the smallest dimension of the hole in the plane formed by the main surface of the substrate.
  • hole designates an opening of any shape practiced in a main surface of the substrate, and includes for example a trench having a length greater than its width, or even but not limited to a circular orifice (in the latter case, the width corresponds to the diameter of the hole).
  • step (c) of filling the hole is carried out by electroplating copper
  • the thickness of the titanium nitride or tantalum nitride layer deposited in step (a) is less than or equal to 100 nm;
  • the thickness of the copper layer deposited in step (b) is between 50 and 300 nm;
  • step (b) the deposition of the copper layer in step (b) is carried out in a second deposition chamber different from the first chamber;
  • step (b) is carried out by chemical vapor deposition
  • the first and second deposition chambers are connected separately in leaktight manner to an intermediate chamber and between steps (a) and (b), the substrate is transferred from the first chamber to the second chamber by the intermediate vacuum chamber; air;
  • - via has a form factor greater than or equal to 5: 1;
  • the method comprises, after the filling of the hole, the removal of at least a portion of the thickness of the substrate opposite the main surface on which the titanium nitride or tantalum nitride layer and the copper layer have have been deposited so as to expose the interior of the via so as to make said via via;
  • the method comprises cleaning the chamber in which the titanium nitride or tantalum nitride layer has been deposited to remove said titanium nitride or tantalum nitride deposited on an inner wall of said bedroom, said cleaning being performed with a reactive gas composed of fluorine and activated by a plasma source;
  • the method comprises cleaning the chamber in which the copper layer has been deposited to remove said copper deposited on an inner wall of said chamber, said cleaning comprising the following steps:
  • step (ii) injection, according to a sequence of pulses, of chemical species adapted to volatilize said oxidized copper, said step (ii) beginning after the start of step (i).
  • Another object relates to a device for implementing the aforementioned method.
  • Said device is characterized in that it comprises:
  • a first sealed deposition chamber connected to a source of a titanium or tantalum precursor by a first injection route and to a source of a nitrogen-based reactive gas by a second injection route distinct from the first way
  • a second sealed deposition chamber connected to a source of copper and
  • FIGS. 1A to 1E illustrate various steps of the method according to one embodiment of the invention
  • Figure 2 is a block diagram of a device for implementing the method.
  • FIGS. 1A to 1E illustrate successive steps in the formation of an interconnection.
  • a substrate 1 is provided in which at least one hole 10 has been formed from a main surface 1A of the substrate.
  • the substrate may be any substrate suitable for producing electronic circuits.
  • the substrate may be solid (that is to say made of a single material) or composite (that is to say consisting of a stack of different materials).
  • the substrate may be a silicon substrate.
  • the hole is not through, that is to say that its depth is less than the thickness of the substrate.
  • the hole has a form factor greater than 5: 1, preferably greater than 10: 1.
  • the invention can be implemented regardless of the shape factor of the hole.
  • a conformal layer 1 1 of titanium nitride (TiN) or tantalum nitride (TaN) is deposited on the main surface 1A of the substrate, on the side wall 10A of the hole and on the bottom 10B of the hole.
  • This deposit is made by chemical vapor deposition implemented in a pulsed manner.
  • the substrate is introduced into a first deposition chamber (reference 100 in FIG. 2) comprising two distinct injection paths: a first channel makes it possible to connect the chamber to a source of a titanium or tantalum precursor and second channel connects the chamber to a source of a nitrogen-based reactive gas.
  • a first channel makes it possible to connect the chamber to a source of a titanium or tantalum precursor
  • second channel connects the chamber to a source of a nitrogen-based reactive gas.
  • nitrogen-based is meant that said reactive gas contains mainly nitrogen but may optionally contain other species, such as hydrogen.
  • the first injection path comprises a first plurality of channels through which the titanium or tantalum precursor is injected into the deposition chamber and the second injection path comprises a second plurality of channels through which the nitrogen-based reactive gas is injected into the deposition chamber, all of said channels opening into the deposition chamber facing the surface of the substrate.
  • the substrate is placed in the deposition chamber on a substrate holder possibly comprising a heating system of the substrate at a temperature advantageous for the deposition.
  • the deposition comprises injecting said titanium or tantalum precursor in the gas phase into the deposition chamber by the first injection route according to a first pulse sequence and injecting the nitrogen-based reactive gas into the chamber. deposition by the second injection path distinct from the first injection path according to a second pulse sequence, the first pulse sequence and the second pulse sequence being out of phase.
  • pulse sequence is meant at least one pulse per sequence. This process is called pulsed CVD. Such a method has been described, for applications and materials different from those referred to in the present invention, in WO 2015/140261.
  • the duration of a pulse of the first sequence of pulses is between 0.02 s and 5 s;
  • the delay between two pulses of the first sequence of pulses is between 0.5 s and 10 s;
  • the duration of a pulse of the second pulse sequence is between
  • the delay between two pulses of the second sequence of pulses is between 0.5 s and 10 s.
  • the duration of a pulse of the first sequence of pulses, respectively of the second sequence of pulses, is between 0.02 s and 5 s;
  • the delay between two pulses of the first sequence of pulses, respectively of the second sequence of pulses, is between 0.02 s and 10 s.
  • the duration of a pulse of the first sequence of pulses or the second sequence of pulses is between 0.02 s and 1 s;
  • the delay between two pulses of the first sequence of pulses, respectively of the second sequence of pulses, is between 0.02 s and 1 s.
  • the duration of a pulse of the first sequence of pulses or the second sequence of pulses is between 1 s and 5 s;
  • the delay between two pulses of the first sequence of pulses, respectively of the second sequence of pulses, is between 1 s and 10 s.
  • the travel time of the species injected into the chamber is defined by the time required for said species to travel the distance between the output of the respective injection path and the free surface of the substrate.
  • the injection of the different species is carried out in a sequence adapted so that the reaction between said species takes place essentially on the free surface of the substrate.
  • the heating system of the substrate carrier heats the substrate to a temperature higher than the temperature at which the species are injected into the chamber. As the rate of reaction between the species is increasing with temperature, the reaction rate is thus higher on the free surface of the substrate.
  • the first pulse sequence and the second pulse sequence are out of phase, ie during the deposition process there are moments during which only the titanium or tantalum precursor is injected into the deposition chamber and times during which only the nitrogen-based reactive gas is injected into the reaction chamber. Eventually, there may also be instants during which a simultaneous injection is used and / or times during which no injection takes place.
  • the pressure in the deposition chamber is greater than a predetermined value throughout the duration of the process unlike atomic layer deposition (ALD) techniques.
  • ALD deposition involves the injection of only one type of species at a time, and requires a complete purge of the chamber before the other type of species is injected.
