EP3483391B1 - Turbine blade of a turbine blade crown - Google Patents
Turbine blade of a turbine blade crown Download PDFInfo
- Publication number
- EP3483391B1 EP3483391B1 EP18204562.5A EP18204562A EP3483391B1 EP 3483391 B1 EP3483391 B1 EP 3483391B1 EP 18204562 A EP18204562 A EP 18204562A EP 3483391 B1 EP3483391 B1 EP 3483391B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cooling air
- cross
- turbine blade
- sectional area
- sub
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001816 cooling Methods 0.000 claims description 124
- 239000002826 coolant Substances 0.000 claims description 40
- 239000013598 vector Substances 0.000 claims description 14
- 230000001133 acceleration Effects 0.000 claims description 7
- 230000007423 decrease Effects 0.000 claims description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/187—Convection cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/02—Blade-carrying members, e.g. rotors
- F01D5/08—Heating, heat-insulating or cooling means
- F01D5/081—Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/141—Shape, i.e. outer, aerodynamic form
- F01D5/142—Shape, i.e. outer, aerodynamic form of the blades of successive rotor or stator blade-rows
- F01D5/143—Contour of the outer or inner working fluid flow path wall, i.e. shroud or hub contour
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/141—Shape, i.e. outer, aerodynamic form
- F01D5/145—Means for influencing boundary layers or secondary circulations
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/186—Film cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/30—Application in turbines
- F05D2220/32—Application in turbines in gas turbines
- F05D2220/323—Application in turbines in gas turbines for aircraft propulsion, e.g. jet engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/20—Rotors
- F05D2240/30—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
- F05D2240/301—Cross-sectional characteristics
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/201—Heat transfer, e.g. cooling by impingement of a fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/202—Heat transfer, e.g. cooling by film cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/94—Functionality given by mechanical stress related aspects such as low cycle fatigue [LCF] of high cycle fatigue [HCF]
- F05D2260/941—Functionality given by mechanical stress related aspects such as low cycle fatigue [LCF] of high cycle fatigue [HCF] particularly aimed at mechanical or thermal stress reduction
Definitions
- the invention relates to a turbine blade of a turbine rotor blade ring according to the preamble of patent claim 1.
- the EP 1 688 587 A2 describes a generic turbine blade in which a cooling air channel is formed in the blade root, which transports cooling air into the turbine blade.
- a turbine blade is known in which a cooling air channel for cooling air is formed in the blade root, which is symmetrical towards the pressure side and the suction side and thereby expands to a maximum.
- the cooling medium is deflected on both sides.
- the US 2010/290920 A1 describes a turbine blade that forms a cooling air duct in the area of the blade root.
- the cooling air duct has a first, widening section and a second, narrowing section, the cooling medium in the second section being accelerated with a directional component in the direction of the suction side of the turbine blade.
- the first section of the cooling air duct is symmetrical.
- the object of the present invention is to provide a turbine blade in which a cooling medium enables improved cooling.
- a cooling air duct of a turbine blade has a course in at least one section such that its cross-sectional area increases in the flow direction of the cooling medium in a first, widening section to a maximum, then decreases again in a second, narrowing section behind the maximum, and the cooling medium in the second, narrowing section with a directional component in the direction of the suction side the turbine blade is accelerated. It is provided that the cooling air duct forms a bulge in the direction of the pressure side in the region of the maximum, the cooling medium being deflected in the direction of the pressure side in the first section and in the direction of the suction side in the second section.
- the present invention is based on the idea of first decelerating the cooling medium in the first, widening section and then accelerating it in the second, narrowing section, thereby shaping the cooling air duct in such a way that the cooling medium during acceleration, which is in itself experiences narrowing second section, is deflected towards the suction side of the turbine disc.
- the effect of the Coriolis force which accelerates the cooling medium during the rotation of the turbine blade in the direction of the pressure side, is at least partially compensated.
- the cooling medium can flow in an improved manner in the cooling air duct, although the heat transfer over all walls of the cooling air duct is evened out. The result is a more homogeneous temperature distribution and improved cooling of the turbine blade.
- the more homogeneous temperature distribution also reduces thermally induced stresses in the material of the turbine disk.
- the cooling air duct is shaped such that it forms a bulge in the direction of the pressure side in the area of the maximum, i.e. bulges only in the direction of the pressure side or more in the direction of the pressure side than in the direction of the suction side.
- This shape of the first section has the effect that the cooling medium can be guided in the direction of the pressure side in the first section and can thereby be accelerated or deflected effectively in the direction of the suction side in the second section.
- the invention leads to a bulge of the cooling air duct, which is caused by the widening and narrowing sections.
- the present invention is described with reference to a cylindrical coordinate system which has the coordinates x, r and ⁇ .
- X indicates the axial direction, r the radial direction and ⁇ the angle in the circumferential direction.
- the axial direction is generally identical to the machine axis of a gas turbine or a turbofan engine in which the invention is implemented. Starting from the x-axis, the radial direction points radially outwards.
- Terms such as “in front”, “behind”, “front” and “rear” refer to the axial direction or the flow direction in the gas turbine or the cooling air duct described here. The designation “before” thus means “upstream” and the designation “behind” means “downstream”. Terms such as “outer” or “inner” refer to the radial direction.
- the geometric course of a cooling air duct is expediently described here via its center line, which represents the connecting line of all geometric centers (centroids) of the cross-sectional areas of the cooling air duct.
- a cross-sectional area of the cooling air duct that is representative of the flow is defined such that the center line of the cooling air duct always penetrates the plane of the cross-sectional area perpendicularly.
- the normal vector of such a cross-sectional area corresponds to the tangent vector to the center line in the geometric center (center of area) of the respective cross-sectional area.
- the cooling air duct has a first cross-sectional area A1 at the beginning of the widening partial section, a second cross-sectional area A2 at the end of the narrowing partial section and a third cross-sectional area A3 at the maximum.
- the relationship between the first cross-sectional area A1 and the third cross-sectional area A3 is: 1 ⁇ A3 / A1 5. 5.
- the ratio of the maximum cross-sectional area to the cross-sectional area at the beginning of the first section should therefore be less than or equal to 5.
- the cross-sectional area should increase in the first partial area by a maximum of a factor of 5 in order to avoid an excessive delay in the flow of the cooling air medium.
- a further embodiment of the invention provides that the following applies to the ratio of first cross-sectional area A1, second cross-sectional area A2 and third cross-sectional area A3: A1 ⁇ A2 ⁇ A3. Mathematically this can also be expressed by the relationship: A3 / A1> A3 / A2.
- the (second) cross-sectional area at the end of the second, tapering partial area is therefore larger than the (first) cross-sectional area at the beginning of the first, widening partial area. Both of these cross sections are smaller than that maximum cross-section at the transition from the first section to the second section. It should be noted that the cooling medium in the second section also experiences an acceleration and direction component in the direction of the suction side of the turbine blade.
- a further embodiment of the invention provides that the cooling air duct does not exceed a maximum degree of divergence over the first, widening partial section. Similar to an opening angle definition for diffusers, the increase in the cross-sectional area of the cooling air duct in the first section is expediently related to the length of the flow path in the same, so that this ratio describes the degree of divergence in the first section. For the purposes of the present invention, this ratio is defined as A 3rd - A 1 2nd s ⁇ 6 .
- size s describes the length of the cooling air duct along its center line in the first section and sizes A1 and A3 already mentioned the cross-sectional areas of the cooling air duct at the beginning and at the end of the first section.
- the ratio thus defined which indicates the degree of divergence in the widening subsection, is thus a maximum of 6.
- the ratio mentioned is in the range between 1.25 and 6 and in particular in the range between 1.25 and 2: 1.25 ⁇ A 3rd - A 1 2nd s ⁇ 2nd .
- the design of the cooling air duct can be rotationally symmetrical or rotationally asymmetrical with respect to its center line.
- cooling air duct has a rotational asymmetry with respect to its center line in the region of the first section, that is to say the duct widening has a preferred direction.
- the expansion of the cooling air duct takes place solely or more strongly in the direction of the pressure side of the blading.
- the divergence in the first section in the direction of the pressure side of the blade is greater than the divergence in the direction of the suction side.
- the cooling air duct bulges out in the direction of the pressure side.
- the cooling medium in the second section can be accelerated more effectively in the direction of the suction side.
- a divergence in the first section which is greater in the direction of the pressure side of the blade than in the direction of the suction side, is associated with the fact that the center line of the cooling air duct in the first section has a directional component in the direction of the pressure side of the turbine blade or is inclined in the direction of the pressure side.
- a further embodiment of the invention provides that the cooling air duct in the narrowing section has a deflection angle ⁇ that is smaller than 175 ° and is, for example, in the range between 110 ° and 170 °, in particular in the range between 140 ° and 170 °.
- the deflection angle indicates the degree of deflection of the cooling air duct in the second section. More precisely, ⁇ is defined as the angle that lies between the two vectors A 3 A 1 and A 3 A 2 spans. Both vectors describe the direct connection line between the geometric centers (centroids) of the cross-sectional areas A3 and A2 or A3 and A1. This definition thus indicates the mean deflection angle of the cooling air duct over both sections, in the direction of the suction side.
