EP3320197B1 - Coolant circuit for a liquid-cooled transmission - Google Patents
Coolant circuit for a liquid-cooled transmission Download PDFInfo
- Publication number
- EP3320197B1 EP3320197B1 EP16728292.0A EP16728292A EP3320197B1 EP 3320197 B1 EP3320197 B1 EP 3320197B1 EP 16728292 A EP16728292 A EP 16728292A EP 3320197 B1 EP3320197 B1 EP 3320197B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cooling circuit
- crankcase
- transmission
- circuit
- engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005540 biological transmission Effects 0.000 title claims description 107
- 239000002826 coolant Substances 0.000 title claims description 71
- 238000001816 cooling Methods 0.000 claims description 219
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 62
- 239000010705 motor oil Substances 0.000 claims description 36
- 238000002485 combustion reaction Methods 0.000 claims description 15
- 238000011144 upstream manufacturing Methods 0.000 claims description 10
- 230000001419 dependent effect Effects 0.000 claims description 4
- 239000003507 refrigerant Substances 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P3/00—Liquid cooling
- F01P3/20—Cooling circuits not specific to a single part of engine or machine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P3/00—Liquid cooling
- F01P3/06—Arrangements for cooling pistons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P3/00—Liquid cooling
- F01P3/12—Arrangements for cooling other engine or machine parts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P7/00—Controlling of coolant flow
- F01P7/14—Controlling of coolant flow the coolant being liquid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P3/00—Liquid cooling
- F01P3/02—Arrangements for cooling cylinders or cylinder heads
- F01P2003/027—Cooling cylinders and cylinder heads in parallel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P7/00—Controlling of coolant flow
- F01P7/14—Controlling of coolant flow the coolant being liquid
- F01P2007/146—Controlling of coolant flow the coolant being liquid using valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P2025/00—Measuring
- F01P2025/60—Operating parameters
- F01P2025/62—Load
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P2025/00—Measuring
- F01P2025/60—Operating parameters
- F01P2025/64—Number of revolutions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P2060/00—Cooling circuits using auxiliaries
- F01P2060/04—Lubricant cooler
- F01P2060/045—Lubricant cooler for transmissions
Definitions
- the invention relates to a coolant circuit with an engine cooling circuit and a branched from the engine cooling circuit transmission cooling circuit.
- a coolant circuit is known in which an engine cooling circuit is circulatable in the coolant for cooling an internal combustion engine, branches into a cylinder head cooling circuit and separated from a crankcase cooling circuit.
- Modern high-performance transmissions in particular dual-clutch transmissions, are also cooled with water in addition to oil cooling.
- coolant is diverted from the engine cooling circuit and used to cool the transmission.
- the relatively warm coolant in the coolant circuit leads to the fact that in these operating ranges, the transmission is heated rather than cooled. Only in high power ranges, this effect is reversed, so that the transmission is cooled.
- a coolant circuit for cooling a transmission having improved cooling characteristics. This object is achieved with a coolant circuit according to claim 1 and a motor vehicle according to claim 10.
- Advantageous developments of the invention are the subject of the dependent claims.
- a coolant circuit is provided, with an engine cooling circuit in the coolant for cooling an internal combustion engine is circulated; a transmission cooling circuit for cooling a transmission, which branches off from the engine cooling circuit; a valve disposed at least in the transmission cooling circuit and a controller adapted to open and close the valve depending on an operating condition of the internal combustion engine and / or the transmission.
- the operating state of the internal combustion engine may be determined, for example, by a throttle position, an engine speed and / or an engine torque.
- the controller may be adapted to control (open and close) the valve depending on at least one of the following parameters: a coolant temperature, a crankcase temperature.
- a coolant temperature As described above, it has been found that conventional engine coolant circuits heat the transmission rather than cool at low engine power. Furthermore, this also adversely affects the heating speed of the internal combustion engine in the warm-up phase, which can have an influence on emissions and consumption. This is prevented by providing a switch-off option in the transmission cooling circuit, depending on the engine power. Since the engine can be cooled very effectively by the coolant at a high engine output, a flow of coolant through the transmission cooling circuit is permitted at a certain engine output as of which the cooling effect occurs.
- the engine cooling circuit comprises a cylinder head cooling circuit and, separately, a crankcase cooling circuit, wherein the transmission cooling circuit branches off from the crankcase cooling circuit, ie, branches off at a portion along which the crankcase cooling circuit is separated from the cylinder head cooling loop.
- the transmission cooling circuit branches off from the crankcase cooling circuit, ie, branches off at a portion along which the crankcase cooling circuit is separated from the cylinder head cooling loop.
- the inventor of this invention found that by coupling the transmission cooling circuit to the crankcase cooling circuit, an additional, separate valve for the transmission cooling circuit can be saved because the crankcase and transmission show similar cooling conditions and thus a common valve can be used for the transmission cooling circuit and the crankcase cooling circuit.
- the valve (same valve) is thus arranged in the transmission cooling circuit and in the crankcase cooling circuit, that is, the transmission cooling circuit and the crankcase cooling circuit are identical at least at the entrance or at the outlet of the valve.
- a coolant circuit is provided, wherein the crankcase cooling circuit has a crankcase water jacket, which is guided around cylinder bores, and the transmission cooling circuit downstream of a device for absorbing heat from the transmission, in particular a water jacket in the transmission housing or a heat exchanger for heat transfer with the transmission oil, flows into the crankcase water jacket.
- the valve is located downstream of the crankcase water jacket.
- the cylinder head cooling circuit and the crankcase cooling circuit are brought together again downstream of the valve.
- the engine cooling circuit branches at a branch into the cylinder head cooling circuit and the crankcase cooling circuit, wherein the transmission cooling circuit branches off from the crankcase cooling circuit downstream of the branch.