  • the pressure in the deposition chamber is greater than 500 mTorr, preferably greater than 1 Torr.
  • this method it is possible to maintain the advantage of a deposition rate of a layer on the surface of a substrate comparable to the technique of vapor deposition (CVD). Moreover, the compliance of the deposition of the layer is greatly improved over the conventional vapor deposition technique. In addition, this method promotes a reaction between the tantalum or titanium precursor and the nitrogen-based reactive gas on the surface of the substrate, thus limiting the parasitic reactions and a contamination that may degrade the properties of the layer formed on the substrate. surface of the substrate.
  • a conformal layer 1 1 of titanium nitride or tantalum nitride is deposited, said layer advantageously having a thickness less than or equal to
  • the layer performs a copper diffusion barrier function used to fill the hole to the substrate.
  • a conformal layer 12 of copper is then formed on the layer 1 1, a conformal layer 12 of copper, a thickness generally between 50 and 300 nm.
  • the substrate 1 covered with the layer 1 1 is advantageously moved to a second deposition chamber (reference 200 in Figure 2) separate from the first chamber and isolated vis-à-vis thereof.
  • said displacement is carried out without venting the substrate, which avoids any contamination or oxidation.
  • contamination or oxidation of the deposited layers is likely to reduce the adhesion of said layers and to promote electromigration of copper during operation of a device comprising the via.
  • the deposition of the layer 12 can be implemented by any appropriate technique.
  • said deposit is made by chemical vapor deposition, pulsed or not.
  • the hole 10 is filled with copper.
  • said filling can be performed by continuing the copper deposition performed in the previous step.
  • the filling the hole can be made by electrodeposition, this technique being faster and less expensive than the chemical vapor deposition.
  • At least a portion of the tantalum nitride or titanium and copper layers are removed from the main surface 1A of the substrate by chemical mechanical polishing.
  • FIGS. 1D and 1E can optionally be inverted.
  • the chamber 100 and / or the chamber 200 can be cleaned after the deposition step, once the substrate has been removed from the chamber.
  • said cleaning is advantageously carried out by injecting into the chamber a reactive gas composed of fluorine and activating said gas by a plasma source located in situ or at a distance from the chamber.
  • said cleaning comprises the following steps:
  • step (ii) injection, according to a sequence of pulses, of chemical species adapted to volatilize said oxidized copper, said step (ii) starting after the start of step (i) and taking place either after the end of the step (i) during part of step (i).
  • the first pulse of step (ii) is implemented after the beginning of step (i), whether said step is completed or not.
  • Step (i) can be performed by injecting oxidizing species comprising at least one of the following species: oxygen, ozone, nitrous oxide. Said oxidizing species can be injected continuously during the entire cleaning process.
  • the chemical species used to volatilize oxidized copper include hfacH (hexafluoroacetylacetone).
  • said chemical species adapted to volatilize the oxidized metal deposit could also react with the copper deposit, and thus passivate the exposed surface of said deposit.
  • This passivation reaction of the metal deposition 2 is a parasitic reaction which limits or blocks any oxidation reaction of said deposition by the oxidizing species.
  • the chemical species adapted to volatilize the oxidized copper deposit are injected, in step (ii), according to a sequence of pulses.
  • the chamber 200 can be maintained at a temperature between 20 and 250 ° C so as to maintain gaseous form the chemical species adapted to volatilize the copper deposit.
  • the temperature of the chamber 200 is maintained at a temperature between 20 and 150 ° C, more preferably between 20 and 100 ° C.
  • the pressure in the chamber 200 is maintained between 0.1 and 10 Torr, or, preferably, between 1 and 5 Torr.
  • the duration of the injection pulse (s) of the chemical species adapted to volatilize the oxidized metal deposit is between 0.02 s and 5 s, and the delay between two consecutive pulses (if any) is between 0.02 s and 10 s;
  • the duration of the injection pulse (s) of the chemical species adapted to volatilize the oxidized metal deposit is between 0.02 s and 1 s, and the delay between two consecutive pulses (if any) is between 0.02 s and 1 s;
  • the duration of the injection pulse (s) of the chemical species adapted to volatilize the oxidized metal deposit is between 1 s and 5 s, and the delay between two consecutive pulses (if any) is between 1 s and 10 s .
  • the pulse duration of the pulse sequence is adjusted so that the oxidized copper layer is not fully volatilized.
  • the remaining portion of the oxidized copper layer forms a barrier to the passivation of the metal deposit by the chemical species injected in step (ii).
  • the passivation reaction is then blocked.
  • the chemical species are injected in sub-stoichiometric amount relative to the amount of the metal deposit oxidized between said two successive pulses.
  • the aforementioned sub-stoichiometric amount is determinable by knowing both the amount of the oxidized copper deposit in step (i) between two pulses of the pulse sequence of step (ii), and the mechanism of volatilization reaction of said oxidized copper deposit with the chemical species.
  • the mode of injection of the chemical species adapted to volatilize the oxidized copper deposit thus has many advantages.
  • the first advantage is to provide an effective cleaning process. Indeed, the parasitic reaction comprising the passivation of copper deposition by the chemical species injected is thus neutralized. The neutralization of said parasitic reaction avoids having to open the chamber 200, and to use a decontamination process thereof.
  • the second advantage is to control the amount of chemical species injected in step (ii), and thus reduces the cost of the cleaning process.
  • This cleaning makes it possible to minimize the risk of deposition of particles on the surface of the substrate 1 and thus to improve the quality of the deposited layers. It also allows to increase the number of plates that can be deposited before a chemical bath cleaning of the room.
  • the titanium nitride or tantalum and copper layers are not only formed with good compliance in a reduced time (typically of the order of 2 minutes for a 40 nm layer) but also that they have a better quality which minimizes the risk of subsequent electromigration of copper.
  • the interconnection is more reliable and, in a longer period, than the existing interconnections.
  • said device comprises a first sealed and vacuumable deposition chamber 100 connected by a first injection route to a source of a titanium or tantalum precursor (not shown) and by a second injection path to a source of a nitrogen-based reactive gas (not shown), and a second sealed deposition chamber 200 connected to a copper source (not shown).
  • the device further comprises an inlet / outlet lock 400 through which the substrates on which the tantalum nitride or titanium and copper layers are to be formed and the substrates on which said layers have been formed are removed.
  • Said inlet / outlet airlock 400 opens into a sealed intermediate chamber 300, which is able to communicate separately with the first deposition chamber 100 and with second deposition chamber 200.
  • a system for handling and transporting the substrate (not shown) is arranged inside the device to allow the displacement of the substrate from one chamber to another.
  • the atmosphere in the chamber 300 is controlled, so as to avoid contamination of a substrate flowing between the different chambers.
  • the substrate moves between the intermediate chamber 300, the deposition chamber 100 and the deposition chamber 200, said chambers being fluidly isolated from one another during the implementation of the steps of the method.
  • the substrate avoids any mutual contamination of the rooms may generate deposits difficult to clean on the internal walls of the rooms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