- the invention further provides that to accelerate the cooling medium in the second, narrowing section with a directional component in the direction of the suction side of the turbine blade, the cooling air duct is shaped such that the center line of the cooling air duct in the narrowing section is a directional component in the direction of the suction side of the Has turbine blade.
- the first, widening section according to the invention is shaped such that the center line of the cooling air duct in the first section has a directional component in the direction of the pressure side of the turbine blade.
- a beginning of a first, widening partial section is to exist if the cooling air duct upstream of such a beginning has a constant cross-sectional area profile, a convergent profile or a divergent profile that is so slight that the cross-sectional area along the The center line of the cooling air duct upstream of the considered beginning of the first section was only slightly enlarged.
- the degree of divergence of the cooling air duct ⁇ A 2nd s is less than 1.25, so 1.25 > ⁇ A 2nd s applies.
- the cooling air duct under consideration can basically have an embodiment according to the invention at any point in the turbine blade for accelerating the cooling medium in the direction of the suction side.
- Such an embodiment is particularly effectively provided in a section of the cooling air duct in which the cooling medium primarily moves in the radial direction and before the cooling air duct branches into a plurality of smaller cooling ducts.
- an embodiment of the invention provides that the turbine blade has a blade root which is provided and suitable for being arranged in a blade root receptacle of a turbine disk, the first widening section and the second narrowing section being formed in a section of the cooling air duct , which is arranged in the blade root.
- a further embodiment of the invention provides that the cross-sectional area of the second, narrowing subsection decreases successively behind the maximum and without a jump.
- a method for transporting a cooling medium in a turbine blade of a turbine blade ring provides that the cooling medium is decelerated in a first section of the cooling air duct and then accelerated in a subsequent second section with a directional component in the direction of the suction side of the turbine blade.
- the cooling medium is guided such that it first experiences a directional component in the direction of the pressure side in the first section and a directional component in the direction of the suction side in the second section and is thus diverted in the direction of the suction side.
- the Figure 1 schematically shows a turbofan engine 100, which has a fan stage with a fan 10 as a low-pressure compressor, a medium-pressure compressor 20, a high-pressure compressor 30, a combustion chamber 40, a high-pressure turbine 50, a medium-pressure turbine 60 and a low-pressure turbine 70.
- the medium pressure compressor 20 and the high pressure compressor 30 each have a plurality of compressor stages, each comprising a rotor stage and a stator stage.
- the turbofan engine 100 of the Figure 1 furthermore has three separate shafts, a low-pressure shaft 81, which connects the low-pressure turbine 70 to the fan 10, a medium-pressure shaft 82, which connects the medium-pressure turbine 60 to the medium-pressure compressor 20, and a high-pressure shaft 83, which connects the high-pressure turbine 50 to the high-pressure compressor 30.
- this is only to be understood as an example.
- the turbofan engine has no medium pressure compressor and no medium pressure turbine, only a low pressure shaft and a high pressure shaft are present.
- the turbofan engine 100 has an engine nacelle 1, which comprises an inlet lip 14 and forms an engine inlet 11 on the inside, which supplies inflowing air to the fan 10.
- the fan 10 has a plurality of fan blades 101, which are connected to a fan disk 102.
- the annulus of the fan disk 102 forms the radially inner boundary of the flow path through the fan 10. Radially outside, the flow path is delimited by a fan housing 2.
- a nose cone 103 is arranged upstream of the fan disk 102.
- the turbofan engine 100 forms a secondary flow channel 4 and a primary flow channel 5.
- the primary flow duct 5 leads through the core engine (gas turbine), which comprises the medium-pressure compressor 20, the high-pressure compressor 30, the combustion chamber 40, the high-pressure turbine 50, the medium-pressure turbine 60 and the low-pressure turbine 70.
- the medium-pressure compressor 20 and the high-pressure compressor 30 are surrounded by a circumferential housing 29 that forms an annular space on the inside that delimits the primary flow channel 5 radially on the outside. Radially on the inside, the primary flow duct 5 is delimited by corresponding ring surfaces of the rotors and stators of the respective compressor stages or by the hub or elements of the corresponding drive shaft connected to the hub.
- a primary flow flows through the primary flow duct 5, which is also referred to as the main flow duct.
- the secondary flow duct 4 also referred to as a bypass duct or bypass duct, directs air sucked in by the fan 10 past the core engine during operation of the turbofan engine 100.
- the components described have a common axis of rotation or machine 90.
- the axis of rotation 90 defines an axial direction of the turbofan engine.
- a radial direction of the turbofan engine is perpendicular to the axial direction.
- the configuration of the turbine blades, in particular the turbine blades of the high-pressure turbine 50, is important in the context of the present invention. However, the principles of the present invention are also applicable to turbine blades of other turbine stages.
- the turbine blades considered in the context of the invention are part of a rotor blade arrangement which comprises a turbine disk and a turbine rotor blade ring with turbine rotor blades.
- the turbine blades are referred to as turbine blades in the context of this description.
- the turbine disk For fastening the turbine blades at an equidistant distance on the circumference of the turbine disk, the turbine disk has a plurality of blade root receptacles on its periphery, each of which serves to receive a blade root of a moving blade. It can be provided that the blade feet are designed as so-called "fir tree feet".
- the blade root receptacles are designed in a corresponding manner.
- the Turbine disk has channels which serve to provide cooling air for cooling the turbine blades.
- the Figure 2 shows an exemplary embodiment of a negative model of a turbine blade.
- the hollows of the turbine blade are shown in the negative model.
- These form a system 15 of cooling air channels, which serve to cool the turbine blade.
- the system 15 of cooling air ducts comprises two inlet cooling air ducts 16, 17, both of which extend in the blade root of the turbine blade.
- the input cooling air channels 16, 17 form a bulge 7 in which the cross-sectional area of the input cooling air channels 16, 17 has a maximum.
- the one input channel 16 extends as a cooling air channel 161 adjacent to the front edge of the turbine blade.
- the other input duct 17 forms a cooling air duct with three serpentine-like sections 171, 172, 173 in the direction of flow behind the bulge 7, which run essentially in the radial direction and are connected to one another by curved regions.
- the Figure 2 is only to be understood as an example.
- the exact shape and number of cooling air channels and the type of cooling are not important for the present invention.
- film cooling and / or cooling by convection can take place.
- Only the bulge 7 formed in the inlet cooling air channels 16, 17 is of importance for the present invention.
- the cooling air channels basically have any cross-sectional shape, for example circular, elliptical or rectangular.
- the Figures 3 and 4th show a turbine blade 200 that includes a system 15 of cooling air ducts corresponding to FIG Figure 2 having. This is in the Figures 3 and 4th indicated by a transparent representation of the turbine blade.
- the turbine blade 200 is in the Figure 3 in a view from the front, ie in a view in the axial direction shown on the front edge of the blade.
- the turbine blade 200 is in the Figure 4 shown in a side view of the print page.
- the turbine blade 200 comprises a blade root 21 and an airfoil 22.
- the blade root 21 is provided to be arranged in a blade root receptacle of a turbine blade. For example, it has a fir tree profile 23.
- the airfoil 22 includes a suction side 24, a pressure side 25, a front edge 26, a rear edge 27, a blade tip 28.
- the airfoil 22 projects into the primary flow channel of the turbofan engine.
- the circumferential direction ⁇ is perpendicular to x and r.
- the axial direction x can be identical to the machine axis of a gas turbine in which the invention is implemented, but can also deviate therefrom (for example if the rotor blades are inserted into the blade root receptacles at an angle to the machine axis).
- the input cooling air channels 16, 17 and the cooling air channels 161, 171, 172, 173 extend essentially in the radial direction.
- the in the Figure 2 shown and in the Figure 3 Recognizable bulge 7 extends in the direction of the pressure side 25 of the turbine blade 200.
- the Figure 5 shows an enlarged view in a perspective view obliquely from the front of the blade root 21, in which the inlet cooling air channels 16, 17 are formed.
- the illustration ends at a sectional area A, which forms a cross-sectional area of the blade root 21 perpendicular to the radial direction r.
- the shape of the one input cooling air duct 16 is schematically ( Figure 6 ) and on the other hand using an exemplary embodiment ( Figures 7-10 ) explained by way of example.
- the statements apply in a corresponding manner to the further input cooling air duct 17 in FIG Figures 3-5 , It is not imperative that both inlet cooling air ducts 16, 17 have a shape according to the invention.
- the turbine blade 200 does not necessarily have to have a plurality of inlet cooling air ducts 16, 17. In alternative configurations of the invention, only one input cooling air duct is provided, which is then designed as described below.
- the Figure 6 is a three-dimensional representation of an input cooling air duct 16 (hereinafter referred to as cooling air duct 16).
- the cooling air duct 16 comprises a first, widening section 3, in which the cross-sectional area of the cooling air channel 16 increases in the flow direction of the cooling medium from a cross-sectional area A1 at the beginning of the widening section 3 to a maximum A3.
