EP3464433A1 - Process for producing expandable polylactic acid-containing pellets - Google Patents
Process for producing expandable polylactic acid-containing pelletsInfo
- Publication number
- EP3464433A1 EP3464433A1 EP17728499.9A EP17728499A EP3464433A1 EP 3464433 A1 EP3464433 A1 EP 3464433A1 EP 17728499 A EP17728499 A EP 17728499A EP 3464433 A1 EP3464433 A1 EP 3464433A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- weight
- polylactic acid
- components
- iii
- total weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920000747 poly(lactic acid) Polymers 0.000 title claims abstract description 39
- 239000004626 polylactic acid Substances 0.000 title claims abstract description 35
- 238000000034 method Methods 0.000 title claims abstract description 26
- 230000008569 process Effects 0.000 title claims abstract description 20
- 239000008188 pellet Substances 0.000 title abstract 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 42
- 239000004604 Blowing Agent Substances 0.000 claims abstract description 30
- 229920000642 polymer Polymers 0.000 claims abstract description 25
- -1 polybutylene succinate Polymers 0.000 claims abstract description 18
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 16
- JVTAAEKCZFNVCJ-UWTATZPHSA-N D-lactic acid Chemical compound C[C@@H](O)C(O)=O JVTAAEKCZFNVCJ-UWTATZPHSA-N 0.000 claims abstract description 15
- 229940022769 d- lactic acid Drugs 0.000 claims abstract description 15
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 15
- 229930182843 D-Lactic acid Natural products 0.000 claims abstract description 14
- 239000000203 mixture Substances 0.000 claims abstract description 11
- 239000000654 additive Substances 0.000 claims abstract description 10
- 229920003232 aliphatic polyester Polymers 0.000 claims abstract description 10
- 238000002844 melting Methods 0.000 claims abstract description 10
- 230000008018 melting Effects 0.000 claims abstract description 10
- 229920002961 polybutylene succinate Polymers 0.000 claims abstract description 10
- 239000004631 polybutylene succinate Substances 0.000 claims abstract description 10
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 9
- 238000002156 mixing Methods 0.000 claims abstract description 8
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229920001748 polybutylene Polymers 0.000 claims abstract description 6
- 230000003068 static effect Effects 0.000 claims abstract description 5
- 230000000996 additive effect Effects 0.000 claims abstract description 4
- 229910052786 argon Inorganic materials 0.000 claims abstract description 3
- 239000001307 helium Substances 0.000 claims abstract description 3
- 229910052734 helium Inorganic materials 0.000 claims abstract description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims abstract description 3
- 239000008187 granular material Substances 0.000 claims description 65
- 239000003380 propellant Substances 0.000 claims description 37
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 claims description 26
- 239000000155 melt Substances 0.000 claims description 26
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 claims description 13
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 239000004595 color masterbatch Substances 0.000 claims description 6
- 239000006229 carbon black Substances 0.000 claims description 5
- 238000002360 preparation method Methods 0.000 claims description 5
- 239000001052 yellow pigment Substances 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 abstract description 3
- 238000007599 discharging Methods 0.000 abstract 1
- 238000005453 pelletization Methods 0.000 abstract 1
- 229940116351 sebacate Drugs 0.000 abstract 1
- 239000002245 particle Substances 0.000 description 15
- 238000003860 storage Methods 0.000 description 15
- 238000009826 distribution Methods 0.000 description 13
- 239000006260 foam Substances 0.000 description 13
- 238000005469 granulation Methods 0.000 description 12
- 230000003179 granulation Effects 0.000 description 12
- 230000009471 action Effects 0.000 description 10
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 6
- 238000005187 foaming Methods 0.000 description 6
- 239000002667 nucleating agent Substances 0.000 description 6
- 230000006911 nucleation Effects 0.000 description 6
- 238000010899 nucleation Methods 0.000 description 6
- 229920005692 JONCRYL® Polymers 0.000 description 5
- 210000004027 cell Anatomy 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 229920001577 copolymer Polymers 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000002361 compost Substances 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 239000004790 ingeo Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 150000002924 oxiranes Chemical group 0.000 description 4
- 239000000049 pigment Substances 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000000454 talc Substances 0.000 description 4
- 235000012222 talc Nutrition 0.000 description 4
- 229910052623 talc Inorganic materials 0.000 description 4
- 229920001169 thermoplastic Polymers 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000005470 impregnation Methods 0.000 description 3
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 239000003566 sealing material Substances 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 239000004416 thermosoftening plastic Substances 0.000 description 3
- 230000032258 transport Effects 0.000 description 3
- 239000012963 UV stabilizer Substances 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 239000002216 antistatic agent Substances 0.000 description 2
- 235000013871 bee wax Nutrition 0.000 description 2
- 239000012166 beeswax Substances 0.000 description 2
- 238000006065 biodegradation reaction Methods 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical class [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 2
- 238000009264 composting Methods 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 125000005397 methacrylic acid ester group Chemical group 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- 229940035437 1,3-propanediol Drugs 0.000 description 1
- YLWQQYRYYZPZLJ-UHFFFAOYSA-N 12-hydroxy-n-[2-(12-hydroxyoctadecanoylamino)ethyl]octadecanamide Chemical compound CCCCCCC(O)CCCCCCCCCCC(=O)NCCNC(=O)CCCCCCCCCCC(O)CCCCCC YLWQQYRYYZPZLJ-UHFFFAOYSA-N 0.000 description 1