L'invention concerne un procédé de fabrication d'une interconnexion comprenant un via (V) s'étendant au travers d'un substrat (1), comprenant successivement: (a) le dépôt d'une couche (11) de nitrure de titane ou de nitrure de tantale sur une surface principale (1A) du substrat et sur la surface intérieure (10A, 10B) d'au moins un trou (10) s'étendant dans au moins une partie de l'épaisseur dudit substrat, (b) le dépôt d'une couche (12) de cuivre sur ladite couche (11) de nitrure de titane ou de nitrure de tantale, (c) le remplissage du trou (10) par du cuivre, ledit procédé étant caractérisé en ce que pendant l'étape (a) le substrat (1) est agencé dans une première chambre de dépôt (100) et en ce que ladite étape (a) comprend l'injection d'un précurseur de titane ou de tantale en phase gazeuse dans la chambre de dépôt par une première voie d'injection selon une première séquence d'impulsionset l'injection d'un gaz réactif à base d'azote dans la chambre de dépôt par une seconde voie d'injection distincte de la première voie d'injection selon une seconde séquence d'impulsions, la première séquence d'impulsions et la seconde séquence d'impulsions étant déphasées.

Description

PROCEDE DE FABRICATION D'UNE INTERCONNEXION
COMPRENANT UN VIA S'ETENDANT AU TRAVERS D'UN SUBSTRAT
DOMAINE DE L'INVENTION
La présente invention concerne un procédé de fabrication d'une interconnexion comprenant un via s'étendant au travers d'un substrat.
ARRIERE PLAN DE L'INVENTION
Pour la réalisation de circuits intégrés, il est connu de fabriquer, au sein d'un substrat, par exemple de silicium, destiné à être connecté électriquement par ses deux faces principales à des composants électroniques, des vias traversants (TSV, acronyme du terme anglo-saxon « Through Silicon Via »).
La fabrication d'une telle interconnexion comprend typiquement :
- la formation d'un trou (en général non débouchant) dans l'épaisseur du substrat,
- le dépôt d'une couche de nitrure de titane ou de tantale sur la surface principale du substrat et sur la surface intérieure du trou,
- le dépôt d'une couche de cuivre sur la couche de nitrure de titane de sorte à amorcer l'étape suivante,
- le remplissage en cuivre du trou,
- l'enlèvement d'une partie du substrat opposée à la face principale sur laquelle les couches de nitrure de titane ou de tantale et de cuivre ont été déposées, jusqu'à exposer l'intérieur du trou, rendant ainsi le via traversant.
La couche de nitrure de titane ou de tantale a une fonction de barrière destinée à éviter la diffusion du cuivre dans le substrat.
Pour permettre une bonne conduction électrique par le via, les couches déposées doivent être conformes et de bonne qualité. Par « couche conforme » on entend une couche dont l'épaisseur mesurée dans une direction perpendiculaire à une surface sur laquelle elle est déposée est constante. En d'autres termes, la surface de ladite couche est parallèle à la surface sur laquelle elle est déposée.
Une conformité parfaite peut être obtenue au moyen d'un dépôt successif de monocouches atomiques par la technique ALD (acronyme du terme anglo-saxon « Atomic Layer Déposition ») mais ce dépôt est relativement lent, de sorte que le dépôt d'une couche de 100 à 200 nm d'épaisseur nécessite plusieurs heures et est donc particulièrement onéreux.
Le dépôt physique en phase vapeur (« PVD », acronyme du terme anglo-saxon « Physical Vapor Déposition ») est plus rapide et donc moins onéreux, mais procure une moins bonne conformité. Or, dans le cas des trous présentant un fort facteur de forme (rapport profondeur / largeur), c'est-à-dire un facteur de forme supérieur ou égal à 5 : 1 , voire supérieur ou égal à 10 : 1 , une faible conformité du dépôt impose de déposer une forte épaisseur de matériau sur la surface principale du substrat pour parvenir à obtenir une épaisseur suffisante dans le fond du trou. Au moins une partie de cette surépaisseur de matériau doit ensuite être retirée de la surface par polissage mécano-chimique (CMP, acronyme du terme anglo-saxon « Chemical Mechanical Polishing »), ce qui augmente le coût et la durée de l'étape et pose des problèmes de contamination de la surface polie, nécessitant un nettoyage ultérieur.
Enfin, le dépôt chimique en phase vapeur (CVD, acronyme du terme anglo-saxon
« Chemical Vapor Déposition ») procure une meilleure conformité que le procédé PVD mais il présente l'inconvénient d'introduire des contaminants (notamment du carbone) qui diminuent la qualité de la couche formée.
Or, la fabrication des vias nécessite le dépôt de couches de bonne qualité, c'est-à- dire notamment dépourvues d'impuretés, afin de minimiser l'apparition d'un phénomène d'électromigration du cuivre qui endommage le via au fil du temps.
BREVE DESCRIPTION DE L'INVENTION
Un but de l'invention est de concevoir un procédé de fabrication d'une interconnexion comprenant un via s'étendant au travers d'un substrat qui permette d'éviter les problèmes susmentionnés et qui permette en particulier d'améliorer la conformité des couches déposées et d'éviter le dépôt d'une surépaisseur de matériau à retirer ensuite de la surface principale du substrat. Un autre but de l'invention est également de procurer des interconnexions dont la fiabilité au cours du temps est accrue.
Conformément à l'invention, il est proposé un procédé de fabrication d'une interconnexion comprenant un via s'étendant au travers d'un substrat, comprenant successivement :
(a) le dépôt d'une couche de nitrure de titane ou de nitrure de tantale sur une surface principale du substrat et sur la surface intérieure d'au moins un trou s'étendant dans au moins une partie de l'épaisseur dudit substrat,
(b) le dépôt d'une couche cuivre sur ladite couche de nitrure de titane ou de nitrure de tantale,
(c) le remplissage du trou par du cuivre,
ledit procédé étant caractérisé en ce que pendant l'étape (a) le substrat est agencé dans une première chambre de dépôt et en ce que ladite étape (a) comprend l'injection d'un précurseur de titane ou de tantale en phase gazeuse dans la chambre de dépôt par une première voie d'injection selon une première séquence d'impulsions et l'injection d'un gaz réactif à base d'azote dans la chambre de dépôt par une seconde voie d'injection distincte de la première voie d'injection selon une seconde séquence d'impulsions, la première séquence d'impulsions et la seconde séquence d'impulsions étant déphasées.
De par sa mise en œuvre séquentielle et impulsionnelle, le dépôt de la couche de nitrure de titane ou de tantale permet une réaction chimique plus rapide mais aussi une meilleure conformité que le procédé CVD conventionnel. Par ailleurs, il favorise la réaction sur la surface du substrat et limite ainsi toute contamination de ladite surface due à des réactions parasites.