- the first, widening section 3 is followed by a second, narrowing section 6, in which the cross-sectional area is reduced from the maximum cross-sectional area A3 to a cross-sectional area A2 at the end of the narrowing section 6.
- the wall of this subsection is formed towards the pressure side 25 by a wall contour 31 and towards the suction side 24 through a wall contour 32.
- the wall of this subsection is formed towards the pressure side 25 by a wall contour 61 and towards the suction side 24 through a wall contour 62.
- the changing cross sections of the cooling air duct 16 lead to a delay in the flow rate of the cooling medium in the widening section 3 and to an acceleration of the flow rate of the cooling medium in the tapering section 6.
- the cooling air duct 16 is further shaped in the sections 3, 6 under consideration such that the cooling medium in the second, narrowing subsection 6 is accelerated with a directional component in the direction of the suction side of the turbine blade. This acceleration of the cooling medium counteracts an acceleration of the cooling medium due to the Coriolis force. In this way, in a cross-sectional plane under consideration, the heat transfer is homogenized on all wall areas of the cooling air duct.
- the cooling air channel 16 forms the bulge 7 on the pressure side, the cooling medium being deflected in the first partial area 3 in the direction of the pressure side and in the second partial area 6 in the direction of the suction side.
- the exact shape is as follows.
- the cross-sectional area A1 is the cross-sectional area at the beginning of the first subarea 3. Starting from this, the cross-sectional area of the cooling air duct increases rotationally asymmetrically with respect to its center line in the direction of the pressure side.
- the geometric course of the cooling air duct 16 is described over its center line, which is the connecting line of all represents geometric centers (ie centroids) of the cross-sectional areas of the cooling air duct.
- a cross-sectional area of the cooling air duct 16 that is representative of the cooling air flow is defined such that the center line of the cooling air duct 16 always penetrates the plane of the cross-sectional area perpendicularly. In other words, the normal vector of such a cross-sectional area corresponds to the tangent vector to the center line in the geometric center (center of area) of the respective cross-sectional area.
- the cross-sectional expansion can be rotationally symmetrical or alternatively rotationally asymmetrical with respect to the center line of the cooling air duct.
- the rotationally asymmetrical channel widening which is initially accompanied by a routing of the cooling air channel 16 in the direction of the pressure side, leads to an increase in the structurally feasible deflection angle ⁇ in the second partial area 6.
- the degree of divergence of the expanding cooling air duct 16 should not exceed a maximum degree of divergence. Similar to an opening angle definition for diffusers, the maximum increase in the cross-sectional area of the cooling air duct 16 in the first subsection 3 is expediently related to the length of the flow path in the same, so that this ratio describes the degree of divergence in the first subsection 3. For the purposes of the present invention, this maximum ratio is defined as A 3rd - A 1 2nd s ⁇ 6 .
- the size s describes the length of the cooling air duct along its center line in the first subsection 3 and the sizes A1 and A3 already mentioned the cross-sectional areas of the cooling air duct 16 at the beginning and respectively at the end of the first subsection 3.
- the ratio is between 1.25 and 2.
- the cross-sectional area ratio A3 / A1 is in the range between 1 and 5, for example between 2 and 4.
- the cross-sectional area A3 at the transition between the first partial area 3 and the second partial area 6 represents the maximum cross-sectional area. Starting from this maximum, the cooling air duct 16 tapers in the second partial area 6.
- the convergence of the cooling air duct in the second partial area 6 is defined by the ratio A3 / A2. It is provided that this ratio is less than the ratio A3 / A1, in other words A1 is less than A2 and A2 is less than A3: A 1 ⁇ A 2nd ⁇ A 3rd .
- the shape of the convergence in the second partial region 6 is determined, inter alia, by the convergence or deflection angle ⁇ .
- This is the angle ⁇ is defined as the angle that lies between the two vectors A 3 A 1 and A 3 A 2 spans. Both vectors describe the direct connection line between the geometric centers (centroids) 310, 210 and 110 of the cross-sectional areas A3 and A2 or A3 and A1.
- the definition thus specifies the mean deflection angle of the cooling air duct over both subsections 3, 6, in the direction of the suction side.
- the deflection angle ⁇ is a maximum of 175 °. It is, for example, in the range between 110 ° and 170 °, in particular in the range between 140 ° and 170 °.
- cross-sectional area mentioned here is defined by a normal vector which corresponds to the tangent vector to the center line in the geometric center (center of area) of the cross-sectional area.
- the first, widening section 3 is shaped such that the vector A 1 A 3 or the center line of the cooling air duct in the first subsection 3, which is at least approximately the vector A 1 A 3 corresponds to, due to the bulge 7, which extends in the direction of the pressure side 25, has a directional component towards the cross-sectional area A3 in the direction of the pressure side 25 and does not run exactly radially.
- the Figure 7 shows an example of an embodiment of a cooling air duct 16, which corresponds to the Figure 6 shaped and formed in the blade root 21 of a turbine blade 200.
- the Figures 8, 9 and 10 show cross sections perpendicular to the radial direction of the blade root 21 at the height of the cross section A2 ( Figure 8 ), of cross section A3 ( Figure 9 ) and cross section A1 ( Figure 10 ).
- the Figure 7 shows the first diverging section 3 with the wall contours 31, 32, the second converging wall section 6 with the wall contours 61, 62 and the three cross-sectional areas A1, A3, and A2.
- the bulge 7 extends in the direction of the pressure side 25.
- the cooling air duct 16 is approximately circular in the area of the cross-sectional area A1 (rotationally symmetrical with respect to the center line). Wall areas that extend in the direction of the pressure side or suction side are not provided. According to the Figure 9 the cooling air duct 16 is no longer circular in the area of the cross-sectional area A3 (but rotationally asymmetrical with respect to the center line). Rather, the wall areas 31, 32 designed as described lead according to FIG Figure 7 to a greater extent in the circumferential direction (between the pressure side and the suction side) than in the axial direction. The same applies according to the Figure 8 for the cooling air duct 16 in the area of the cross-sectional area A2, wherein the inclined wall area 62 can be seen in the top view shown from above.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Description
Die Erfindung betrifft eine Turbinenschaufel eines Turbinen-Laufschaufelkranzes gemäß dem Oberbegriff des Patentanspruchs 1.The invention relates to a turbine blade of a turbine rotor blade ring according to the preamble of
Es ist bekannt, die Turbinenschaufeln einer Gasturbine zu kühlen. Zur Kühlung der Turbinenschaufeln weisen diese interne Kühlluftkanäle auf, die mit Luft beaufschlagt werden. Dabei wirkt im Betrieb der Gasturbine auf das Kühlmedium die Corioliskraft. Da eine Turbinenschaufel eine Drehrichtung in Richtung der Saugseite aufweist, wird das Kühlmedium durch die Corioliskraft in Richtung der Druckseite abgelenkt. Dies führt dazu, dass das Kühlmedium unterschiedliche Wandbereiche des Kühlluftkanals in unterschiedlichem Maße kühlt. Die damit einhergehende Inhomogenität der Kühlung reduziert deren Effektivität und kann thermische Spannungen im Material induzieren.It is known to cool the turbine blades of a gas turbine. In order to cool the turbine blades, they have internal cooling air channels which are acted upon by air. The Coriolis force acts on the cooling medium during operation of the gas turbine. Since a turbine blade has a direction of rotation in the direction of the suction side, the cooling medium is deflected by the Coriolis force in the direction of the pressure side. This means that the cooling medium cools different wall areas of the cooling air duct to different degrees. The associated inhomogeneity of the cooling reduces its effectiveness and can induce thermal stresses in the material.
Die
Aus der
Die
Der vorliegenden Erfindung liegt die Aufgabe zu Grunde, eine Turbinenschaufel bereitzustellen, in der ein Kühlmedium eine verbesserte Kühlung ermöglicht.The object of the present invention is to provide a turbine blade in which a cooling medium enables improved cooling.
Diese Aufgabe wird erfindungsgemäß durch eine Turbinenschaufel mit den Merkmalen des Anspruchs 1 gelöst. Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen angegeben.This object is achieved according to the invention by a turbine blade with the features of
Danach sieht die Erfindung vor, dass ein Kühlluftkanal einer Turbinenschaufel in mindestens einem Abschnitt einen Verlauf derart aufweist, dass seine Querschnittsfläche sich in Strömungsrichtung des Kühlmediums in einem ersten, sich erweiternden Teilabschnitt bis zu einem Maximum vergrößert, sich anschließend in einem zweiten, sich verengenden Teilabschnitt hinter dem Maximum wieder reduziert und dabei das Kühlmedium in dem zweiten, sich verengenden Teilabschnitt mit einer Richtungskomponente in Richtung der Saugseite der Turbinenschaufel beschleunigt wird. Dabei ist vorgesehen, dass der Kühlluftkanal im Bereich des Maximums eine Ausbuchtung in Richtung der Druckseite bildet, wobei das Kühlmedium in dem ersten Teilabschnitt in Richtung der Druckseite und in dem zweiten Teilabschnitt in Richtung der Saugseite abgelenkt wird.According to the invention, a cooling air duct of a turbine blade has a course in at least one section such that its cross-sectional area increases in the flow direction of the cooling medium in a first, widening section to a maximum, then decreases again in a second, narrowing section behind the maximum, and the cooling medium in the second, narrowing section with a directional component in the direction of the suction side the turbine blade is accelerated. It is provided that the cooling air duct forms a bulge in the direction of the pressure side in the region of the maximum, the cooling medium being deflected in the direction of the pressure side in the first section and in the direction of the suction side in the second section.
