EP3450631A1 - Deep vibration apparatus with an adjustable unbalance mass body - Google Patents
Deep vibration apparatus with an adjustable unbalance mass body Download PDFInfo
- Publication number
- EP3450631A1 EP3450631A1 EP17189317.5A EP17189317A EP3450631A1 EP 3450631 A1 EP3450631 A1 EP 3450631A1 EP 17189317 A EP17189317 A EP 17189317A EP 3450631 A1 EP3450631 A1 EP 3450631A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- mass body
- rotation
- primary
- primary mass
- deep vibrator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005484 gravity Effects 0.000 claims abstract description 23
- 239000002689 soil Substances 0.000 claims abstract description 15
- 230000002093 peripheral effect Effects 0.000 claims description 7
- 230000005540 biological transmission Effects 0.000 claims 1
- 238000005056 compaction Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 description 7
- 230000000712 assembly Effects 0.000 description 6
- 238000000429 assembly Methods 0.000 description 6
- 230000010355 oscillation Effects 0.000 description 3
- 230000002349 favourable effect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000004323 axial length Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D3/00—Improving or preserving soil or rock, e.g. preserving permafrost soil
- E02D3/02—Improving by compacting
- E02D3/046—Improving by compacting by tamping or vibrating, e.g. with auxiliary watering of the soil
- E02D3/068—Vibrating apparatus operating with systems involving reciprocating masses
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C19/00—Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
- E01C19/22—Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for consolidating or finishing laid-down unset materials
- E01C19/23—Rollers therefor; Such rollers usable also for compacting soil
- E01C19/28—Vibrated rollers or rollers subjected to impacts, e.g. hammering blows
- E01C19/286—Vibration or impact-imparting means; Arrangement, mounting or adjustment thereof; Construction or mounting of the rolling elements, transmission or drive thereto, e.g. to vibrator mounted inside the roll
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D3/00—Improving or preserving soil or rock, e.g. preserving permafrost soil
- E02D3/02—Improving by compacting
- E02D3/046—Improving by compacting by tamping or vibrating, e.g. with auxiliary watering of the soil
- E02D3/054—Improving by compacting by tamping or vibrating, e.g. with auxiliary watering of the soil involving penetration of the soil, e.g. vibroflotation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B06—GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
- B06B—METHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
- B06B1/00—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
- B06B1/10—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy
- B06B1/16—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy operating with systems involving rotary unbalanced masses
- B06B1/161—Adjustable systems, i.e. where amplitude or direction of frequency of vibration can be varied
- B06B1/162—Making use of masses with adjustable amount of eccentricity
- B06B1/164—Making use of masses with adjustable amount of eccentricity the amount of eccentricity being automatically variable as a function of the running condition, e.g. speed, direction
Definitions
- the invention relates to a deep vibrator for compacting a soil by means of a rotating unbalance.
- the rotating unbalance creates vibrations that compress the soil vibrator and possible additional material.
- Deep vibrators are generally used in three subsoil improvement methods that differ in terms of operation and load transfer.
- the Rüttel réellebacter coarse-grained soils are compressed in itself.
- load-bearing columns made of gravel or crushed stone are placed in mixed and fine grained, non-compactible soils.
- pile-like foundation elements are produced over which relatively high loads can be removed, if a permanent load-bearing composite with Stopfklalen is not guaranteed.
- the vibrator contains a motor driven unbalance, which puts the vibrator in horizontal vibrations.
- the deep vibrator is adapted to the intended working depth with attachment tubes and thereby guided by cranes, excavators or specially developed carrier devices (carrying crawlers).
- From the DE 10 2014 019 139 A1 is a deep vibrator for compacting a soil with a first imbalance weight and a fastener for interchangeable receiving a second imbalance weight known.
- the first imbalance weight and the second imbalance weight can be driven in rotation about the longitudinal axis of the deep vibrator.
- the fastening element is arranged such that the imbalance of the deep vibrator can be reduced by the recorded second imbalance weight.
- a deep vibrator for compacting soils with an elongated housing having a longitudinal axis and a coaxially mounted in the housing motor-driven axis of rotation and a revolving with the axis of rotation unbalanced mass known.
- Means are provided for varying the radial distance of the center of gravity of the imbalance mass from the longitudinal axis and a variable-speed drive for the axis of rotation. By changing the size of the imbalance mass, the effective impact force during lowering and / or pulling is changed.
- Deep vibrators with adjustable eccentric need a mechanical device for adjusting the imbalance masses.
- the adjustment mechanism is subjected to high loads due to the strong vibrations, which can lead to failure of individual mechanical parts.
- the present invention is therefore based on the object to propose a vibrator with adjustable unbalanced mass, which is simple and robust and thus has a long life. It should also be proposed a corresponding method for compacting ground, that allows a change in the imbalance mass during operation.
- a rotary drive which is rotationally driven in two directions, a drive shaft which is drivingly connected to the rotary drive, a primary mass body, which is rotatably connected to the drive shaft and together with this order rotating the rotational axis, a secondary mass body limitedly rotatable relative to the primary mass body and assuming a first rotational position relative to the primary mass body upon rotation of the drive shaft in the first rotational direction, in which a center of gravity of the secondary mass body approximates a center of gravity of the primary mass body; and when rotating the drive shaft in the second direction of rotation occupies a second rotational position relative to the primary mass body, in which the center of gravity of the secondary mass body is spaced from the center of gravity of the primary mass body, wherein the center of mass of the secondary mass body pers and the center of mass of the primary mass body have different radial distances from the axis of rotation.
- the imbalance is variable by simply reversing the rotational direction of the rotary drive between two sizes, which can be due to the design of the first and secondary mass body such that their focal points on different radii can achieve particularly high imbalances or given a large variability in terms of adjustable imbalances is.
- This causes the amplitude of the deep vibrator is adjustable by the adjustment in particularly large areas.
- the amplitude in the first rotational position compared to the second rotational position can be more than doubled. To adjust the imbalance, only the direction of rotation of the rotary drive must be changed, for which it must be stopped briefly.
- the rotatable secondary mass body has a greater radial distance from the axis of rotation, as the rotationally fixed primary mass body.
- the reversal is possible, that is, the rotatably connected to the shaft primary mass body has a greater radial distance from the axis of rotation, as the rotatable secondary mass body.
- the rotary drive can have any configuration which is suitable for generating a rotational movement in two directions of rotation.
- the rotary drive can be designed in the form of an electric motor or a hydraulic drive.
- An electric motor may have a stator which is non-rotatably connected to a housing of the deep vibrator or is supported with respect to this in the sense of rotation, and a rotor which is connected to a motor shaft in order to drive them.
- the drive shaft which carries the primary and secondary mass bodies, is drive-connected to the rotary drive.
- drive-connected is intended to encompass an indirect connection of said drive parts, ie the possibility that one or more further components or components may be interposed between the rotary drive and the drive shaft in the power path, for example a clutch or a gearbox.
- primary mass body in particular present at least one mass body which is rotatably connected to the drive shaft.
- a “mass body”, in particular, refers to a mass body which is adjustable relative to the primary mass body, so that the center of gravity of the total mass changes.
- One or more primary and secondary mass bodies may be provided. Accordingly, it should be understood that within the context of the present disclosure, any reference to a primary or secondary mass body may apply to any other corresponding primary or secondary mass body.
- the masses of the primary and secondary mass bodies can be selected as needed and the desired amplitude of the deep vibrator.
- a big variability can be achieved in particular if the primary and secondary mass body have different sized masses.
- the primary mass body may have a greater or lesser mass compared with the secondary mass body. It is favorable for a large oscillation amplitude if the mass body whose center of gravity has the greater distance from the axis of rotation also has the larger mass. This may be the primary or secondary mass body. It is also conceivable that the masses of the primary and secondary mass body are the same size.
- the center of mass resulting from the primary mass body and the secondary mass body in the first rotational position has a greater distance from the axis of rotation than the center of mass resulting from the primary mass body and the secondary mass body in the second rotational position.
- the center of gravity of the primary and secondary mass bodies are in the first rotational position on a common side and in the second rotational position on opposite sides with respect to the axis of rotation of the drive shaft.
- a first stop is provided, against which the secondary mass body is supported upon rotation of the rotary drive in the first rotational direction, and a second stop against which the secondary mass body is supported in rotation of the rotary drive in the second rotational direction.
- first and second stop are formed on a common stop element, for example, as two effective in opposite circumferential directions stop surfaces of the stop element.
- exactly one stop element per secondary mass body is provided which forms the first rotational stop and the second rotational stop.
- the stop element may be provided on the primary mass body, in particular be firmly connected thereto.
- the connection of the stop element on the primary mass body for example be realized by a screw, with other compounds such as a welded joint are also conceivable.
- the abutment member may be configured, for example, in the form of an abutment bar fixedly connected to the primary mass body and extending parallel to the rotation axis along an outer peripheral surface of the primary mass body.
- the first mass body comprises a cylinder segment, which preferably extends through approximately 180 ° about the axis of rotation.
- the mass body can be made in one piece with the drive shaft.
- the mass body can also initially be manufactured separately and then connected to the drive shaft rotationally fixed and axially fixed, for example by means of a shaft toothing or shaft-hub connection with suitable axial securing means.
- the secondary mass body may comprise a ring segment which is rotatably mounted about the drive shaft.
- the ring segment may, for example, extend by more than 160 ° and / or less than 180 ° about the axis of rotation.
- the secondary mass body can be arranged with axial overlap to the primary mass body.
- the mass bodies are preferably designed so that a smallest inner radius of a ring segment of the secondary mass body is greater than a largest outer radius of the primary mass body.
- the secondary mass body lies radially outside the primary mass body.
- the secondary mass body comprises in this embodiment, an upper lid part which is fixedly connected to an upper end of the ring segment, and a lower lid part, which is fixedly connected to a lower end of the ring segment, wherein the two lid parts radially inwardly at least indirectly are rotatably mounted on the drive shaft.
- the primary mass body is spatially accommodated in the first rotational position in the secondary mass body.
- the secondary mass body can also be arranged with axial offset to the primary mass body, that is to say above and / or below a respective axial end of the primary mass body.