- the transmission cooling circuit branches off the crankcase cooling circuit downstream of the branch and upstream of a crankcase water jacket of the crankcase cooling circuit.
- a coolant circuit is provided wherein the crankcase cooling circuit branches downstream of the manifold into a crankcase water jacket and engine oil cooling circuit adapted to cool engine oil via a heat exchanger, and wherein the transmission cooling circuit branches from the engine oil cooling circuit.
- a check valve is provided in the transmission cooling circuit.
- This check valve is intended to prevent flow through the transmission cooling circuit, in particular in the case of the split cooling system, with the transmission cooling cycle valve closed, and the crankcase water jacket in the reverse direction.
- the branch is formed by a coolant pump.
- the controller is adapted to open and close the valve in response to engine speed and / or engine torque. Further, the controller may be adapted to control (open and close) the valve depending on at least one of the following parameters: a coolant temperature, a crankcase temperature.
- the controller is adapted to open the valve only above a certain threshold of engine speed and / or engine torque. That is, the controller is adjusted to open the valve above the threshold and close below the threshold (including the threshold itself). In particular, the controller is adapted to fully open the valve above the threshold and fully close below the threshold (including the threshold itself). Engine speed and engine torque determine engine performance. In this case, the controller may be adapted to open the valve only above a threshold value of the engine power of 70% of the maximum engine power, the so-called nominal engine power. In particular, the threshold is 80%.
- the invention relates to a vehicle with a coolant circuit according to one of the preceding claims.
- the coolant circuit 1 comprises an engine cooling circuit and a transmission cooling circuit which extend together through a radiator 2, which is known to be cooled by a fan 3 in addition to the airstream, and cools a guided in the coolant circuit coolant in a known manner. From a radiator outlet 4, the coolant circuit continues to extend to a coolant pump 5, which may be a mechanical, an internal combustion engine, or electrically driven coolant pump.
- the internal combustion engine comprises a crankcase 6 with a plurality of cylinder bores 7 and a cylinder head housing 8 with the cylinder heads 9 belonging to the cylinder bores 7.
- the coolant circuit 1 is introduced into a cylinder head cooling circuit 10 and a crankcase cooling circuit at a branch formed by the coolant pump 5 in this embodiment 11 divided. However, the branch may also be formed further downstream of the coolant pump 5 through a coolant line branch.
- each cooling channels are formed in the housing material, which are guided around each cylinder bore 7 and each cylinder head 9 in the form of a water jacket.
- This crankcase water jacket 13 or cylinder head water jacket 12 is formed by cavities which extend over a certain height of the cylinder bores 7 and cylinder heads 9 and surround the cylinder bores or cylinder heads annular. These annular cavities are connected in series. In addition, these interconnected cavities are connected to an inlet and a drain, for example, are connected by the two outer cavities, one with an inlet and the other with a drain.
- the crankcase cooling circuit 11 leads to a valve 14, which in the closed state stops the flow of coolant in the crankcase water jacket 13 and in the open state allows the flow of coolant through the crankcase water jacket 13.
- the valve 14 preferably has a single input and a maximum of two outputs.
- the valve 14 may be actuated, for example, electromagnetically, for example with an electromotive worm drive.
- the output of the valve 14 leads into a thermal management module 15, which is responsible for the control of the cooling circuit 1, and from there back into the radiator second
- an engine oil cooling circuit 16 which is formed as a channel separately from the crankcase water jacket 13 in the crankcase 6.
- the engine oil cooling circuit 16 passes through an engine oil water heat exchanger 17 in which the coolant cools an engine oil which lubricates and cools moving parts of the engine.
- the engine oil cooling circuit 16 Downstream of the engine oil heat exchanger 17, the engine oil cooling circuit 16 is merged at a point 18 with the cylinder head cooling circuit 10 coming from the outlet of the cylinder head cooling circuit 12 and forwarded to the thermal management module 15, after which it is led back to the cooler 2.
- the Transmission cooling circuit 19 branches off in the region of the engine oil heat exchanger 17. However, the transmission cooling circuit 19 may branch off somewhere between the coolant pump 5 (or the branch) and the point 18 of the engine oil cooling circuit 16. The transmission cooling circuit 19 may also branch off from the crankcase water jacket 13. Likewise, the transmission cooling circuit 19 directly (indirectly is in Fig. 1 shown) from the crankcase cooling circuit 11 between the coolant pump 5 (or the branch) and the input to the crankcase water jacket 13 branch off.
- the transmission cooling circuit 19 branches off from the crankcase cooling circuit 11, in particular at a point which is suitable in practice for such a connection.
- the transmission cooling circuit 19 leads to a device 21 for absorbing heat from the transmission 20, in particular a dual-clutch transmission.
- This device 21 is in this embodiment, a trained in the transmission housing water jacket, which is guided around hot components of the transmission 20 similar to the above-described water jackets.
- the device 21 could also be a heat exchanger that cools a transmission oil.
- the transmission cooling circuit 19 opens into the crankcase water jacket 13, preferably in the region of the outlet and preferably on the hotter side of the water jacket.
- the valve 14, which is arranged at the outlet of the crankcase water jacket 13, is thus arranged in the transmission cooling circuit 19 by the introduction of the transmission cooling circuit 19 into the crankcase water jacket 13. If the valve 14 is closed, then a coolant flow in the transmission cooling circuit 19 is prevented and the valve 14 is opened, this also allows a coolant flow in the transmission cooling circuit 19. To avoid a flow in the crankcase water jacket 13 and a return flow in the transmission cooling circuit 19, with the valve 14 closed , a check valve 22 is provided in the transmission cooling circuit 19, which only a flow from the engine oil cooling circuit 16 for Crankcase water jacket 13 allows. This valve 14 is opened and closed in this embodiment depending on an operating state of the internal combustion engine and / or the transmission.