Die vorliegende Erfindung beruht auf dem Gedanken, das Kühlmedium in dem ersten, sich erweiternden Teilabschnitt erst zu verzögern und anschließend in dem zweiten, sich verengenden Teilabschnitt zu beschleunigen und dabei den Kühlluftkanal derart zu formen, dass das Kühlmedium bei der Beschleunigung, die es im sich verengenden zweiten Teilabschnitt erfährt, in Richtung der Saugseite der Turbinenscheibe abgelenkt wird. Hierdurch wird die Wirkung der Corioliskraft, die das Kühlmedium während der Rotation der Turbinenschaufel in Richtung der Druckseite beschleunigt, zumindest teilweise kompensiert. Das Kühlmedium kann dadurch verbessert im Kühlluftkanal strömen, wobei gleichwohl der Wärmeübergang über alle Wände des Kühlluftkanals vergleichmäßigt wird. Als Ergebnis liegt eine homogenere Temperaturverteilung und verbesserte Kühlung der Turbinenschaufel vor.The present invention is based on the idea of first decelerating the cooling medium in the first, widening section and then accelerating it in the second, narrowing section, thereby shaping the cooling air duct in such a way that the cooling medium during acceleration, which is in itself experiences narrowing second section, is deflected towards the suction side of the turbine disc. As a result, the effect of the Coriolis force, which accelerates the cooling medium during the rotation of the turbine blade in the direction of the pressure side, is at least partially compensated. As a result, the cooling medium can flow in an improved manner in the cooling air duct, although the heat transfer over all walls of the cooling air duct is evened out. The result is a more homogeneous temperature distribution and improved cooling of the turbine blade.
Durch die homogenere Temperaturverteilung werden darüber hinaus thermisch induzierte Spannungen im Material der Turbinenscheibe reduziert.The more homogeneous temperature distribution also reduces thermally induced stresses in the material of the turbine disk.
Zur Beschleunigung des Kühlmediums in dem zweiten, sich verengenden Teilabschnitt mit einer Richtungskomponente in Richtung der Saugseite der Turbinenschaufel ist der Kühlluftkanal dabei derart geformt, dass er im Bereich des Maximums eine Ausbuchtung in Richtung der Druckseite bildet, d.h. nur in Richtung der Druckseite oder stärker in Richtung der Druckseite als in Richtung der Saugseite ausgebuchtet ist. Diese Formgebung des ersten Teilabschnitts bewirkt, dass das Kühlmedium im ersten Teilabschnitt in Richtung der Druckseite geführt und dadurch im zweiten Teilabschnitt effektiv in Richtung der Saugseite beschleunigt bzw. abgelenkt werden kann.To accelerate the cooling medium in the second, narrowing section with a directional component in the direction of the suction side of the turbine blade, the cooling air duct is shaped such that it forms a bulge in the direction of the pressure side in the area of the maximum, i.e. bulges only in the direction of the pressure side or more in the direction of the pressure side than in the direction of the suction side. This shape of the first section has the effect that the cooling medium can be guided in the direction of the pressure side in the first section and can thereby be accelerated or deflected effectively in the direction of the suction side in the second section.
Die Erfindung führt zu einer Ausbuchtung des Kühlluftkanals, welche durch die sich erweiternden und verengenden Teilabschnitte entsteht.The invention leads to a bulge of the cooling air duct, which is caused by the widening and narrowing sections.
Die vorliegende Erfindung wird bezogen auf ein zylindrisches Koordinatensystem beschrieben, das die Koordinaten x, r und ϕ aufweist. Dabei gibt x die axiale Richtung, r die radiale Richtung und ϕ den Winkel in Umfangsrichtung an. Die axiale Richtung ist in der Regel identisch mit der Maschinenachse einer Gasturbine bzw. eines TurbofanTriebwerks, in der die Erfindung realisiert ist. Von der x-Achse ausgehend zeigt die radiale Richtung radial nach außen. Begriffe wie "vor", "hinter", "vordere" und "hintere" beziehen sich auf die axiale Richtung bzw. die Strömungsrichtung in der Gasturbine oder des hier beschriebenen Kühlluftkanals. Die Bezeichnung "vor" bedeutet somit "stromaufwärts" und die Bezeichnung "hinter" bedeutet "stromabwärts". Begriffe wie "äußere" oder "innere" beziehen sich auf die radiale Richtung.The present invention is described with reference to a cylindrical coordinate system which has the coordinates x, r and ϕ. X indicates the axial direction, r the radial direction and ϕ the angle in the circumferential direction. The axial direction is generally identical to the machine axis of a gas turbine or a turbofan engine in which the invention is implemented. Starting from the x-axis, the radial direction points radially outwards. Terms such as "in front", "behind", "front" and "rear" refer to the axial direction or the flow direction in the gas turbine or the cooling air duct described here. The designation "before" thus means "upstream" and the designation "behind" means "downstream". Terms such as "outer" or "inner" refer to the radial direction.
Der geometrische Verlauf eines Kühlluftkanals wird hierin zweckmäßigerweise über seine Mittellinie beschrieben, welche die Verbindungslinie aller geometrischen Mittelpunkte (Flächenschwerpunkte) der Querschnittsflächen des Kühlluftkanals darstellt. Eine für die Strömung repräsentative Querschnittsfläche des Kühlluftkanals ist dabei so definiert, dass die Mittellinie des Kühlluftkanals die Ebene der Querschnittsfläche stets senkrecht durchstößt. Mit anderen Worten entspricht also der Normalvektor einer solchen Querschnittsfläche dem Tangentenvektor an die Mittellinie im geometrischen Mittelpunkt (Flächenschwerpunkt) der jeweiligen Querschnittsfläche.The geometric course of a cooling air duct is expediently described here via its center line, which represents the connecting line of all geometric centers (centroids) of the cross-sectional areas of the cooling air duct. A cross-sectional area of the cooling air duct that is representative of the flow is defined such that the center line of the cooling air duct always penetrates the plane of the cross-sectional area perpendicularly. In other words, the normal vector of such a cross-sectional area corresponds to the tangent vector to the center line in the geometric center (center of area) of the respective cross-sectional area.
Der Kühlluftkanal weist am Anfang des sich erweiternden Teilabschnitts eine erste Querschnittsfläche A1, am Ende des sich verengenden Teilabschnitts eine zweite Querschnittsfläche A2 und am Maximum eine dritte Querschnittsfläche A3 auf.The cooling air duct has a first cross-sectional area A1 at the beginning of the widening partial section, a second cross-sectional area A2 at the end of the narrowing partial section and a third cross-sectional area A3 at the maximum.
Für das Verhältnis von erster Querschnittsfläche A1 und dritter Querschnittsfläche A3 gilt gemäß einer Ausgestaltung der Erfindung: 1 < A3/A1 ≤ 5. Das Verhältnis von maximaler Querschnittsfläche zur Querschnittsfläche am Anfang des ersten Teilabschnitts soll gemäß dieser Ausgestaltung der Erfindung somit kleinergleich 5 sein. Die Querschnittsfläche soll sich im ersten Teilbereich um maximal den Faktor 5 vergrößern, um eine zu starke Verzögerung der Strömung des Kühlluftmediums zu vermeiden.According to one embodiment of the invention, the relationship between the first cross-sectional area A1 and the third cross-sectional area A3 is: 1 <A3 / A1 5. 5. According to this embodiment of the invention, the ratio of the maximum cross-sectional area to the cross-sectional area at the beginning of the first section should therefore be less than or equal to 5. The cross-sectional area should increase in the first partial area by a maximum of a factor of 5 in order to avoid an excessive delay in the flow of the cooling air medium.
Eine weitere Ausgestaltung der Erfindung sieht vor, dass für das Verhältnis von erster Querschnittsfläche A1, zweiter Querschnittsfläche A2 und dritter Querschnittsfläche A3 gilt: A1 < A2 < A3. Mathematisch kann dies auch durch die Beziehung ausgedrückt werden: A3/A1 > A3/A2. Die (zweite) Querschnittsfläche am Ende des zweiten, sich verjüngenden Teilbereichs ist also größer als die (erste) Querschnittsfläche am Anfang des ersten, sich erweiternden Teilbereichs. Beide diese Querschnitte sind kleiner als der maximale Querschnitt am Übergang vom ersten Teilbereich zum zweiten Teilbereich. Dabei ist zu beachten, dass das Kühlmedium im zweiten Teilabschnitt zusätzlich eine Beschleunigungs- und Richtungskomponente in Richtung der Saugseite der Turbinenschaufel erfährt.A further embodiment of the invention provides that the following applies to the ratio of first cross-sectional area A1, second cross-sectional area A2 and third cross-sectional area A3: A1 <A2 <A3. Mathematically this can also be expressed by the relationship: A3 / A1> A3 / A2. The (second) cross-sectional area at the end of the second, tapering partial area is therefore larger than the (first) cross-sectional area at the beginning of the first, widening partial area. Both of these cross sections are smaller than that maximum cross-section at the transition from the first section to the second section. It should be noted that the cooling medium in the second section also experiences an acceleration and direction component in the direction of the suction side of the turbine blade.