- IMSODMZESSGVBE-UHFFFAOYSA-N 2-Oxazoline Chemical compound C1CN=CO1 IMSODMZESSGVBE-UHFFFAOYSA-N 0.000 description 1
- KVWLLOIEGKLBPA-UHFFFAOYSA-N 3,6,9-triethyl-3,6,9-trimethyl-1,2,4,5,7,8-hexaoxonane Chemical compound CCC1(C)OOC(C)(CC)OOC(C)(CC)OO1 KVWLLOIEGKLBPA-UHFFFAOYSA-N 0.000 description 1
- QZCLKYGREBVARF-UHFFFAOYSA-N Acetyl tributyl citrate Chemical compound CCCCOC(=O)CC(C(=O)OCCCC)(OC(C)=O)CC(=O)OCCCC QZCLKYGREBVARF-UHFFFAOYSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 239000004970 Chain extender Substances 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- RBNPOMFGQQGHHO-UWTATZPHSA-N D-glyceric acid Chemical class OC[C@@H](O)C(O)=O RBNPOMFGQQGHHO-UWTATZPHSA-N 0.000 description 1
- 239000001692 EU approved anti-caking agent Substances 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical class OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 125000005396 acrylic acid ester group Chemical group 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- AIXMJTYHQHQJLU-UHFFFAOYSA-N chembl210858 Chemical compound O1C(CC(=O)OC)CC(C=2C=CC(O)=CC=2)=N1 AIXMJTYHQHQJLU-UHFFFAOYSA-N 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical class OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical class CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000002314 glycerols Chemical class 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000001282 iso-butane Substances 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- JJTUDXZGHPGLLC-UHFFFAOYSA-N lactide Chemical compound CC1OC(=O)C(C)OC1=O JJTUDXZGHPGLLC-UHFFFAOYSA-N 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- NYGZLYXAPMMJTE-UHFFFAOYSA-M metanil yellow Chemical group [Na+].[O-]S(=O)(=O)C1=CC=CC(N=NC=2C=CC(NC=3C=CC=CC=3)=CC=2)=C1 NYGZLYXAPMMJTE-UHFFFAOYSA-M 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- 150000002835 noble gases Chemical class 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 150000002942 palmitic acid derivatives Chemical class 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004597 plastic additive Substances 0.000 description 1
- 239000004633 polyglycolic acid Substances 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 229940068965 polysorbates Drugs 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- URAYPUMNDPQOKB-UHFFFAOYSA-N triacetin Chemical compound CC(=O)OCC(OC(C)=O)COC(C)=O URAYPUMNDPQOKB-UHFFFAOYSA-N 0.000 description 1
- 229960002622 triacetin Drugs 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/16—Making expandable particles
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/20—Compounding polymers with additives, e.g. colouring
- C08J3/22—Compounding polymers with additives, e.g. colouring using masterbatch techniques
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/0061—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/009—Use of pretreated compounding ingredients
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/12—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
- C08J9/122—Hydrogen, oxygen, CO2, nitrogen or noble gases
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/12—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
- C08J9/127—Mixtures of organic and inorganic blowing agents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/12—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
- C08J9/14—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
- C08J9/141—Hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/12—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
- C08J9/14—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
- C08J9/142—Compounds containing oxygen but no halogen atom
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/04—Polyesters derived from hydroxycarboxylic acids, e.g. lactones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2201/00—Foams characterised by the foaming process
- C08J2201/02—Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
- C08J2201/03—Extrusion of the foamable blend
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2203/00—Foams characterized by the expanding agent
- C08J2203/06—CO2, N2 or noble gases
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2203/00—Foams characterized by the expanding agent
- C08J2203/14—Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2203/00—Foams characterized by the expanding agent
- C08J2203/18—Binary blends of expanding agents
- C08J2203/182—Binary blends of expanding agents of physical blowing agents, e.g. acetone and butane
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2367/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2367/04—Polyesters derived from hydroxy carboxylic acids, e.g. lactones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2467/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2467/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2467/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2467/04—Polyesters derived from hydroxy carboxylic acids, e.g. lactones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2265—Oxides; Hydroxides of metals of iron
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/0008—Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
- C08K5/0041—Optical brightening agents, organic pigments
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/14—Applications used for foams
Definitions
- the invention relates to a process for the preparation of expandable polylactic acid-containing granules, comprising the steps:
- polylactic acid comprises in part: ia) from 65 to 95% by weight of polylactic acid with a D-lactic acid content of 0.3 to 5% and ib) 5 to 35% by weight of polylactic acid having a D-lactic acid content of 10 to 18%; ii) from 15 to 35% by weight, based on the total weight of components i to iii, of an aliphatic polyester selected from the group consisting of polybutylene succinate, polybutylene succinate-coadipate and polybutylene succinate cosebacate;
- iii 0 to 2% by weight, based on the total weight of components i to iii, of a compatibilizer
- a co-propellant - selected from the group of nitrogen, carbon dioxide, argon, helium or mixtures thereof - in the polymer melt by means of a static or dynamic mixer at a temperature of at least 140 ° C,
- WO 2008/130226 and JP2007 169394 describe expanded or expandable particle foams having densities of 10 to 100 g / l, which are already prefoamed and can be re-impregnated with blowing agent.