- the control of the valve 14 is effected by a controller 26, which may be implemented in the form of an electrical circuit or by a computing unit (eg programmable or preprogrammed). In FIG. 1
- the controller 26 may also be a standalone controller, part of a motor controller, the motor controller itself, or any other suitable controller.
- the controller 26 may control the valve 14 to open or close, thereby controlling a flow rate through the valve 14.
- the controller 26 may also control the valve 14 clocked so that it opens and closes at a certain rate, thus achieving a desired flow rate.
- the controller 26 may also control the valve 14 to narrow or expand a flow area such that a certain flow rate of refrigerant is achieved.
- the controller 26 is adapted to open and close the valve 14 depending on engine speed and / or engine torque, wherein one or more of the above-mentioned parameters may be additionally included in the controller.
- the valve 14 could be controlled depending on engine speed, engine torque, coolant temperature, and crankcase temperature. By a certain engine speed and a certain engine torque results in an engine power.
- the valve 14 is opened above a certain engine power and closed below this engine power. More preferably, the valve 14 opens from an engine output of 60%, more preferably opens the valve 14 from an engine power of 70%, even more preferably opens the valve 14 from an engine power of 80%.
- the control of the valve 14 can also be realized in such a way that specific switching states of the valve 14 are assigned in the control 26 control characteristics or control table assignments to specific values of the above-mentioned parameters.
- FIG. 2 schematically shows a second embodiment of the refrigerant circuit according to the present invention.
- like reference numerals indicate the same or similar components, and reference is made to the description of the first embodiment to avoid repetition. Only differences to the first embodiment will be described here.
- an output of the crankcase water jacket 13 and the cylinder head water jacket 12 is not located at the outer end of the respective water jacket, but in the area of the penultimate cylinder bore or cylinder head, whereby the flow conditions in the respective water jacket change something, as represented by corresponding flow arrows.
- the preferred embodiment of the device 21 is a transmission oil heat exchanger, but may also be the water jacket, which has already been described in the first embodiment.
- a bypass line 29 is additionally provided, via which the thermal management module 15 can bypass the radiator 2 if necessary. For example, to achieve a faster heating of the coolant.
- a heating heat exchanger 23 is connected to the heat management module 15 and is supplied from the heat management module 15 with coolant, if necessary, which is guided back into the heat management module 15 downstream of the heating heat exchanger 23.
- a cooling circuit for cooling a cylinder head integrated manifold 24 is connected.
- a cooling circuit for an exhaust gas turbocharger 25 is connected.
- the engine oil cooling circuit 16 corresponds to the transmission cooling circuit 19, because as in Fig. 2 1, the engine oil heat exchanger 17 is arranged upstream and in series with the device 21.
- This engine oil cooling circuit 16 or transmission cooling circuit 19 branches downstream the coolant pump 5 (or the branch) and upstream of the input of the crankcase water jacket 13 from.
- the invention is not limited thereto, so that the engine oil cooling circuit 16 and the transmission cooling circuit 19 may both be parallel to each other, both branches downstream of the coolant pump 5 (or the branch) and upstream of the inlet of the crankcase water jacket 13 and both again into the crankcase water jacket 13th lead.
- FIG. 3 schematically shows a third embodiment of the refrigerant circuit 1 according to the present invention.
- like reference numbers represent the same or similar parts, and reference is made to the description of the foregoing embodiments unless otherwise described below.
- the cooling circuit 1 comprises, as in the preceding embodiments, an engine cooling circuit having a cylinder head cooling circuit 10 and a crankcase cooling circuit 11.
- the cylinder head cooling circuit 10 and the crankcase cooling circuit 11 preferably extend together as an engine cooling circuit through the radiator 2. Downstream of the radiator 2, the engine cooling circuit on the coolant pump 5 and the branch into the separated sections of the cylinder head cooling circuit 10 and the crankcase cooling circuit 11 splits. After flowing through the respective water jackets 12 and 13 of the cylinder head cooling circuit 10 and the crankcase cooling circuit 11 are again brought together, for example in the thermal management module 15, and lead back to the radiator. 2
- the branch is provided in the cylinder head cooling circuit 10 and the crankcase cooling circuit 11 on the coolant pump 5 or downstream thereof.
- the cylinder head cooling circuit 10 leads from the branching through the cylinder head water jacket 12 and from there via an outlet line 27 into the thermal management module 15.
- the engine oil cooling circuit 16 is coupled to the cylinder head cooling circuit 10 in this exemplary embodiment. Specifically, the engine oil cooling circuit 16 branches off from the cylinder head water jacket 12 and is returned to the cylinder head water jacket 12 at a downstream location of the cylinder head water jacket 12. After the branching off from the cylinder head water jacket 12, the engine oil cooling circuit 16 thus flows through the engine oil water heat exchanger 17 and returns to the cylinder head water jacket 12. Reference is made to the description of the preceding exemplary embodiments for the engine oil water heat exchanger 17.
- the transmission cooling circuit 19 branches off.
- the inlet of the crankcase water jacket 13 is defined as the point where the crankcase circuit 13 opens into a cavity surrounding a cylinder for the first time after entering the crankcase.
- the valve 14 is provided at the point where the transmission cooling circuit 19 branches off from the crankcase cooling circuit 11, the valve 14 is provided.
- the valve 14 is preferably an electric valve, but may also correspond to one of the aforementioned embodiments. In particular, the valve 14 forms the branch of the transmission cooling circuit 19 from the crankcase cooling circuit 11.
- the valve 14 may allow or prevent a flow of coolant in both the crankcase cooling circuit 11 and in the transmission cooling circuit 19 depending on a current flow. Intermediate positions are also possible.