Eine weitere Ausgestaltung der Erfindung sieht vor, dass der Kühlluftkanal über den ersten, sich erweiternden Teilabschnitt einen maximalen Grad an Divergenz nicht überschreitet. Ähnlich einer Öffnungswinkeldefinition für Diffusoren wird hier zweckmäßigerweise der Zuwachs der Querschnittsfläche des Kühlluftkanals im ersten Teilabschnitt auf die Länge des Strömungsweges in Selbigen bezogen, so dass dieses Verhältnis den Grad an Divergenz im ersten Teilabschnitt beschreibt. Dabei ist im Sinne der vorliegenden Erfindung dieses Verhältnis definiert als
Hierin beschreibt die Größe s die Länge des Kühlluftkanals entlang seiner Mittellinie im ersten Teilabschnitt und die bereits zuvor genannten Größen A1 und A3 die Querschnittsflächen des Kühlluftkanals zu Beginn und respektive zum Ende des ersten Teilabschnitts.Here, size s describes the length of the cooling air duct along its center line in the first section and sizes A1 and A3 already mentioned the cross-sectional areas of the cooling air duct at the beginning and at the end of the first section.
Das so definierte Verhältnis, das den Grad an Divergenz im sich erweiternden Teilabschnitt angibt, liegt somit bei maximal 6. Gemäß einer Ausgestaltung der Erfindung liegt das genannte Verhältnis im Bereich zwischen 1,25 und 6 und insbesondere im Bereich zwischen 1,25 und 2:
Die Ausgestaltung des Kühlluftkanals kann rotationssymmetrisch oder rotations-asymmetrisch bezüglich seiner Mittellinie sein.The design of the cooling air duct can be rotationally symmetrical or rotationally asymmetrical with respect to its center line.
Eine Ausgestaltung der Erfindung sieht vor, dass der Kühlluftkanal im Bereich des ersten Teilabschnittes eine Rotations-Asymmetrie bezüglich seiner Mittellinie aufweist, die Kanalaufweitung also eine Vorzugsrichtung hat.One embodiment of the invention provides that the cooling air duct has a rotational asymmetry with respect to its center line in the region of the first section, that is to say the duct widening has a preferred direction.
Weiter kann vorgesehen sein, dass die Aufweitung des Kühlluftkanals alleinig oder stärker in Richtung der Druckseite der Beschaufelung erfolgt. Somit ist bei dieser Erfindungsvariante die Divergenz im ersten Teilabschnitt in Richtung der Druckseite der Schaufel größer als die Divergenz in Richtung der Saugseite. Die erfindungsgemäße Ausbuchtung des Kühlluftkanals erfolgt mit anderen Worten in Richtung der Druckseite. Hierdurch kann das Kühlmedium in zweiten Teilabschnitt effektiver in Richtung der Saugseite beschleunigt werden. Eine Divergenz im ersten Teilabschnitt, die in Richtung der Druckseite der Schaufel größer als in Richtung der Saugseite, geht damit einher, dass die Mittellinie des Kühlluftkanals im ersten Teilabschnitt eine Richtungskomponente in Richtung der Druckseite der Turbinenschaufel aufweist bzw. in Richtung der Druckseite geneigt ist.It can further be provided that the expansion of the cooling air duct takes place solely or more strongly in the direction of the pressure side of the blading. Thus, in this variant of the invention, the divergence in the first section in the direction of the pressure side of the blade is greater than the divergence in the direction of the suction side. The invention In other words, the cooling air duct bulges out in the direction of the pressure side. As a result, the cooling medium in the second section can be accelerated more effectively in the direction of the suction side. A divergence in the first section, which is greater in the direction of the pressure side of the blade than in the direction of the suction side, is associated with the fact that the center line of the cooling air duct in the first section has a directional component in the direction of the pressure side of the turbine blade or is inclined in the direction of the pressure side.
Eine weitere Ausgestaltung der Erfindung sieht vor, dass der Kühlluftkanal im sich verengenden Teilabschnitt einen Umlenkwinkel δ aufweist, der kleiner als 175° ist und beispielsweise im Bereich zwischen 110° und 170°, insbesondere im Bereich zwischen 140° und 170° liegt. Der Umlenkwinkel gibt dabei den Grad an Umlenkung des Kühlluftkanals im zweiten Teilabschnitt an. Genauer ist δ als jener Winkel definiert, der sich zwischen den beiden Vektoren
Die Erfindung sieht ferner vor, dass zur Beschleunigung des Kühlmediums in dem zweiten, sich verengenden Teilabschnitt mit einer Richtungskomponente in Richtung der Saugseite der Turbinenschaufel der Kühlluftkanal derart geformt ist, dass die Mittellinie des Kühlluftkanals in dem sich verengenden Teilabschnitt eine Richtungskomponente in Richtung der Saugseite der Turbinenschaufel aufweist.The invention further provides that to accelerate the cooling medium in the second, narrowing section with a directional component in the direction of the suction side of the turbine blade, the cooling air duct is shaped such that the center line of the cooling air duct in the narrowing section is a directional component in the direction of the suction side of the Has turbine blade.
Dagegen ist der erste, sich erweiternde Teilabschnitt gemäß der Erfindung derart geformt, dass die Mittellinie des Kühlluftkanals im ersten Teilabschnitt eine Richtungskomponente in Richtung der Druckseite der Turbinenschaufel aufweist.In contrast, the first, widening section according to the invention is shaped such that the center line of the cooling air duct in the first section has a directional component in the direction of the pressure side of the turbine blade.
Ein Anfang eines ersten, sich erweiternden Teilabschnitts soll im Sinne der vorliegenden Erfindung dann vorliegen, wenn der Kühlluftkanal stromaufwärts eines solchen Anfangs einen konstanten Querschnittsflächenverlauf aufweist, einen konvergenten Verlauf aufweist oder einen divergenten Verlauf aufweist, der so geringfügig ist, dass sich die Querschnittsfläche entlang der Mittellinie des Kühlluftkanals stromaufwärts des betrachteten Anfangs des ersten Teilabschnitts nur geringfügig vergrößert. Eine nur geringfügige Vergrößerung im Sinne der vorliegenden Erfindung liegt dabei dann vor, wenn der Grad der Divergenz des Kühlluftkanals
Der betrachtete Kühlluftkanal kann grundsätzlich an beliebiger Stelle in der Turbinenschaufel eine erfindungsgemäße Ausgestaltung zur Beschleunigung des Kühlmediums in Richtung der Saugseite aufweisen. In besonders effektiver Weise ist eine solche Ausgestaltung in einem Abschnitt des Kühlluftkanals vorgesehen, in dem das Kühlmedium sich primär in radialer Richtung bewegt und bevor sich der Kühlluftkanal in eine Vielzahl kleinerer Kühlkanäle verzweigt. Dementsprechend sieht eine Ausgestaltung der Erfindung vor, dass die Turbinenschaufel einen Schaufelfuß aufweist, der dazu vorgesehen und geeignet ist, in einer Schaufelfußaufnahme einer Turbinenscheibe angeordnet zu sein, wobei der erste sich erweiternde Teilabschnitt und der zweite sich verengenden Teilabschnitt in einem Abschnitt des Kühlluftkanals ausgebildet sind, der im Schaufelfuß angeordnet ist.The cooling air duct under consideration can basically have an embodiment according to the invention at any point in the turbine blade for accelerating the cooling medium in the direction of the suction side. Such an embodiment is particularly effectively provided in a section of the cooling air duct in which the cooling medium primarily moves in the radial direction and before the cooling air duct branches into a plurality of smaller cooling ducts. Accordingly, an embodiment of the invention provides that the turbine blade has a blade root which is provided and suitable for being arranged in a blade root receptacle of a turbine disk, the first widening section and the second narrowing section being formed in a section of the cooling air duct , which is arranged in the blade root.
Eine weitere Ausgestaltung der Erfindung sieht vor, dass die Querschnittsfläche des zweiten, sich verengenden Teilabschnitts hinter dem Maximum sukzessive und ohne einen Sprung abnimmt.A further embodiment of the invention provides that the cross-sectional area of the second, narrowing subsection decreases successively behind the maximum and without a jump.
