[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP3475232A1 - Method and device for producing hollow microglass beads - Google Patents

Method and device for producing hollow microglass beads

Info

Publication number
EP3475232A1
EP3475232A1 EP17745970.8A EP17745970A EP3475232A1 EP 3475232 A1 EP3475232 A1 EP 3475232A1 EP 17745970 A EP17745970 A EP 17745970A EP 3475232 A1 EP3475232 A1 EP 3475232A1
Authority
EP
European Patent Office
Prior art keywords
glass
hot gas
hollow glass
nozzle plate
rondier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP17745970.8A
Other languages
German (de)
French (fr)
Inventor
Jürgen Schlicke
Lutz Stache
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bpi Beads Production Int GmbH
Bpi Beads Production International GmbH
Hofmeister Kristall GmbH
Original Assignee
Bpi Beads Production Int GmbH
Bpi Beads Production International GmbH
Hofmeister Kristall GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bpi Beads Production Int GmbH, Bpi Beads Production International GmbH, Hofmeister Kristall GmbH filed Critical Bpi Beads Production Int GmbH
Publication of EP3475232A1 publication Critical patent/EP3475232A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/107Forming hollow beads
    • C03B19/1075Forming hollow beads by blowing, pressing, centrifuging, rolling or dripping
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C11/00Multi-cellular glass ; Porous or hollow glass or glass particles
    • C03C11/002Hollow glass particles

Definitions

  • the invention relates to a method and an apparatus for producing hollow glass microspheres in the diameter range of 0.01 mm to 0.1 mm of molten glass, the u. a. can be used as a filler for lightweight materials or as an ingredient of paints, paints and plasters.
  • micromassiv glass beads in the diameter range up to 0.015 mm from DE 10 2008 025 767 A1 or DE 197 21 571 A1, according to which molten glass strands are dispersed by means of a cutting wheel.
  • WO 2015/1 10621 A1 describes a comparable process for the production of hollow glass spheres.
  • very high cutting wheel speeds are required, whereby technical limits are encountered in the cutting wheel bearing (rough running) and cooling (wind formation). Consequently, hollow glass microspheres in the desired diameter range can not be produced by this method.
  • DD 261 592 A1 describes a process for the production of micromassive glass spheres in the diameter range from 0.040 mm to 0.080 mm from molten high-index glass.
  • the molten glass passes in the form of a glass strand of about 4 mm to 6 mm diameter from a platinum melting tank and is with a cold high-pressure air jet at a speed of 100 ms "1 to 300 ms " 1 and a pressure of 300 kPa to 700 kPa in glass particles atomized.
  • the disadvantage is that arise during the sputtering of soda-lime glasses glass fibers instead of the desired glass particles.
  • DE 10 2007 002 904 A1 discloses a method for producing hollow glass beads from finely ground soda lime glass and / or borosilicate glass by means of a heat transfer process (for example in a shaft furnace).
  • a heat transfer process for example in a shaft furnace.
  • the temperature rising in accordance with the method causes glass spheres to form due to the surface tension.
  • the high temperature causes the outgassing of an added propellant.
  • Disadvantages are the costly crushing of the glass and the lack of control of the hollow ball size, which is why a subsequent classification is required.
  • molten glass which runs out of a nozzle as a strand, is dispersed by an intermittently acting jet of hot air into glass particles which assume spherical shape during the subsequent free fall.
  • the intermittent jet of hot air is caused by a perforated rotating disc.
  • the object of the invention is to provide a method and an apparatus for producing hollow glass microspheres, which make it possible, the hollow glass microspheres in Diameter range from 0.01 mm to 0, 1 mm in a continuous process directly from molten glass to avoid glass fiber formation.
  • the scattering width of the diameter of the hollow spheres produced according to the method should be smaller compared to currently known production methods.
  • the preparation of the hollow glass microspheres by sputtering a molten glass strand by means of a hot gas to glass particles, wherein the glass particles during a subsequent atomization through a heated Rondier- / expansion channel to Mikroromassivglas- balls balls and subsequently expand this to micro hollow glass spheres.
  • the glass is melted with a predetermined composition, wherein the molten glass contains at least one in the range of 1 100 ° C to 1500 ° C gaseous substance in dissolved form.
  • the melting device In the bottom region of the melting device there is a discharge opening, through which the glass melt emerges in the form of one or more glass strands.
  • a nozzle plate with a plurality of nozzles designed as conical passage openings is arranged on or within the discharge opening, so that a plurality of glass strands spaced apart from one another are produced on exit of the glass melt from the melting apparatus.
  • the nozzle plate is preferably heated directly electrically.
  • the molten glass strand (s) are atomized to glass particles after leaving the melting device, the resulting glass particles having a more or less irregular shape.
  • the hot gas flow is oriented at right angles to the glass strand (s).
  • the glass particles are then blown directly into the immediately adjacent, flow-oriented Rondier / Expansi- onskanal.
  • the glass particles (ramming) of the glass particles into micromassiv glass spheres takes place, ie, during heating, the glass particles due to the surface tension of spherical shape or transform into spheres.
  • the Rondier- / expansion channel is operated by the hot gas and possibly by additional heaters in the temperature range of usually 1 100 ° C to 1500 ° C. After exiting the Rondier- / expansion channel, the hollow glass microspheres are cooled by means of cooling air and collected in solid form.
  • One of the advantages of the invention is that the formation of glass threads is avoided by the high gas velocity and the high gas temperature of the hot gas flowing from the high-pressure hot gas nozzle onto the glass strand (s).
  • the process makes it possible to produce high-quality hollow glass microspheres inexpensively and in large quantities per unit of time during continuous process control. Expensive process steps, such as the mechanical comminution of cold glass and the costly heating to Rondieren, are unnecessary.
  • the glass strands have a diameter of 0.5 mm to 1, 5 mm at the outlet from the melting device.
  • the viscosity of the glass melt emerging as glass strand is preferably 0.5 dPa-s to 1.5 dPa s.
  • the setting of this viscosity interval can be carried out by controlling the melt temperature at a given chemical composition of the glass melt.
  • the glass strand (s) on exiting the reflow apparatus are flown through the hot gas at a gas velocity in the range of 300 ms -1 to 1500 ms -1 , preferably 500 ms -1 to 1000 ms -1 suitably adjusted to a value of between 1500 ° C. and 2000 ° C.
  • Lime-soda glasses or borosilicate glasses are preferably used for the process according to the invention
  • the glass composition for particularly suitable soda-lime glasses or borosilicate glasses results from the information given in FIG Table 1 .
  • Table 1 Preferred composition of the glasses for producing the hollow glass microspheres
  • the substance dissolved in the molten glass and gaseous in the range from 1100 ° C. to 1500 ° C. is sulfur trioxide, oxygen, nitrogen, sulfur dioxide, carbon dioxide, arsenic oxide, antimony oxide or a mixture thereof.
  • the preferred mass fraction of sulfur trioxide (SO3) is in the range of 0.6% to 0.8%, wherein the sulfur trioxide content can be realized, for example, by admixing sodium sulfate in the glass melt.
  • arsenic oxide (AS2O3) or antimony oxide (Sb203) with a mass fraction in the range of 0, 1% to 0.5%.
  • the respective mass fraction of the solute is selected as follows:
  • a transport gas is introduced axially into the Rondier / expansion channel by means of a transport gas nozzle (a transport burner).
  • the flow direction of the transport gas corresponds to the channel direction and the injection takes place below the region in which the glass particles enter the ridge / expansion channel.
  • the transport gas serves to suspend the glass particles, the micromassiv glass beads and the hollow glass microspheres during the passage through the Rondier- / expansion channel and to support their transport through the Rondier- / expansion channel.
  • the transport gas can be used to heat the Rondier- / expansion channel.
  • the device for carrying out the method comprises the melting device with the outlet opening arranged in the bottom area, on or within which the nozzle plate is mounted such that the glass melt can emerge exclusively from the nozzles in thin glass strands.
  • the high-pressure hot gas nozzle Immediately below and next to the discharge opening is the high-pressure hot gas nozzle, which is oriented such that, when carrying out the method, the hot gas flowing out of the high-pressure hot gas nozzle impinges on the glass strands (3.1) emerging from the nozzles.
  • the Rondier / expansion channel is located in the flow direction of the effluent from the high-pressure hot gas nozzle during operation hot gas behind the discharge opening.
  • the device has a cooling air funnel for supplying the cooling air, which adjoins the Rondier- / expansion channel, wherein the cooling air funnel as well as the Rondier / expansion channel are aligned in the flow direction of the hot gas.
  • the funnel opening faces the Rondier / expansion channel.
  • the funnel neck of the cooling air funnel forms a discharge channel for collecting the cooled hollow glass microspheres.
  • the end of the end region of the discharge channel arranged in the flow direction can form a cyclone separator or a rotary valve by means of which the hollow glass microspheres are continuously conveyed out of the discharge channel.
  • the nozzle plate has nozzles each with a circular cross-section and with a diameter in the range from 1 mm to 3 mm. This makes it possible to produce the glass strands in the particularly advantageous for the process diameter range of 0.5 mm to 1, 5 mm.
  • the spaced-apart nozzles of the nozzle plate are arranged in a line.
  • the positioning of the line-shaped nozzle arrangement in the device takes place transversely to the flow direction of the hot gas.
  • the nozzle plate can have two symmetrically curved reinforcing beads, which extend in mirror image to one another along the line-shaped arranged nozzles.
  • the reinforcing beads restrict the deformation caused by heating or distortions of the nozzle plate; A geometrically precise exit of the glass strands from the nozzles is guaranteed.
  • the reinforcing beads may, for example, be formed in sheet metal components of the nozzle plate.
  • FIG. 1 shows the device for carrying out the method for producing hollow glass microspheres
  • Fig. 2 the nozzle plate with five nozzles in plan view and in cross section.
  • soda-lime glass having a sulfur trioxide mass fraction of 0.8% is melted in the melting apparatus 1, an electrically heated platinum melting vessel, at 1450.degree.
  • the molten glass 3 passes through the discharge opening 1 .2 in the bottom of the Aufschmelzvorrich- 1 through the electrically heated nozzle plate 2 made of platinum with 20 linearly arranged nozzles 2.1 with a respective diameter of 1, 5 mm from the reflow device. 1
  • the viscosity of the molten glass 3 is 0.5 d Pa s.
  • the exiting molten glass strands 3.1 with a diameter of 0.7 mm are atomized immediately after leaving the nozzles 2.1 through the hot gas 14 from the high pressure hot gas nozzle 4 of an oxygen / natural gas high pressure burner to glass particles 3.2.
  • the hot gas flows at right angles to the glass strands 3.1 with a gas velocity of 600 m / s.
  • the glass particles 3.2 arrive in the immediately adjacent, by the transport gas 15 from the Transportgasdüse 5 of a transport gas burner longitudinally heated Rondier ZExpansionskanal 6 made of refractory material.
  • the temperature in the Rondier / expansion channel 6 is 1500 ° C.
  • this cooling air 7 is blown via the cooling air funnel 8 for cooling the exhaust gases, which at the end of Austragska- 9 exits as exhaust air 1 1 through the wire 10 again.
  • the sieve 10 prevents the exit of the hollow glass microspheres 3.4. These are conveyed by the rotary valve 12 from the discharge channel 9.
  • the hollow glass microspheres 3.4 have a diameter of 0.02 mm to 0.05 mm.
  • borosilicate glass is melted with a antimony oxide mass fraction of 0.5% in a conventional melter at 1600 ° C melting temperature.
  • the molten glass 3 passes in the feeder at a temperature of 1450 ° C through an electrically heated discharge port 1 .2 with strainer for holding refractory bricks to the electrically heated nozzle plate 2 with 22 linear nozzles 2.1 with a diameter of 1, 5 mm.
  • the atomization of the molten glass, the transportation through the Rondier- / expansion channel 6 and the discharge correspond to those in the first embodiment.
  • the diameter of the hollow glass microspheres 3.4 is in the range 0.02 mm to 0.04 mm.
  • the nozzles 2.1 of the nozzle plate 2 according to FIG. 2 show above and below the row of nozzles in each case a symmetrically curved reinforcing bead 2.2.
  • the reinforcing beads 2.2 are formed in the sheet metal components of the nozzle plate 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Glass Compositions (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Surface Treatment Of Glass (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