- the valve 14 in in Fig. 3 illustrated embodiment upstream of the point at which the transmission cooling circuit 19 branches off from the crankcase cooling circuit 11 and downstream of the junction in the cylinder head cooling circuit 10 on the one hand and the crankcase cooling circuit 11 on the other.
- the transmission cooling circuit 19 leads, branching from the crankcase cooling circuit 11, to the device 21 for absorbing heat from the transmission 20. This device 21 and the transmission 20 have been explained in the preceding embodiments.
- the transmission cooling circuit 19 Downstream of the device 21, the transmission cooling circuit 19, as shown, opens into a connecting line 28, which connects an output of the thermal management module 15 with the engine cooling circuit upstream of the branch in the cylinder head cooling circuit 10 and crankcase cooling circuit 11.
- a connecting line 28 which connects an output of the thermal management module 15 with the engine cooling circuit upstream of the branch in the cylinder head cooling circuit 10 and crankcase cooling circuit 11.
- the transmission cooling circuit 19 downstream of the device 21 in the thermal management module 15 or directly into the engine cooling circuit downstream of the thermal management module 15 opens.
- the in Fig. 3 illustrated embodiment are modified such that the valve 14 in the crankcase cooling circuit 11 (on the portion which is separate from the cylinder head cooling circuit 10) is disposed downstream of the crankcase water jacket 13 and the transmission cooling circuit 19 downstream of the device 21 into the crankcase water jacket 13 opens.
- the same effect would be as discussed above Fig. 3 or in connection with the preceding embodiments explained, namely, that switching off the crankcase cooling circuit 11 by means of the valve 14 automatically shuts off the transmission cooling circuit 19 and switching on the crankcase cooling circuit 11 by means of the valve 14th automatically turns on the transmission cooling circuit 19.
- the transmission cooling circuit 19 is only flowed through by coolant (ie, is active) when the crankcase cooling circuit 11 is flowed through (ie, is active) and regardless of whether the cylinder head cooling circuit 10 is flowed through (ie is active).
- the transmission cooling circuit 19 can also branch off from the cylinder head cooling circuit 10 between the coolant pump 5 (or the branching) and the cylinder head water jacket 12.
- the effect of activating the transmission cooling circuit 19 depending on the crankcase cooling circuit 11 can also be realized in this arrangement by opening the transmission cooling circuit 19 into the crankcase cooling circuit 11 and switching downstream of this connection from the valve 14, as described above.
- the coolant pump 5 may be arranged so that a branch in the cylinder head cooling circuit 10 and cylinder housing cooling circuit 11 is provided downstream of the coolant pump 5. It would then also be possible to branch off the transmission cooling circuit downstream of the coolant pump 5 and upstream of the branch.
- the transmission cooling circuit 19 would not necessarily be introduced into the cylinder housing water jacket 13.
- the transmission cooling circuit 19 could also be introduced directly into the thermal management module 15 or into the outlet of the cylinder head water jacket 12. In this case, however, would have the valve 14 with the above be described function provided in the transmission cooling circuit, so that the flow in the transmission cooling circuit 14, ie only the flow in the transmission cooling circuit, as described above can be switched.
- the engine cooling circuit comprises a cylinder head cooling circuit 10 and a crankcase cooling circuit 11, wherein over a certain portion of the cylinder head cooling circuit 10 and the crankcase cooling circuit 11 run together, then split, run over a respective section separated from each other and then recombined.
- the invention is not limited thereto and the two cooling circuits 10 and 11 could also be completely separate.
- the engine oil cooling circuit 16 branches off from the crankcase cooling circuit 11 to the point 18 in the crankcase, ie in a formed in the crankcase material channel.
- the transmission cooling circuit 19 branches off from the crankcase cooling circuit 11 to the engine oil heat exchanger 17 in the crankcase.
- this embodiment is not limited thereto, and said portions extending in the crankcase can also run outside of the crankcase, as shown for example in FIG Fig. 3 the case is.
- the engine oil cooling circuit 16 and the transmission cooling circuit 19 extends together from the crankcase cooling circuit 11 branching to a point downstream of the engine oil heat exchanger 17 and upstream of the check valve 22 in the crankcase, ie in a formed in the crankcase material channel.
- this embodiment is not limited thereto, and said portions extending in the crankcase can also run outside of the crankcase, as shown for example in FIG Fig. 3 the case is.
- the transmission cooling circuit 19 extends from the valve 14 and the crankcase cooling circuit 11 branches off to the device 21 outside the crankcase, ie outside the crankcase material.
- this embodiment is not limited to this and the said section of the transmission cooling circuit 19 can also extend at least in sections in the crankcase, ie in a channel formed in the crankcase material.
- the invention discloses a control method for a coolant circuit 1 with an engine cooling circuit 10, 11 in the coolant for cooling an internal combustion engine 6, 8 is circulated; a transmission cooling circuit 19 for cooling a transmission 20, which branches off from the engine cooling circuit 10, 11; a valve 14, which is arranged in the transmission cooling circuit 19, wherein the valve 14 is opened and closed depending on an operating condition of the engine and / or the transmission.
- valve 14 is opened and closed depending on engine speed and / or engine torque.
- valve 14 is opened only above a certain threshold of engine speed and / or engine torque.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- General Details Of Gearings (AREA)
- Lubrication Of Internal Combustion Engines (AREA)
Description
Die Erfindung betrifft einen Kühlmittelkreislauf mit einem Motorkühlkreislauf und einem vom Motorkühlkreislauf abzweigenden Getriebekühlkreislauf.The invention relates to a coolant circuit with an engine cooling circuit and a branched from the engine cooling circuit transmission cooling circuit.