Ein Verfahren zum Transportieren eines Kühlmediums in einer Turbinenschaufel eines Turbinen-Laufschaufelkranzes sieht vor, dass das Kühlmedium in einem ersten Teilabschnitt des Kühlluftkanals verzögert und anschließend in einem sich daran anschließenden zweiten Teilabschnitt mit einer Richtungskomponente in Richtung der Saugseite der Turbinenschaufel beschleunigt wird.A method for transporting a cooling medium in a turbine blade of a turbine blade ring provides that the cooling medium is decelerated in a first section of the cooling air duct and then accelerated in a subsequent second section with a directional component in the direction of the suction side of the turbine blade.
Dabei wird das Kühlmedium derart geführt, dass es in dem ersten Teilabschnitt zunächst eine Richtungskomponente in Richtung der Druckseite und im zweiten Teilabschnitt eine Richtungskomponente in Richtung der Saugseite erfährt und somit in Richtung der Saugseite umgeleitet wird. Durch das Führen des Kühlmediums zunächst in Richtung der Druckseite wird eine Umleitung in Richtung der Saugseite im zweiten Teilbereich erleichtert.The cooling medium is guided such that it first experiences a directional component in the direction of the pressure side in the first section and a directional component in the direction of the suction side in the second section and is thus diverted in the direction of the suction side. By guiding the cooling medium initially in the direction of the pressure side, a diversion in the direction of the suction side in the second partial area is facilitated.
Die Erfindung wird nachfolgend unter Bezugnahme auf die Figuren der Zeichnung anhand mehrerer Ausführungsbeispiele näher erläutert. Es zeigen:
Figur 1- eine vereinfachte schematische Schnittdarstellung eines Turbofantriebwerks, in dem die vorliegende Erfindung realisierbar ist;
- Figur 2
- ein Negativmodell einer Turbinenschaufel unter Darstellung der in der Turbinenschaufel realisierten Kühlluftkanäle;
Figur 3- die Außenkonturen einer Turbinenschaufel in einer Ansicht von vorne unter zusätzlicher Darstellung der Kühlluftkanäle gemäß der
Figur 2 ; Figur 4- die
Turbinenschaufel der Figur 3 in einer Seitenansicht auf die Druckseite; Figur 5- den Schaufelfuß der Turbinenschaufel der
Figuren 3 und4 in einer Ansicht schräg von vorne; Figur 6- schematisch den Verlauf eines im Schaufelfuß ausgebildeten Kühlluftkanals, dessen Querschnittsfläche sich in Strömungsrichtung des Kühlmediums in einem ersten Teilabschnitt vergrößert und anschließend in einem zweiten Teilabschnitt reduziert, wobei das Kühlmedium in Richtung der Saugseite der Turbinenschaufel beschleunigt wird;
Figur 7- eine Querschnittsansicht eines Schaufelfußes gemäß der
Figur 5 in einer Ebene senkrecht zur axialen Richtung, wobei der Schaufelfuß einen Kühlluftkanals ausbildet, dessen Querschnittsfläche sich entsprechend derFigur 6 in Strömungsrichtung des Kühlmediums in einem ersten Teilabschnitt vergrößert und in einem zweiten Teilabschnitt reduziert; - Figur 8
- eine Querschnittsansicht des Schaufelfußes der
Figur 7 in einer Ebene senkrecht zur radialen Richtung in einer radialen Höhe, die dem Ende des zweiten Teilabschnitts entspricht; - Figur 9
- eine Querschnittsansicht des Schaufelfußes der
Figur 7 in einer Ebene senkrecht zur radialen Richtung in einer radialen Höhe, die dem Ende des ersten Teilabschnitts entspricht; und Figur 10- eine Querschnittsansicht des Schaufelfußes der
Figur 7 in einer Ebene senkrecht zur radialen Richtung in einer radialen Höhe, die dem Anfang des ersten Teilabschnitts entspricht.
- Figure 1
- a simplified schematic sectional view of a turbofan engine in which the present invention can be implemented;
- Figure 2
- a negative model of a turbine blade showing the cooling air channels realized in the turbine blade;
- Figure 3
- the outer contours of a turbine blade in a view from the front with additional representation of the cooling air channels according to the
Figure 2 ; - Figure 4
- the turbine blade of the
Figure 3 in a side view of the print page; - Figure 5
- the blade root of the turbine blade of the
Figures 3 and4th in an oblique view from the front; - Figure 6
- schematically the course of a cooling air duct formed in the blade root, the cross-sectional area of which increases in the flow direction of the cooling medium in a first partial section and then reduces in a second partial section, the cooling medium being accelerated in the direction of the suction side of the turbine blade;
- Figure 7
- a cross-sectional view of a blade root according to the
Figure 5 in a plane perpendicular to the axial direction, the blade root forming a cooling air duct, the cross-sectional area of which corresponds to theFigure 6 enlarged in the flow direction of the cooling medium in a first section and reduced in a second section; - Figure 8
- a cross-sectional view of the blade root of the
Figure 7 in a plane perpendicular to the radial direction at a radial height corresponding to the end of the second section; - Figure 9
- a cross-sectional view of the blade root of the
Figure 7 in a plane perpendicular to the radial direction at a radial height corresponding to the end of the first section; and - Figure 10
- a cross-sectional view of the blade root of the
Figure 7 in a plane perpendicular to the radial direction at a radial height which corresponds to the beginning of the first section.
Die
Der Mitteldruckverdichter 20 und der Hochdruckverdichter 30 weisen jeweils eine Mehrzahl von Verdichterstufen auf, die jeweils eine Rotorstufe und eine Statorstufe umfassen. Das Turbofantriebwerk 100 der
Das Turbofantriebwerk 100 weist eine Triebwerksgondel 1 auf, die eine Einlauflippe 14 umfasst und innenseitig einen Triebwerkseinlauf 11 ausbildet, der einströmende Luft dem Fan 10 zuführt. Der Fan 10 weist eine Mehrzahl von Fan-Schaufeln 101 auf, die mit einer Fan-Scheibe 102 verbunden sind. Der Annulus der Fan-Scheibe 102 bildet dabei die radial innere Begrenzung des Strömungspfads durch den Fan 10. Radial außen wird der Strömungspfad durch ein Fangehäuse 2 begrenzt. Stromaufwärts der Fan-Scheibe 102 ist ein Nasenkonus 103 angeordnet.The
Hinter dem Fan 10 bildet das Turbofantriebwerk 100 einen Sekundärstromkanal 4 und einen Primärstromkanal 5 aus. Der Primärstromkanal 5 führt durch das Kerntriebwerk (Gasturbine), das den Mitteldruckverdichter 20, den Hochdruckverdichter 30, die Brennkammer 40, die Hochdruckturbine 50, die Mitteldruckturbine 60 und die Niederdruckturbine 70 umfasst. Dabei sind der Mitteldruckverdichter 20 und der Hochdruckverdichter 30 von einem Umfangsgehäuse 29 umgeben, dass innenseitig eine Ringraumfläche bildet, die den Primärstromkanal 5 radial außen begrenzt. Radial innen ist der Primärstromkanal 5 durch entsprechende Kranzoberflächen der Rotoren und Statoren der jeweiligen Verdichterstufen bzw. durch die Nabe oder mit der Nabe verbundene Elemente der entsprechenden Antriebswelle begrenzt.Behind the
Im Betrieb des Turbofantriebwerks 100 durchströmt ein Primärstrom den Primärstromkanal 5, der auch als Hauptströmungskanal bezeichnet wird. Der Sekundärstromkanal 4, auch als Nebenstromkanal oder Bypass-Kanal bezeichnet leitet im Betrieb des Turbofantriebwerks 100 vom Fan 10 angesaugte Luft am Kerntriebwerk vorbei.During operation of the
Die beschriebenen Komponenten besitzen eine gemeinsame Rotations- bzw. Maschinenachse 90. Die Rotationsachse 90 definiert eine axiale Richtung des Turbofantriebwerks. Eine radiale Richtung des Turbofantriebwerks verläuft senkrecht zur axialen Richtung.The components described have a common axis of rotation or
Im Kontext der vorliegenden Erfindung ist die Ausgestaltung der Turbinenschaufeln, insbesondere der Turbinenschaufeln der Hochdruckturbine 50 von Bedeutung. Die Prinzipien der vorliegenden Erfindung sind jedoch ebenso auf Turbinenschaufeln anderer Turbinenstufen anwendbar.The configuration of the turbine blades, in particular the turbine blades of the high-
Die im Rahmen der Erfindung betrachteten Turbinenschaufeln sind Bestandteil einer Laufschaufelanordnung, die eine Turbinenscheibe und einen Turbinen-Laufschaufelkranz mit Turbinen-Laufschaufeln umfasst. Die Turbinen-Laufschaufeln werden im Rahmen dieser Beschreibung als Turbinenschaufeln bezeichnet. Zur Befestigung der Turbinenschaufeln in äquidistantem Abstand am Umfang der Turbinenscheibe weist die Turbinenscheibe an ihrem Umfang eine Mehrzahl von Schaufelfußaufnahmen auf, die jeweils dazu dienen, einen Schaufelfuß einer Laufschaufel aufzunehmen. Dabei kann vorgesehen sein, dass die Schaufelfüße als sogenannte "Tannenbaumfüße" ausgebildet sind. Die Schaufelfußaufnahmen sind in entsprechender Weise ausgebildet. Die Turbinenscheibe weist Kanäle auf, die dazu dienen, Kühlluft zur Kühlung der Turbinenschaufeln bereitzustellen.The turbine blades considered in the context of the invention are part of a rotor blade arrangement which comprises a turbine disk and a turbine rotor blade ring with turbine rotor blades. The turbine blades are referred to as turbine blades in the context of this description. For fastening the turbine blades at an equidistant distance on the circumference of the turbine disk, the turbine disk has a plurality of blade root receptacles on its periphery, each of which serves to receive a blade root of a moving blade. It can be provided that the blade feet are designed as so-called "fir tree feet". The blade root receptacles are designed in a corresponding manner. The Turbine disk has channels which serve to provide cooling air for cooling the turbine blades.