The invention relates to a method and a device for producing hollow microglass beads (3.4) from molten glass (3), wherein the hollow microglass beads (3.4) are manufactured in a diameter range from 0.01 mm to 0.1 mm in a continuously operating process while avoiding glass filament formation. Molten glass strands (3.1) exiting a melting device (1) are atomized by means of hot gas (14) to form glass particles (3.2). Subsequently, during passage through a rounding/expansion duct (6), the glass particles (3.2) are rounded to form solid microglass beads (3.3) and expanded to form hollow microglass beads (3.4). The hollow microglass beads (3.4) can advantageously be used as a filler for lightweight building materials or as a constituent part of coatings, paints and plasters/renders.

Description

Verfahren und Vorrichtung zur Herstellung von Mikrohohlglaskugeln  Method and device for producing hollow glass microspheres
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Herstellung von Mikrohohlglaskugeln im Durchmesserbereich von 0,01 mm bis 0,1 mm aus schmelzflüssi- gern Glas, die u. a. als Füllstoff für Leichtbauwerkstoffe oder als Bestandteil von Lacken, Farben und Putzen eingesetzt werden können. The invention relates to a method and an apparatus for producing hollow glass microspheres in the diameter range of 0.01 mm to 0.1 mm of molten glass, the u. a. can be used as a filler for lightweight materials or as an ingredient of paints, paints and plasters.
Bekannt ist die Herstellung von Mikromassivglaskugeln im Durchmesserbereich bis 0,015 mm aus DE 10 2008 025 767 A1 oder DE 197 21 571 A1 , wonach schmelz- flüssige Glasstränge mittels eines Schneidrades dispergiert werden. Known is the production of micromassiv glass beads in the diameter range up to 0.015 mm from DE 10 2008 025 767 A1 or DE 197 21 571 A1, according to which molten glass strands are dispersed by means of a cutting wheel.
In WO 2015/1 10621 A1 ist ein vergleichbares Verfahren zur Produktion von Hohlglaskugeln beschrieben. Um Mikrohohlglaskugeln mit Durchmessern von 0,01 mm bis 0, 12 mm mit dieser Technologie produzieren zu können, sind sehr hohe Schneid- raddrehzahlen erforderlich, wobei man an technische Grenzen bei der Schneidradlagerung (Laufunruhe) und der Kühlung (Windbildung) stößt. Folglich sind Mikrohohlglaskugeln im gewünschten Durchmesserbereich mit diesem Verfahren nicht herstellbar. In DD 261 592 A1 wird ein Verfahren zur Herstellung von Mikromassivglaskugeln im Durchmesserbereich von 0,040 mm bis 0,080 mm aus schmelzflüssigem Hoch-In- dex-Glas beschrieben. Das schmelzflüssige Glas gelangt in Form eines Glasstranges von ca. 4 mm bis 6 mm Durchmesser aus einem Platinschmelzbehälter und wird mit einem kalten Hochdruckluftstrahl mit einer Geschwindigkeit von 100 m s"1 bis 300 m s"1 und einem Druck von 300 kPa bis 700 kPa in Glaspartikel zerstäubt. Nachteilig ist, dass beim Zerstäuben von Kalk-Natron-Gläsern Glasfäden statt der erwünschten Glaspartikel entstehen. WO 2015/1 10621 A1 describes a comparable process for the production of hollow glass spheres. In order to be able to produce hollow glass microspheres with diameters of 0.01 mm to 0.12 mm with this technology, very high cutting wheel speeds are required, whereby technical limits are encountered in the cutting wheel bearing (rough running) and cooling (wind formation). Consequently, hollow glass microspheres in the desired diameter range can not be produced by this method. DD 261 592 A1 describes a process for the production of micromassive glass spheres in the diameter range from 0.040 mm to 0.080 mm from molten high-index glass. The molten glass passes in the form of a glass strand of about 4 mm to 6 mm diameter from a platinum melting tank and is with a cold high-pressure air jet at a speed of 100 ms "1 to 300 ms " 1 and a pressure of 300 kPa to 700 kPa in glass particles atomized. The disadvantage is that arise during the sputtering of soda-lime glasses glass fibers instead of the desired glass particles.
In den Schriften US 2 334 578 A, US 2 600 936 A, US 2 730 841 A, US 2 947 1 15 A, US 3 190 737 A, US 3 361 549 A, DE 1 019 806 A sowie DE 1 285 107 A, wird beschrieben, dass Glasbruch gemahlen, gesichtet und teilweise auf die Größe der herzustellenden Mikromassivglaskugeln gesiebt wird. Das Material wird einem Temperaturfeld zugeführt, wobei die einzelnen Glasteilchen während ihres Fluges durch eine Heizzone aufgrund der Oberflächenspannung Kugelform annehmen. Beim zeitaufwendigen Mahlen der Scherben entsteht allerdings hoher Mahlkörper- und Mühlenverschleiß; außerdem ist bei diesen Verfahren die Steuerung der Glaskugelgröße nicht möglich. In the specifications US 2 334 578 A, US 2 600 936 A, US 2 730 841 A, US 2 947 1 15 A, US 3 190 737 A, US 3 361 549 A, DE 1 019 806 A and DE 1 285 107 A, it is described that glass breakage is ground, screened and partially sieved to the size of the micro-solid glass spheres to be produced. The material is supplied to a temperature field, wherein the individual glass particles during their flight through a Heating zone due to the surface tension spherical shape. However, the time-consuming grinding of the cullet results in high grinding media and mill wear; In addition, in these methods, the control of the glass bead size is not possible.
DE 10 2007 002 904 A1 offenbart ein Verfahren zur Hohlglaskugelherstellung aus fein gemahlenem Kalk-Natron-Glas und/oder Borosilikatglas mittels eines Wärmeübertragungsprozesses (zum Beispiel in einem Schachtofen). Die verfahrensgemäß steigende Temperatur führt infolge des Absinkens der Viskosität der Glaspartikel dazu, dass aufgrund der Oberflächenspannung Glaskugeln entstehen. Des Weiteren bewirkt die hohe Temperatur die Ausgasung eines zugesetzten Treibmittels. Infolgedessen wachsen die kleinen massiven zu größeren hohlen Kugeln an. Nachteilig sind das aufwendige Zerkleinern des Glases und die mangelhafte Steuerung der Hohlkugelgröße, weshalb ein nachträgliches Klassieren erforderlich wird. DE 10 2007 002 904 A1 discloses a method for producing hollow glass beads from finely ground soda lime glass and / or borosilicate glass by means of a heat transfer process (for example in a shaft furnace). As a result of the decrease in the viscosity of the glass particles, the temperature rising in accordance with the method causes glass spheres to form due to the surface tension. Furthermore, the high temperature causes the outgassing of an added propellant. As a result, the small massive grow to larger hollow balls. Disadvantages are the costly crushing of the glass and the lack of control of the hollow ball size, which is why a subsequent classification is required.
Gemäß AT 175672 B wird schmelzflüssiges Glas, welches aus einer Düse als Strang ausläuft, durch einen intermittierend einwirkenden Heißluftstrahl in Glaspartikel dis- pergiert, die während des anschließenden freien Falls Kugelform annehmen. Der intermittierende Heißluftstrahl wird durch eine perforierte rotierende Scheibe hervorge- rufen. Mit diesem Verfahren können nur vergleichsweise große Kugeln hergestellt werden. According to AT 175672 B, molten glass, which runs out of a nozzle as a strand, is dispersed by an intermittently acting jet of hot air into glass particles which assume spherical shape during the subsequent free fall. The intermittent jet of hot air is caused by a perforated rotating disc. With this method, only comparatively large balls can be produced.
Weitere Verfahren zur Glaskugelherstellung sind beschrieben in US 2 965 921 A, US 3 150 947 A, US 3 294 51 1 A, US 3 074 257 A, US 3 133 805 A, AT 245181 B sowie FR 1 417 414 A. Mit den darin genannten Verfahren werden die grundsätzlichen Probleme und Nachteile, wie zum Beispiel Glasfadenbildung, geringe Leistung, komplizierte Zerstäubungsanlagen, große Durchmesserschwankung der Mikroglaskugeln nicht verhindert. Durch zusätzliche, äußerst aufwendige technologische Verfahrensschritte müssen die Mikroglaskugeln nachträglich von Fasern gereinigt wer- den. Bei Einsatz flüssiger Medien ist eine zusätzliche Trocknung der Mikroglaskugeln erforderlich. Other methods of making glass beads are described in US 2 965 921 A, US 3 150 947 A, US 3 294 51 1 A, US 3 074 257 A, US 3 133 805 A, AT 245181 B and FR 1 417 414 A. With the The method mentioned therein, the fundamental problems and disadvantages, such as glass fiber formation, low power, complicated sputtering, large diameter variation of the glass microspheres are not prevented. Additional, extremely complex technological process steps require the glass beads to be subsequently cleaned of fibers. When using liquid media, an additional drying of the glass microspheres is required.