Aus der
Weitere Kühlsysteme sind aus der
Moderne Hochleistungsgetriebe, insbesondere Doppelkupplungsgetriebe, werden zusätzlich zur Ölkühlung auch mit Wasser gekühlt. Dabei wird Kühlmittel vom Motorkühlkreislauf abgezweigt und zur Kühlung des Getriebes verwendet. Jedoch hat sich bei dieser Art der Kühlung gezeigt, dass über weite Betriebsbereiche das relative warme Kühlmittel im Kühlmittelkreislauf dazu führt, dass in diesen Betriebsbereichen das Getriebe eher geheizt statt gekühlt wird. Nur in hohen Leistungsbereichen kehrt sich dieser Effekt um, sodass das Getriebe gekühlt wird.Modern high-performance transmissions, in particular dual-clutch transmissions, are also cooled with water in addition to oil cooling. In this case, coolant is diverted from the engine cooling circuit and used to cool the transmission. However, with this type of cooling has been shown that over a wide operating ranges, the relatively warm coolant in the coolant circuit leads to the fact that in these operating ranges, the transmission is heated rather than cooled. Only in high power ranges, this effect is reversed, so that the transmission is cooled.
Es besteht daher Bedarf an einer verbesserten Kühlung von flüssigkeitsgekühlten Getrieben.There is therefore a need for improved cooling of liquid-cooled gears.
Es ist eine Aufgabe der vorliegenden Erfindung einen Kühlmittelkreislauf zur Kühlung eines Getriebes bereitzustellen, das verbesserte Kühleigenschaften aufweist. Diese Aufgabe wird mit einem Kühlmittelkreislauf gemäß Anspruch 1 und einem Kraftfahrzeug gemäß Anspruch 10 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der abhängigen Ansprüche. Gemäß einem Ausführungsbeispiel der Erfindung ist ein Kühlmittelkreislauf bereitgestellt, mit einem Motorkühlkreislauf in dem Kühlmittel zur Kühlung eines Verbrennungsmotors zirkulierbar ist; einem Getriebekühlkreislauf zur Kühlung eines Getriebes, der von dem Motorkühlkreislauf abzweigt; einem Ventil, welches zumindest in dem Getriebekühlkreislauf angeordnet ist, und einer Steuerung, die angepasst ist, das Ventil abhängig von einem Betriebszustand des Verbrennungsmotors und/oder des Getriebes zu öffnen und zu schließen. Der Betriebszustand des Verbrennungsmotors kann beispielsweise durch eine Drosselklappenstellung, eine Motordrehzahl und/oder ein Motordrehmoment bestimmt sein. Ferner kann die Steuerung angepasst sein, das Ventil abhängig von zumindest einem der folgenden Parameter zu steuern (zu öffnen und zu schließen): einer Kühlmitteltemperatur, einer Kurbelgehäusetemperatur. Wie eingangs beschrieben, hat sich herausgestellt, dass herkömmliche Kühlmittelschaltungen bei niedriger Motorleistung das Getriebe eher heizen als kühlen. Ferner beeinflusst dies auch die Aufheizgeschwindigkeit des Verbrennungsmotors in der Warmlaufphase negativ, was Einfluss auf Emissionen und Verbrauch haben kann. Dies wird durch Vorsehen einer Abschaltmöglichkeit im Getriebekühlkreislauf, abhängig von der Motorleistung, unterbunden. Da bei hoher Motorleistung das Getriebe vom Kühlmittel sehr effektiv gekühlt werden kann, wird ab einer bestimmten Motorleistung, ab der die Kühlwirkung eintritt, eine Strömung von Kühlmittel durch den Getriebekühlkreislauf zugelassen.It is an object of the present invention to provide a coolant circuit for cooling a transmission having improved cooling characteristics. This object is achieved with a coolant circuit according to claim 1 and a motor vehicle according to
Weiterhin umfasst der Motorkühlkreislauf einen Zylinderkopfkühlkreislauf und getrennt davon einen Kurbelgehäusekühlkreislauf, wobei der Getriebekühlkreislauf von dem Kurbelgehäusekühlkreislauf abzweigt, d.h. auf einem Abschnitt abzweigt, längs dem der Kurbelgehäusekühlkreislauf von dem Zylinderkopfkühlkreislauf getrennt ist. Der Vorteil, der sich durch diese Kühlmittelschaltung ergibt ist der, dass bei sog. Splitcooling-Motoren, bei denen ein separater Kurbelgehäuse- und Zylinderkopfkühlkreislauf vorgesehen ist, der Zylinderkopfkühlkreislauf permament durchströmt wird und es ausreichend ist, wenn der Kurbelgehäusekühlkreislauf nur ab einer bestimmten Motorleistung durchströmt wird. Der Erfinder dieser Erfindung fand heraus, dass durch Kopplung des Getriebekühlkreislaufs an den Kurbelgehäusekühlkreislauf ein zusätzliches, separates Ventil für den Getriebekühlkreislauf eingespart werden kann weil das Kurbelgehäuse und das Getriebe ähnliche Kühlungsbedingungen zeigen und somit ein gemeinsames Ventil für den Getriebekühlkreislauf und den Kurbelgehäusekühlkreislauf verwendet werden kann. Bei diesem Ausführungsbeispiel ist das Ventil (dasselbe Ventil) somit im Getriebekühlkreislauf und im Kurbelgehäusekühlkreislauf angeordnet, d.h. der Getriebekühlkreislauf und der Kurbelgehäusekühlkreislauf sind zumindest am Eingang oder am Ausgang des Ventils identisch.Further, the engine cooling circuit comprises a cylinder head cooling circuit and, separately, a crankcase cooling circuit, wherein the transmission cooling circuit branches off from the crankcase cooling circuit, ie, branches off at a portion along which the crankcase cooling circuit is separated from the cylinder head cooling loop. The advantage that results from this coolant circuit is that in so-called. Split cooling engines, in which a separate crankcase and cylinder head cooling circuit is provided, the cylinder head cooling circuit is permeated permament and it is sufficient if the crankcase cooling circuit is only flowed through at a certain engine power. The inventor of this invention found that by coupling the transmission cooling circuit to the crankcase cooling circuit, an additional, separate valve for the transmission cooling circuit can be saved because the crankcase and transmission show similar cooling conditions and thus a common valve can be used for the transmission cooling circuit and the crankcase cooling circuit. In this embodiment, the valve (same valve) is thus arranged in the transmission cooling circuit and in the crankcase cooling circuit, that is, the transmission cooling circuit and the crankcase cooling circuit are identical at least at the entrance or at the outlet of the valve.