Die
In Strömungsrichtung hinter der Ausbuchtung 7 erstreckt sich der eine Eingangskanal 16 als Kühlluftkanal 161 benachbart der Vorderkante der Turbinenschaufel. Der andere Eingangskanal 17 bildet in Strömungsrichtung hinter der Ausbuchtung 7 einen Kühlluftkanal mit drei serpentinenartigen Abschnitten 171, 172, 173 aus, die im Wesentlichen in radialer Richtung verlaufen und durch gekrümmte Bereiche miteinander verbunden sind. Von den Kühlluftkanälen gehen jeweils Kühlluftbohrungen 165, 175 aus, die der Kühlung der Turbinenschaufel dienen.In the flow direction behind the
Weiter ist in der
Die
Die
In den
Die Eingangs-Kühlluftkanäle 16, 17 sowie die Kühlluftkanäle 161, 171, 172, 173 erstrecken sich im Wesentlichen in radialer Richtung. Die in der
Die
In den
Die
Die sich verändernden Querschnitte des Kühlluftkanals 16 führen zu einer Verzögerung der Strömungsgeschwindigkeit des Kühlmediums im sich erweiternden Teilabschnitt 3 und zu einer Beschleunigung der Strömungsgeschwindigkeit des Kühlmediums im sich verjüngenden Teilabschnitt 6.The changing cross sections of the cooling
Der Kühlluftkanal 16 ist in den betrachteten Abschnitten 3, 6 des Weiteren derart geformt, dass das Kühlmedium in dem zweiten, sich verengenden Teilabschnitt 6 mit einer Richtungskomponente in Richtung der Saugseite der Turbinenschaufel beschleunigt wird. Durch diese Beschleunigung des Kühlmediums wird einer Beschleunigung des Kühlmediums aufgrund der Corioliskraft entgegengewirkt. Auf diese Weise erfolgt in einer betrachteten Querschnittsebene an allen Wandbereichen des Kühlluftkanals eine Homogenisierung des Wärmeübergangs.The cooling
Für eine Beschleunigung des Kühlmediums in Richtung der Saugseite bildet der Kühlluftkanal 16 zur Druckseite hin die Ausbuchtung 7 aus, wobei das Kühlmediums in dem ersten Teilbereich 3 in Richtung der Druckseite und in dem zweiten Teilbereich 6 in Richtung der Saugseite abgelenkt wird.For an acceleration of the cooling medium in the direction of the suction side, the cooling
Die genaue Formgebung ist wie folgt. Die Querschnittsfläche A1 ist die Querschnittsfläche am Anfang des ersten Teilbereichs 3. Hiervon ausgehend vergrößert sich die Querschnittsfläche des Kühlluftkanals rotation-asymmetrisch bezüglich seiner Mittellinie in Richtung der Druckseite. Der geometrische Verlauf des Kühlluftkanals 16 wird dabei über seine Mittellinie beschrieben, welche die Verbindungslinie aller geometrischen Mittelpunkte (d.h. Flächenschwerpunkte) der Querschnittsflächen des Kühlluftkanals darstellt. Eine für die Kühlluftströmung repräsentative Querschnittsfläche des Kühlluftkanals 16 ist dabei so definiert, dass die Mittellinie des Kühlluftkanals 16 die Ebene der Querschnittsfläche stets senkrecht durchstößt. Mit anderen Worten entspricht also der Normalvektor einer solchen Querschnittsfläche dem Tangentenvektor an die Mittellinie im geometrischen Mittelpunkt (Flächenschwerpunkt) der jeweiligen Querschnittsfläche.The exact shape is as follows. The cross-sectional area A1 is the cross-sectional area at the beginning of the
Dabei ist zu beachten, dass die Querschnittserweiterung rotations-symmetrisch oder alternativ rotations-asymmetrisch bezüglich der Mittellinie des Kühlluftkanals erfolgen kann. Im vorliegenden Beispiel führt die rotations-asymmetrische Kanalaufweitung, die mit einer Führung des Kühlluftkanals 16 zunächst in Richtung der Druckseite einhergeht, zu einer Vergrößerung des baulich realisierbaren Umlenkwinkels δ im zweiten Teilbereich 6.It should be noted that the cross-sectional expansion can be rotationally symmetrical or alternatively rotationally asymmetrical with respect to the center line of the cooling air duct. In the present example, the rotationally asymmetrical channel widening, which is initially accompanied by a routing of the cooling
Der Grad der Divergenz des sich erweiternden Kühlluftkanals 16 sollte einen maximalen Grad an Divergenz nicht überschreitet. Ähnlich einer Öffnungswinkeldefinition für Diffusoren wird hier zweckmäßigerweise der maximale Zuwachs der Querschnittsfläche des Kühlluftkanals 16 im ersten Teilabschnitt 3 auf die Länge des Strömungsweges in Selbigen bezogen, so dass dieses Verhältnis den Grad an Divergenz im ersten Teilabschnitt 3 beschreibt. Dabei ist im Sinne der vorliegenden Erfindung diese maximale Verhältnis definiert als
Hierin beschreibt die Größe s die Länge des Kühlluftkanals entlang seiner Mittellinie im ersten Teilabschnitt 3 und die bereits zuvor genannten Größen A1 und A3 die Querschnittsflächen des Kühlluftkanals 16 zu Beginn und respektive zum Ende des ersten Teilabschnitts 3. Das genannte Verhältnis liegt gemäß einer Ausgestaltung der Erfindung zwischen 1,25 und 2.Here, the size s describes the length of the cooling air duct along its center line in the
Das Querschnittsflächenverhältnis A3/A1 liegt gemäß einer Ausgestaltung der Erfindung im Bereich zwischen 1 und 5, beispielsweise zwischen 2 und 4.According to one embodiment of the invention, the cross-sectional area ratio A3 / A1 is in the range between 1 and 5, for example between 2 and 4.
Die Querschnittsfläche A3 am Übergang zwischen dem ersten Teilbereich 3 und dem zweiten Teilbereich 6 stellt die maximale Querschnittsfläche dar. Ausgehend von diesem Maximum verjüngt sich der Kühlluftkanal 16 in dem zweiten Teilbereich 6.The cross-sectional area A3 at the transition between the first
Die Konvergenz des Kühlluftkanals im zweiten Teilbereich 6 wird durch das Verhältnis A3/A2 definiert. Dabei ist vorgesehen, dass dieses Verhältnis kleiner ist als das Verhältnis A3/A1, mit anderen Worten A1 kleiner als A2 und A2 kleiner als A3 ist:
Die Form der Konvergenz im zweiten Teilbereich 6 wird unter anderem durch den Konvergenz- oder Umlenkwinkel δ bestimmt. Dieser ist Winkel δ ist definiert als jener Winkel, der sich zwischen den beiden Vektoren
Der Umlenkwinkel δ liegt bei maximal 175°. Er liegt beispielsweise im Bereich zwischen 110° und 170°, insbesondere im Bereich zwischen 140° und 170°.The deflection angle δ is a maximum of 175 °. It is, for example, in the range between 110 ° and 170 °, in particular in the range between 140 ° and 170 °.
Es wird darauf hingewiesen, dass die hier genannte Querschnittsfläche durch einen Normalenvektor definiert wird, der dem Tangentenvektor an die Mittellinie im geometrischen Mittelpunkt (Flächenschwerpunkt) der Querschnittsfläche entspricht.It is pointed out that the cross-sectional area mentioned here is defined by a normal vector which corresponds to the tangent vector to the center line in the geometric center (center of area) of the cross-sectional area.
Es wird weiter darauf hingewiesen, dass der erste, sich erweiternde Teilabschnitt 3 derart geformt ist, dass der Vektor
Die
Gemäß der
Die vorliegende Erfindung beschränkt sich in ihrer Ausgestaltung nicht auf die vorstehend beschriebenen Ausführungsbeispiele. Vielmehr wird die Erfindung durch die angehängten Patentansprüche definiert.The design of the present invention is not limited to the exemplary embodiments described above. Rather, the invention is defined by the appended claims.