- the storage stability does not play such a major role, since they are at the time of Transports to the end user (storage period) contain no or almost no propellant.
- the object of the present invention was to provide a simple, process-capable process for the production of expandable, propellant-containing polylactic acid-containing granules with improved storage stability.
- the polylactic acid-containing polymer prepared in step a) is usually a mixture of: i) 65 to 95% by weight, preferably 70 to 79.9% by weight, based on the total weight of components i to iii, polylactic acid, wherein the polylactic acid proportionally from ia) 65 to 95 wt .-%, preferably 80 to 95 wt .-%, polylactic acid having a D-lactic acid content of 0.3 to 5% and ib) 5 to 35 Wt .-%, preferably 5 to 20 wt .-%, polylactic acid having a D-lactic acid content of 10 to 18%; ii) from 15 to 35% by weight, preferably from 20 to 29.9% by weight, based on the total weight of components i to iii, of at least one polyester selected from the group consisting of polybutylene succinate, polybutylene succinate-coadipate and polybutylene succinate cosebacate; iii) 0 to 2% by
- component i) is polylactic acid as a mixture of ia) 65 to 95 wt .-% of a semicrystalline polylactic acid having a D-lactic acid content of 0.3 to 5% and ib) 5 to 35 wt .-% of an amorphous polylactic acid with used a D-lactic acid content of 10 to 18%.
- a semicrystalline polylactic acid having the following property profile is used: A melt volume rate (MVR at 190 ° C. and 2.16 kg according to ISO 1 133) of 0.5 to 15, preferably 1 to 9, particularly preferably 2 to 8 ml / 10 minutes
- polylactic acids are, for example, from NatureWorks the Ingeo® 2003 D, 4032 D, 4042 D and 4043 D, 3251 D, 3052 D and in particular 8051 D and 8052 D.
- Ingeo® 8051 D and 8052 D are polylactic acids from NatureWorks, with the following product properties: Tg: 65.3 ° C, Tm: 153.9 ° C, MVR: 6.9 [ml / 10 minutes], M w : 186000, Mn: 107000 and a D-Michklareanteil of less than 5%. Furthermore, these products have a slightly higher acid number.
- Amorphous polylactic acid has a proportion of D-lactic acid greater than 10, but usually not higher than 18%.
- a particularly suitable amorphous polylactic acid is available from NatureWorks under the trade name Ingeo® 4060 D with a D-lactic acid content of 1 1 to 13%.
- Other polylactic acid examples of NatureWorks are the Ingeo 6302D, 6362D and 10361D.
- Component ii is to be understood as meaning aliphatic polyesters selected from the group consisting of polybutylene succinate, polybutylene succinate-coadipate and polybutylene succinate cosebacate.
- the aliphatic polyesters are marketed by Showa Highpolymers under the name Bionolle and by Mitsubishi under the name GSPIa or BioPBS. More recent developments are described in WO 2010/03471 1.
- the aliphatic polyesters generally have viscosity numbers according to DIN 53728 of 150 to 320 cm 3 / g and preferably 150 to 250 cm 3 / g.
- MVR Melt volume rate
- EN ISO 1133 190 ° C, 2.16 kg weight
- the acid numbers according to DIN EN 12634 are generally from 0.01 to 3 mg KOH / g, preferably from 0.01 to 2.5 mg KOH / g.
- polyesters ii contain: a) 80 to 100 mol%, preferably 90 to 99.5 mol%, based on the components a to b, succinic acid; 0 to 20 mol%, preferably 0.5 to 10 mol%, based on the components a to b, adipic acid or sebacic acid;
- a chain extender and / or crosslinker selected from the group consisting of: a polyfunctional isocyanate, such as preferably hexamethylene diisocyanate; isocyanurate; oxazoline; Epoxide and / or an at least trifunctional alcohol such as preferably glycerol.
- the compatibilizer iii) is described in more detail below.
- Peroxides are understood as meaning, for example, the products marketed by Akzo under the brand name Trigonox, for example Trigonox 301.
- Epoxides are understood as meaning, in particular, epoxide-group-containing copolymer based on styrene, acrylic acid ester and / or methacrylic acid ester.
- the epoxy groups bearing units are preferably glycidyl (meth) acrylates.
- Copolymers having a glycidyl methacrylate content of greater than 20, particularly preferably greater than 30 and especially preferably greater than 50% by weight, of the copolymer have proved to be advantageous.
- the epoxy equivalent weight (EEW) in these polymers is preferably 150 to 3000, and more preferably 200 to 500 g / equivalent.