- This embodiment is particularly suitable for applications in which only a small additional imbalance or amplitude increase is needed.
- the secondary mass body is at least partially disposed radially outside of the primary mass body or that the center of mass of the secondary mass body has a greater radial distance from the axis of rotation than the center of mass of the primary mass body.
- the stop element is designed according to the configuration of the secondary mass body.
- the stop element may be radially projecting with respect to an outer peripheral surface of the primary mass body to act as a driver for the secondary mass body upon rotation of the drive shaft.
- the stop element may extend in the axial direction over at least one third of the height of the primary mass body.
- the stop element can protrude axially, in particular with respect to an axial end side of the primary mass body.
- At least one of the primary and the secondary mass body may include Schmermetall. Furthermore, a plurality of primary and / or secondary mass bodies can also be provided.
- An imbalance assembly which is to be stored as a unit in a housing of the deep vibrator, may each comprise at least one shaft part, a primary and a secondary mass body.
- the shaft part is rotatably supported in the housing of the deep vibrator by means of an upper bearing, which is arranged above the primary mass body, and by means of a lower bearing, which is arranged below the primary mass body.
- a plurality of imbalance assemblies may be provided which are arranged one below the other.
- the individual imbalance assemblies are preferably driven by a single rotary drive.
- the motor shaft of the rotary drive can be rotatably connected to the drive shaft of a first assembly and the first drive shaft further rotatably connected to the drive shaft of an underlying second assembly.
- Any number of further imbalance modules are possible.
- the non-rotatable connection of the individual shaft parts with each other can be realized for example by means of a flange connection, shaft toothing or other shaft-hub connection.
- Each individual assembly preferably has separate bearings for supporting the respective shaft part, so that the total bearing load is low. In this way, it is ensured that the deep vibrator withstands permanent large forces and vibrations even when designed with several imbalance assemblies.
- a method of compacting soil by means of such a deep vibrator may include the steps of shaking the depth vibrator into the ground to a desired depth by rotating the rotary drive in a first or second rotational direction and compacting the soil by rotating the rotary drive in the second rotational direction.
- By turning the rotary drive in the second direction of rotation large vibration amplitudes and thus a high compression are generated.
- the shaking to the desired depth can be done with small or large amplitude.
- FIGS. 1 to 7 their common features are described below together.
- a section of a deep vibrator 2 is shown.
- a deep vibrator serves to compact soil by means of an imbalance.
- Imbalance is understood to mean a rotating body whose mass is not distributed rotationally symmetrically.
- the mass inertia axis of the mass body is offset from the axis of rotation, so that the imbalance generated during rotation oscillations, with which the soil and possible addition material is compacted.
- the deep vibrator 2 accordingly comprises a rotary drive 3, a drive shaft 4 which can be driven in rotation therewith, a first mass body 5 which is non-rotatably connected to the drive shaft 4, and a second mass body 6 which is adjustable in rotation relative to the first mass body 5.
- the components mentioned are accommodated in a housing 7 of the deep vibrator 2, or mounted rotatably in this. It is envisaged that the first and second mass body 5, 6 with respect to their shape and / or mass and / or their respective center of gravity distance to the drive shaft 4 from each other.
- the rotary drive 3 is designed in the form of an electric motor which comprises a stator 8 supported in rotation with respect to the housing 7 and a rotor 9 which is rotatable relative thereto. It is understood, however, that other engines are used, such as a hydraulic drive.
- the rotor 9 of the electric motor 3 is connected to a motor shaft 10 for driving it in rotation.
- the motor shaft 10 is in the housing 7 by means of a first bearing 12, which is arranged above the rotary drive 3, and a second bearing 13, which is arranged below the rotary drive 3 rotatably mounted about a rotation axis A.
- the rotary drive 3 is designed so that it can drive the motor shaft 10 in two directions, ie clockwise and counterclockwise.
- the motor shaft 10 is rotatably connected by means of suitable connecting means 14 with the underlying drive shaft 4 for transmitting a torque.
- the connecting means 14 are in the present case designed in the form of a flange connection, it being understood that other shaft couplings for non-rotatable connection are also possible.
- the drive shaft 4 is rotatably supported by means of suitable bearing means 15, 16 in the housing 7, for example by means of rolling bearings or plain bearings.
- the first mass body 6, which may also be referred to as primary mass body, is rotatably connected to the drive shaft 4.
- the rotationally fixed connection can be realized by known means, for example by means of a form-fitting shaft-hub connection and / or cohesively by means of welded connection. It is also possible that the drive shaft 4 is made in one piece with the first mass body 6.
- the second mass body 6, which may also be referred to as a secondary mass body, is limitedly rotatable relative to the first mass body 5. It is provided that the secondary mass body 6 when rotating the drive shaft 4 in the first direction of rotation R1 assumes a first rotational position P1 and when turning the drive shaft 4 in the opposite second rotational direction R2, a second rotational position P2 relative to the first mass body 5.
- first rotational position P1 which in the FIGS. 1 to 5 can be seen in the left half of the picture, the secondary mass body 6 is approximated to the primary mass body 5, or, the two mass body 5, 6 are located with respect to the axis of rotation A on the same half page.
- the second rotational position P2 of the pivotable mass body 6, which in the FIGS.
- each dashed line in the right half is shown (reference numeral 6 '), the secondary mass body 6 is spaced from the primary mass body 5, or the two mass body 5, 6 are located with respect to the axis of rotation A on opposite half sides. Due to this configuration, in that the resulting center of gravity Sres1 formed by the first and second mass bodies 5, 6 in the first position P1 of the mass body 6 has a greater radial distance from the axis of rotation A than the resulting center of mass Sres2 resulting from the first and second mass bodies 5, 6 when the secondary mass body (6 ') is in the second position P2. It follows that the size of the imbalance can be changed by simply reversing the direction of rotation (R1, R2) of the rotary drive 3 between two sizes. To adjust the imbalance, only the direction of rotation R1, R2 of the rotary drive 3 has to be changed, for which purpose it must be stopped briefly.
- a special feature of the present invention is that the center of gravity S6 of the pivotable mass body 6 has a greater radial distance from the axis of rotation A than the center of mass S5 of the rotatably connected to the shaft 4 mass body 5, or that the pivotable mass body 6 relative to the rotationally fixed mass body 5 at least partially protruding radially.
- this configuration particularly high imbalances can be achieved in the first rotational position P1, or the amplitude of the deep vibrator 2 can be adjusted in particularly large areas.
- the amplitude in the first rotational position P1 compared to the second rotational position P2 can be more than doubled.
- the primary mass body 5 comprises a cylinder segment which extends through 180 ° about the axis of rotation A.
- the secondary mass body 6 is arranged in this embodiment with axial overlap to the primary mass body 5 and has a ring segment 17 with an upper lid portion 18 and a lower lid portion 19.
- Upper cover part 18, ring segment 17 and lower cover part 19 form a half-shell, which is dimensioned so that the first mass body 5 can be accommodated therein when the second mass body 6 is in the first rotational position P1.
- a smallest inner radius of the ring segment 17 of the secondary mass body 6 is greater than a largest outer radius of the primary mass body 6.
- the half-shell-shaped mass body 5 is mounted on the drive shaft 4 via two bearings 20, 21.
- the upper cover part 18 is arranged via a first bearing 20, which is arranged axially above the first mass body 5, and the lower cover part 19 via a second bearing 21 , which is arranged axially below the first mass body 5, rotatably mounted on the shaft 4. It is especially in FIG. 2 recognizable that the ring segment 17 extends over an angular range of slightly less than 180 ° about the axis of rotation A.
- the relative rotational positions P1, P2 are each defined by a stop element 22 against which the secondary mass body 6 abuts upon rotation of the rotary drive 3 and is thus arranged in a defined rotational position relative to the primary mass body 5.
- a stop element 22 is provided which forms both a stop in the first direction of rotation R1 and a stop in the second direction of rotation R2.
- the stop element 22 is presently designed in the form of a bar or a bar, which is fixedly connected to the primary mass body 5, for example non-positively by means of screw or materially by means of welding.
- the stopper member 22 protrudes radially beyond an outer circumferential surface of the primary mass body 5 and extends in the axial direction, such as in particular FIG.
- a first side surface 23 of the strip 22 forms a first stop in the first direction of rotation R1 of the pivotable mass body 6, while an opposite second side surface 24 of the bar 22 forms a second stop in the opposite direction R1 of the mass body 6.
- additional masses 25, 26 are provided, which are fixedly connected to the drive shaft 4.
- the rotationally fixed connection with the shaft 4 can be produced for example by means of a positive shaft-hub connection.
- at least one of the mass bodies 5, 6, 25, 26 includes Schmermetall.
- the mass bodies may be made of a metallic material such as steel.
- FIGS. 3 and 4 show a deep vibrator 2 in a slightly modified second embodiment. This corresponds largely to the embodiment FIGS. 1 and 2 , so that reference is made to the above description in terms of similarities. The same or modified details are provided with the same reference numerals as in the Figures 1 and 2 ,
- two pivotable secondary mass body 6 1 , 6 2 are provided, which are rotatably mounted on the drive shaft 4 respectively.
- a first pivotable mass body 6 1 is disposed above the primary mass body 5 and mounted by means of a connecting web 27 and the upper bearing 20 on the shaft 4.
- a second pivotable mass body 6 2 is arranged below the primary mass body 5 and pivotally connected to the shaft 4 by means of a connecting web 28 and a lower bearing 21.
- the two secondary mass body 6 1 , 6 2 are designed in the form of ring segments which extend over approximately 180 ° about the axis of rotation A. It is especially in FIG.
- two stops 22 1 , 22 2 are provided corresponding to the number of pivotable masses 6 1 , 6 2 , which are each connected to the primary mass body 5.
- the stops 22 1 , 22 2 are in each case axially beyond an end-side end face and radially beyond an outer peripheral surface 29 of the primary mass body 5. They are designed in the form of shorter beams, by the way as in the embodiment described above may be connected to the mass body 5.
- the present embodiment builds radially slightly smaller, since a radial overlap between the pivotable mass body 6 1 , 6 2 and the rotationally fixed mass body 5 is given. Incidentally, construction and operation of the above embodiment correspond to the description thereof in order to avoid repetition.