Gemäß einem weiteren Ausführungsbeispiel der Erfindung wird ein Kühlmittelkreislauf bereitgestellt, wobei der Kurbelgehäusekühlkreislauf einen Kurbelgehäusewassermantel aufweist, der um Zylinderbohrungen herumgeführt ist, und der Getriebekühlkreislauf stromabwärts einer Einrichtung zur Wärmeaufnahme von dem Getriebe, insbesondere ein Wassermantel im Getriebegehäuse oder ein Wärmetauscher zur Wärmeübertragung mit dem Getriebeöl, in den Kurbelgehäusewassermantel mündet. Insbesondere befindet sich das Ventil stromabwärts des Kurbelgehäusewassermantels.According to a further exemplary embodiment of the invention, a coolant circuit is provided, wherein the crankcase cooling circuit has a crankcase water jacket, which is guided around cylinder bores, and the transmission cooling circuit downstream of a device for absorbing heat from the transmission, in particular a water jacket in the transmission housing or a heat exchanger for heat transfer with the transmission oil, flows into the crankcase water jacket. In particular, the valve is located downstream of the crankcase water jacket.
Gemäß einem weiteren Ausführungsbeispiel der Erfindung werden stromabwärts des Ventils der Zylinderkopfkühlkreislauf und der Kurbelgehäusekühlkreislauf wieder zusammengeführt.According to a further embodiment of the invention, the cylinder head cooling circuit and the crankcase cooling circuit are brought together again downstream of the valve.
Gemäß der Erfindung verzweigt sich der Motorkühlkreislauf an einer Verzweigung in den Zylinderkopfkühlkreislauf und den Kurbelgehäusekühlkreislauf, wobei der Getriebekühlkreislauf stromabwärts der Verzweigung vom Kurbelgehäusekühlkreislauf abzweigt.According to the invention, the engine cooling circuit branches at a branch into the cylinder head cooling circuit and the crankcase cooling circuit, wherein the transmission cooling circuit branches off from the crankcase cooling circuit downstream of the branch.
Gemäß der Erfindung zweigt der Getriebekühlkreislauf stromabwärts der Verzweigung und stromaufwärts eines Kurbelgehäusewassermantels des Kurbelgehäusekühlkreislaufs vom Kurbelgehäusekühlkreislauf ab.According to the invention, the transmission cooling circuit branches off the crankcase cooling circuit downstream of the branch and upstream of a crankcase water jacket of the crankcase cooling circuit.
Gemäß einem weiteren Ausführungsbeispiel der Erfindung wird ein Kühlmittelkreislauf bereitgestellt, wobei sich der Kurbelgehäusekühlkreislauf stromabwärts der Verzweigung in einen Kurbelgehäusewassermantel und einen Motorölkühlkreislauf, welcher angepasst ist, über einen Wärmetauscher ein Motoröl zu kühlen, verzweigt, und wobei der Getriebekühlkreislauf von dem Motorölkühlkreislauf abzweigt.According to a further embodiment of the invention, a coolant circuit is provided wherein the crankcase cooling circuit branches downstream of the manifold into a crankcase water jacket and engine oil cooling circuit adapted to cool engine oil via a heat exchanger, and wherein the transmission cooling circuit branches from the engine oil cooling circuit.
Gemäß einem weiteren Ausführungsbeispiel der Erfindung ist in dem Getriebekühlkreislauf ein Rückschlagventil vorgesehen. Dieses Rückschlagventil soll verhindern, dass insbesondere beim Splitcooling-System, bei geschlossenem Getriebekühlkreislauf-Ventil der Kurbelgehäusewassermantel und in umgekehrter Richtung der Getriebekühlkreislauf durchströmt wird.According to a further embodiment of the invention, a check valve is provided in the transmission cooling circuit. This check valve is intended to prevent flow through the transmission cooling circuit, in particular in the case of the split cooling system, with the transmission cooling cycle valve closed, and the crankcase water jacket in the reverse direction.
Gemäß einem weiteren Ausführungsbeispiel der Erfindung wird die Verzweigung von einer Kühlmittelpumpe gebildet.According to a further embodiment of the invention, the branch is formed by a coolant pump.
Gemäß einem weiteren Ausführungsbeispiel ist die Steuerung angepasst, das Ventil abhängig von einer Motordrehzahl und/oder einem Motordrehmoment zu öffnen und zu schließen. Ferner kann die Steuerung angepasst sein, das Ventil abhängig von zumindest einen der folgenden Parameter zu steuern (öffnen und schließen): einer Kühlmitteltemperatur, einer Kurbelgehäusetemperatur.In another embodiment, the controller is adapted to open and close the valve in response to engine speed and / or engine torque. Further, the controller may be adapted to control (open and close) the valve depending on at least one of the following parameters: a coolant temperature, a crankcase temperature.