- the weight average molecular weight Mw of the polymers is preferably from 2,000 to 25,000, in particular from 3,000 to 8,000.
- the average molecular weight (number average) M n of the polymers is preferably from 400 to 6,000, in particular from 1,000 to 4,000.
- the polydispersity (Q) is generally between 1.5 and 5.
- pen epoxide group-containing copolymers of the above type are sold for example by BASF Resins BV under the trademark Joncryl ® ADR.
- Particularly suitable as compatibility agent is Joncryl ® ADR 4368 or Joncryl ADR 4468C or Joncryl ADR 4468HP.
- the compatibilizer is added in 0 to 2 wt .-%, preferably 0.1 to 1 wt .-%, based on the total weight of components i to iii).
- Component iv is understood as meaning 0.01 to 5% by weight of one or more of the following additives: stabilizer, nucleating agent, lubricant and release agent, surfactant, wax, antistatic agent, antifogging agent, dye, pigment, UV absorber, UV stabilizer. Stabilizer or other plastic additive.
- stabilizer stabilizer, nucleating agent, lubricant and release agent, surfactant, wax, antistatic agent, antifogging agent, dye, pigment, UV absorber, UV stabilizer. Stabilizer or other plastic additive.
- the use of from 0.2 to 1% by weight, based on the components i and ii of a nucleating agent is particularly preferred.
- Nucleating agent is to be understood in particular as meaning talc, chalk, carbon black, graphite, calcium or zinc stearate, poly-D-lactic acid, N, N'-ethylene-bis-12-hydroxystearamide or polyglycolic acid. Talcum is particularly preferred as nucleating agent.
- Carbon black, chalk and graphite can also be considered as pigments; they may be added to the particle foam, such as iron oxide and other color pigments, to adjust a desired color.
- a paper-like appearance can be achieved advantageously by adding Sicoversal®, a color batch from BASF Color Solutions comprising carbon black, iron oxide and a yellow pigment.
- the pigments iv-2 in a concentration of 0.1 to 1 wt, based on the
- Component iv may contain further ingredients known to the person skilled in the art but not essential to the invention.
- plastics technology such as stabilizers; Lubricants and release agents such as stearates (especially calcium stearate); Plasticizers such as citric acid esters (especially acetyl tributyl citrate), glyceric acid esters such as triacetylglycerol or ethylene glycol derivatives, surfactants such as polysorbates, palmitates or laurates; Waxes such as beeswax or beeswax esters; Antistatic, UV absorber; UV stabilizer; Antifog agent or dyes.
- plastics technology such as stabilizers; Lubricants and release agents such as stearates (especially calcium stearate); Plasticizers such as citric acid esters (especially acetyl tributyl citrate), glyceric acid esters such as triacetylglycerol or ethylene glycol derivatives, surfactants such
- the propellant can be considered as a further component v.
- the propellant-containing polymer melt generally contains one or more propellants in a homogeneous distribution in a proportion of 2 to 10 wt .-%, preferably 3 to 7 wt .-%, based on the propellant-containing polymer melt.
- Suitable blowing agents are the physical blowing agents commonly used in EPS, such as aliphatic hydrocarbons having 2 to 7 carbon atoms, alcohols, ketones, ethers, amides or halogenated hydrocarbons. Preference is given to using isobutane, n-butane, n-pentane and, in particular, isopentane. Further preferred are mixtures of n-pentane and iso-pentane.
- the amount of blowing agent added is chosen such that the expandable granules have an expansion capacity a, defined as bulk density before prefoaming of 500 to 800 and preferably 580 to 750 kg / m 3 and a bulk density after pre-foaming of at most 125, preferably 8 to 100 kg / m 3 have.
- a defined as bulk density before prefoaming of 500 to 800 and preferably 580 to 750 kg / m 3 and a bulk density after pre-foaming of at most 125, preferably 8 to 100 kg / m 3 have.
- fillers depending on the type and amount of the filler, bulk densities in the range of 590 to 1200 kg / m 3 may occur.
- the blowing agent is mixed into the polymer melt.
- the process comprises stages A) melt production, B) mixing C) conveying and D) granulating.
- stages A) melt production, B) mixing C) conveying and D) granulating can be carried out by the apparatuses or apparatus combinations known in plastics processing.
- static or dynamic mixers are suitable, for example extruders.
- the polymer melt can be produced directly by melting polymer granules. If necessary, the melt temperature can be lowered via a cooler.
- pressurized underwater granulation, granulation with rotating knives and cooling by spray misting of tempering liquids come into consideration for the granulation.
- Apparatus arrangements suitable for carrying out the method are, for example:
- the arrangement may include a side extruder for introducing additives, e.g. of solids or thermally sensitive additives.
- the propellant-containing polymer melt is usually conveyed through the nozzle plate at a temperature in the range from 140 to 300.degree. C., preferably in the range from 160 to 270.degree.