- FIG. 5 shows a deep vibrator 2 in another embodiment. This corresponds largely to the embodiment FIGS. 1 and 2 , so that reference is made to the above description in terms of similarities. The same or modified details are provided with the same reference numerals as in the Figures 1 and 2 or in the FIGS. 3 and 4 ,
- the deep vibrator 2 comprises a plurality of imbalance assemblies 11 1 , 11 2 , which are each received as a unit in the housing 7.
- Each unbalance assembly 11 1 , 11 2 each comprises a shaft part 4 1 , 4 2 , each by means of two bearings 12 1 , 13 1 ; 12 2 , 13 2 rotatably supported in the housing 7 and is rotatably driven by the rotary drive 3, and a primary and a secondary mass body 5, 6.
- a first bearing 12 1 , 12 2 above and a second bearing 13 1 , 13 2 below the associated mass body 5, 6 arranged to ensure a secure radial bearing over the entire length of the shaft.
- the individual shaft parts 4 1 , 4 2 are connected to each other via suitable shaft connections 14 1 , 14 2 , such as flange connections, wherein other connecting means are also conceivable.
- suitable shaft connections 14 1 , 14 2 such as flange connections, wherein other connecting means are also conceivable.
- two imbalance assemblies 11 1 , 11 2 are provided, which are driven by a single rotary drive. It will be appreciated that three or more imbalance assemblies may also be used to produce even greater vibration amplitudes. These are drive-connected with each other via further shaft connections (14).
- FIGS. 6 and 7 show a deep vibrator 2 in another embodiment. This corresponds largely to the embodiment FIGS. 1 and 2 , so that reference is made to the above description in terms of similarities. The same or modified details are provided with the same reference numerals as in the Figures 1 and 2 ,
- FIGS. 6 and 7 the primary mass body 5, which is non-rotatably connected to the drive shaft 4, that with a greater distance of the center of mass S5, while the pivotable about the drive shaft 4 mass body 6, the one whose center of gravity S6 is located on a smaller radius.
- the non-rotatable mass body 5 comprises a ring segment 17, an upper lid 18 and a lower lid 19, which are fixedly connected to each other.
- An axial support can be made via a thrust bearing.
- the pivotable mass body 6 can be rotatably mounted on the drive shaft 4, for example by means of a sliding bearing 20 and a slide bushing.
- the relative rotational positions P1, P2 of the pivotable mass body 6 are defined by a stop element 22, against which the mass body 6 strike upon rotation of the rotary drive 3 and is thus arranged in a defined rotational position relative to the rotationally fixed mass body 5.
- the rotation stopper 22 is configured as a ledge or beam which is connected to the primary mass body 5 and protrudes radially inward from an inner circumferential surface. Otherwise, the embodiment corresponds to FIG. 6 in terms of structure and functioning of those according to FIGS. 1 and 2 , to the description of which reference is made.
Landscapes
- Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Civil Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Soil Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Paleontology (AREA)
- Agronomy & Crop Science (AREA)
- General Engineering & Computer Science (AREA)
- Architecture (AREA)
- Apparatuses For Generation Of Mechanical Vibrations (AREA)
Abstract
Die Erfindung betrifft einen Tiefenrüttler zum Verdichten von Erdreich, umfassend: einen Drehantrieb (3); eine Antriebswelle (4), die von dem Drehantrieb (3) in eine erste Drehrichtung (R1) und in eine entgegengesetzte zweite Drehrichtung (R2) um eine Drehachse (A) drehend antreibbar ist; einen primären Massekörper (5), der mit der Antriebswelle (4) drehfest verbunden ist und gemeinsam mit dieser um die Drehachse (A) umläuft; einen sekundären Massekörper (6), der durch Drehen der Antriebswelle (4) in der ersten Drehrichtung (R1) in eine erste Drehposition (P1) und durch Drehen der Antriebswelle (4) in der zweiten Drehrichtung (R2) in eine zweite Drehposition (P2) relativ zum primären Massekörper (5) verstellbar ist, wobei der sekundäre Massekörper (6) in der ersten und zweiten Drehposition (P1) gemeinsam mit dem primären Massekörper (5) um die Drehachse (A) drehbar ist; wobei der Masseschwerpunkt (S6) des sekundären Massekörpers (6) und der Massekörper (S5) des primären Massekörpers (5) unterschiedliche radiale Abstände zur Drehachse (A) aufweisen. The invention relates to a deep vibrator for compaction of soil, comprising: a rotary drive (3); a drive shaft (4) which is rotationally drivable by the rotary drive (3) in a first rotational direction (R1) and in an opposite second rotational direction (R2) about an axis of rotation (A); a primary mass body (5) which is rotatably connected to the drive shaft (4) and rotates together with this about the axis of rotation (A); a secondary mass body (6) formed by rotating the drive shaft (4) in the first rotational direction (R1) in a first rotational position (P1) and by rotating the drive shaft (4) in the second rotational direction (R2) in a second rotational position (P2 ) is adjustable relative to the primary mass body (5), wherein the secondary mass body (6) in the first and second rotational position (P1) is rotatable together with the primary mass body (5) about the axis of rotation (A); wherein the center of gravity (S6) of the secondary mass body (6) and the mass body (S5) of the primary mass body (5) have different radial distances from the axis of rotation (A).
Description
Die Erfindung betrifft einen Tiefenrüttler zum Verdichten eines Bodens mittels einer rotierenden Unwucht. Die rotierende Unwucht erzeugt Schwingungen, mit denen der Tiefenrüttler das Erdreich und mögliches Zugabematerial verdichtet wird.The invention relates to a deep vibrator for compacting a soil by means of a rotating unbalance. The rotating unbalance creates vibrations that compress the soil vibrator and possible additional material.
Tiefenrüttler werden generell in drei Verfahren zur Baugrundverbesserung eingesetzt, die sich hinsichtlich der Funktionsweise und der Lastabtragung voneinander unterscheiden. Mit dem Rütteldruckverfahren werden grobkörnige Böden in sich selbst verdichtet. Beim Rüttelstopfverfahren werden in gemischt- und feinkörnigen, nicht verdichtungsfähigen Böden lastabtragende Säulen aus Kies oder Schotter eingebracht. Mit dem dritten Verfahren werden pfahlartige Gründungselemente hergestellt, über die verhältnismäßig hohe Lasten abgetragen werden können, wenn ein dauernder tragfähiger Verbund mit Stopfsäulen nicht gewährleistet ist. Die unterschiedlichen Tiefenrüttelverfahren werden auch in dem Prospekt "Die Tiefenrüttelverfahren" (Prospekt 10-02D) der Anmelderin beschrieben.Deep vibrators are generally used in three subsoil improvement methods that differ in terms of operation and load transfer. With the Rütteldruckverfahren coarse-grained soils are compressed in itself. In the vibratory tamping method load-bearing columns made of gravel or crushed stone are placed in mixed and fine grained, non-compactible soils. With the third method pile-like foundation elements are produced over which relatively high loads can be removed, if a permanent load-bearing composite with Stopfsäulen is not guaranteed. The different Tiefenrüttelverfahren are also described in the brochure "Die Tiefenrüttelverfahren" (Prospectus 10-02D) of the applicant.
Allen Verfahren ist gemein, dass der Rüttler bis zur vorgesehenen Verbesserungstiefe in den Baugrund versenkt wird, und dann je nach Verfahrensart von unten nach oben Boden verdichtet, eine Stopfsäule aufgebaut oder ein pfahlartiges Gründungselement hergestellt wird.All methods have in common that the vibrator is sunk to the intended improvement depth in the ground, and then compacted depending on the type of process from bottom to top soil, constructed a Stopfsäule or a pile-like foundation element is made.
Als wesentliches Element enthält der Rüttler eine motorisch antreibbare Unwucht, die den Rüttler in horizontale Schwingungen versetzt. Der Tiefenrüttler wird mit Aufsatzrohren an die vorgesehene Arbeitstiefe angepasst und dabei von Kränen, Baggern oder speziell entwickelten Trägergeräten (Tragraupen) geführt.As an essential element of the vibrator contains a motor driven unbalance, which puts the vibrator in horizontal vibrations. The deep vibrator is adapted to the intended working depth with attachment tubes and thereby guided by cranes, excavators or specially developed carrier devices (carrying crawlers).
Aus der
Aus der
Bei Tiefenrüttlern, bei denen der Exzenter unverstellbar ist, muss bereits bei der Montage festgelegt werden, welche Fliehkräfte und Amplitude der Rüttler haben soll. Während des Betriebs kann nur sehr begrenzt, durch Ändern der Drehzahl, auf veränderliche Bodeneigenschaften reagiert werden.For deep vibrators, where the eccentric is unadjustable, it must already be determined during assembly which centrifugal forces and amplitude the vibrator should have. During operation, it is very difficult to respond to changing soil properties by changing the speed.
Tiefenrüttler mit verstellbarem Exzenter benötigen eine mechanische Vorrichtung zum Verstellen der Unwuchtmassen. Die Verstellmechanik ist jedoch aufgrund der starken Vibrationen hohen Belastungen ausgesetzt, die zu einem Versagen von einzelnen mechanischen Teilen führen können.Deep vibrators with adjustable eccentric need a mechanical device for adjusting the imbalance masses. However, the adjustment mechanism is subjected to high loads due to the strong vibrations, which can lead to failure of individual mechanical parts.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, einen Tiefenrüttler mit verstellbarer Unwuchtmasse vorzuschlagen, der einfach und robust aufgebaut ist und damit eine lange Lebensdauer aufweist. Es soll ferner ein entsprechendes Verfahren zum Verdichten von Baugrund vorgeschlagen werden, dass während des Betriebs eine Veränderung der Unwuchtmasse ermöglicht.The present invention is therefore based on the object to propose a vibrator with adjustable unbalanced mass, which is simple and robust and thus has a long life. It should also be proposed a corresponding method for compacting ground, that allows a change in the imbalance mass during operation.