Aufgabe der Erfindung ist es, ein Verfahren und eine Vorrichtung zur Herstellung von Mikrohohlglaskugeln bereitzustellen, die es ermöglichen, die Mikrohohlglaskugeln im Durchmesserbereich von 0,01 mm bis 0, 1 mm in einem kontinuierlich arbeitenden Prozess direkt aus schmelzflüssigem Glas unter Vermeidung von Glasfadenbildung zu fertigen. Die Streubreite der Durchmesser der verfahrensgemäß hergestellten Hohlkugeln soll im Vergleich zu derzeit bekannten Herstellungsverfahren kleiner sein. The object of the invention is to provide a method and an apparatus for producing hollow glass microspheres, which make it possible, the hollow glass microspheres in Diameter range from 0.01 mm to 0, 1 mm in a continuous process directly from molten glass to avoid glass fiber formation. The scattering width of the diameter of the hollow spheres produced according to the method should be smaller compared to currently known production methods.
Nach Maßgabe der Erfindung erfolgt die Herstellung der Mikrohohlglaskugeln durch Zerstäuben eines schmelzflüssigen Glasstranges mittels eines Heißgases zu Glaspartikeln, wobei die Glaspartikel während eines an die Zerstäubung anschließenden Durchfluges durch einen beheizten Rondier-/Expansionskanal zu Mikromassivglas- kugeln rondieren und diese nachfolgend zu Mikrohohlglaskugeln expandieren. According to the invention, the preparation of the hollow glass microspheres by sputtering a molten glass strand by means of a hot gas to glass particles, wherein the glass particles during a subsequent atomization through a heated Rondier- / expansion channel to Mikroromassivglas- balls balls and subsequently expand this to micro hollow glass spheres.
In einer Aufschmelzvorrichtung, zum Beispiel einer Platinwanne oder einer herkömmlichen Schmelzwanne, wird das Glas mit einer vorgegebenen Zusammensetzung aufgeschmolzen, wobei die Glasschmelze mindestens einen im Bereich von 1 100 °C bis 1500 °C gasförmigen Stoff in gelöster Form enthält. In a melting apparatus, for example a platinum tub or a conventional melting tank, the glass is melted with a predetermined composition, wherein the molten glass contains at least one in the range of 1 100 ° C to 1500 ° C gaseous substance in dissolved form.
Im Bodenbereich der Aufschmelzvorrichtung befindet sich eine Ablassöffnung, durch die die Glasschmelze in Form eines oder mehrerer Glasstränge austritt. In the bottom region of the melting device there is a discharge opening, through which the glass melt emerges in the form of one or more glass strands.
Vorzugsweise ist an oder innerhalb der Ablassöffnung eine Düsenplatte mit mehreren, als konische Durchgangsöffnungen ausgebildeten Düsen angeordnet, sodass mehrere, voneinander beabstandete Glasstränge beim Austritt der Glasschmelze aus der Aufschmelzvorrichtung erzeugt werden. Die Düsenplatte wird bevorzugt di- rekt elektrisch beheizt. Preferably, a nozzle plate with a plurality of nozzles designed as conical passage openings is arranged on or within the discharge opening, so that a plurality of glass strands spaced apart from one another are produced on exit of the glass melt from the melting apparatus. The nozzle plate is preferably heated directly electrically.
Mittels eines aus einer Hochdruck-Heißgasdüse, zum Beispiel eines Erdgas/Sauerstoff-Hochdruckbrenners, strömenden Heißgases werden der oder die schmelzflüssigen Glasstränge nach dem Austritt aus der Aufschmelzvorrichtung zu Glaspartikeln zerstäubt, wobei die entstehenden Glaspartikel eine mehr oder minder unregelmäßige Gestalt aufweisen. Bevorzugt ist die Heißgasströmung im rechten Winkel zu dem oder den Glassträngen ausgerichtet. Durch das strömende Heißgas werden die Glaspartikel anschließend direkt in den unmittelbar angrenzenden, in Strömungsrichtung ausgerichteten Rondier-/Expansi- onskanal geblasen. Während des Durchfluges durch den Rondier-/Expansionskanal findet das Rondieren (Verkugeln) der Glaspartikel zu Mikromassivglaskugeln statt, d. h., während der Erwärmung nehmen die Glaspartikel infolge der Oberflächenspannung Kugelgestalt an bzw. formen sich zu Kugeln um. By means of a hot gas flowing from a high-pressure hot gas nozzle, for example a natural gas / oxygen high-pressure burner, the molten glass strand (s) are atomized to glass particles after leaving the melting device, the resulting glass particles having a more or less irregular shape. Preferably, the hot gas flow is oriented at right angles to the glass strand (s). As a result of the flowing hot gas, the glass particles are then blown directly into the immediately adjacent, flow-oriented Rondier / Expansi- onskanal. During the passage through the Rondier / expansion channel, the glass particles (ramming) of the glass particles into micromassiv glass spheres takes place, ie, during heating, the glass particles due to the surface tension of spherical shape or transform into spheres.
Im Verlaufe des weiteren Durchfluges erfolgt durch geeignete Temperaturführung im Rondier-/Expansionskanal das Expandieren (Aufblasen) der Mikromassivglaskugeln zu Mikrohohlglaskugeln infolge der Entgasung des gelösten gasförmigen Stoffes. In the course of further flight through the appropriate temperature control in Rondier- / expansion channel expanding (inflation) of the micro-solid glass spheres to hollow glass microspheres as a result of the degassing of the dissolved gaseous substance.
Der Rondier-/Expansionskanal wird durch das Heißgas und ggf. durch zusätzliche Heizungen im Temperaturbereich von üblicherweise 1 100 °C bis 1500 °C betrieben. Nach Austritt aus dem Rondier-/Expansionskanal werden die Mikrohohlglaskugeln mittels Kühlluft abgekühlt und in fester Form gesammelt. The Rondier- / expansion channel is operated by the hot gas and possibly by additional heaters in the temperature range of usually 1 100 ° C to 1500 ° C. After exiting the Rondier- / expansion channel, the hollow glass microspheres are cooled by means of cooling air and collected in solid form.
Einer der Vorteile der Erfindung ist, dass durch die hohe Gasgeschwindigkeit und die hohe Gastemperatur des aus der Hochdruck-Heißgasdüse auf den oder die Glas- stränge strömenden Heißgases die Bildung von Glasfäden vermieden wird. One of the advantages of the invention is that the formation of glass threads is avoided by the high gas velocity and the high gas temperature of the hot gas flowing from the high-pressure hot gas nozzle onto the glass strand (s).
Durch Einhaltung konstanter Bedingungen, namentlich der Gastemperatur, der Gasgeschwindigkeit und der Prozesstemperatur, sichert man eine geringe Streubreite der Größe der Mikrohohlglaskugeln, welche im Durchmesserbereich von 0,02 mm bis 0,05 mm liegt. Aufwendige nachträgliche Klassierungen der Mikrohohlglaskugeln in Fraktionen mit enger Durchmesserbandbreite entfallen. By maintaining constant conditions, namely the gas temperature, the gas velocity and the process temperature, ensures a small spread of the size of the hollow glass microspheres, which is in the diameter range of 0.02 mm to 0.05 mm. Elaborate subsequent classifications of the hollow glass microspheres in fractions with a narrow diameter band are eliminated.
Das Verfahren ermöglicht es, bei kontinuierlicher Prozessführung qualitativ hochwertige Mikrohohlglaskugeln kostengünstig und in großer Menge pro Zeiteinheit herzu- stellen. Teure Verfahrensschritte, wie zum Beispiel die mechanische Zerkleinerung von Kaltglas und die kostenintensive Aufheizung bis zum Rondieren, sind entbehrlich. Vorteilhaft weisen die Glasstränge beim Austritt aus der Aufschmelzvorrichtung einen Durchmesser von 0,5 mm bis 1 ,5 mm auf. The process makes it possible to produce high-quality hollow glass microspheres inexpensively and in large quantities per unit of time during continuous process control. Expensive process steps, such as the mechanical comminution of cold glass and the costly heating to Rondieren, are unnecessary. Advantageously, the glass strands have a diameter of 0.5 mm to 1, 5 mm at the outlet from the melting device.