- the diameter (D) of the nozzle bores at the nozzle exit should be in the range from 0.1 to 2 mm, preferably in the range from 0.1 to 1.2 mm, particularly preferably in the range from 0.1 to 0.8 mm lie. This granulate sizes below 2 mm, especially in the range 0.2 to 1, 4 mm can be adjusted specifically after strand expansion.
- the strand expansion can be influenced by the geometry of the die, apart from the molecular weight distribution.
- the nozzle plate preferably has bores with a ratio L / D of at least 2, the length (L) designating the nozzle region whose diameter corresponds at most to the diameter (D) at the nozzle exit.
- the ratio L / D is in the range of 3 to 20.
- the diameter (E) of the holes at the nozzle inlet of the nozzle plate should be at least twice as large as the diameter (D) at the nozzle outlet.
- An embodiment of the nozzle plate has bores with conical inlet and an inlet angle ⁇ less than 180 °, preferably in the range of 30 to 120 °.
- the nozzle plate has bores with conical outlet and an outlet angle ß smaller than 90 °, preferably in the range of 15 to 45 °.
- the nozzle plate can be equipped with bores of different exit diameters (D). The various embodiments of the nozzle geometry can also be combined.
- the granules have an average diameter in the range of 0.1 to 2 mm and 50 to 300 cavities / mm 2 cross-sectional area.
- the bulk density can the be reduced to the range of 580 to 750 kg / m 3, preferably 580 to 720kg / m 3.
- the expandable polylactic acid-containing granules thus produced have an increased storage stability.
- the increased storage stabilities of the granules produced according to the invention are in particular a) the method of pre-nucleation by the use of a combination of organic blowing agent v and co-blowing agent vi and b) on the use of a mixture of semicrystalline and amorphous component i in the indicated attributable to narrow mixing ratios. They can be foamed easily after weeks.
- a cellular structure can be adjusted in the expandable granules, with the aid of which the subsequent foaming process can be improved and the cell size can be controlled.
- the method for adjusting this cavity morphology can also be referred to as a pre-nucleation, wherein the cavities are essentially formed by the co-propellant vi).
- the co-propellant vi) forming the cavities differs from the actual propellant v in its solubility in the polymer.
- the first propellant v) and co-propellant vi) are completely dissolved in the polymer at sufficiently high pressure. Subsequently, the pressure is reduced, preferably within a short time, and thus the solubility of the co-propellant vi) is reduced. This results in a phase separation in the polymeric matrix and a vorukleATOR structure arises.
- the actual propellant v) remains largely dissolved in the polymer due to its higher solubility and / or its low diffusion rate.
- a temperature reduction is preferably carried out in order to prevent excessive nucleation of the system and to reduce outflow of the actual propellant v).
- This is achieved by co-propellant vi) in conjunction with optimum granulation conditions.
- the co-propellant vi) escapes to at least 80 wt .-% within 24 h of the expandable thermoplastic particles when stored at 25 ° C, atmospheric pressure and 50% relative humidity.
- the solubility of the co-propellant vi) in the expandable thermoplastic particles is preferably below 0.1% by weight. In all cases, the added amount of the co-propellant vi) used in the pre-nucleation should exceed the maximum solubility under the present process conditions.
- co-blowing agents vi) are preferably used, which have a low but sufficient solubility in the polymer.
- gases such as nitrogen, carbon dioxide, air or noble gases, more preferably nitrogen, whose solubility in many polymers is reduced at low temperatures and pressures.
- nitrogen whose solubility in many polymers is reduced at low temperatures and pressures.
- liquid additives there are also other liquid additives conceivable.
- inert gases such as nitrogen and carbon dioxide.
- both gases are distinguished by low costs, good availability, easy handling and inert or inert behavior.
- the amount of co-propellant (vi) used should be: (a) sufficiently small to dissolve at the given melt temperatures and pressures during melt impregnation until granulation; (b) be sufficiently high to segregate and nucleate at the granulation water pressure and granulation temperature from the polymer.
- at least one of the blowing agents used is gaseous at room temperature and under atmospheric pressure.
- talc as nucleating agent iv) in combination with nitrogen as co-blowing agent vi.
- Metallic barrels and octabins are used, among other things, for the transport and storage of the expandable granules.
- barrels it must be taken into account that the release of the co-propellants vi) can possibly build up pressure in the drum.
- open containers such as octabins or barrels are to be used, which allow a pressure reduction by permeation of the gas from the barrel.
- Drums which allow the co-propellant (vi) to diffuse out and minimize or prevent out-diffusion of the actual propellant (v) are particularly preferred.
- the permeability of the sealing material for the co-propellant vi) is at least a factor of 20 higher than the permeability of the sealing material for the propellant v)
- Vornukle ist for example by adding small amounts of nitrogen and / or carbon dioxide, a cellular morphology can be adjusted in the expandable, propellant-containing granules.
- the average cell size in the center of the particles may be larger than in the peripheral areas, the density in the peripheral areas of the particles may be higher. As a result, blowing agent losses are minimized as much as possible.
- blowing agents Further impregnation of the polymer granules according to the invention with blowing agents is furthermore possible much faster than with granules of identical composition and more compact, ie. H. noncellular structure.