Zur Lösung wird ein Tiefenrüttler zum Verdichten von Erdreich vorgeschlagen, umfassend: einen Drehantrieb, der in zwei Drehrichtungen drehend antreibbar ist, eine Antriebswelle, die mit dem Drehantrieb antriebsverbunden ist, einen primären Massekörper, der mit der Antriebswelle drehfest verbunden ist und gemeinsam mit dieser um die Drehachse umläuft, einen sekundären Massekörper, der relativ zum primären Massenkörper begrenzt drehbar ist und beim Drehen der Antriebswelle in der ersten Drehrichtung eine erste Drehposition relativ zum primären Massekörper einnimmt, in der ein Schwerpunkt des sekundären Massekörper an einen Schwerpunkt des primären Massekörpers angenähert ist, und beim Drehen der Antriebswelle in der zweiten Drehrichtung eine zweite Drehposition relativ zum primären Massekörper einnimmt, in welcher der Schwerpunkt des sekundären Massekörper vom Schwerpunkt des primären Massekörpers beabstandet ist, wobei der Masseschwerpunkt des sekundären Massekörpers und der Masseschwerpunkt des primären Massekörpers unterschiedliche radiale Abstände zur Drehachse aufweisen.To solve a deep vibrator for compacting soil is proposed, comprising: a rotary drive which is rotationally driven in two directions, a drive shaft which is drivingly connected to the rotary drive, a primary mass body, which is rotatably connected to the drive shaft and together with this order rotating the rotational axis, a secondary mass body limitedly rotatable relative to the primary mass body and assuming a first rotational position relative to the primary mass body upon rotation of the drive shaft in the first rotational direction, in which a center of gravity of the secondary mass body approximates a center of gravity of the primary mass body; and when rotating the drive shaft in the second direction of rotation occupies a second rotational position relative to the primary mass body, in which the center of gravity of the secondary mass body is spaced from the center of gravity of the primary mass body, wherein the center of mass of the secondary mass body pers and the center of mass of the primary mass body have different radial distances from the axis of rotation.
Ein Vorteil ist, dass die Unwucht durch einfache Drehrichtungsumkehr des Drehantriebs zwischen zwei Größen veränderbar ist, wobei aufgrund der Ausgestaltung des ersten und sekundären Massenkörpers derart, dass deren Schwerpunkte auf unterschiedlichen Radien liegen besonders hohe Unwuchten erreichen lassen beziehungsweise eine große Variabilität hinsichtlich der einstellbaren Unwuchten gegeben ist. Dies bewirkt, dass die Amplitude des Tiefenrüttlers durch die Verstellung in besonders großen Bereichen verstellbar ist. Je nach Masse und Form des sekundären Massenkörpers kann die Amplitude in der ersten Drehposition gegenüber der zweiten Drehposition mehr als verdoppelt werden. Zur Verstellung der Unwucht muss lediglich die Drehrichtung des Drehantriebs geändert werden, wozu dieser kurz gestoppt werden muss.One advantage is that the imbalance is variable by simply reversing the rotational direction of the rotary drive between two sizes, which can be due to the design of the first and secondary mass body such that their focal points on different radii can achieve particularly high imbalances or given a large variability in terms of adjustable imbalances is. This causes the amplitude of the deep vibrator is adjustable by the adjustment in particularly large areas. Depending on the mass and shape of the secondary mass body, the amplitude in the first rotational position compared to the second rotational position can be more than doubled. To adjust the imbalance, only the direction of rotation of the rotary drive must be changed, for which it must be stopped briefly.
Hinsichtlich der Ausgestaltung der Massekörper und, dementsprechend, der Lage der jeweiligen Masseschwerpunkte des mit der Antriebswelle drehfest verbundenen primären Massekörpers einerseits und des relativ zur Antriebswelle drehbaren sekundären Massekörpers andererseits sind verschiedene Möglichkeiten denkbar. Nach einer ersten Möglichkeit weist der drehbare sekundäre Massekörper einen größeren radialen Abstand zur Drehachse auf, als der drehfeste primäre Massekörper. Alternativ ist auch die Umkehrung möglich, das heißt der mit der Welle drehfest verbundene primäre Massekörper weist eine größeren radialen Abstand zur Drehachse auf, als der hierzu drehbare sekundäre Massekörper.With regard to the design of the mass body and, accordingly, the position of the respective center of gravity of the rotationally fixed to the drive shaft connected primary mass body on the one hand and the relatively rotatable relative to the drive shaft secondary mass body on the other hand, various possibilities are conceivable. After a the first possibility, the rotatable secondary mass body has a greater radial distance from the axis of rotation, as the rotationally fixed primary mass body. Alternatively, the reversal is possible, that is, the rotatably connected to the shaft primary mass body has a greater radial distance from the axis of rotation, as the rotatable secondary mass body.
Der Drehantrieb kann jede beliebige Ausgestaltung haben, die geeignet ist eine Drehbewegung in zwei Drehrichtungen zu erzeugen. Beispielsweise kann der Drehantrieb in Form eines Elektromotors oder eines Hydraulikantriebs gestaltet sein. Ein Elektromotor kann einen Stator aufweisen, der drehfest mit einem Gehäuse des Tiefenrüttlers verbunden beziehungsweise gegenüber diesem im Drehsinn abgestützt ist, sowie einen Rotor, der mit einer Motorwelle verbunden ist, um diese anzutreiben.The rotary drive can have any configuration which is suitable for generating a rotational movement in two directions of rotation. For example, the rotary drive can be designed in the form of an electric motor or a hydraulic drive. An electric motor may have a stator which is non-rotatably connected to a housing of the deep vibrator or is supported with respect to this in the sense of rotation, and a rotor which is connected to a motor shaft in order to drive them.
Die Antriebswelle, der den primären und sekundären Massenkörper trägt, ist mit dem Drehantrieb antriebsverbunden. Mit der Formulierung "antriebsverbunden" soll im Rahmen der vorliegenden Offenbarung eine mittelbare Verbindung der genannten Antriebsteile mit umfasst sein, das heißt die Möglichkeit, dass zwischen dem Drehantrieb und der Antriebswelle ein oder mehrere weitere Bauteile oder Komponenten im Leistungspfad zwischengeschaltet sein können, beispielsweise eine Kupplung oder ein Getriebe.The drive shaft, which carries the primary and secondary mass bodies, is drive-connected to the rotary drive. In the context of the present disclosure, the term "drive-connected" is intended to encompass an indirect connection of said drive parts, ie the possibility that one or more further components or components may be interposed between the rotary drive and the drive shaft in the power path, for example a clutch or a gearbox.
Mit der Bezeichnung "primärer Massenkörper" ist vorliegend insbesondere zumindest ein Massekörper gemeint, der mit der Antriebswelle drehfest verbunden ist. Als "sekundärer Massenkörper" wird vorliegend insbesondere ein Massenkörper bezeichnet, der relativ zu dem primären Massenkörper verstellbar ist, so dass sich der Schwerpunkt der Gesamtmasse verändert. Es können ein oder mehrere primäre und sekundäre Massenkörper vorgesehen sein. Entsprechend versteht es sich, dass im Rahmen der vorliegenden Offenbarung jede Bezugnahme auf einen primären oder sekundären Massenkörper auch für jeden weiteren entsprechenden primären oder sekundären Massenkörper gelten kann.By the term "primary mass body" is meant in particular present at least one mass body which is rotatably connected to the drive shaft. In the present case, a "mass body", in particular, refers to a mass body which is adjustable relative to the primary mass body, so that the center of gravity of the total mass changes. One or more primary and secondary mass bodies may be provided. Accordingly, it should be understood that within the context of the present disclosure, any reference to a primary or secondary mass body may apply to any other corresponding primary or secondary mass body.
Die Massen des primären und des sekundären Massekörpers können nach Bedarf und gewünschter Amplitude des Tiefenrüttlers gewählt werden. Eine große Variabilität kann insbesondere erreicht werden, wenn der primäre und sekundäre Massekörper unterschiedlich große Massen aufweisen. Dabei kann der primäre Massekörper verglichen mit dem sekundären Massekörper eine größere oder kleinere Masse aufweisen. Günstig für eine große Schwingungsamplitude ist es, wenn der Massekörper, dessen Schwerpunkt den größeren Abstand von der Drehachse aufweist, auch die größere Masse hat. Dies kann der primäre oder sekundäre Massekörper sein. Es ist auch denkbar, dass die Massen des primären und sekundären Massekörpers gleich groß sind.The masses of the primary and secondary mass bodies can be selected as needed and the desired amplitude of the deep vibrator. A big variability can be achieved in particular if the primary and secondary mass body have different sized masses. In this case, the primary mass body may have a greater or lesser mass compared with the secondary mass body. It is favorable for a large oscillation amplitude if the mass body whose center of gravity has the greater distance from the axis of rotation also has the larger mass. This may be the primary or secondary mass body. It is also conceivable that the masses of the primary and secondary mass body are the same size.
Es ist insbesondere vorgesehen, dass der aus dem primären Massekörper und dem sekundären Massekörper in der ersten Drehposition resultierende Masseschwerpunkt einen größeren Abstand von der Drehachse aufweist, als der aus dem primären Massenkörper und dem sekundären Massenkörper in der zweiten Drehposition resultierende Masseschwerpunkt. Vorzugsweise liegen die Masseschwerpunkte des primären und sekundären Massekörpers in der ersten Drehposition auf einer gemeinsamen Seite und in der zweiten Drehposition auf gegenüberliegenden Seiten in Bezug auf die Drehachse der Antriebswelle.It is specifically contemplated that the center of mass resulting from the primary mass body and the secondary mass body in the first rotational position has a greater distance from the axis of rotation than the center of mass resulting from the primary mass body and the secondary mass body in the second rotational position. Preferably, the center of gravity of the primary and secondary mass bodies are in the first rotational position on a common side and in the second rotational position on opposite sides with respect to the axis of rotation of the drive shaft.