Gemäß einem weiteren Ausführungsbeispiel ist die Steuerung angepasst, das Ventil nur oberhalb eines bestimmten Schwellenwerts der Motordrehzahl und/oder des Motordrehmoments zu öffnen. Das heißt, die Steuerung ist angepasst, das Ventil oberhalb des Schwellenwerts zu öffnen und unterhalb des Schwellenwerts (einschließlich des Schwellenwerts selbst) zu schließen. Insbesondere ist die Steuerung angepasst, das Ventil oberhalb des Schwellenwerts vollständig zu öffnen und unterhalb des Schwellenwerts (einschließlich des Schwellenwerts selbst) vollständig zu schließen. Die Motordrehzahl und das Motordrehmoment bestimmen eine Motorleistung. Dabei kann die Steuerung angepasst sein, das Ventil nur oberhalb eines Schwellenwerts der Motorleistung von 70% der maximalen Motorleistung, der sog. Nennmotorleistung, zu öffnen. Insbesondere ist der Schwellenwert 80%.According to another embodiment, the controller is adapted to open the valve only above a certain threshold of engine speed and / or engine torque. That is, the controller is adjusted to open the valve above the threshold and close below the threshold (including the threshold itself). In particular, the controller is adapted to fully open the valve above the threshold and fully close below the threshold (including the threshold itself). Engine speed and engine torque determine engine performance. In this case, the controller may be adapted to open the valve only above a threshold value of the engine power of 70% of the maximum engine power, the so-called nominal engine power. In particular, the threshold is 80%.
Darüber hinaus betrifft die Erfindung ein Fahrzeug mit einem Kühlmittelkreislauf gemäß einem der vorhergehenden Ansprüche.Moreover, the invention relates to a vehicle with a coolant circuit according to one of the preceding claims.
Nachfolgend werden bevorzugte Ausführungsbeispiele der vorliegenden Erfindung unter Bezugnahme auf die beigefügten Zeichnungen beschrieben. In diesen Zeichnungen ist Folgendes dargestellt:
-
Figur 1 zeigt schematisch ein erstes Ausführungsbeispiel des Kühlmittelkreislaufs gemäß der vorliegenden Erfindung; -
zeigt schematisch ein zweites Ausführungsbeispiel des Kühlmittelkreislaufs gemäß der vorliegenden Erfindung, undFigur 2 -
Figur 3 zeigt schematisch ein drittes Ausführungsbeispiel des Kühlmittelkreislaufs gemäß der vorliegenden Erfindung. -
Figur 1 zeigt schematisch ein erstes Ausführungsbeispiel des Kühlmittelkreislaufs gemäß der vorliegenden Erfindung. Insbesondere wird dieser Kühlmittelkreislauf bei Kraftfahrzeugen von Kühlmittel (beispielsweise einem Gemisch aus Glykol und Wasser) durchströmt, um einen Verbrennungsmotor und ein flüssigkeitsgekühltes Getriebe, insbesondere ein Doppelkupplungsgetriebe, zu kühlen. Strömungsrichtungen sind in allen Figuren durch entsprechende Pfeile in den jeweiligen Strömungspfaden kenntlich gemacht.
-
FIG. 1 schematically shows a first embodiment of the refrigerant circuit according to the present invention; -
FIG. 2 schematically shows a second embodiment of the refrigerant circuit according to the present invention, and -
FIG. 3 schematically shows a third embodiment of the refrigerant circuit according to the present invention. -
FIG. 1 schematically shows a first embodiment of the refrigerant circuit according to the present invention. In particular, coolant flows through this coolant circuit in motor vehicles (for example a mixture of glycol and water) in order to cool an internal combustion engine and a liquid-cooled transmission, in particular a dual-clutch transmission. Flow directions are in all Figures indicated by corresponding arrows in the respective flow paths.
Der Kühlmittelkreislauf 1 umfasst einen Motorkühlkreislauf sowie einen Getriebekühlkreislauf die sich gemeinsam durch einen Kühler 2 erstrecken, der bekanntermaßen neben dem Fahrtwind von einem Gebläse 3 kühlbar ist, und ein im Kühlmittelkreislauf geführtes Kühlmittel in bekannter Weise kühlt. Von einem Kühlerausgang 4 erstreckt sich der Kühlmittelkreislauf weiter zu einer Kühlmittelpumpe 5 bei der es sich um eine mechanisch, von einem Verbrennungsmotor, oder elektrisch angetriebene Kühlmittelpumpe handeln kann. Der Verbrennungsmotor umfasst ein Kurbelgehäuse 6 mit mehreren Zylinderbohrungen 7 sowie einem Zylinderkopfgehäuse 8 mit den zu den Zylinderbohrungen 7 gehörigen Zylinderköpfen 9. Der Kühlmittelkreislauf 1 wird an einer Verzweigung, die in diesem Ausführungsbeispiel von der Kühlmittelpumpe 5 gebildet wird, in einen Zylinderkopfkühlkreislauf 10 und einen Kurbelgehäusekühlkreislauf 11 aufgeteilt. Die Verzweigung kann aber ebenso weiter stromabwärts der Kühlmittelpumpe 5 durch eine Kühlmittelleitungsverzweigung gebildet werden.The coolant circuit 1 comprises an engine cooling circuit and a transmission cooling circuit which extend together through a