- the diffusion times are lower, on the other hand, similar to directly impregnated systems, lower blowing agent amounts are required for foaming.
- pre-nucleation can be used both for suspension technology and for melt impregnation technology for the production of expandable particles. Preference is given to the use in the melt extrusion process, in which the addition of the co-blowing agent vi) is granulated by the pressure-assisted underwater granulation after the exit of the blowing agent-laden melt. By selecting the granulation parameters and co-propellant vi), the microstructure of the granules can be controlled as described above.
- co-propellant vi for example in the range of 1 to 5% by weight based on the propellant-containing polymer melt, a lowering of the melt temperature or the melt viscosity and thus a significant increase in throughput is possible.
- thermolabile additives for example flame retardants
- the composition of the expandable thermoplastic particles is not altered by this, since the co-blowing agent in the melt extrusion essentially differs.
- CO2 is preferably used. At N2 the effects on the viscosity are lower. Nitrogen is therefore used predominantly to set the desired cell structure.
- the liquid-filled chamber for granulating the expandable thermoplastic polymer particles is preferably operated at a temperature in the range of 20 to 80 ° C, more preferably in the range of 30 to 60 ° C.
- the mean shear rates in the screw channel should be low, shear rates below 250 / sec, preferably below 100 / sec, and temperatures below 270 ° C. and short residence times in the range from 2 to 10 minutes in stages c) and d) are preferably maintained.
- the residence times are without cooling step usually at 1, 5 to 4 minutes and when a cooling step is provided usually at 5 to 10 minutes.
- the polymer melt can by pressure pumps, z. B. gear pumps funded and discharged.
- the finished expandable granules may be coated by glycerol esters, antistatic agents or anticaking agents.
- the expandable granules according to the invention have a lower bond to granules containing low molecular weight plasticizers, and are characterized by a low pentane loss during storage.
- the expandable granules according to the invention can be prefoamed in a first step by means of hot air or water vapor into foam particles having a density in the range from 8 to 100 kg / m 3 and welded in a second step in a closed mold to particle moldings.
- the granules produced by the process of the invention have a high biodegradability with good properties during foaming.
- the feature "biodegradable" for a substance or a substance mixture is fulfilled if this substance or the substance mixture according to DIN EN 13432 has a percentage degree of biodegradation of at least 90%.
- biodegradability causes the granules or foams made therefrom to decay within a reasonable and detectable period of time.
- Degradation can be effected enzymatically, hydrolytically, oxidatively and / or by the action of electromagnetic radiation, for example UV radiation, and is usually effected for the most part by the action of microorganisms such as bacteria, yeasts, fungi and algae.
- the biodegradability can be quantified, for example, by mixing the polyester with compost and using it for a specific be stored te time. For example, according to DIN EN 13432, C02-free air is allowed to flow through ripened compost during composting. The compost is subjected to a defined temperature program.
- biodegradability is determined by the ratio of the net CC release of the sample (after deduction of C02 release by the compost without sample) to the maximum CC release of the sample (calculated from the carbon content of the sample) as a percentage of biodegradation Are defined.
- Biodegradable granules usually show after a few days of composting significant degradation phenomena such as fungal growth, crack and hole formation.
- i-1 a aliphatic polyester, polylactide Natureworks® 8052 D from NatureWorks with a D lactic acid content of 4.5%
- i-1 b aliphatic polyester, polylactide Natureworks® 4060 D from NatureWorks with a D lactic acid content of 12%
- ii-1 aliphatic polyester, polybutylene succinate GSPIa FZ91 PD from MCC component iii:
- iii- 1 Joncryl® ADR 44688 C from BASF SE component iv:
- iv-1 HP 325 Chinatalk
- Luzenac iv-2 color masterbatch (25% with carbon black, iron oxide and monoazo yellow pigment as additive and aliphatic polyester ii-1 as carrier)
- Sicoversal® from BASF Color Solutions
- the melt was conveyed at a rate of 70 kg / h through a die plate with 50 holes (diameter 0.65 mm) and a temperature of 260 ° C.
- a pressurized and tempered underwater pelletizer (20 bar - 40 ° C) pre-granulated granules with a narrow granule size distribution were produced.
- the granules were stored for a certain time at room temperature or at 37 ° C and then by the action of flowing water vapor, the granules were prefoamed and welded in a second step in a closed mold to particle moldings.
- the melt was conveyed at a rate of 70 kg / h through one with 50 bores (diameter 0.65 mm) and a temperature of 260 ° C.
- a pressurized and tempered underwater pelletizer (20 bar - 40 ° C) pre-granulated granules with a narrow granule size distribution were produced.
- the granules were stored for a certain time at room temperature or at 37 ° C and then by the action of flowing water vapor, the granules were prefoamed and welded in a second step in a closed mold to particle moldings.
- the melt was conveyed at a rate of 70 kg / h through one with 50 bores (diameter 0.65 mm) and a temperature of 260 ° C.
- a pressurized and tempered underwater pelletizer (20 bar - 40 ° C)
- pre-granulated granules with a narrow granule size distribution were produced.