Die Viskosität der als Glasstrang austretenden Glasschmelze beträgt vorzugsweise 0,5 dPa-s bis 1 ,5 dPa s. Die Einstellung dieses Viskositätsintervalls kann bei gegebener chemischer Zusammensetzung der Glasschmelze durch Steuerung der Schmelzentemperatur erfolgen. The viscosity of the glass melt emerging as glass strand is preferably 0.5 dPa-s to 1.5 dPa s. The setting of this viscosity interval can be carried out by controlling the melt temperature at a given chemical composition of the glass melt.
Ferner werden der oder die Glasstränge beim Austritt aus der Aufschmelzvorrichtung durch das Heißgas mit einer Gasgeschwindigkeit im Bereich von 300 m s"1 bis 1500 m s~1 , bevorzugt 500 m s~1 bis 1000 m s~1 , angeströmt. Der Temperatur des Heißgases wird in besonders geeigneter weise auf einen Wert zwischen 1500 °C und 2000 °C eingestellt. Vorzugsweise werden für das erfindungsgemäße Verfahren Kalk-Natron-Gläser bzw. Borosilikatgläser eingesetzt. Die Glaszusammensetzung für besonders geeignete Kalk-Natron-Gläser bzw. Borosilikatgläser ergeben sich aus den Angaben gemäß Tabelle 1 . Further, the glass strand (s) on exiting the reflow apparatus are flown through the hot gas at a gas velocity in the range of 300 ms -1 to 1500 ms -1 , preferably 500 ms -1 to 1000 ms -1 suitably adjusted to a value of between 1500 ° C. and 2000 ° C. Lime-soda glasses or borosilicate glasses are preferably used for the process according to the invention The glass composition for particularly suitable soda-lime glasses or borosilicate glasses results from the information given in FIG Table 1 .
Tabelle 1 : Bevorzugte Zusammensetzung der Gläser zur Herstellung der Mikrohohlglaskugeln Table 1: Preferred composition of the glasses for producing the hollow glass microspheres
Es kann vorgesehen sein, dass der in der Glasschmelze gelöste und im Bereich von 1 100 °C bis 1500 °C gasförmige Stoff Schwefeltrioxid, Sauerstoff, Stickstoff, Schwefeldioxid, Kohlendioxid, Arsenoxid, Antimonoxid oder ein Gemisch derselben ist. Der bevorzugte Masseanteil bei Schwefeltrioxid (SO3) liegt im Bereich von 0,6 % bis 0,8 %, wobei der Schwefeltrioxid-Anteil zum Beispiel durch eine Beimengung von Natriumsulfat in der Glasschmelze realisierbar ist. Weiterhin eignen sich als gelöste, gasförmige Stoffe Arsenoxid (AS2O3) oder Antimonoxid (Sb203) mit einem Masseanteil im Bereich von 0, 1 % bis 0,5 %. It can be provided that the substance dissolved in the molten glass and gaseous in the range from 1100 ° C. to 1500 ° C. is sulfur trioxide, oxygen, nitrogen, sulfur dioxide, carbon dioxide, arsenic oxide, antimony oxide or a mixture thereof. The preferred mass fraction of sulfur trioxide (SO3) is in the range of 0.6% to 0.8%, wherein the sulfur trioxide content can be realized, for example, by admixing sodium sulfate in the glass melt. Also suitable as dissolved gaseous substances arsenic oxide (AS2O3) or antimony oxide (Sb203) with a mass fraction in the range of 0, 1% to 0.5%.
Besonders zweckmäßig wird der jeweilige Masseanteil des gelösten Stoffes wie folgt gewählt: Particularly suitably, the respective mass fraction of the solute is selected as follows:
Schwefeltrioxid (SO3) 0,8 % Sulfur trioxide (SO3) 0.8%
Antimonoxid (Sb203) 0,5 % Antimony oxide (Sb 2 03) 0.5%
Arsenoxid (AS2O3) 0,5 %  Arsenic oxide (AS2O3) 0.5%
In einer Ausgestaltung der Erfindung wird ein Transportgas mittels einer Transportgasdüse (eines Transportbrenners) in den Rondier-/Expansionskanal axial eingebla- sen. Die Strömungsrichtung des Transportgases entspricht der Kanalrichtung und die Einblasung erfolgt unterhalb des Bereiches, in dem die Glaspartikel in den Ron- dier-/Expansionskanal eintreten. Das Transportgas dient dazu, die Glaspartikel, die Mikromassivglaskugeln sowie die Mikrohohlglaskugeln während des Durchfluges durch den Rondier-/Expansionskanal in Schwebe zu halten und deren Transport durch den Rondier-/Expansionskanal zu unterstützen. Des Weiteren kann das Transportgas zur Beheizung des Rondier-/Expansionskanals genutzt werden. In one embodiment of the invention, a transport gas is introduced axially into the Rondier / expansion channel by means of a transport gas nozzle (a transport burner). The flow direction of the transport gas corresponds to the channel direction and the injection takes place below the region in which the glass particles enter the ridge / expansion channel. The transport gas serves to suspend the glass particles, the micromassiv glass beads and the hollow glass microspheres during the passage through the Rondier- / expansion channel and to support their transport through the Rondier- / expansion channel. Furthermore, the transport gas can be used to heat the Rondier- / expansion channel.
Die Vorrichtung zur Durchführung des Verfahrens umfasst die Aufschmelzvorrichtung mit der im Bodenbereich angeordneten Ablassöffnung, an der oder innerhalb der die Düsenplatte derart angebracht ist, dass die Glasschmelze ausschließlich aus den Düsen in dünnen Glassträngen austreten kann. Unmittelbar unterhalb und neben der Ablassöffnung befindet sich die Hochdruck-Heißgasdüse, dies so ausgerichtet ist, dass bei Durchführung des Verfahrens das aus der Hochdruck-Heißgasdüse ausströmende Heißgas auf die aus den Düsen austretenden Glasstränge (3.1 ) auftrifft. Der Rondier-/Expansionskanal befindet sich in Strömungsrichtung des bei Betrieb aus der Hochdruck-Heißgasdüse ausströmenden Heißgases hinter der Ablassöffnung. The device for carrying out the method comprises the melting device with the outlet opening arranged in the bottom area, on or within which the nozzle plate is mounted such that the glass melt can emerge exclusively from the nozzles in thin glass strands. Immediately below and next to the discharge opening is the high-pressure hot gas nozzle, which is oriented such that, when carrying out the method, the hot gas flowing out of the high-pressure hot gas nozzle impinges on the glass strands (3.1) emerging from the nozzles. The Rondier / expansion channel is located in the flow direction of the effluent from the high-pressure hot gas nozzle during operation hot gas behind the discharge opening.
Weiterhin weist die Vorrichtung einen Kühllufttrichter zur Zuführung der Kühlluft auf, der sich an den Rondier-/Expansionskanal anschließt, wobei der Kühllufttrichter wie auch der Rondier-/Expansionskanal in Strömungsrichtung des Heißgases ausgerichtet sind. Die Trichteröffnung ist dem Rondier-/Expansionskanal zugewandt. Der Trichterhals des Kühllufttrichters bildet einen Austragskanal zum Sammeln der abgekühlten Mikrohohlglaskugeln. Furthermore, the device has a cooling air funnel for supplying the cooling air, which adjoins the Rondier- / expansion channel, wherein the cooling air funnel as well as the Rondier / expansion channel are aligned in the flow direction of the hot gas. The funnel opening faces the Rondier / expansion channel. The funnel neck of the cooling air funnel forms a discharge channel for collecting the cooled hollow glass microspheres.
Den Abschluss des in Strömungsrichtung angeordneten Endbereichs des Austrags- kanals kann ein Zyklonabscheider oder eine Zellenradschleuse bilden, mittels der die Mikrohohlglaskugeln kontinuierlich aus dem Austragskanal gefördert werden. The end of the end region of the discharge channel arranged in the flow direction can form a cyclone separator or a rotary valve by means of which the hollow glass microspheres are continuously conveyed out of the discharge channel.
Die Düsenplatte weist in einer Ausgestaltung der Erfindung Düsen mit jeweils einem kreisförmigen Querschnitt und mit einem Durchmesser im Bereich von 1 mm bis 3 mm auf. Dies ermöglicht es, die Glasstränge in dem für das Verfahren besonders vorteilhaften Durchmesserbereich von 0,5 mm bis 1 ,5 mm zu erzeugen. In one embodiment of the invention, the nozzle plate has nozzles each with a circular cross-section and with a diameter in the range from 1 mm to 3 mm. This makes it possible to produce the glass strands in the particularly advantageous for the process diameter range of 0.5 mm to 1, 5 mm.
Es kann weiterhin vorgesehen sein, dass die voneinander beabstandeten Düsen der Düsenplatte in einer Linie angeordnet sind. Die Positionierung der linienförmigen Düsenanordnung in der Vorrichtung erfolgt quer zur Strömungsrichtung des Heißgases. It may further be provided that the spaced-apart nozzles of the nozzle plate are arranged in a line. The positioning of the line-shaped nozzle arrangement in the device takes place transversely to the flow direction of the hot gas.