Par « largeur », on entend la plus petite dimension du trou dans le plan formé par la surface principale du substrat. Dans le présent texte, le terme « trou » désigne une ouverture de forme quelconque pratiquée dans une surface principale du substrat, et inclut par exemple une tranchée présentant une longueur supérieure à sa largeur, ou encore mais de manière non limitative un orifice circulaire (dans ce dernier cas, la largeur correspond au diamètre du trou).
Selon d'autres caractéristiques avantageuses dudit procédé, prises isolément ou en combinaison :
- l'étape (c) de remplissage du trou est mise en œuvre par électrodéposition de cuivre ;
- le remplissage du trou est réalisé en poursuivant le dépôt de cuivre réalisé à l'étape (b) ;
- l'épaisseur de la couche de nitrure de titane ou de nitrure de tantale déposée à l'étape (a) est inférieure ou égale à 100 nm ;
- l'épaisseur de la couche de cuivre déposée à l'étape (b) est comprise entre 50 et 300 nm ;
- le dépôt de la couche de cuivre à l'étape (b) est réalisé dans une seconde chambre de dépôt différente de la première chambre ;
- l'étape (b) est mise en œuvre par dépôt chimique en phase vapeur ;
- la première et la seconde chambre de dépôt sont connectées séparément de manière étanche à une chambre intermédiaire et entre les étapes (a) et (b), le substrat est transféré de la première chambre à la seconde chambre par la chambre intermédiaire sous vide d'air ;
- le via présente un facteur de forme supérieur ou égal à 5 : 1 ;
- le procédé comprend, après le remplissage du trou, l'enlèvement d'au moins une partie de l'épaisseur du substrat opposée à la surface principale sur laquelle la couche de nitrure de titane ou de nitrure de tantale et la couche de cuivre ont été déposées de sorte à exposer l'intérieur du via de sorte à rendre ledit via traversant ;
- après l'étape (a), le procédé comprend un nettoyage de la chambre dans laquelle la couche de nitrure de titane ou de nitrure de tantale a été déposée pour éliminer ledit nitrure de titane ou nitrure de tantale déposé sur une paroi intérieure de ladite chambre, ledit nettoyage étant effectué avec un gaz réactif composé de fluor et activé par une source plasma ;
- après l'étape (b), le procédé comprend un nettoyage de la chambre dans laquelle la couche de cuivre a été déposée pour éliminer ledit cuivre déposé sur une paroi intérieure de ladite chambre, ledit nettoyage comprenant les étapes suivantes :
(i) oxydation du cuivre ;
(ii) injection, selon une séquence d'impulsions, d'espèces chimiques adaptées pour volatiliser ledit cuivre oxydé, ladite étape (ii) débutant après le début de l'étape (i).
Un autre objet concerne un dispositif pour la mise en œuvre du procédé susmentionné. Ledit dispositif est caractérisé en ce qu'il comprend :
- une première chambre de dépôt étanche connectée à une source d'un précurseur de titane ou de tantale par une première voie d'injection et à une source d'un gaz réactif à base d'azote par une seconde voie d'injection distincte de la première voie,
- une seconde chambre de dépôt étanche connectée à une source de cuivre et
- une chambre intermédiaire à laquelle sont connectées séparément de manière étanche la première et la seconde chambre de dépôt.
BREVE DESCRIPTION DES DESSINS
D'autres caractéristiques et avantages de l'invention ressortiront de la description détaillée qui va suivre, en référence aux dessins annexés sur lesquels :
les figures 1A à 1 E illustrent différentes étapes du procédé selon un mode de réalisation de l'invention,
la figure 2 est un schéma de principe d'un dispositif pour la mise en œuvre du procédé.
Pour des raisons de lisibilité des figures, celles-ci ne sont pas nécessairement réalisées à l'échelle.
DESCRIPTION DETAILLEE DE L'INVENTION
Les figures 1A à 1 E illustrent des étapes successives de la formation d'une interconnexion.
En référence à la figure 1A, on fournit un substrat 1 dans lequel au moins un trou 10 a été formé à partir d'une surface principale 1A du substrat. Le substrat peut être tout substrat adapté pour la réalisation de circuits électroniques. Le substrat peut être massif (c'est-à-dire constitué d'un unique matériau) ou composite (c'est-à-dire constitué d'un empilement de différents matériaux). Par exemple mais de manière non limitative, le substrat peut être un substrat de silicium. Généralement, le trou n'est pas traversant, c'est-à-dire que sa profondeur est inférieure à l'épaisseur du substrat.
De manière avantageuse, le trou présente un facteur de forme supérieur à 5 : 1 , de préférence supérieur à 10 : 1. Toutefois, l'invention peut être mise en œuvre quel que soit le facteur de forme du trou.
On dépose tout d'abord une couche conforme 1 1 de nitrure de titane (TiN) ou de nitrure de tantale (TaN) sur la surface principale 1A du substrat, sur la paroi latérale 10A du trou et sur le fond 10B du trou.
Ledit dépôt est réalisé par dépôt chimique en phase vapeur mis en œuvre de manière puisée.
Plus précisément, on introduit le substrat dans une première chambre de dépôt (repère 100 sur la figure 2) comprenant deux voies d'injection distinctes : une première voie permet de connecter la chambre à une source d'un précurseur de titane ou de tantale et seconde voie permet de connecter la chambre à une source d'un gaz réactif à base d'azote. Par « à base d'azote » on entend que ledit gaz réactif contient majoritairement de l'azote mais qu'il peut éventuellement contenir d'autres espèces, telles que de l'hydrogène.
Selon un mode de réalisation avantageux, la première voie d'injection comprend une première pluralité de canaux par lesquels le précurseur de titane ou de tantale est injecté dans la chambre de dépôt et la seconde voie d'injection comprend une seconde pluralité de canaux par lesquels le gaz réactif à base d'azote est injecté dans la chambre de dépôt, l'ensemble desdits canaux débouchant dans la chambre de dépôt en regard de la surface du substrat.
De manière connue en elle-même, le substrat est mis en place dans la chambre de dépôt sur un porte substrat comprenant éventuellement un système de chauffage du substrat à une température avantageuse pour le dépôt.
Le dépôt comprend l'injection dudit précurseur de titane ou de tantale en phase gazeuse dans la chambre de dépôt par la première voie d'injection selon une première séquence d'impulsions et l'injection du gaz réactif à base d'azote dans la chambre de dépôt par la seconde voie d'injection distincte de la première voie d'injection selon une seconde séquence d'impulsions, la première séquence d'impulsions et la seconde séquence d'impulsions étant déphasées.
Par « séquence d'impulsions », on entend au minimum une impulsion par séquence. Ce procédé est appelé CVD puisé. Un tel procédé a été décrit, pour des applications et des matériaux différents de ceux visés dans la présente invention, dans le document WO 2015/140261.