- the granules were stored for a certain time at room temperature or at 37 ° C and then by the action of flowing steam, the granules were prefoamed.
- component v-1 6.7 parts of isopentane (component v-1) were melted into 90 parts of component i-1 a, 10 part i-1 b, 0.2 part of component iii-1 and 0.3 part of component iv-1 mixed at a melting temperature of 200-240 ° C.
- the melt was conveyed at a rate of 70 kg / h through one with 50 bores (diameter 0.65 mm) and a temperature of 260 ° C.
- a pressurized and tempered underwater pelletizer (20 bar - 40 ° C) pre-granulated granules with a narrow granule size distribution were produced.
- the melt was conveyed at a rate of 70 kg / h through one with 50 bores (diameter 0.65 mm) and a temperature of 260 ° C.
- a pressurized and tempered underwater pelletizer (20 bar - 40 ° C) pre-granulated granules with a narrow granule size distribution were produced.
- Example 7 (with color masterbatch)
- the melt was conveyed at a rate of 70 kg / h through one with 50 bores (diameter 0.65 mm) and a temperature of 260 ° C. With the help of a pressurized and tempered underwater granulation (20 bar - 40 ° C) pre-granulated granules with a narrow granule size distribution were produced.
- the granules were stored for a certain time at room temperature or at 37 ° C and then by the action of flowing steam, the granules were prefoamed.
- the granules were stored for a certain time at room temperature or at 37 ° C and then by the action of flowing steam, the granules were prefoamed.
- pre-granulated granules with a narrow granule size distribution were produced.
- the granules were stored for a certain time at room temperature or at 37 ° C and then by the action of flowing steam, the granules were prefoamed.
- Example 2 shows better mechanical properties compared to Example 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16173236 | 2016-06-07 | ||
PCT/EP2017/063243 WO2017211660A1 (en) | 2016-06-07 | 2017-06-01 | Process for producing expandable polylactic acid-containing pellets |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3464433A1 true EP3464433A1 (en) | 2019-04-10 |
EP3464433B1 EP3464433B1 (en) | 2020-11-18 |
Family
ID=56263497
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17728499.9A Active EP3464433B1 (en) | 2016-06-07 | 2017-06-01 | Method for manufacturing expandable granulates containing polylactic acids |
Country Status (10)
Country | Link |
---|---|
US (1) | US10787554B2 (en) |
EP (1) | EP3464433B1 (en) |
JP (1) | JP6918025B2 (en) |
KR (1) | KR102326407B1 (en) |
CN (1) | CN109312093B (en) |
AU (1) | AU2017276585B2 (en) |
BR (1) | BR112018074284B1 (en) |
CA (1) | CA3026811C (en) |
ES (1) | ES2854976T3 (en) |
WO (1) | WO2017211660A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3662002B1 (en) | 2017-08-04 | 2021-10-27 | Basf Se | Expandable granulates containing propellant on the basis of high-temperature thermoplastic |
DE102019002975A1 (en) | 2019-04-26 | 2020-10-29 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Process for the production of expandable or at least partially expanded polymer particles based on polylactide and polymer particles produced thereafter |
KR102677569B1 (en) * | 2022-11-11 | 2024-06-25 | 산수음료(주) | Biodegradable resin composition, method of preparing molded product using the same and biodegradable molded product prepared from the same |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19938008A1 (en) | 1999-08-11 | 2001-02-15 | Basf Ag | Biodegradable foam particles |
TWI285209B (en) * | 2001-01-10 | 2007-08-11 | Dainichiseika Color Chem | Production process of colored fine particulate resins, colored fine particulate resins, and coloring process of articles |
JP4820641B2 (en) | 2005-12-20 | 2011-11-24 | 積水化成品工業株式会社 | Method for producing foamed polylactic acid resin particles for in-mold foam molding |
WO2008123367A1 (en) * | 2007-03-29 | 2008-10-16 | Sekisui Plastics Co., Ltd. | Polylactic acid resin foam particle for in-mold foam forming, process for producing the same, and process for producing polylactic acid resin foam molding |
NL1033719C2 (en) * | 2007-04-19 | 2008-10-21 | Synbra Tech Bv | Particulate expandable polylactic acid, method for making it, foamed molded part based on particulate expandable polylactic acid as well as method for making it. |
AU2009295910B2 (en) | 2008-09-29 | 2014-05-22 | Basf Se | Aliphatic polyester |
AU2011206716B2 (en) * | 2010-01-14 | 2014-01-30 | Basf Se | Method for producing expandable granulates containing polylactic acid |
US20130345327A1 (en) | 2012-06-26 | 2013-12-26 | Basf Se | Process for producing expandable pelletized material which comprises polylactic acid |
EP2907849A4 (en) * | 2012-10-10 | 2016-06-08 | Toray Industries | Polylactic acid resin composition, and method for producing molded article and polylactic acid resin composition |
DE102013223495A1 (en) * | 2013-11-18 | 2015-05-21 | Tesa Se | Adhesive tape for wrapping elongated goods, in particular cable harnesses and jacketing methods |
WO2016096481A1 (en) | 2014-12-17 | 2016-06-23 | Basf Se | Method for producing expandable granulates containing polylactic acid |
CN107406610B (en) | 2014-12-22 | 2020-10-30 | 巴斯夫欧洲公司 | Fiber reinforcement of foam materials containing blowing agents |