Des Weiteren wird darauf hingewiesen, dass die Merkmale der einzelnen beschriebenen Ausführungsbeispiele der Erfindung in verschiedenen Kombinationen miteinander kombiniert werden können. Sofern Bereiche definiert sind, so umfassen diese sämtliche Werte innerhalb dieser Bereiche sowie sämtliche Teilbereiche, die in einen Bereich fallen.Furthermore, it is pointed out that the features of the individual described exemplary embodiments of the invention can be combined with one another in various combinations. If areas are defined, they include all values within these areas as well as all sub-areas that fall within one area.
Claims (12)
- Turbine blade (200) of a turbine rotor blade ring, which turbine blade has:- a suction side (24),- a pressure side (25), and- a cooling air channel (16) through which a cooling medium for cooling the turbine blade (200) can be transported,- wherein the cooling air channel (16) has, in at least one portion, a course such that- its cross-sectional area increases in a flow direction of the cooling medium, in a first, widening sub-portion (3), up to a maximum,- its cross-sectional area decreases in a second, narrowing sub-portion (6) downstream of the maximum, and- the cooling medium is, in the second, narrowing sub-portion (6), accelerated with a directional component in the direction of the suction side (24) of the turbine blade (200),
characterized- in that the cooling air channel (16) forms, in the region of the maximum, a bulge (7) in the direction of the pressure side (25), wherein the cooling medium is diverted in the direction of the pressure side (25) in the first sub-portion (3) and is diverted in the direction of the suction side (24) in the second sub-portion (6), wherein- the centreline of the cooling air channel (16) has, in the first sub-portion (3), a directional component in the direction of the pressure side (25) of the turbine blade, and,- for the acceleration of the cooling medium in the second, narrowing sub-portion (6) in the direction of the suction side (24) of the turbine blade (100), the centreline of the cooling air channel (16) has, in the second, narrowing sub-portion (6), a directional component in the direction of the suction side (24) . - Turbine blade according to Claim 1, characterized in that the cooling air channel (16) has a first cross-sectional area A1 at the start of the widening sub-portion (3), has a second cross-sectional area A2 at the end of the narrowing sub-portion (6), and has a third cross-sectional area A3 at the maximum of the cross-sectional area.
- Turbine blade according to any of the preceding claims, characterized in that the cooling air channel (16) does not exceed a maximum degree of divergence in the widening sub-portion (3), wherein the degree of divergence is defined by the square root of the growth of the cross-sectional area (A3 - A1) in relation to the length (s) of the cooling air channel along its centreline, and the degree of divergence thus defined is less than or equal to 6, that is to say the following applies:
- Turbine blade according to any of the preceding claims, characterized in that the cross-sectional widening of the cooling air channel (16) is rotationally asymmetrical with respect to the centreline of said cooling air channel.
- Turbine blade according to any of the preceding claims where referred back to Claim 2, characterized in that the cooling air channel (16) has, in the narrowing sub-portion (6), a deflection angle (δ) which is less than 175°, wherein δ is defined as the angle spanned between the two vectors
A2A1 andA3A2 , wherein the two vectors describe in each case the direct connecting line between the geometrical central points (310, 210, 110) of the cross-sectional areas A3 and A2, and A3 and A1, respectively. - Turbine blade according to Claim 8, characterized in that the deflection angle (δ) lies between 140° and 170°.
- Turbine blade according to any of the preceding claims, characterized in that the turbine blade (200) has a blade root (21), wherein the first, widening sub-portion (3) and the second, narrowing sub-portion (6) are formed in a portion of the cooling air channel (16) which is arranged in the blade root (21).
- Turbine blade according to any of the preceding claims, characterized in that the cross-sectional area of the second, narrowing sub-portion (6) decreases in gradual fashion, and without a step, downstream of the maximum.
- Turbine blade according to any of the preceding claims, characterized in that the divergence in the first sub-portion (3) in the direction of the pressure side (25) of the blade is greater than the divergence in the direction of the suction side (24) of the blade.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102017126105.2A DE102017126105A1 (en) | 2017-11-08 | 2017-11-08 | Turbine Blade of a Turbine Blade wreath |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3483391A1 EP3483391A1 (en) | 2019-05-15 |
EP3483391B1 true EP3483391B1 (en) | 2020-06-03 |
Family
ID=64267497
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18204562.5A Active EP3483391B1 (en) | 2017-11-08 | 2018-11-06 | Turbine blade of a turbine blade crown |
Country Status (3)
Country | Link |
---|---|
US (1) | US11008871B2 (en) |
EP (1) | EP3483391B1 (en) |
DE (1) | DE102017126105A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10767492B2 (en) | 2018-12-18 | 2020-09-08 | General Electric Company | Turbine engine airfoil |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7220103B2 (en) * | 2004-10-18 | 2007-05-22 | United Technologies Corporation | Impingement cooling of large fillet of an airfoil |
US7249933B2 (en) | 2005-01-10 | 2007-07-31 | General Electric Company | Funnel fillet turbine stage |
US7467922B2 (en) * | 2005-07-25 | 2008-12-23 | Siemens Aktiengesellschaft | Cooled turbine blade or vane for a gas turbine, and use of a turbine blade or vane of this type |
FR2943092B1 (en) * | 2009-03-13 | 2011-04-15 | Snecma | TURBINE DAWN WITH DUST-BASED CLEANING HOLE |
US8157505B2 (en) * | 2009-05-12 | 2012-04-17 | Siemens Energy, Inc. | Turbine blade with single tip rail with a mid-positioned deflector portion |
EP3241988A1 (en) * | 2016-05-04 | 2017-11-08 | Siemens Aktiengesellschaft | Cooling arrangement of a gas turbine blade |
-
2017
- 2017-11-08 DE DE102017126105.2A patent/DE102017126105A1/en not_active Withdrawn
-
2018
- 2018-11-05 US US16/180,882 patent/US11008871B2/en active Active
- 2018-11-06 EP EP18204562.5A patent/EP3483391B1/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
US20190153874A1 (en) | 2019-05-23 |
US11008871B2 (en) | 2021-05-18 |
EP3483391A1 (en) | 2019-05-15 |
DE102017126105A1 (en) | 2019-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69423789T2 (en) | FLOW CONTROL DEVICE FOR THE COMPRESSOR PART OF A FLUID MACHINE | |
DE3530769C2 (en) | Blade for a gas turbine engine | |
DE69321621T2 (en) | TURBINE SHOVEL WITH BRIDGES IN THE OUTLET SHOP, WHICH WORK AS DIFFUSERS | |
EP3940200B1 (en) | Bucket wheel of a turbomachine | |
DE112016003244T5 (en) | Cover for axial fan assembly | |
CH707459A2 (en) | Internal cooling structure of a turbine blade. | |
EP2226511A2 (en) | Flow working machine with fluid supply | |
DE102015219556A1 (en) | Diffuser for radial compressor, centrifugal compressor and turbo machine with centrifugal compressor | |
EP3032032B1 (en) | Outlet guide vanes and turbofan with outlet guide vanes | |
EP2538024A1 (en) | Blade of a turbomaschine | |
EP3336313A1 (en) | Turbine rotor blade arrangement for a gas turbine and method for the provision of sealing air in a turbine rotor blade arrangement | |
EP3078804A1 (en) | Shroud assembly of a row of stator or rotor blades and corresponding turbine | |
CH701927B1 (en) | Stator, compressor and gas turbine engine. | |
CH710576A2 (en) | Turbine blade having a plurality of cooling channels. | |
EP3428393B1 (en) | Rotor of a turbomachine | |
EP2913481B1 (en) | Tandem blades of a turbo-machine | |
EP3483391B1 (en) | Turbine blade of a turbine blade crown | |
EP3495639B1 (en) | Compressor module for a turbomachine reducing the boundary layer in an intermediate compressor case | |
DE102019200885A1 (en) | Guide grille for a turbomachine | |
EP3327258A1 (en) | Inlet guide vane for a turbo engine | |
EP4477839A2 (en) | Method for determining the shape of a mistuned blade of an impeller of a turbomachine | |
EP3431707B1 (en) | Blade, blade ring, blade ring segment and turbomachine | |
EP3492701A1 (en) | Turbomachine flow channel | |
EP3719258B1 (en) | Rotor blade of a turbomachine | |
DE102013109844A1 (en) | A method of circumferentially aligning a turbine by reshaping the downstream airfoils of the turbine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20191112 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F01D 5/18 20060101ALI20191129BHEP Ipc: F01D 5/14 20060101AFI20191129BHEP Ipc: F01D 5/08 20060101ALI20191129BHEP |
|
INTG | Intention to grant announced |
Effective date: 20200103 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1277210 Country of ref document: AT Kind code of ref document: T Effective date: 20200615 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502018001596 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200603 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200903 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200904 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200603 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200603 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20200603 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200603 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200903 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200603 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200603 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200603 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200603 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200603 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200603 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200603 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200603 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200603 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201006 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200603 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200603 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200603 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201003 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502018001596 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200603 |
|
26N | No opposition filed |
Effective date: 20210304 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200603 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200603 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201106 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20201130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201106 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200603 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200603 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200603 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200603 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211130 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211130 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230528 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20221106 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221106 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20241128 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1277210 Country of ref document: AT Kind code of ref document: T Effective date: 20231106 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20241126 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231106 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231106 |