Suivant des modes de mise en œuvre, tel que décrit dans WO 2015/140261 : - La durée d'une impulsion de la première séquence d'impulsions est comprise entre 0,02 s et 5 s ;
- Le délai entre deux impulsions de la première séquence d'impulsions est compris entre 0,5 s et 10 s ;
- La durée d'une impulsion de la seconde séquence d'impulsions est comprise entre
0,02 s et 5 s ;
- Le délai entre deux impulsions de la seconde séquence d'impulsions est compris entre 0,5 s et 10 s.
Suivant d'autres modes de mise en œuvre :
- La durée d'une impulsion de la première séquence d'impulsions, respectivement de la seconde séquence d'impulsions, est comprise entre 0,02 s et 5 s ;
- Le délai entre deux impulsions de la première séquence d'impulsions, respectivement de la seconde séquence d'impulsions, est compris entre 0,02 s et 10 s.
Suivant d'autres modes de mise en œuvre :
- La durée d'une impulsion de la première séquence d'impulsions, respectivement de la seconde séquence d'impulsions, est comprise entre 0,02 s et 1 s ;
- Le délai entre deux impulsions de la première séquence d'impulsions, respectivement de la seconde séquence d'impulsions, est compris entre 0,02 s et 1 s.
Suivant d'autres modes de mise en œuvre :
- La durée d'une impulsion de la première séquence d'impulsions, respectivement de la seconde séquence d'impulsions, est comprise entre 1 s et 5 s ;
- Le délai entre deux impulsions de la première séquence d'impulsions, respectivement de la seconde séquence d'impulsions, est compris entre 1 s et 10 s.
Le temps de parcours des espèces injectées dans la chambre est défini par le temps nécessaire auxdites espèces pour parcourir la distance comprise entre la sortie de la voie d'injection respective et la surface libre du substrat. L'injection des différentes espèces est réalisée selon une séquence adaptée pour que la réaction entre lesdites espèces se déroule essentiellement sur la surface libre du substrat.
De manière avantageuse le système de chauffage du porte substrat chauffe le substrat à une température supérieure à la température à laquelle les espèces sont injectées dans la chambre. La vitesse de réaction entre les espèces étant croissante avec la température, ladite vitesse de réaction est ainsi supérieure sur la surface libre du substrat.
La première séquence d'impulsions et la seconde séquence d'impulsions sont déphasées, c'est-à-dire qu'il existe au cours du procédé de dépôt successivement des instants pendant lesquels seul le précurseur de titane ou de tantale est injecté dans la chambre de dépôt et des instants pendant lesquels seul le gaz réactif à base d'azote est injecté dans la chambre de réaction. Eventuellement, il peut également exister des instants pendant lesquels une injection simultanée est mise en œuvre et/ou des instants pendant lesquels aucune injection n'a lieu.
Par ailleurs, la pression dans la chambre de dépôt est supérieure à une valeur prédéterminée pendant toute la durée du procédé contrairement aux techniques de dépôt par couche atomique (ALD). En effet, le dépôt par ALD comprend l'injection d'un seul type d'espèce à la fois, et nécessite une purge complète de la chambre avant que l'autre type d'espèce ne soit injecté. Dans le cas de la présente invention, il est possible de s'affranchir de systèmes de pompages complexes et des étapes de purges ralentissant les vitesses de dépôt de couches sur les substrats. Par exemple, la pression dans la chambre de dépôt est supérieure à 500 mTorr, de préférence supérieure à 1 Torr.
Grâce à ce procédé, il est possible de conserver l'avantage d'une vitesse de dépôt d'une couche sur la surface d'un substrat comparable à la technique de dépôt en phase vapeur (CVD). Par ailleurs, la conformité du dépôt de la couche est grandement améliorée par rapport à la technique de dépôt en phase vapeur conventionnelle. En outre, ce procédé favorise une réaction entre le précurseur de tantale ou de titane et le gaz réactif à base d'azote sur la surface du substrat, limitant ainsi les réactions parasites et une contamination susceptible de dégrader les propriétés de la couche formée sur la surface du substrat.
On dépose ainsi une couche conforme 1 1 de nitrure de titane ou de nitrure de tantale, ladite couche présentant avantageusement une épaisseur inférieure ou égale à
100 nm. Ladite couche remplit une fonction de barrière à la diffusion du cuivre utilisé pour remplir le trou vers le substrat.
En référence à la figure 1 B, on forme ensuite, sur la couche 1 1 , une couche conforme 12 de cuivre, sur une épaisseur généralement comprise entre 50 et 300 nm.
A cet effet, le substrat 1 recouvert de la couche 1 1 est avantageusement déplacé vers une seconde chambre de dépôt (repère 200 sur la figure 2) distincte de la première chambre et isolée vis-à-vis de celle-ci. De manière préférée, ledit déplacement est effectué sans mise à l'atmosphère du substrat, ce qui évite toute contamination ou oxydation. En effet, une contamination ou une oxydation des couches déposées est susceptible de diminuer l'adhésion desdites couches et de favoriser une électromigration du cuivre lors du fonctionnement d'un dispositif comprenant le via.
Le dépôt de la couche 12 peut être mis en œuvre par toute technique appropriée.
De manière avantageuse, ledit dépôt est réalisé par dépôt chimique en phase vapeur, puisé ou non.
En référence à la figure 1 C, on remplit le trou 10 de cuivre. Dans le cas où le trou présente une largeur inférieure à 1 μηη, ledit remplissage peut être effectué en poursuivant le dépôt de cuivre effectué à l'étape précédente. De manière alternative, et notamment dans le cas où le trou présente une largeur supérieure à 1 μηη, le remplissage du trou peut être réalisé par électrodéposition, cette technique étant plus rapide et moins onéreuse que le dépôt chimique en phase vapeur.
En référence à la figure 1 D, on rend traversant le via V ainsi formé en retirant au moins une partie 1 B de l'épaisseur du substrat opposée à la surface principale 1A. Ce retrait peut être réalisé par exemple par polissage, notamment par polissage mécano- chimique (CMP).
En référence à la figure 1 E, on retire au moins une partie des couches de nitrure de tantale ou de titane et de cuivre de la surface principale 1A du substrat par polissage mécano-chimique.
Les étapes illustrées sur les figures 1 D et 1 E peuvent éventuellement être interverties.
Selon une forme d'exécution de l'invention, la chambre 100 et/ou la chambre 200 peut être nettoyée après l'étape de dépôt, une fois que le substrat a été retiré de la chambre.
En ce qui concerne la première chambre de dépôt 100, ledit nettoyage est effectué avantageusement en injectant dans la chambre un gaz réactif composé de fluor et en activant ledit gaz par une source plasma située in-situ ou à distance de la chambre.
En ce qui concerne la seconde chambre de dépôt 200, ledit nettoyage comprend les étapes suivantes :