In dieser Ausgestaltung kann die Düsenplatte zwei symmetrisch gekrümmte Verstär- kungssicken aufweisen, die spiegelbildlich zueinander entlang der linienförmigen angeordneten Düsen verlaufen. Durch die Verstärkungssicken werden erwärmungsbedingte Deformationen bzw. Verwerfungen der Düsenplatte eingeschränkt; ein geo- metrisch exakter Austritt der Glasstränge aus den Düsen ist gewährleistet. Die Verstärkungssicken können zum Beispiel in Blechbestandteile der Düsenplatte eingeformt sein. In this embodiment, the nozzle plate can have two symmetrically curved reinforcing beads, which extend in mirror image to one another along the line-shaped arranged nozzles. The reinforcing beads restrict the deformation caused by heating or distortions of the nozzle plate; A geometrically precise exit of the glass strands from the nozzles is guaranteed. The reinforcing beads may, for example, be formed in sheet metal components of the nozzle plate.
Die Düsenplatte besteht bevorzugt aus einem Platinwerkstoff. Die Erfindung ist nachfolgend anhand von Ausführungsbeispielen und mit Bezug auf die schematischen Zeichnungen näher erläutert. Dazu zeigen Fig. 1 : die Vorrichtung zur Durchführung des Verfahrens zur Herstellung von Mikro- hohlglaskugeln, und The nozzle plate is preferably made of a platinum material. The invention is explained in more detail by means of embodiments and with reference to the schematic drawings. FIG. 1 shows the device for carrying out the method for producing hollow glass microspheres, and FIG
Fig. 2: die Düsenplatte mit fünf Düsen in der Draufsicht und im Querschnitt. Fig. 2: the nozzle plate with five nozzles in plan view and in cross section.
Gemäß einem ersten Ausführungsbeispiel nach Figur 1 wird Kalk-Natron-Glas mit ei- nem Schwefeltrioxid-Masseanteil von 0,8 % in der Aufschmelzvorrichtung 1 , einem elektrisch beheizten Platinschmelzgefäß, bei 1450 °C geschmolzen. Das schmelzflüssige Glas 3 gelangt über die Ablassöffnung 1 .2 im Boden der Aufschmelzvorrich- tung 1 durch die elektrisch beheizte Düsenplatte 2 aus Platin mit 20 linear angeordneten Düsen 2.1 mit einem jeweiligen Durchmesser von 1 ,5 mm aus der Aufschmelz- Vorrichtung 1 . Die Viskosität der Glasschmelze 3 beträgt 0,5 d Pa s. Die austretenden schmelzflüssigen Glasstränge 3.1 mit einem Durchmesser von 0,7 mm werden unmittelbar nach dem Austritt aus den Düsen 2.1 durch das Heißgas 14 aus der Hochdruck-Heißgasdüse 4 eines Sauerstoff/Erdgas-Hochdruckbrenners zu Glaspartikeln 3.2 zerstäubt. Das Heißgas strömt dabei rechtwinklig gegen die Glas- stränge 3.1 mit einer Gasgeschwindigkeit von 600 m/s. Anschließend gelangen die Glaspartikel 3.2 in den unmittelbar angrenzenden, mittels des Transportgases 15 aus der Transportgasdüse 5 eines Transportgasbrenners längsbeheizten Rondier-ZExpansionskanal 6 aus feuerfestem Material. Die Temperatur im Rondier-/Expansionskanal 6 beträgt 1500 °C. Die im Rondier-ZExpansionskanal 6 aus den Glaspartikeln 3.2 zunächst gebildeten Mikromassivglasku- geln 3.2 expandieren im Anschluss zu Mikrohohlglaskugeln 3.4 und gelangen letztlich in den Austragskanal 9 aus rostfreiem Edelstahl. In diesen wird Kühlluft 7 via Kühllufttrichter 8 zur Kühlung der Abgase geblasen, die am Ende des Austragska- nals 9 als Abluft 1 1 durch das Sieb 10 wieder austritt. Das Sieb 10 verhindert den Austritt der Mikrohohlglaskugeln 3.4. Diese werden durch die Zellenradschleuse 12 aus dem Austragskanal 9 gefördert. Die Mikrohohlglaskugeln 3.4 weisen einen Durchmesser von 0,02 mm bis 0,05 mm auf. In einem zweiten Ausführungsbeispiel wird Borosilikatglas mit einem Antimonoxid- Masseanteil von 0,5 % in einem konventionellen Schmelzer bei 1600 °C Schmelztemperatur aufgeschmolzen. Das schmelzflüssige Glas 3 gelangt im Speiser bei einer Temperatur von 1450 °C durch eine elektrisch beheizte Ablassöffnung 1 .2 mit Siebeinsatz zum Abhalten von Feuerfeststeinchen zu der elektrisch beheizten Düsenplatte 2 mit 22 linear angeordneten Düsen 2.1 mit einem Durchmesser von jeweils 1 ,5 mm. Das Zerstäuben des schmelzflüssigen Glases, der Transport durch den Rondier-/Expansionskanal 6 und der Austrag entsprechen denen im ersten Ausführungsbeispiel. Der Durchmesser der Mikrohohlglaskugeln 3.4 liegt im Bereich 0,02 mm bis 0,04 mm. According to a first exemplary embodiment according to FIG. 1, soda-lime glass having a sulfur trioxide mass fraction of 0.8% is melted in the melting apparatus 1, an electrically heated platinum melting vessel, at 1450.degree. The molten glass 3 passes through the discharge opening 1 .2 in the bottom of the Aufschmelzvorrich- 1 through the electrically heated nozzle plate 2 made of platinum with 20 linearly arranged nozzles 2.1 with a respective diameter of 1, 5 mm from the reflow device. 1 The viscosity of the molten glass 3 is 0.5 d Pa s. The exiting molten glass strands 3.1 with a diameter of 0.7 mm are atomized immediately after leaving the nozzles 2.1 through the hot gas 14 from the high pressure hot gas nozzle 4 of an oxygen / natural gas high pressure burner to glass particles 3.2. The hot gas flows at right angles to the glass strands 3.1 with a gas velocity of 600 m / s. Subsequently, the glass particles 3.2 arrive in the immediately adjacent, by the transport gas 15 from the Transportgasdüse 5 of a transport gas burner longitudinally heated Rondier ZExpansionskanal 6 made of refractory material. The temperature in the Rondier / expansion channel 6 is 1500 ° C. The micro-solid glass spheres 3.2 initially formed from the glass particles 3.2 in the round-off expansion channel 6 subsequently expand to hollow-glass microspheres 3.4 and ultimately reach the discharge channel 9 made of stainless steel. In this cooling air 7 is blown via the cooling air funnel 8 for cooling the exhaust gases, which at the end of Austragska- 9 exits as exhaust air 1 1 through the wire 10 again. The sieve 10 prevents the exit of the hollow glass microspheres 3.4. These are conveyed by the rotary valve 12 from the discharge channel 9. The hollow glass microspheres 3.4 have a diameter of 0.02 mm to 0.05 mm. In a second embodiment, borosilicate glass is melted with a antimony oxide mass fraction of 0.5% in a conventional melter at 1600 ° C melting temperature. The molten glass 3 passes in the feeder at a temperature of 1450 ° C through an electrically heated discharge port 1 .2 with strainer for holding refractory bricks to the electrically heated nozzle plate 2 with 22 linear nozzles 2.1 with a diameter of 1, 5 mm. The atomization of the molten glass, the transportation through the Rondier- / expansion channel 6 and the discharge correspond to those in the first embodiment. The diameter of the hollow glass microspheres 3.4 is in the range 0.02 mm to 0.04 mm.
Die Düsen 2.1 der Düsenplatte 2 gemäß Figur 2 zeigen oberhalb und unterhalb der Düsenreihe jeweils eine symmetrisch gekrümmte Verstärkungssicke 2.2. Die Verstär- kungssicken 2.2 sind in die Blechbestandteile der Düsenplatte 2 eingeformt. The nozzles 2.1 of the nozzle plate 2 according to FIG. 2 show above and below the row of nozzles in each case a symmetrically curved reinforcing bead 2.2. The reinforcing beads 2.2 are formed in the sheet metal components of the nozzle plate 2.
Liste der verwendeten Bezugszeichen List of reference numbers used
1 Aufschmelzvomchtung / Schmelztiegel1 reflow oven / crucible
1 .1 Isolierung 1 .1 insulation
1 .2 Ablassöffnung  1 .2 drain opening
2 Düsenplatte  2 nozzle plate
2.1 Düse  2.1 nozzle
2.2 Verstärkungssicke  2.2 reinforcement bead
3 Glasschmelze  3 glass melt
3.1 Glasstrang, schmelzflüssig  3.1 glass strand, molten
3.2 Glaspartikel  3.2 glass particles
3.3 Mikromassivglaskugel  3.3 micromassiv glass sphere
3.4 Mikrohohlglaskugel  3.4 hollow glass ball
4 Hochdruck-Heißgasdüse  4 high pressure hot gas nozzle
5 Transportgasdüse  5 transport gas nozzle
6 Rondier-/Expansionskanal  6 Rondier / Expansion Channel
7 Kühlluft  7 cooling air
8 Kühllufttrichter  8 cooling air funnels
9 Austragskanal  9 discharge channel
10 Sieb  10 sieve
1 1 Abluft  1 1 exhaust air
12 Zellenradschleuse  12 rotary valve
13 Austrag der Mikrohohlglaskugeln 13 discharge of the hollow glass microspheres
14 Heißgas 14 hot gas
15 Transportgas  15 transport gas