US20170361545A1 (en) | 2014-12-22 | 2017-12-21 | Basf Se | Fiber-reinforcement of foam materials, consisting of interconnected segments |
JP7204324B2 (en) | 2014-12-22 | 2023-01-16 | ビーエーエスエフ ソシエタス・ヨーロピア | Anisotropic foam fiber reinforcement |
CN107278217B (en) | 2014-12-22 | 2021-04-09 | 巴斯夫欧洲公司 | Fibre-reinforced moulded part made of expanded bead foam |
WO2017202668A1 (en) | 2016-05-25 | 2017-11-30 | Basf Se | Fibre reinforcement of reactive foams obtained by a moulding foam method |
EP3464436B1 (en) | 2016-05-25 | 2023-02-15 | Basf Se | Fibre reinforcement of reactive foams obtained by a double belt foaming or a block foaming method |
-
2017
- 2017-06-01 KR KR1020197000493A patent/KR102326407B1/en active IP Right Grant
- 2017-06-01 BR BR112018074284-8A patent/BR112018074284B1/en active IP Right Grant
- 2017-06-01 CN CN201780035246.4A patent/CN109312093B/en active Active
- 2017-06-01 US US16/306,755 patent/US10787554B2/en active Active
- 2017-06-01 ES ES17728499T patent/ES2854976T3/en active Active
- 2017-06-01 AU AU2017276585A patent/AU2017276585B2/en active Active
- 2017-06-01 JP JP2018563922A patent/JP6918025B2/en active Active
- 2017-06-01 WO PCT/EP2017/063243 patent/WO2017211660A1/en unknown
- 2017-06-01 CA CA3026811A patent/CA3026811C/en active Active
- 2017-06-01 EP EP17728499.9A patent/EP3464433B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN109312093B (en) | 2022-02-18 |
WO2017211660A1 (en) | 2017-12-14 |
CA3026811A1 (en) | 2017-12-14 |
CN109312093A (en) | 2019-02-05 |
US20190127545A1 (en) | 2019-05-02 |
CA3026811C (en) | 2023-10-03 |
EP3464433B1 (en) | 2020-11-18 |
AU2017276585A1 (en) | 2019-01-03 |
US10787554B2 (en) | 2020-09-29 |
JP6918025B2 (en) | 2021-08-11 |
JP2019523799A (en) | 2019-08-29 |
BR112018074284B1 (en) | 2022-08-16 |
ES2854976T3 (en) | 2021-09-23 |
KR20190015758A (en) | 2019-02-14 |
AU2017276585B2 (en) | 2021-07-29 |
BR112018074284A2 (en) | 2019-03-12 |
KR102326407B1 (en) | 2021-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2617771B1 (en) | Method for manufacturing expandable granulates containing polylactic acids | |
EP3055351B1 (en) | Method for the preparation of expanded polyester foam particles | |
EP1694753B1 (en) | Method of producing expandable polystyrene mixtures | |
EP2162269B1 (en) | Expandable granulates from acrylonitrile copolymers | |
EP3233992B1 (en) | Verfahren zur herstellung von expandierbaren polymilchsäure-haltigen granulaten | |
DE10358786A1 (en) | Particle foam moldings of expandable, filler-containing polymer granules | |
EP2452968A1 (en) | Method for producing expandable thermoplastic particles with improved expandability | |
EP3464433B1 (en) | Method for manufacturing expandable granulates containing polylactic acids | |
EP2267066A1 (en) | Aliphatic polyester resin foam, flower arrangement holder made of the foam, and processes for production of both | |
EP1694755B1 (en) | Expandable polystyrene granulates with a bi- or multi-modal molecular-weight distribution | |
DE102004034527A1 (en) | Process for the preparation of expandable styrene polymers with improved expandability | |
EP3730543B1 (en) | Method for the preparation of expandable or at least partially expanded polymer particles based on polylactide and polymer particles produced from same | |
EP1541621B1 (en) | Method of producing expandable impact modified thermoplastic polymer granulate | |
WO2014001119A1 (en) | Method for producing expandable granulates containing polylactic acid | |
DE10358800A1 (en) | Expandable styrene polymer granules | |
WO2024218186A1 (en) | Method for producing re-expandable polycarbonate beads, and corresponding polycarbonate beads |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190107 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200616 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502017008275 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1335707 Country of ref document: AT Kind code of ref document: T Effective date: 20201215 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210219 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210218 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210318 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210218 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210318 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502017008275 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2854976 Country of ref document: ES Kind code of ref document: T3 Effective date: 20210923 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20210819 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210630 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210601 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210601 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210318 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20170601 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20230721 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240627 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240625 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240618 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240625 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20240625 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240619 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240710 Year of fee payment: 8 |