(i) oxydation du cuivre ;
(ii) injection, selon une séquence d'impulsions, d'espèces chimiques adaptées pour volatiliser ledit cuivre oxydé, ladite étape (ii) débutant après le début de l'étape (i) et se déroulant soit après la fin de l'étape (i) soit pendant une partie de l'étape (i). En d'autres termes, la première impulsion de l'étape (ii) est mise en œuvre après le début de l'étape (i), que ladite étape soit terminée ou non.
L'étape (i) peut être exécutée par injection d'espèces oxydantes comprenant au moins une des espèces suivantes : oxygène, ozone, protoxyde d'azote. Lesdites espèces oxydantes peuvent être injectées en continu durant toute la durée du procédé de nettoyage.
Dans le cas du cuivre, les espèces chimiques utilisées pour volatiliser le cuivre oxydé comprennent du hfacH (hexafluoroacetylacetone). Cependant, lesdites espèces chimiques adaptées pour volatiliser le dépôt métallique oxydé pourraient également réagir avec le dépôt de cuivre, et ainsi passiver la surface exposée dudit dépôt. Cette réaction de passivation du dépôt métallique 2 est une réaction parasite qui limite ou bloque toute réaction d'oxydation dudit dépôt par les espèces oxydantes. Afin d'éviter cette réaction parasite, les espèces chimiques adaptées pour volatiliser le dépôt de cuivre oxydé sont injectées, à l'étape (ii), selon une séquence d'impulsions. La chambre 200 peut être maintenue à une température comprise entre 20 et 250°C de manière à maintenir sous forme gazeuse les espèces chimiques adaptées pour volatiliser le dépôt de cuivre. De préférence, la température de la chambre 200 est maintenue à une température comprise entre 20 et 150°C, de préférence encore entre 20 et 100°C. La pression dans la chambre 200 est maintenue entre 0,1 et 10 Torr, ou, de manière préférentielle, entre 1 et 5 Torr.
Suivant des modes de mise en œuvre :
- la durée de la ou des impulsions d'injection des espèces chimiques adaptées pour volatiliser le dépôt métallique oxydé est comprise entre 0,02 s et 5 s, et le délai entre deux impulsions consécutives (le cas échéant) est compris entre 0,02 s et 10 s ;
- la durée de la ou des impulsions d'injection des espèces chimiques adaptées pour volatiliser le dépôt métallique oxydé est comprise entre 0,02 s et 1 s, et le délai entre deux impulsions consécutives (le cas échéant) est compris entre 0,02 s et 1 s ;
- la durée de la ou des impulsions d'injection des espèces chimiques adaptées pour volatiliser le dépôt métallique oxydé est comprise entre 1 s et 5 s, et le délai entre deux impulsions consécutives (le cas échéant) est compris entre 1 s et 10 s.
De manière avantageuse, la durée des impulsions de la séquence d'impulsions est ajustée de sorte que la couche de cuivre oxydé ne soit pas intégralement volatilisée. Ainsi, la portion de couche de cuivre oxydé restante forme une barrière à la passivation du dépôt métallique par les espèces chimiques injectées à l'étape (ii). La réaction de passivation se trouve alors bloquée. Dit autrement, au cours de l'injection des espèces chimiques pour volatiliser le dépôt métallique oxydé, lors de l'impulsion la plus tardive de deux impulsions successives, les espèces chimiques sont injectées en quantité sous- stœchiométrique par rapport à la quantité du dépôt métallique oxydé entre lesdites deux impulsions successives. La quantité sous-stœchiométrique susmentionnée est déterminable par la connaissance à la fois de la quantité du dépôt de cuivre oxydé à l'étape (i) entre deux impulsions de la séquence d'impulsions de l'étape (ii), et du mécanisme de réaction de volatilisation dudit dépôt de cuivre oxydé avec les espèces chimiques.
Le mode d'injection des espèces chimiques adaptées pour volatiliser le dépôt de cuivre oxydé présente ainsi de nombreux avantages. Le premier avantage est de procurer un procédé de nettoyage efficace. En effet, la réaction parasite comprenant la passivation du dépôt de cuivre par les espèces chimiques injectées est ainsi neutralisée. La neutralisation de ladite réaction parasite évite d'avoir à ouvrir la chambre 200, et d'avoir recours à un processus de décontamination de cette dernière. Le second avantage est de pouvoir contrôler la quantité d'espèces chimiques injectées à l'étape (ii), et permet ainsi de réduire le coût du procédé de nettoyage.
Ce nettoyage permet de minimiser le risque de dépôt de particules sur la surface du substrat 1 et ainsi d'améliorer la qualité des couches déposées. Cela permet aussi d'augmenter le nombre de plaques qui peuvent être déposées avant un nettoyage par bain chimique de la chambre.
Il résulte des différentes mesures décrites plus haut que les couches de nitrure de titane ou de tantale et de cuivre sont non seulement formées avec une bonne conformité dans un temps réduit (typiquement, de l'ordre de 2 minutes pour une couche de 40 nm), mais aussi qu'elles présentent une meilleure qualité qui minimise le risque d'électromigration ultérieure du cuivre. Ainsi, l'interconnexion est plus fiable et ce, dans une plus longue durée, que les interconnexions existantes.
On va maintenant décrire un exemple d'un dispositif permettant la formation du via selon le procédé décrit ci-dessus.
En référence à la figure 2, ledit dispositif comprend une première chambre de dépôt 100 étanche et apte à être mise sous vide, connectée par une première voie d'injection à une source d'un précurseur de titane ou de tantale (non représentée) et par une seconde voie d'injection à une source d'un gaz réactif à base d'azote (non représentée), ainsi qu'une seconde chambre de dépôt 200 étanche connectée à une source de cuivre (non représentée).
Le dispositif comprend en outre un sas d'entrée/sortie 400 par lequel on introduit les substrats sur lesquels on doit former les couches de nitrure de tantale ou de titane et de cuivre et on retire les substrats sur lesquels lesdites couches ont été formées.
Ledit sas d'entrée/sortie 400 débouche dans une chambre intermédiaire 300 étanche, laquelle est apte à communiquer séparément avec la première chambre de dépôt 100 et avec seconde chambre de dépôt 200. Un système de manipulation et de transport du substrat (non représenté) est agencé à l'intérieur du dispositif pour permettre le déplacement du substrat d'une chambre à une autre.
L'atmosphère dans la chambre 300 est contrôlée, de sorte à éviter toute contamination d'un substrat circulant entre les différentes chambres.
Ainsi, au cours de la formation de la couche de nitrure de tantale ou de titane, le substrat se déplace entre la chambre intermédiaire 300, la chambre de dépôt 100 et la chambre de dépôt 200, lesdites chambres étant fluidiquement isolées les unes des autres pendant la mise en œuvre des étapes du procédé. Ainsi, on évite toute contamination mutuelle des chambres susceptible de générer des dépôts difficiles à nettoyer sur les parois internes des chambres.