Claims

Patentansprüche claims
1 . Verfahren zur Herstellung von Mikrohohlglaskugeln, wobei eine Glasschmelze (3) , die mindestens einen im Bereich von 1 100 °C bis 1500 °C gasförmigen Stoff in ge- löster Form enthält, in einer Aufschmelzvorrichtung (1 ) erzeugt wird und die Glasschmelze (3) in Form eines oder mehrerer schmelzflüssiger Glasstränge (3.1 ) durch eine Ablassöffnung (1 .2) aus der Aufschmelzvorrichtung (1 ) austritt, dadurch gekennzeichnet, dass 1 . Method for the production of hollow glass microspheres, wherein a glass melt (3) containing at least one gaseous substance in the range of 1100 ° C to 1500 ° C in dissolved form is produced in a melting device (1) and the molten glass (3) in the form of one or more molten glass strands (3.1) through a discharge opening (1 .2) from the melting device (1), characterized in that
(a) die Glasstränge (3.1 ) mit einem Durchmesser von 0,5 mm bis 0,8 mm erzeugt werden,  (a) the glass strands (3.1) are produced with a diameter of 0.5 mm to 0.8 mm,
(b) durch Steuerung der Temperatur der Glasschmelze (3) ihre Viskosität beim Austritt als Glasstrang (3.1 ) auf 0,5 dPa-s bis 1 ,5 dPa-s eingestellt wird;  (b) by controlling the temperature of the molten glass (3) its viscosity is set to 0.5 dPa-s to 1, 5 dPa-s at the exit as glass strand (3.1);
(c) mittels eines aus einer Hochdruck-Heißgasdüse (4) strömenden Heißgases (14) der oder die schmelzflüssigen Glasstränge (3.1 ) nach dem Austritt aus der Aufschmelzvorrichtung (1 ) zu Glaspartikeln (3.2) zerstäubt werden, (c) by means of a hot gas (14) flowing from a high-pressure hot gas nozzle (4), the molten glass strands (3.1) are atomised to glass particles (3.2) after leaving the melting device (1),
(d) die Glaspartikel (3.2) durch das strömende Heißgas (14) direkt in einen unmittelbar angrenzenden, beheizten, in Strömungsrichtung ausgerichteten Ron- dier-/Expansionskanal (6) geblasen werden, wobei sich die Glaspartikel (3.2) beim Durchflug durch den Rondier-/Expansionskanal (6) infolge der Oberflä- chenspannung während der Erwärmung zu Mikromassivglaskugeln (3.3) umformen und die Mikromassivglaskugeln (3.3) anschließend infolge der Entgasung des gelösten gasförmigen Stoffes zu Mikrohohlglaskugeln (3.4) expandieren, und (D) the glass particles (3.2) are blown by the flowing hot gas (14) directly into an immediately adjacent, heated, aligned in the flow direction ron- / expansion channel (6), wherein the glass particles (3.2) when passing through the Rondier As a result of the surface tension during heating, transform into micromassive glass spheres (3.3) and the micromassive glass spheres (3.3) subsequently expand to micro hollow glass spheres (3.4) as a result of the degassing of the dissolved gaseous substance, and
(e) die Mikrohohlglaskugeln (3.4) nach Austritt aus dem Rondier-/Expansionska- nal (6) mittels Kühlluft (7) abgekühlt und in fester Form gesammelt werden.  (E) the micro-hollow glass balls (3.4) after exiting the Rondier- / Expansionska- channel (6) cooled by cooling air (7) and collected in solid form.
2. Verfahren zur Herstellung von Mikrohohlglaskugeln nach Anspruch 1 , dadurch gekennzeichnet, dass mehrere, voneinander beabstandete Glasstränge (3.1 ) erzeugt werden, indem eine Düsenplatte (2), aufweisend mehrere, als konische Durchgangs- Öffnungen ausgebildete Düsen (2.1 ), an oder innerhalb der Ablassöffnung (1 .2) verwendet wird. 2. A method for producing hollow glass microspheres according to claim 1, characterized in that a plurality of spaced-apart glass strands (3.1) are produced by a nozzle plate (2) comprising a plurality of nozzles (2.1) designed as conical through-openings, on or inside the drain opening (1 .2) is used.
3. Verfahren zur Herstellung von Mikrohohlglaskugeln nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Gasgeschwindigkeit des Heißgases (14) beim Auftreffen auf den oder die Glasstränge (3.1 ) 300 m s-1 bis 1500 m s-1 beträgt. 3. A process for producing hollow glass microspheres according to claim 1 or 2, characterized in that the gas velocity of the hot gas (14) when hitting the glass strands or (3.1) is 300 ms -1 to 1500 ms -1 .
4. Verfahren zur Herstellung von Mikrohohlglaskugeln nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Temperatur des Heißgases (14) 1500 °C bis 2000 °C beträgt. 4. A process for producing hollow glass microspheres according to any one of claims 1 to 3, characterized in that the temperature of the hot gas (14) is 1500 ° C to 2000 ° C.
5. Verfahren zur Herstellung von Mikrohohlglaskugeln nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die verwendete Glasschmelze (3) Schwefeltrioxid, Sauerstoff, Stickstoff, Schwefeldioxid, Kohlendioxid, Arsenoxid, Antimonoxid o- der Gemische derselben in gelöster Form enthält. 5. A process for the production of hollow glass microspheres according to one of claims 1 to 4, characterized in that the glass melt used (3) sulfur trioxide, oxygen, nitrogen, sulfur dioxide, carbon dioxide, arsenic oxide, antimony oxide or mixtures thereof in dissolved form.
6. Verfahren zur Herstellung von Mikrohohlglaskugeln nach Anspruch 5, dadurch ge- kennzeichnet, dass die verwendete Glasschmelze (3) Schwefeltrioxid mit einem6. A process for producing hollow glass microspheres according to claim 5, character- ized in that the glass melt used (3) sulfur trioxide with a
Masseanteil im Bereich von 0,6 % bis 0,8 % enthält. Mass fraction in the range of 0.6% to 0.8%.
7. Verfahren zur Herstellung von Mikrohohlglaskugeln nach Anspruch 5, dadurch gekennzeichnet, dass die verwendete Glasschmelze (3) Arsenoxid oder Antimonoxid mit einem Masseanteil im Bereich von 0,1 % bis 0,5 % enthält. 7. A process for the preparation of hollow glass microspheres according to claim 5, characterized in that the glass melt used (3) contains arsenic oxide or antimony oxide with a mass fraction in the range of 0.1% to 0.5%.