Nach einer bevorzugten Ausführungsform ist ein erster Anschlag vorgesehen, gegen den der sekundäre Massekörper bei Drehung des Drehantriebs in der ersten Drehrichtung abgestützt ist, und ein zweiter Anschlag, gegen den der sekundäre Massekörper bei Drehung des Drehantriebs in der zweiten Drehrichtung abgestützt ist. Ein besonders einfacher Aufbau wird dadurch erreicht, dass der erste und zweite Anschlag an einem gemeinsamen Anschlagelement gebildet sind, beispielsweise als zwei in entgegengesetzte Umfangsrichtungen wirksame Anschlagflächen des Anschlagelements. Vorzugsweise ist für eine Unwucht-Baugruppe, die einen primären Massenkörper und einen sekundären Massenkörper umfasst, genau ein Anschlagelement je sekundärem Massekörper vorgesehen, das den ersten Drehanschlag und den zweiten Drehanschlag bildet.According to a preferred embodiment, a first stop is provided, against which the secondary mass body is supported upon rotation of the rotary drive in the first rotational direction, and a second stop against which the secondary mass body is supported in rotation of the rotary drive in the second rotational direction. A particularly simple structure is achieved in that the first and second stop are formed on a common stop element, for example, as two effective in opposite circumferential directions stop surfaces of the stop element. Preferably, for an imbalance assembly comprising a primary mass body and a secondary mass body, exactly one stop element per secondary mass body is provided which forms the first rotational stop and the second rotational stop.
Nach einer möglichen Konkretisierung kann das Anschlagelement am primären Massekörper vorgesehen sein, insbesondere fest mit diesem verbunden sein. Dabei kann die Verbindung des Anschlagelements am primären Massenkörper beispielsweise durch eine Schraubverbindung realisiert werden, wobei andere Verbindungen wie eine Schweißverbindung ebenso denkbar sind. Das Anschlagelement kann beispielsweise in Form eines Anschlagbalkens gestaltet sein, der mit dem primären Massenkörper fest verbunden ist und sich parallel zur Drehachse entlang einer Außenumfangsfläche des primären Massenkörpers erstreckt.After a possible concretization, the stop element may be provided on the primary mass body, in particular be firmly connected thereto. In this case, the connection of the stop element on the primary mass body, for example be realized by a screw, with other compounds such as a welded joint are also conceivable. The abutment member may be configured, for example, in the form of an abutment bar fixedly connected to the primary mass body and extending parallel to the rotation axis along an outer peripheral surface of the primary mass body.
Nach einer möglichen Ausführungsform umfasst der erste Massenkörper ein Zylindersegment, das sich vorzugsweise um etwa 180° um die Drehachse erstreckt. Der Massenkörper kann einteilig mit der Antriebswelle hergestellt sein. Alternativ kann der Massenkörper auch zunächst separat hergestellt und anschließend mit der Antriebswelle drehfest und axial fest verbunden werden, beispielsweise mittels einer Wellenverzahnung oder Welle-Nabe-Verbindung mit geeigneten Axialsicherungsmitteln.According to one possible embodiment, the first mass body comprises a cylinder segment, which preferably extends through approximately 180 ° about the axis of rotation. The mass body can be made in one piece with the drive shaft. Alternatively, the mass body can also initially be manufactured separately and then connected to the drive shaft rotationally fixed and axially fixed, for example by means of a shaft toothing or shaft-hub connection with suitable axial securing means.
Der sekundäre Massekörper kann ein Ringsegment umfassen, das um die Antriebswelle drehbar gelagert ist. Das Ringsegment kann sich beispielsweise um mehr als 160° und/oder weniger als 180° um die Drehachse erstrecken.The secondary mass body may comprise a ring segment which is rotatably mounted about the drive shaft. The ring segment may, for example, extend by more than 160 ° and / or less than 180 ° about the axis of rotation.
Nach einer ersten Möglichkeit kann der sekundäre Massenkörper mit axialer Überdeckung zum primären Massenkörper angeordnet sein. Dabei sind die Massenkörper vorzugsweise so gestaltet, dass ein kleinster Innenradius eines Ringsegments des sekundären Massenkörpers größer ist als ein größter Außenradius des primären Massenkörpers. Mit anderen Worten liegt der sekundäre Massenkörper in der ersten Drehposition radial außerhalb des primären Massenkörpers. Nach einer günstigen Weiterbildung umfasst der sekundäre Massenkörper bei dieser Ausführungsform ein oberes Deckelteil, das mit einem oberen Ende des Ringsegments fest verbunden ist, und ein unteres Deckelteil, das mit einem unteren Ende des Ringsegments fest verbunden ist, wobei die beiden Deckelteile radial innen zumindest mittelbar auf der Antriebswelle drehbar gelagert sind. Bei dieser Ausführungsform ist der primäre Massenkörper in der ersten Drehposition im sekundären Massenkörper räumlich aufgenommen. Dadurch, dass das Ringsegment des sekundären Massenkörpers radial außerhalb des primären Massenkörpers liegt, werden eine besonderes große Unwucht und entsprechend auch eine große Schwingungsamplitude erzeugt.According to a first possibility, the secondary mass body can be arranged with axial overlap to the primary mass body. The mass bodies are preferably designed so that a smallest inner radius of a ring segment of the secondary mass body is greater than a largest outer radius of the primary mass body. In other words, in the first rotational position, the secondary mass body lies radially outside the primary mass body. According to a favorable development of the secondary mass body comprises in this embodiment, an upper lid part which is fixedly connected to an upper end of the ring segment, and a lower lid part, which is fixedly connected to a lower end of the ring segment, wherein the two lid parts radially inwardly at least indirectly are rotatably mounted on the drive shaft. In this embodiment, the primary mass body is spatially accommodated in the first rotational position in the secondary mass body. The fact that the ring segment of the secondary mass body is located radially outside of the primary mass body, a particular large imbalance and, accordingly, a large amplitude of vibration generated.
Nach einer zweiten Möglichkeit kann der sekundäre Massenkörper auch mit axialem Versatz zum primären Massekörper angeordnet sein, das heißt oberhalb und/oder unterhalb eines jeweiligen axialen Endes des primären Massenkörpers. Diese Ausführung eignet sich insbesondere für Anwendungen, in denen nur eine geringe Zusatzunwucht bzw. Amplitudensteigerung benötigt wird.According to a second possibility, the secondary mass body can also be arranged with axial offset to the primary mass body, that is to say above and / or below a respective axial end of the primary mass body. This embodiment is particularly suitable for applications in which only a small additional imbalance or amplitude increase is needed.
Für beide Möglichkeiten gilt, dass der sekundäre Massekörper zumindest teilweise radial außerhalb des primären Massekörpers angeordnet ist beziehungsweise, dass der Masseschwerpunkt des sekundären Massekörpers einen größeren radialen Abstand zur Drehachse aufweist als der Masseschwerpunkt des primären Massekörpers. Das Anschlagelement ist entsprechend der Ausgestaltung des sekundären Massenkörpers gestaltet. Insbesondere bei der ersten Möglichkeit kann das Anschlagelement gegenüber einer Außenumfangsfläche des primären Massenkörpers radial vorstehend gestaltet sein, um bei Drehung der Antriebswelle als Mitnehmer für den sekundären Massenkörper zu fungieren. Für eine besonders große Anschlagfläche kann sich das Anschlagelement in axiale Richtung über zumindest ein Drittel der Höhe des primären Massekörpers erstrecken. Bei der zweiten Möglichkeit kann das Anschlagelement insbesondere gegenüber einer axialen Endseite des primären Massekörpers axial vorstehen.For both possibilities applies that the secondary mass body is at least partially disposed radially outside of the primary mass body or that the center of mass of the secondary mass body has a greater radial distance from the axis of rotation than the center of mass of the primary mass body. The stop element is designed according to the configuration of the secondary mass body. In particular, in the first possibility, the stop element may be radially projecting with respect to an outer peripheral surface of the primary mass body to act as a driver for the secondary mass body upon rotation of the drive shaft. For a particularly large stop surface, the stop element may extend in the axial direction over at least one third of the height of the primary mass body. In the second possibility, the stop element can protrude axially, in particular with respect to an axial end side of the primary mass body.
Um eine besonders große Unwuchtmasse zu erzeugen, kann zumindest einer von dem primären und dem sekundären Massekörper Schmermetall beinhalten. Weiter können auch mehrere primäre und/oder sekundäre Massenkörper vorgesehen sein.In order to produce a particularly large imbalance mass, at least one of the primary and the secondary mass body may include Schmermetall. Furthermore, a plurality of primary and / or secondary mass bodies can also be provided.
Eine Unwucht-Baugruppe, welche als Einheit in einem Gehäuse des Tiefenrüttlers zu lagern ist, kann jeweils zumindest ein Wellenteil, einen primären und einen sekundären Massenkörper umfassen. Das Wellenteil wird mittels eines oberen Lagers, das oberhalb des primären Massenkörpers angeordnet ist, und mittels eines unteren Lagers, das unterhalb des primären Massenkörpers angeordnet ist, in dem Gehäuse des Tiefenrüttlers drehbar gelagert.An imbalance assembly, which is to be stored as a unit in a housing of the deep vibrator, may each comprise at least one shaft part, a primary and a secondary mass body. The shaft part is rotatably supported in the housing of the deep vibrator by means of an upper bearing, which is arranged above the primary mass body, and by means of a lower bearing, which is arranged below the primary mass body.
Nach einer Ausführungsform für besonders große Schwingungsamplituden können mehre Unwucht-Baugruppen vorgesehen sein, die untereinander angeordnet sind. Die einzelnen Unwucht-Baugruppen werden vorzugsweise von einem einzigen Drehantrieb angetrieben. Hierfür kann die Motorwelle des Drehantriebs mit der Antriebswelle einer ersten Baugruppe drehfest verbunden sein und die erste Antriebswelle ferner mit der Antriebswelle einer darunter liegenden zweiten Baugruppe drehfest verbunden sein. Es sind beliebig viele weitere Unwucht-Baugruppen möglich. Die drehfeste Verbindung der einzelnen Wellenteile miteinander kann beispielsweise mittels einer Flanschverbindung, Wellenverzahnung oder anderer Welle-Nabe-Verbindung realisiert werden. Jede einzelne Baugruppe hat vorzugsweise separate Lager zur Lagerung des jeweiligen Wellenteils, damit die Lagerbelastung insgesamt gering ist. Auf diese Weise ist gewährleistet dass der Tiefenrüttler auch bei Ausgestaltung mit mehreren Unwucht-Baugruppen dauerhaft großen Kräften und Vibrationen standhält.According to one embodiment for particularly large vibration amplitudes, a plurality of imbalance assemblies may be provided which are arranged one below the other. The individual imbalance assemblies are preferably driven by a single rotary drive. For this purpose, the motor shaft of the rotary drive can be rotatably connected to the drive shaft of a first assembly and the first drive shaft further rotatably connected to the drive shaft of an underlying second assembly. Any number of further imbalance modules are possible. The non-rotatable connection of the individual shaft parts with each other can be realized for example by means of a flange connection, shaft toothing or other shaft-hub connection. Each individual assembly preferably has separate bearings for supporting the respective shaft part, so that the total bearing load is low. In this way, it is ensured that the deep vibrator withstands permanent large forces and vibrations even when designed with several imbalance assemblies.