Claims

REVENDICATIONS
1 . Procédé de fabrication d'une interconnexion comprenant un via (V) s'étendant au travers d'un substrat (1 ), comprenant successivement :
(a) le dépôt d'une couche (1 1 ) de nitrure de titane ou de nitrure de tantale sur une surface principale (1A) du substrat et sur la surface intérieure (10A, 10B) d'au moins un trou (10) s'étendant dans au moins une partie de l'épaisseur dudit substrat,
(b) le dépôt d'une couche (12) de cuivre sur ladite couche (1 1 ) de nitrure de titane ou de nitrure de tantale,
(c) le remplissage du trou (10) par du cuivre,
ledit procédé étant caractérisé en ce que pendant l'étape (a) le substrat (1 ) est agencé dans une première chambre de dépôt (100) et en ce que ladite étape (a) comprend l'injection d'un précurseur de titane ou de tantale en phase gazeuse dans la chambre de dépôt par une première voie d'injection selon une première séquence d'impulsions et l'injection d'un gaz réactif à base d'azote dans la chambre de dépôt par une seconde voie d'injection distincte de la première voie d'injection selon une seconde séquence d'impulsions, la première séquence d'impulsions et la seconde séquence d'impulsions étant déphasées, la pression dans la première chambre de dépôt (100) étant supérieure à 500 mTorr pendant toute la durée de l'étape a).
2. Procédé selon la revendication 1 , caractérisé en ce que la durée d'une impulsion de la première séquence d'impulsions, respectivement de la seconde séquence d'impulsions, est comprise entre 0,02 s et 5 s ; et le délai entre deux impulsions de la première séquence d'impulsions, respectivement de la seconde séquence d'impulsions, est compris entre 0, 02 s et 10 s, ou entre 0,5 s et 10 s.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que l'étape (c) de remplissage du trou (10) est mise en œuvre par électrodéposition de cuivre.
4. Procédé selon la revendication 1 ou 2, caractérisé en ce que le remplissage du trou (10) est réalisé en poursuivant le dépôt de cuivre réalisé à l'étape (b).
5. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'épaisseur de la couche (1 1 ) de nitrure de titane ou de nitrure de tantale déposée à l'étape (a) est inférieure ou égale à 100 nm.
6. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'épaisseur de la couche (12) de cuivre déposée à l'étape (b) est comprise entre 50 et 300 nm.
7. Procédé selon l'une des revendications précédentes caractérisé en ce que le dépôt de la couche (12) de cuivre à l'étape (b) est réalisé dans une seconde chambre de dépôt (200) différente de la première chambre (100).
8. Procédé selon la revendication 7, caractérisé en ce que l'étape (b) est mise en œuvre par dépôt chimique en phase vapeur.
9. Procédé selon l'une des revendications 7 ou 8, caractérisé en ce que la première et la seconde chambre de dépôt (100, 200) sont connectées séparément de manière étanche à une chambre intermédiaire (300) et en ce qu'entre les étapes (a) et (b), le substrat est transféré de la première chambre (100) à la seconde chambre (200) par la chambre intermédiaire (300) sous vide d'air.
10. Procédé selon l'une des revendications précédentes, caractérisé en ce que le via (V) présente un facteur de forme supérieur ou égal à 5 : 1.
1 1 . Procédé selon l'une des revendications précédentes, caractérisé en ce qu'il comprend, après le remplissage du trou (10), l'enlèvement d'au moins une partie (1 B) de l'épaisseur du substrat (1 ) opposée à la surface principale (1A) sur laquelle la couche de nitrure de titane ou de nitrure de tantale et la couche de cuivre ont été déposées de sorte à exposer l'intérieur du via (V) de sorte à rendre ledit via traversant.
12. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'après l'étape (a), il comprend un nettoyage de la chambre (100) dans laquelle la couche (10) de nitrure de titane ou de nitrure de tantale a été déposée pour éliminer ledit nitrure de titane ou nitrure de tantale déposé sur une paroi intérieure de ladite chambre, ledit nettoyage étant effectué avec un gaz réactif composé de fluor et activé par une source plasma.
13. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'après l'étape (b), il comprend un nettoyage de la chambre (200) dans laquelle la couche (1 1 ) de cuivre a été déposée pour éliminer ledit cuivre déposé sur une paroi intérieure de ladite chambre, ledit nettoyage comprenant les étapes suivantes :
(i) oxydation du cuivre ; (ii) injection, selon une séquence d'impulsions, d'espèces chimiques adaptées pour volatiliser ledit cuivre oxydé, ladite étape (ii) débutant après le début de l'étape (i).
14. Dispositif pour la mise en œuvre d'un procédé selon l'une des revendications 1 à 13, caractérisé en ce qu'il comprend :
- une première chambre de dépôt (100) étanche connectée à une source d'un précurseur de titane ou de tantale par une première voie d'injection et à une source d'un gaz réactif à base d'azote par une seconde voie d'injection distincte de la première voie,
- une seconde chambre de dépôt (200) étanche connectée à une source de cuivre et
- une chambre intermédiaire (300) à laquelle sont connectées séparément de manière étanche la première et la seconde chambre de dépôt (100, 200).
EP17701653.2A 2016-01-19 2017-01-16 Procede de fabrication d'une interconnexion comprenant un via s' etendant au travers d'un substrat Withdrawn EP3405974A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1650408A FR3046878B1 (fr) 2016-01-19 2016-01-19 Procede de fabrication d'une interconnexion comprenant un via s'etendant au travers d'un substrat
PCT/EP2017/050761 WO2017125336A1 (fr) 2016-01-19 2017-01-16 Procede de fabrication d'une interconnexion comprenant un via s' etendant au travers d'un substrat