8. Verfahren zur Herstellung von Mikrohohlglaskugeln nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass ein Transportgas (15) mittels einer Transportgasdüse (5) in den Rondier-/Expansionskanal (6) axial eingeblasen wird, um die Glaspartikel (3.2), die Mikromassivglaskugeln (3.3) sowie die Mikrohohlglaskugeln (3.4) in Schwebe zu halten und deren Transport durch den Rondier-/Expansi- onskanal (6) zu unterstützen. 8. A method for producing hollow glass microspheres according to one of claims 1 to 7, characterized in that a transport gas (15) by means of a Transportgasdüse (5) in the Rondier- / expansion channel (6) is blown axially to the glass particles (3.2), to keep the micromassive glass spheres (3.3) and the hollow glass microspheres (3.4) in suspension and to support their transport through the ribbing / expansion channel (6).
9. Vorrichtung zur Durchführung des Verfahrens nach Anspruch 2, dadurch gekenn- zeichnet, dass 9. Apparatus for carrying out the method according to claim 2, characterized in that
die Ablassöffnung (1 .2) im Bodenbereich der Aufschmelzvorrichtung (1 ) angeordnet ist, wobei die Düsenplatte (2) derart an oder innerhalb der Ablassöffnung (1 .2) angebracht ist, dass die Glasschmelze (3) ausschließlich aus den konisch ausgebildeten Düsen (2.1 ) austreten kann, die Düsenplatte (2) Düsen (2.1 ) mit jeweils einem kreisförmigen Querschnitt und mit einem Durchmesser im Bereich von 1 mm bis 1 ,6 mm aufweist, wobei die Düsenplatte (2) elektrisch beheizbar ist; the discharge opening (1 .2) is arranged in the bottom region of the melting device (1), wherein the nozzle plate (2) is mounted on or within the discharge opening (1 .2) such that the glass melt (3) consists exclusively of the conically shaped nozzles (1). 2.1) can escape, the nozzle plate (2) has nozzles (2.1) each with a circular cross section and with a diameter in the range of 1 mm to 1.6 mm, the nozzle plate (2) being electrically heatable;
die Hochdruck-Heißgasdüse (4) unmittelbar unterhalb und neben der Ablassöff- nung (1 .2) positioniert, wobei die Hochdruck-Heißgasdüse (4) derart ausgerichtet ist, dass bei Durchführung des Verfahrens das aus der Hochdruck-Heißgasdüse (4) ausströmende Heißgas (14) auf die aus den Düsen (2.1 ) austretenden Glasstränge (3.1 ) auftrifft,  the high-pressure hot-gas nozzle (4) is positioned immediately below and next to the discharge opening (1 .2), the high-pressure hot-gas nozzle (4) being aligned such that the hot gas flowing out of the high-pressure hot-gas nozzle (4) is carried out when carrying out the method (14) impinges on the glass strands (3.1) emerging from the nozzles (2.1),
der Rondier-/Expansionskanal (6) in Strömungsrichtung des bei Durchführung des Verfahrens aus der Hochdruck-Heißgasdüse (4) ausströmenden Heißgases (14) hinter der Ablassöffnung (1 .2) angeordnet ist,  the Rondier- / expansion channel (6) in the flow direction of the hot gas (14) flowing out of the high-pressure hot gas nozzle (4) when the method is carried out is arranged behind the discharge opening (1 .2),
ein Kühllufttrichter (8) zur Zuführung der Kühlluft (7) in Strömungsrichtung des Heißgases (14) hinter dem Rondier-/Expansionskanal (6) positioniert ist, wobei die Trichteröffnung dem Rondier-/Expansionskanal (6) zugewandt ist, und  a cooling air funnel (8) for supplying the cooling air (7) in the flow direction of the hot gas (14) is positioned behind the Rondier / expansion channel (6), wherein the funnel opening facing the Rondier- / expansion channel (6), and
- der Trichterhals des Kühllufttrichters (8) einen Austragskanal (9) zum Sammeln der abgekühlten Mikrohohlglaskugeln (3.4) bildet. - The funnel neck of the cooling air funnel (8) forms a discharge channel (9) for collecting the cooled hollow glass microspheres (3.4).
10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass der in Strömungsrichtung angeordnete Endbereich des Austragskanals (9) mit einer Zellenrad- schleuse (12) oder einem Zyklonabscheider abschließt. 10. The device according to claim 9, characterized in that the end region of the discharge channel (9) arranged in the flow direction terminates with a cellular wheel sluice (12) or a cyclone separator.
1 1 . Düsenplatte zur Durchführung des Verfahrens nach Anspruch 2, dadurch gekennzeichnet, dass sie elektrisch beheizbar ist und die jeweilige, als konische Durchgangsöffnung ausgebildete Düse (2.1 ) einen kreisförmigen Querschnitt mit einem Durchmesser im Bereich von 1 mm bis 1 ,6 mm besitzt. 1 1. Nozzle plate for carrying out the method according to claim 2, characterized in that it is electrically heated and the respective, designed as a conical passage opening nozzle (2.1) has a circular cross section with a diameter in the range of 1 mm to 1, 6 mm.
12. Düsenplatte zur Durchführung des Verfahrens nach Anspruch 2, dadurch gekennzeichnet, dass die Düsen (2.1 ) in einer Linie angeordnet sind. 12. nozzle plate for carrying out the method according to claim 2, characterized in that the nozzles (2.1) are arranged in a line.
13. Düsenplatte nach Anspruch 12, dadurch gekennzeichnet, dass die Düsenplatte (2) zwei symmetrisch gekrümmte Verstärkungssicken (2.2) aufweist, die spiegelbildlich zueinander entlang der Düsen (2.1 ) verlaufen. 13. Nozzle plate according to claim 12, characterized in that the nozzle plate (2) has two symmetrically curved reinforcing beads (2.2) which extend in mirror image to one another along the nozzles (2.1).
EP17745970.8A 2016-06-27 2017-06-12 Method and device for producing hollow microglass beads Withdrawn EP3475232A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102016111735 2016-06-27
DE102016117608.7A DE102016117608A1 (en) 2016-06-27 2016-09-19 Method and device for producing hollow glass microspheres
PCT/DE2017/100490 WO2018001409A1 (en) 2016-06-27 2017-06-12 Method and device for producing hollow microglass beads