Ein Verfahren zum Verdichten von Erdreich mittels eines solchen Tiefenrüttlers kann die Schritte: Einrütteln des Tiefenrüttlers in den Boden bis zu einer gewünschten Tiefe durch Drehen des Drehantriebs in einer ersten oder zweiten Drehrichtung und Verdichten des Bodens durch Drehen des Drehantriebs in der zweiten Drehrichtung umfassen. Durch das Drehen des Drehantriebs in der zweiten Drehrichtung werden große Schwingungsamplituden und damit eine hohe Verdichtung erzeugt. Das Einrütteln bis zur gewünschten Tiefe kann mit kleiner oder großer Amplitude erfolgen.A method of compacting soil by means of such a deep vibrator may include the steps of shaking the depth vibrator into the ground to a desired depth by rotating the rotary drive in a first or second rotational direction and compacting the soil by rotating the rotary drive in the second rotational direction. By turning the rotary drive in the second direction of rotation large vibration amplitudes and thus a high compression are generated. The shaking to the desired depth can be done with small or large amplitude.
Bevorzugte Ausführungsformen werden nachstehend anhand der Zeichnungsfiguren erläutert. Hierin zeigt:
Figur 1- einen Tiefenrüttler in einer ersten Ausführungsform im Längsschnitt;
Figur 2- den
Tiefenrüttler aus Figur 1 im Querschnitt gemäß Schnittlinie II-II aus Figur 1; Figur 3- einen Tiefenrüttler in einer zweiten Ausführungsform im Längsschnitt;
Figur 4- den
Tiefenrüttler aus Figur 3 im Querschnitt gemäß Schnittlinie IV-IV aus Figur 3 ; Figur 5- einen Tiefenrüttler in einer dritten Ausführungsform im Längsschnitt;
Figur 6- einen Tiefenrüttler in einer weiteren Ausführungsform im Längsschnitt; und
Figur 7- den
Tiefenrüttler aus Figur 6 im Querschnitt gemäß Schnittlinie II-II aus Figur 6.
- FIG. 1
- a deep vibrator in a first embodiment in longitudinal section;
- FIG. 2
- the deep vibrator
FIG. 1 in cross-section along section line II-II of Figure 1; - FIG. 3
- a deep vibrator in a second embodiment in longitudinal section;
- FIG. 4
- the deep vibrator
FIG. 3 in cross section according to section line IV-IVFIG. 3 ; - FIG. 5
- a deep vibrator in a third embodiment in longitudinal section;
- FIG. 6
- a deep vibrator in a further embodiment in longitudinal section; and
- FIG. 7
- the deep vibrator
FIG. 6 in cross section along section line II-II of Figure 6.
Die
Es ist ein Abschnitt eines Tiefenrüttlers 2 dargestellt. Ein Tiefenrüttler dient zum Verdichten von Boden mittels einer Unwucht. Als Unwucht wird ein rotierender Körper verstanden, dessen Masse nicht rotationssymmetrisch verteilt ist. Die Massenträgheitsachse des Massekörpers ist gegenüber der Rotationsachse versetzt, so dass die Unwucht beim Rotieren Schwingungen erzeugt, mit denen das Erdreich und mögliches Zugabematerial verdichtet wird.A section of a
Der Tiefenrüttler 2 umfasst entsprechend einen Drehantrieb 3, eine hiervon drehend antreibbare Antriebswelle 4, einen ersten Massekörper 5, der mit der Antriebswelle 4 drehfest verbunden ist, sowie einen zweiten Massekörper 6, der gegenüber dem ersten Massekörper 5 im Drehsinn verstellbar ist. Die genannten Bauteile sind in einem Gehäuse 7 des Tiefenrüttlers 2 aufgenommen, beziehungsweise in diesem drehbar gelagert. Es ist vorgesehen, dass sich der erste und zweite Massekörper 5, 6 hinsichtlich ihrer Form und/oder Masse und/oder ihres jeweiligen Schwerpunktabstands zur Antriebswelle 4 voneinander unterscheiden.The
Der Drehantrieb 3 ist vorliegend in Form eines Elektromotors gestaltet, der einen im Drehsinn gegenüber dem Gehäuse 7 abgestützten Stator 8 und einen hierzu drehbaren Rotor 9 umfasst. Es versteht sich jedoch, dass auch andere Motoren verwendbar sind, beispielsweise ein Hydraulikantrieb. Der Rotor 9 des Elektromotors 3 ist mit einer Motorwelle 10 verbunden, um diese drehend anzutreiben. Die Motorwelle 10 ist mittels eines ersten Lagers 12, das oberhalb des Drehantriebs 3 angeordnet ist, und eines zweiten Lagers 13, das unterhalb des Drehantriebs 3 angeordnet ist, im Gehäuse 7 um eine Drehachse A drehbar gelagert. Der Drehantrieb 3 ist so gestaltet, dass er die Motorwelle 10 in zwei Drehrichtungen, also im Uhrzeigersinne und gegen den Uhrzeigersinn antreiben kann.In the present case, the
Die Motorwelle 10 ist mittels geeigneter Verbindungsmittel 14 mit der darunter liegenden Antriebswelle 4 zur Übertragung eines Drehmoments drehfest verbunden. Die Verbindungsmittel 14 sind vorliegend in Form einer Flanschverbindung gestaltet, wobei es sich versteht, dass andere Wellenkupplungen zur drehfesten Verbindung ebenso möglich sind.The
Die Antriebswelle 4 ist mittels geeigneter Lagermittel 15, 16 im Gehäuse 7 drehbar gelagert, beispielsweise mittels Wälzlagern oder Gleitlagern. Der erste Massekörper 6, der auch als primärer Massekörper bezeichnet werden kann, ist drehfest mit der Antriebswelle 4 verbunden. Die drehfeste Verbindung kann über bekannte Mittel realisiert werden, beispielsweise formschlüssig mittels Welle-Nabe-Verbindung und/oder stoffschlüssig mittels Schweißverbindung. Es ist auch möglich, dass die Antriebswelle 4 einteilig mit dem ersten Massekörper 6 hergestellt ist.The
Der zweite Massekörper 6, der auch als sekundärer Massekörper bezeichnet werden kann, ist relativ zum ersten Massenkörper 5 begrenzt drehbar. Dabei ist vorgesehen, dass der sekundäre Massekörper 6 beim Drehen der Antriebswelle 4 in der ersten Drehrichtung R1 eine erste Drehposition P1 und beim Drehen der Antriebswelle 4 in der entgegengesetzten zweiten Drehrichtung R2 eine zweite Drehposition P2 relativ zum ersten Massekörper 5 einnimmt. In der ersten Drehposition P1, die in den
Eine Besonderheit der vorliegenden Erfindung ist, dass der Masseschwerpunkt S6 des schwenkbaren Massekörpers 6 einen größeren radialen Abstand zur Drehachse A aufweist als der Masseschwerpunkt S5 des drehfest mit der Welle 4 verbundenen Massekörpers 5, beziehungsweise, dass der schwenkbare Massekörper 6 gegenüber dem drehfesten Massekörper 5 zumindest teilweise radial vorsteht. Durch diese Ausgestaltung können in der ersten Drehposition P1 besonders hohe Unwuchten erreicht werden, beziehungsweise, die Amplitude des Tiefenrüttlers 2 ist in besonders großen Bereichen verstellbar. Je nach Masse und Form des sekundären Massenkörpers 6 kann die Amplitude in der ersten Drehposition P1 gegenüber der zweiten Drehposition P2 mehr als verdoppelt werden.A special feature of the present invention is that the center of gravity S6 of the pivotable
Bei der in den
Die Lagerung des halbschalenförmigen Massekörpers 5 an der Antriebswelle 4 erfolgt über zwei Lager 20, 21. Dabei ist das obere Deckelteil 18 über ein erstes Lager 20, das axial oberhalb des ersten Massekörpers 5 angeordnet ist, und das untere Deckelteil 19 über ein zweites Lager 21, das axial unterhalb des ersten Massekörpers 5 angeordnet ist, auf der Welle 4 drehbar gelagert. Es ist insbesondere in
Die relativen Drehpositionen P1, P2 werden jeweils durch ein Anschlagelement 22 definiert, gegen den der sekundäre Massekörper 6 bei Drehung des Drehantriebs 3 anschlagen und so in einer definierten Drehposition relativ zum primären Massekörper 5 angeordnet ist. Vorliegend ist genau ein Anschlagelement 22 vorgesehen, das sowohl einen Anschlag in der ersten Drehrichtung R1 als auch einen Anschlag in der zweiten Drehrichtung R2 bildet. Das Anschlagelement 22 ist vorliegend in Form einer Leiste beziehungsweise eines Balkens gestaltet, die mit dem primären Massekörper 5 fest verbunden ist, beispielsweise kraftschlüssig mittels Schraubverbindungen oder stoffschlüssig mittels Schweißen. Das Anschlagelement 22 steht radial über eine Außenumfangsfläche des primären Massekörpers 5 vor und erstreckt sich in axiale Richtung, wie insbesondere in
Bei den Ausführungsformen gemäß den
Die
Im Unterschied zur obigen Ausführungsform sind vorliegend bei der Ausführungsform nach
Bei der vorliegenden Ausführungsform sind entsprechend der Anzahl der schwenkbaren Massen 61, 62 auch zwei Anschläge 221, 222 vorgesehen, die jeweils mit dem primären Massekörper 5 verbunden sind. Die Anschläge 221, 222 stehen jeweils axial über eine endseitige Stirnfläche und radial über eine Außenumfangsfläche 29 des primären Massekörper 5 vor. Sie sind in Form von kürzeren Balken gestaltet, die im Übrigen wie bei der oben beschriebenen Ausführungsform mit dem Massekörper 5 verbunden sein können. Die vorliegende Ausführungsform baut radial etwas kleiner, da eine radiale Überdeckung zwischen den schwenkbaren Massekörper 61, 62 und dem drehfesten Massekörper 5 gegeben ist. Im Übrigen entsprechen Aufbau und Funktionsweise der obigen Ausführungsform, auf deren Beschreibung zur Vermeidung von Wiederholungen insofern verwiesen wird.In the present embodiment, two
Die