Publications (1)

Publication Number Publication Date
EP3405974A1 true EP3405974A1 (fr) 2018-11-28

Family

ID=55590042

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17701653.2A Withdrawn EP3405974A1 (fr) 2016-01-19 2017-01-16 Procede de fabrication d'une interconnexion comprenant un via s' etendant au travers d'un substrat

Country Status (7)

Country Link
US (1) US11114340B2 (fr)
EP (1) EP3405974A1 (fr)
KR (1) KR20180118627A (fr)
CN (1) CN108475660A (fr)
FR (1) FR3046878B1 (fr)
TW (1) TW201733066A (fr)
WO (1) WO2017125336A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102619482B1 (ko) * 2019-10-25 2024-01-02 에이에스엠 아이피 홀딩 비.브이. 막 증착 공정에서의 정상 펄스 프로파일의 변형

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5186718A (en) * 1989-05-19 1993-02-16 Applied Materials, Inc. Staged-vacuum wafer processing system and method
US6284052B2 (en) * 1998-08-19 2001-09-04 Sharp Laboratories Of America, Inc. In-situ method of cleaning a metal-organic chemical vapor deposition chamber
US8696875B2 (en) * 1999-10-08 2014-04-15 Applied Materials, Inc. Self-ionized and inductively-coupled plasma for sputtering and resputtering
KR100363088B1 (ko) * 2000-04-20 2002-12-02 삼성전자 주식회사 원자층 증착방법을 이용한 장벽 금속막의 제조방법
WO2003008663A1 (fr) * 2001-07-16 2003-01-30 Applied Materials, Inc. Formation de films de nitrure de titane au moyen d'un processus de depot cyclique
US6916398B2 (en) * 2001-10-26 2005-07-12 Applied Materials, Inc. Gas delivery apparatus and method for atomic layer deposition
US6784096B2 (en) * 2002-09-11 2004-08-31 Applied Materials, Inc. Methods and apparatus for forming barrier layers in high aspect ratio vias
US7241686B2 (en) * 2004-07-20 2007-07-10 Applied Materials, Inc. Atomic layer deposition of tantalum-containing materials using the tantalum precursor TAIMATA
KR100667561B1 (ko) * 2005-02-18 2007-01-11 주식회사 아이피에스 박막 증착 방법
US20080242078A1 (en) * 2007-03-30 2008-10-02 Asm Nutool, Inc. Process of filling deep vias for 3-d integration of substrates
WO2009042713A1 (fr) * 2007-09-28 2009-04-02 Applied Materials, Inc. Dépôt en phase vapeur de matériaux à base de tungstène
US20100206737A1 (en) * 2009-02-17 2010-08-19 Preisser Robert F Process for electrodeposition of copper chip to chip, chip to wafer and wafer to wafer interconnects in through-silicon vias (tsv)
US8531033B2 (en) * 2009-09-07 2013-09-10 Advanced Interconnect Materials, Llc Contact plug structure, semiconductor device, and method for forming contact plug
US8907457B2 (en) * 2010-02-08 2014-12-09 Micron Technology, Inc. Microelectronic devices with through-substrate interconnects and associated methods of manufacturing
KR20120031811A (ko) * 2010-09-27 2012-04-04 삼성전자주식회사 반도체 장치 및 그 제조 방법
FR3018825B1 (fr) 2014-03-21 2017-09-01 Altatech Semiconductor Procede de depot en phase gazeuse

Also Published As

Publication number Publication date
FR3046878B1 (fr) 2018-05-18
KR20180118627A (ko) 2018-10-31
FR3046878A1 (fr) 2017-07-21
WO2017125336A1 (fr) 2017-07-27
TW201733066A (zh) 2017-09-16
US11114340B2 (en) 2021-09-07
CN108475660A (zh) 2018-08-31
US20210202314A1 (en) 2021-07-01

Similar Documents

Publication Publication Date Title
WO2015140261A1 (fr) Procédé de dépôt en phase gazeuse
FR2984594A1 (fr) Procede de realisation d'une tranchee profonde dans un substrat de composant microelectronique
EP3624169B1 (fr) Procede pour le traitement d'un substrat soi dans un equipement de nettoyage monoplaque
EP3377672A1 (fr) Procede de formation d'oxyde et/ou de nitrure d'aluminium
WO2015128399A2 (fr) Procede de realisation d'une structure par assemblage d'au moins deux elements par collage direct
EP3405974A1 (fr) Procede de fabrication d'une interconnexion comprenant un via s' etendant au travers d'un substrat
EP3465739A1 (fr) Procédé de formation d'un motif de guidage fonctionnalisé pour un procédé de grapho-épitaxie
EP3405598B1 (fr) Procede d'elimination d'un depot metallique dispose sur une surface dans une enceinte
FR2926925A1 (fr) Procede de fabrication d'heterostructures
WO2018065321A1 (fr) Procede d'injection d'especes chimiques en phase gazeuse sous forme pulsee avec plasma
FR3042067A1 (fr) Protection contre le claquage premature de dielectriques poreux interlignes au sein d'un circuit integre
EP4000090B1 (fr) Procédé de collage hydrophile de substrats
EP3172357A1 (fr) Procédé d'élimination d'un dépôt métallique disposé sur une surface dans une enceinte
FR2844396A1 (fr) Procede de realisation d'un composant electronique integre et dispositif electrique incorporant un composant integre ainsi obtenu
EP2843693A1 (fr) Procédé de réalisation d'un plot conducteur sur un élément conducteur
CA2856015C (fr) Machine adaptee pour metalliser une cavite d'un substrat semi-conducteur ou conducteur telle qu'une structure du type via traversant
WO2018172321A1 (fr) Procédé et dispositif réacteur pour la réalisation de couches minces mettant en œuvre une succession d'étapes de dépôts, et applications de ce procédé
EP3537489B1 (fr) Procédé de fabrication d'un dispositif traversant
EP3201120A1 (fr) Procede de controle de la fermeture de cavite par depot non conforme d'une couche
EP1183720A1 (fr) Procede de nettoyage d'une surface de substrat de silicium et application a la fabrication de composants electroniques integres
EP2144276A2 (fr) Dispositif de purge et procédé
EP2365743A2 (fr) Structure d'interconnexion comprenant des vias borgnes destines a etre metallises
FR2844395A1 (fr) Procede de realisation d'un composant electronique integre et dispositif electrique incorporant un composant integre ainsi obtenu

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180706

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190312