Publications (1)

Publication Number Publication Date
EP3475232A1 true EP3475232A1 (en) 2019-05-01

Family

ID=60579851

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17745970.8A Withdrawn EP3475232A1 (en) 2016-06-27 2017-06-12 Method and device for producing hollow microglass beads

Country Status (13)

Country Link
US (1) US20190202727A1 (en)
EP (1) EP3475232A1 (en)
JP (1) JP2019518709A (en)
KR (1) KR20190042549A (en)
CN (1) CN109689582A (en)
AU (1) AU2017287637A1 (en)
BR (1) BR112018076667A2 (en)
CA (1) CA3028838A1 (en)
DE (1) DE102016117608A1 (en)
IL (1) IL263885A (en)
MX (1) MX2018016147A (en)
RU (1) RU2019100695A (en)
WO (1) WO2018001409A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017118897A1 (en) * 2017-08-18 2019-02-21 Bpi Beads Production International Gmbh Process for the continuous coating of glass particles
RU2708434C1 (en) * 2019-04-09 2019-12-06 Тимофей Логинович Басаргин Method of making hollow glass microspheres and microballs
CN110773733A (en) * 2019-09-29 2020-02-11 西安欧中材料科技有限公司 Powder discharging device for removing gas of metal powder through electromagnetic heating
CN110818271B (en) * 2019-12-03 2023-05-19 绵阳光耀新材料有限责任公司 Preparation method of high-refractive-index glass beads
CN117550785B (en) * 2024-01-12 2024-04-16 中建材玻璃新材料研究院集团有限公司 Sintering equipment is used in hollow glass bead production

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2334578A (en) 1941-09-19 1943-11-16 Rudolf H Potters Method of and apparatus for producing glass beads
GB564017A (en) * 1943-05-24 1944-09-08 Felix Neumann Improvements in crucible furnaces for the manufacture of glass thread or glass silk
US2600936A (en) 1945-08-13 1952-06-17 Wallace G Stone Method and apparatus for measuring low pressures and related conditions
AT175672B (en) 1952-02-05 1953-08-10 Josef Kuehtreiber Process for the production of crystal clear glass beads, in particular for reflectors and the like. Like., including the device for carrying out the same
BE521556A (en) 1953-07-18
US2730841A (en) 1954-08-19 1956-01-17 Charles E Searight Production of silicone-coated glass beads
US2947115A (en) 1955-12-01 1960-08-02 Thomas K Wood Apparatus for manufacturing glass beads
US2965921A (en) 1957-08-23 1960-12-27 Flex O Lite Mfg Corp Method and apparatus for producing glass beads from a free falling molten glass stream
US3294511A (en) 1959-04-06 1966-12-27 Selas Corp Of America Apparatus for forming glass beads
US3074257A (en) 1960-05-16 1963-01-22 Cataphote Corp Method and apparatus for making glass beads
US3190737A (en) 1960-07-07 1965-06-22 Flex O Lite Mfg Corp Glass bead furnace and method of making glass beads
US3133805A (en) 1961-04-26 1964-05-19 Cataphote Corp Glass bead making furnace
US3150947A (en) 1961-07-13 1964-09-29 Flex O Lite Mfg Corp Method for production of glass beads by dispersion of molten glass
AT245181B (en) 1962-03-27 1966-02-10 Potters Brothers Inc Method and apparatus for producing spherical particles from glass and the like. a. vitreous substances
GB984655A (en) 1962-12-20 1965-03-03 Fukuoka Tokushugarasu Kk Improvements in or relating to the manufacture of glass spherules
US3293014A (en) 1963-11-18 1966-12-20 Corning Glass Works Method and apparatus for manufacturing glass beads
US3429721A (en) * 1964-10-20 1969-02-25 Gen Steel Ind Inc High melting point glass beads with sharp melting range and process for making the same
DE1285107B (en) 1965-08-07 1968-12-12 Glas U Spiegel Manufaktur Ag Device for the production of small glass beads
JPS5857374B2 (en) * 1975-08-20 1983-12-20 日本板硝子株式会社 Fiber manufacturing method
DD261592A1 (en) 1987-06-01 1988-11-02 Trisola Steinach Veb PROCESS FOR PRODUCING TRANSPARENT HIGH INDEX MICROGLASS BALLS
DE3807420A1 (en) * 1988-03-07 1989-09-21 Gruenzweig & Hartmann DEVICE FOR PRODUCING FIBERS, IN PARTICULAR MINERAL FIBERS, FROM A MELT
FI85365C (en) * 1990-04-26 1992-04-10 Ahlstroem Riihimaeen Lasi Oy FOERFARANDE OCH ANORDNING FOER FRAMSTAELLNING AV IHAOLIGA MIKROSFAERER.
DE19721571C2 (en) 1997-05-23 2002-04-18 Siltrade Gmbh Process for the production of microspheres
CA2344245A1 (en) * 1998-10-06 2000-04-13 Rudolf K. Braun Process and apparatus for making glass beads
DE102007002904A1 (en) 2007-01-19 2008-07-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for the production of hollow glass spheres made of glass, hollow hollow spheres and their use
DE102008025767B4 (en) 2008-04-03 2010-03-18 Bpi Beads Production International Gmbh Process for producing completely round small spheres of glass
CN102826736A (en) * 2012-09-21 2012-12-19 蚌埠玻璃工业设计研究院 Method for preparing hollow glass bead by using glass powder process
RU2618757C2 (en) 2014-01-27 2017-05-11 Инженерное Бюро Франке Глас Технолоджи-Сервис Method and device for producing glass hollow spheres

Also Published As

Publication number Publication date
BR112018076667A2 (en) 2019-04-02
DE102016117608A1 (en) 2017-12-28
CA3028838A1 (en) 2018-01-04
JP2019518709A (en) 2019-07-04
KR20190042549A (en) 2019-04-24
AU2017287637A1 (en) 2019-02-14
MX2018016147A (en) 2019-06-10
CN109689582A (en) 2019-04-26
IL263885A (en) 2019-01-31
US20190202727A1 (en) 2019-07-04
RU2019100695A (en) 2020-07-28
WO2018001409A1 (en) 2018-01-04

Similar Documents

Publication Publication Date Title
EP3475232A1 (en) Method and device for producing hollow microglass beads
DE2904317C2 (en) Process for making molten glass
DE3441361C2 (en) Method and device for cooling lumpy material
WO2009156467A1 (en) Method and apparatus for producing a quartz glass cylinder
DE1496434B2 (en) Method and device for the production of glass beads
DE2535937A1 (en) PROCESS FOR HOMOGENIZING AND / OR PURIFYING GLASS AND DEVICE FOR CARRYING OUT THE PROCESS
EP2445843A1 (en) Method and device for drawing a quartz glass cylinder from a melt crucible
DE1207559B (en) Method and device for the production of spherical particles from glass or other vitreous materials
EP3099639B1 (en) Method and device for producing hollow glass spheres
WO2006015763A1 (en) Vertical crucible drawing method for producing a glass body having a high silicic acid content, and device for carrying out said method
EP0544291A1 (en) Method and apparatus for producing metallic foams
DE3880677T2 (en) Manufacture of glass microfibers.
DE10200233C1 (en) Device for refining a glass melt comprises a low-pressure refining chamber having an ascending shaft for feeding the glass melt to a refining bank and a descending shaft for discharging the refined glass melt
DE102017118752B3 (en) Method for producing hollow glass microspheres and hollow glass microspheres
EP1222147B1 (en) Method and device for producing powders that consist of substantially spherical particles
EP1252116A1 (en) Method and device for expanding fused materials
DE102005013468B4 (en) Apparatus and method for refining glass
DE1052072B (en) Method and device for the production of fibers from heat-softenable fiber-forming minerals
EP0066257B1 (en) Method of continuously making a glass strip and apparatus for carrying out the method
DE1496428B2 (en) Method and device for the production of small glass beads
DE3822646A1 (en) METHOD FOR OBTAINING SPHERICAL SOLIDS PARTICULAR, IN PARTICULAR, FOR USE AS BEAM BEAMS
DE10019875A1 (en) Production of multiple layered glass tubes comprises applying a strand made from a base glass onto a circulating drawing pipe, and applying a strand made from covering glass to the base glass layer
DE1018594B (en) Apparatus for the production of glass fibers
DE1496428C (en) Method and device for the production of small glass beads
DE102023115493A1 (en) production of an aluminum strand

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181217

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: STACHE, LUTZ

Inventor name: SCHLICKE, JUERGEN

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200723

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20220104