Eine Besonderheit der vorliegenden Ausführungsform ist, dass der Tiefenrüttler 2 mehrere Unwucht-Baugruppen 111, 112 umfasst, die jeweils als Einheit in dem Gehäuse 7 aufgenommen sind. Jede Unwucht-Baugruppe 111, 112 umfasst jeweils ein Wellenteil 41, 42, das jeweils mittels zweier Lager 121, 131; 122, 132 in dem Gehäuse 7 drehbar gelagert und von dem Drehantrieb 3 drehend antreibbar ist, sowie einen primären und einen sekundären Massenkörper 5, 6. Dabei ist jeweils ein erstes Lager 121, 122 oberhalb und ein zweites Lager 131, 132 unterhalb der zugehörigen Massekörper 5, 6 angeordnet, um eine sichere Radiallagerung über die gesamte Länge der Welle zu gewährleisten. Die einzelnen Wellenteile 41, 42 sind über geeignete Wellenverbindungen 141, 142, wie Flanschverbindungen, miteinander verbunden, wobei andere Verbindungsmittel ebenso denkbar sind. Vorliegend sind zwei Unwucht-Baugruppen 111, 112 vorgesehen, die von einem einzigen Drehantrieb angetrieben werden. Es versteht sich, dass auch drei oder mehr Unwucht-Baugruppen verwendbar sind, um noch größere Schwingungsamplituden zu erzeugen. Diese werden über weitere Wellenverbindungen (14) miteinander antriebsverbunden.A special feature of the present embodiment is that the
Die
Ein Unterschied der vorliegenden Ausführungsform gegenüber derjenigen nach
Die relativen Drehpositionen P1, P2 des schwenkbaren Massekörpers 6 werden durch ein Anschlagelement 22 definiert, gegen das der Massekörper 6 bei Drehung des Drehantriebs 3 anschlagen und so in einer definierten Drehposition relativ zum drehfesten Massekörper 5 angeordnet ist. Der Drehanschlag 22 ist als Leiste oder Balken gestaltet, der mit dem primären Massekörper 5 verbunden ist und von einer Innenumfangsfläche nach radial innen vorsteht. Im Übrigen entspricht die Ausführungsform nach
Es versteht sich, dass auch weitere Ausführungsformen denkbar sind, die vorliegend nicht alle offenbart sind. Insbesondere ist es möglich, dass auch die Ausführungsformen gemäß den
- 22
- Tiefenrüttlerdeep vibrator
- 33
- Drehantriebrotary drive
- 44
- Antriebswelledrive shaft
- 55
- Massekörpermass body
- 66
- Massekörpermass body
- 77
- Gehäusecasing
- 88th
- Statorstator
- 99
- Rotorrotor
- 1010
- Motorwellemotor shaft
- 1111
- Unwucht-BaugruppeUnbalance assembly
- 12, 1312, 13
- Lagerwarehouse
- 1414
- Verbindungsmittelconnecting means
- 15, 1615, 16
- Lagerwarehouse
- 1717
- Ringsegmentring segment
- 1818
- Deckelteilcover part
- 1919
- Deckelteilcover part
- 20, 2120, 21
- Lagerwarehouse
- 2222
- Anschlagelementstop element
- 2323
- Seitenflächeside surface
- 2424
- Seitenflächeside surface
- 2525
- Zusatzmasseadditional mass
- 2626
- Zusatzmasseadditional mass
- 2727
- Verbindungsstegconnecting web
- 2828
- Verbindungsstegconnecting web
- 2929
- Umfangsflächeperipheral surface
- 3030
- Verbindungconnection
- AA
- Drehachseaxis of rotation
- PP
- Positionposition
- RR
- Richtungdirection
- SS
- Schwerpunktmain emphasis
Claims (15)
dadurch gekennzeichnet,
dass der Masseschwerpunkt (S6) des sekundären Massekörpers (6) einen größeren radialen Abstand zur Drehachse (A) aufweist als der Masseschwerpunkt (S5) des primären Massekörpers (5).Deep vibrator according to claim 1,
characterized,
in that the center of gravity (S6) of the secondary mass body (6) has a greater radial distance from the axis of rotation (A) than the center of mass (S5) of the primary mass body (5).
dadurch gekennzeichnet,
dass der sekundäre Massekörper (6) durch Drehrichtungsumkehr des Drehantriebs (3) relativ zum primären Massekörper (5) verstellbar ist, wobei in der ersten Drehposition (P1) ein aus dem primären Massekörper (5) und dem sekundären Massekörper (6) erster resultierender Masseschwerpunkt (Sres1) von der Drehachse (A) einen ersten Abstand aufweist, der größer ist, als ein zweiter Abstand, den in der zweiten Drehposition (P2) ein aus dem primären Massekörper (5) und dem sekundären Massekörper (6) zweiter resultierender Masseschwerpunkt (Sres2) von der Drehachse (A) aufweist.Deep vibrator according to claim 1 or 2,
characterized,
in that the secondary mass body (6) is adjustable by reversing the direction of rotation of the rotary drive (3) relative to the primary mass body (5), wherein in the first rotational position (P1) a mass center of gravity resulting from the primary mass body (5) and the secondary mass body (6) (Sres1) has a first distance from the axis of rotation (A) which is greater than a second distance, and in the second rotational position (P2) a mass center (2) resulting from the primary mass body (5) and the secondary mass body (6). Sres2) from the rotation axis (A).
dadurch gekennzeichnet,
dass ein erster Drehanschlag (23) vorgesehen ist, gegen den der sekundäre Massekörper (6) bei Drehung des Drehantriebs (3) in der ersten Drehrichtung (R1) abgestützt ist, und,
dass ein zweiter Drehanschlag (24) vorgesehen ist, gegen den der sekundäre Massekörper (6) bei Drehung des Drehantriebs (3) in der zweiten Drehrichtung (R2) abgestützt ist.Deep vibrator according to one of claims 1 to 3,
characterized,
that a first rotational stop (23) is provided, against which the secondary mass body (6) upon rotation of the rotary drive (3) is supported in the first rotational direction (R1), and,
that a second rotational stop (24) is provided, against which the secondary mass body (6) upon rotation of the rotary drive (3) in the second rotational direction (R2) is supported.
dadurch gekennzeichnet,
dass zumindest einer von dem ersten und dem zweiten Drehanschlag (23, 24) am primären Massekörper (5) vorgesehen ist.Deep vibrator according to one of claims 1 to 4,
characterized,
in that at least one of the first and second rotation stops (23, 24) is provided on the primary mass body (5).
dadurch gekennzeichnet,
dass zumindest einer von dem ersten und dem zweiten Drehanschlag (23, 24) Teil eines Anschlagelements (22) ist, das mit dem primären Massekörper (5) fest verbunden ist.Deep vibrator according to one of claims 4 to 5,
characterized,
in that at least one of the first and second rotational stops (23, 24) is part of a stop element (22) fixedly connected to the primary mass body (5).
dadurch gekennzeichnet,
dass genau ein Anschlagelement (22) vorgesehen ist, das den ersten Drehanschlag (23) und den zweiten Drehanschlag (24) umfasst.Deep vibrator according to claim 6,
characterized,
in that exactly one stop element (22) is provided, which comprises the first rotational stop (23) and the second rotational stop (24).
dadurch gekennzeichnet,
dass das Anschlagelement (22) in Form eines Anschlagbalkens gestaltet ist, der mit dem primären Massenkörper (5) fest verbunden ist und gegenüber einer Außenumfangsfläche (29) des primären Massenkörpers (5) radial vorsteht und sich in axiale Richtung über zumindest ein Drittel der Höhe des primären Massekörpers (5) erstreckt.Deep vibrator according to one of claims 6 or 7,
characterized,
in that the stop element (22) is designed in the form of a stop bar, which is fixedly connected to the primary mass body (5) and projects radially with respect to an outer peripheral surface (29) of the primary mass body (5) and in the axial direction over at least one third of the height of the primary mass body (5).
dadurch gekennzeichnet,
dass der primäre Massenkörper (5) in Form eines Zylindersegments gestaltet ist, das sich um insbesondere 180° um die Drehachse (A) erstreckt.Deep vibrator according to one of claims 1 to 8,
characterized,
in that the primary mass body (5) is designed in the form of a cylinder segment which extends in particular around 180 ° about the axis of rotation (A).
dadurch gekennzeichnet,
dass der sekundäre Massekörper (6) ein Ringsegment (17) umfasst, das um die Antriebswelle (4) drehbar gelagert ist, wobei sich das Ringsegment (17) insbesondere um mehr als 160° und/oder weniger als 180° um die Drehachse (A) erstreckt.Deep vibrator according to one of claims 1 to 9,
characterized,
that the secondary mass body (6) comprises a ring segment (17) which is rotatably mounted about the drive shaft (4), wherein the ring segment (17) in particular by more than 160 ° and / or less than 180 ° about the axis of rotation (A ).
dadurch gekennzeichnet,
dass der sekundäre Massekörper (6) mit axialer Überdeckung oder mit axialem Versatz zum primären Massekörper (5) angeordnet ist.Deep vibrator according to one of claims 1 to 10,
characterized,
that the secondary mass body (6) with axial overlap or with axial Offset to the primary mass body (5) is arranged.
dadurch gekennzeichnet,
dass der sekundäre Massekörper (6) zumindest teilweise radial außerhalb des primären Massekörpers (5) angeordnet ist.Deep vibrator according to one of claims 1 to 11,
characterized,
that the secondary mass body (6) is at least partially disposed radially outwardly of the primary mass body (5).
dadurch gekennzeichnet,
dass zumindest einer von dem primären und dem sekundären Massekörper (5, 6) Schmermetall beinhaltet.Deep vibrator according to one of claims 1 to 12,
characterized,
that at least one of the primary and secondary mass bodies (5, 6) includes Schmermetall.
dadurch gekennzeichnet,
dass der primäre Massenkörper (5) und der sekundäre Massenkörper (6) an einem Wellenabschnitt (4) angeordnet sind, wobei der Wellenabschnitt (4) mittels eines oberen Lagers (15), das oberhalb des primären Massenkörpers (5) angeordnet ist, und mittels eines unteren Lagers (16), das unterhalb des primären Massenkörpers (5) angeordnet ist, in einem Gehäuseteil (7) des Tiefenrüttlers drehbar gelagert ist.Deep vibrator according to one of claims 1 to 13,
characterized,
in that the primary mass body (5) and the secondary mass body (6) are arranged on a shaft section (4), the shaft section (4) being arranged by means of an upper bearing (15) arranged above the primary mass body (5) and by means of a lower bearing (16), which is arranged below the primary mass body (5), is rotatably mounted in a housing part (7) of the deep vibrator.
dadurch gekennzeichnet,
dass der Wellenabschnitt (4) mit einem weiteren Wellenabschnitt (4) zur Drehmomentübertragung verbunden ist, wobei der weitere Wellenabschnitt (4) einen weiteren primären Massenkörper (5) und einem weiteren sekundären Massenkörper (6) trägt, wobei der weitere Wellenabschnitt (4) mittels eines oberen Lagers (152) und eines unteren Lagers (162) in einem Gehäuseteil (7) des Tiefenrüttlers drehbar gelagert ist.Deep vibrator according to claim 14,
characterized,
in that the shaft section (4) is connected to a further shaft section (4) for torque transmission, the further shaft section (4) carrying a further primary mass body (5) and a further secondary mass body (6), wherein the further shaft section (4) an upper bearing (15 2 ) and a lower bearing (16 2 ) is rotatably mounted in a housing part (7) of the deep vibrator.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES17189317T ES2774010T3 (en) | 2017-09-05 | 2017-09-05 | Deep vibrator with adjustable unbalanced mass |
PL17189317T PL3450631T3 (en) | 2017-09-05 | 2017-09-05 | Deep vibration apparatus with an adjustable unbalance mass body |
EP17189317.5A EP3450631B1 (en) | 2017-09-05 | 2017-09-05 | Deep vibration apparatus with an adjustable unbalance mass body |
SG10201807258TA SG10201807258TA (en) | 2017-09-05 | 2018-08-27 | Depth vibrator with adjustable imbalance |
US16/117,498 US10508401B2 (en) | 2017-09-05 | 2018-08-30 | Depth vibrator with adjustable imbalance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17189317.5A EP3450631B1 (en) | 2017-09-05 | 2017-09-05 | Deep vibration apparatus with an adjustable unbalance mass body |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3450631A1 true EP3450631A1 (en) | 2019-03-06 |
EP3450631B1 EP3450631B1 (en) | 2019-12-04 |
Family
ID=59790981
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17189317.5A Active EP3450631B1 (en) | 2017-09-05 | 2017-09-05 | Deep vibration apparatus with an adjustable unbalance mass body |
Country Status (5)
Country | Link |
---|---|
US (1) | US10508401B2 (en) |
EP (1) | EP3450631B1 (en) |
ES (1) | ES2774010T3 (en) |
PL (1) | PL3450631T3 (en) |
SG (1) | SG10201807258TA (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3798366A1 (en) * | 2019-09-25 | 2021-03-31 | Albert Schneider | Immersion vibrator for compacting earth |
CN115748655A (en) * | 2022-11-30 | 2023-03-07 | 北京振冲工程机械有限公司 | Hydraulic vibroflotation device |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3517687B1 (en) * | 2018-01-26 | 2020-08-05 | Keller Holding GmbH | Method for compaction detection and control when compacting soil using deep vibrator |
CN113019873B (en) * | 2020-09-29 | 2023-09-12 | 南京利卡维智能科技有限公司 | Vibration-assisting eccentric vibration device and method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2948403A1 (en) * | 1979-12-01 | 1981-06-04 | Fritz Pollems KG Spezialtiefbau, 1000 Berlin | Vibrator for ground compaction - with variable operational frequency obtained by varying eccentric rotation and adjusting its centre of gravity |
DE19930884A1 (en) | 1999-07-05 | 2001-02-01 | Keller Grundbau Gmbh | Sub-soil compacting method uses sub-soil vibrator with flywheel altered in size during lowering/withdrawal to vary impact force |
DE202007003532U1 (en) * | 2007-03-07 | 2007-07-05 | Abi Gmbh | Vibrator, for a road surface tamping machine, has a rotary vane swing motor to adjust the relative positions of the out-of-balance masses |
DE102014019139A1 (en) | 2014-12-23 | 2016-06-23 | Rsm Grundbau Gmbh + Willi Meyer Bauunternehmen Gmbh In Gbr | Deep vibrator with variable imbalance |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2639376A1 (en) * | 1988-11-24 | 1990-05-25 | Albaret Travaux Publics Sa | Vibrating compacting machine with adjustable amplitude |
-
2017
- 2017-09-05 ES ES17189317T patent/ES2774010T3/en active Active
- 2017-09-05 PL PL17189317T patent/PL3450631T3/en unknown
- 2017-09-05 EP EP17189317.5A patent/EP3450631B1/en active Active
-
2018
- 2018-08-27 SG SG10201807258TA patent/SG10201807258TA/en unknown
- 2018-08-30 US US16/117,498 patent/US10508401B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2948403A1 (en) * | 1979-12-01 | 1981-06-04 | Fritz Pollems KG Spezialtiefbau, 1000 Berlin | Vibrator for ground compaction - with variable operational frequency obtained by varying eccentric rotation and adjusting its centre of gravity |
DE19930884A1 (en) | 1999-07-05 | 2001-02-01 | Keller Grundbau Gmbh | Sub-soil compacting method uses sub-soil vibrator with flywheel altered in size during lowering/withdrawal to vary impact force |
DE202007003532U1 (en) * | 2007-03-07 | 2007-07-05 | Abi Gmbh | Vibrator, for a road surface tamping machine, has a rotary vane swing motor to adjust the relative positions of the out-of-balance masses |
DE102014019139A1 (en) | 2014-12-23 | 2016-06-23 | Rsm Grundbau Gmbh + Willi Meyer Bauunternehmen Gmbh In Gbr | Deep vibrator with variable imbalance |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3798366A1 (en) * | 2019-09-25 | 2021-03-31 | Albert Schneider | Immersion vibrator for compacting earth |
CN115748655A (en) * | 2022-11-30 | 2023-03-07 | 北京振冲工程机械有限公司 | Hydraulic vibroflotation device |
Also Published As
Publication number | Publication date |
---|---|
PL3450631T3 (en) | 2020-06-01 |
US20190071831A1 (en) | 2019-03-07 |
US10508401B2 (en) | 2019-12-17 |
EP3450631B1 (en) | 2019-12-04 |
SG10201807258TA (en) | 2019-04-29 |
ES2774010T3 (en) | 2020-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2881516B1 (en) | Road roller | |
EP2504490B1 (en) | Compaction device and method for compacting ground | |
EP2809848B1 (en) | Compactor roller for a soil compactor | |
EP3450631B1 (en) | Deep vibration apparatus with an adjustable unbalance mass body | |
EP3951057B1 (en) | Soil processing roller system for soil processing machine | |
EP1712681A1 (en) | Mounted compactor with adjustable rotating unbalanced mass | |
DE2553800A1 (en) | UNBALANCE DRIVE DEVICE | |
DE102015216245A1 (en) | Transmission device with eccentric deflection and torque adjustment method | |
EP2564943A2 (en) | Oscillation exciter for creating an aligned excited oscillation | |
WO2009049576A1 (en) | Device for producing vibrations | |
DE3515690C1 (en) | Vibrationsbaer with unbalance adjustment | |
EP2781269A1 (en) | Vibration generator, especially for a construction machine | |
EP2242590B1 (en) | Unbalance exciter with one or more rotatable unbalances | |
WO2016102432A1 (en) | Depth vibrator | |
EP1534439B1 (en) | Vibration exciter for soil compacting devices | |
EP0239561A2 (en) | Apparatus for generating vibrations | |
WO2013010277A1 (en) | Unbalance exciter for a ground compaction device | |
EP4012099B1 (en) | Compactor roller for a soil compactor | |
DE3105611C2 (en) | Method and device for deep compaction | |
DE102015009698B4 (en) | Richterreger and vibrating machine with Richterreger | |
EP3617405B1 (en) | Roller device with vibration generator for compacting soil | |
EP3237687B1 (en) | Vibration damper for a coupling joint of a depth vibrator | |
EP3384096B1 (en) | Arrangement for providing a pulsing compressive force | |
EP4437187A2 (en) | Unbalanced device and vibratory pile driver | |
DE3231543A1 (en) | VIBRATION DEVICE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190321 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: E01C 19/28 20060101ALI20190408BHEP Ipc: B06B 1/16 20060101ALI20190408BHEP Ipc: E02D 3/054 20060101AFI20190408BHEP Ipc: E02D 3/068 20060101ALI20190408BHEP |
|
INTG | Intention to grant announced |
Effective date: 20190515 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1209550 Country of ref document: AT Kind code of ref document: T Effective date: 20191215 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502017003034 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1261454 Country of ref document: HK |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191204 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191204 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200304 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200305 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200304 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191204 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191204 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191204 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191204 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191204 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2774010 Country of ref document: ES Kind code of ref document: T3 Effective date: 20200716 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191204 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191204 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191204 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191204 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200404 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191204 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502017003034 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191204 |
|
26N | No opposition filed |
Effective date: 20200907 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191204 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200905 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200905 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200930 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191204 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191204 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191204 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191204 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191204 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20231005 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240926 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240904 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240925 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240925 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240917 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20240820 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240924 Year of fee payment: 8 |