Innerhalb des Kurbelgehäuses 6 und des Zylinderkopfgehäuses 8 sind jeweils Kühlkanäle im Gehäusematerial ausgebildet, die in Form eines Wassermantels um jede Zylinderbohrung 7 bzw. jeden Zylinderkopf 9 herumgeführt sind. Dieser Kurbelgehäusewassermantel 13 bzw. Zylinderkopfwassermantel 12 wird durch Hohlräume ausgebildet, die sich über eine bestimmte Höhe der Zylinderbohrungen 7 bzw. Zylinderköpfe 9 erstrecken und die Zylinderbohrungen bzw. Zylinderköpfe ringförmig umgeben. Diese ringförmigen Hohlräume sind seriell miteinander verbunden. Darüber hinaus sind diese miteinander verbundenen Hohlräume mit einem Zu- und einem Ablauf verbunden, beispielsweise sind von den beiden äußeren Hohlräumen, einer mit einem Zulauf und der andere mit einem Ablauf verbunden. Nach der Aufteilung in Zylinderkopfkühlkreislauf 10 und Kurbelgehäusekühlkreislauf 11 führt der Zylinderkopfkühlkreislauf 10 durch den Zylinderkopfwassermantel 12 und der Kurbelgehäusekreislauf 11 durch den Kurbelgehäusewassermantel 13.Within the
Am Ausgang des Kurbelgehäusewassermantels 13 führt der Kurbelgehäusekühlkreislauf 11 zu einem Ventil 14, welches im geschlossenen Zustand die Strömung von Kühlmittel im Kurbelgehäusewassermantel 13 stoppt und im geöffneten Zustand die Strömung von Kühlmittel durch den Kurbelgehäusewassermantel 13 zulässt. Vorzugsweise hat das Ventil 14 bzgl. des Kühlmittels einen einzigen Eingang und maximal zwei Ausgänge. Das Ventil 14 kann beispielsweise elektromagnetisch, beispielsweise mit einem elektromotorischen Schneckenantrieb, betätigbar sein. Der Ausgang des Ventils 14 führt in ein Wärmemanagementmodul 15, das für die Steuerung des Kühlkreislaufs 1 zuständig ist, und von dort wieder zurück in den Kühler 2.At the outlet of the
Zwischen der Kühlmittelpumpe 5 (bzw. der Verzweigung) und dem Eingang zum Kurbelgehäusewassermantel 13 zweigt ein Motorölkühlkreislauf 16 ab, der als Kanal separat zum Kurbelgehäusewassermantel 13 im Kurbelgehäuse 6 ausgebildet ist. Der Motorölkühlkreislauf 16 durchläuft einen Motorölwasserwärmetauscher 17, in dem das Kühlmittel ein Motoröl kühlt, welches bewegte Teile des Verbrennungsmotors schmiert und kühlt. Hierzu durchströmt einerseits das der Motorölkühlkreislauf 16 den Motorölwasserwärmetauscher 17 und separate davon ein nicht dargestellter Motorölkreislauf. Stromabwärts des Motorölwasserwärmetauschers 17 wird der Motorölkühlkreislauf 16 an einer Stelle 18 mit dem vom Ausgang des Zylinderkopfkühlkreislaufs 12 kommenden Zylinderkopfkühlkreislauf 10 zusammengeführt und zum Wärmemanagementmodul 15 weitergeleitet, nach dem es zurück zum Kühler 2 geführt wird.Between the coolant pump 5 (or the branching) and the input to the
Von dem Motorölkühlkreislauf 16 zweigt ein Getriebekühlkreislauf 19 zur Kühlung eines Getriebes 20 ab, dies ist beispielsweise ein Doppelkupplungsgetriebe. In
Das Ventil 14, welches am Ausgang des Kurbelgehäusewassermantels 13 angeordnet ist, ist durch die Einführung des Getriebekühlkreislaufs 19 in den Kurbelgehäusewassermantel 13 somit auch im Getriebekühlkreislauf 19 angeordnet. Ist das Ventil 14 geschlossen, so wird auch eine Kühlmittelströmung im Getriebekühlkreislauf 19 unterbunden und ist das Ventil 14 geöffnet, so ermöglicht dies auch eine Kühlmittelströmung im Getriebekühlkreislauf 19. Zur Vermeidung einer Strömung im Kurbelgehäusewassermantel 13 und einer Rückströmung im Getriebekühlkreislauf 19, bei geschlossenem Ventil 14, ist im Getriebekühlkreislauf 19 ein Rückschlagventil 22 vorgesehen, welches nur eine Strömung vom Motorölkühlkreislauf 16 zum Kurbelgehäusewassermantel 13 zulässt. Dieses Ventil 14 wird in diesem Ausführungsbeispiel abhängig von einem Betriebszustand des Verbrennungsmotors und/oder des Getriebes geöffnet und geschlossen. Die Ansteuerung des Ventils 14 erfolgt durch eine Steuerung 26, die in Form einer elektrischen Schaltung oder durch eine Recheneinheit (z.B. programmierbar oder vorprogrammiert) umgesetzt sein kann. In
Die Grundlage für die Ansteuerung des Ventils 14 durch die Steuerung 26 ist der Betriebszustand des Verbrennungsmotors und/oder des Getriebes. Hierunter fällt zumindest einer der folgenden Parameter:
- Motordrehzahl des Verbrennungsmotors
- Drehmoment des Verbrennungsmotors
- Motorleistung (wird durch die Motorleistung und das MotorDrehmoment bestimmt)
- Drosselklappenstellung
- Getriebeeingangsdrehzahl
- Getriebeausgangsdrehzahl
- Getriebeeingangsdrehmoment
- Getriebeausgangsdrehmoment
- Kühlmitteltemperatur (wird über einen Temperatursensor gemessen)
- Kurbelgehäusetemperatur (wird über einen Temperatursensor gemessen)
- Getriebegehäusetemperatur (wird über einen Temperatursensor gemessen)
- Engine speed of the internal combustion engine
- Torque of the internal combustion engine
- Engine power (determined by engine power and engine torque)
- throttle position
- Transmission input speed
- Transmission output speed
- Transmission input torque
- Transmission output torque
- Coolant temperature (measured via a temperature sensor)
- Crankcase temperature (measured via a temperature sensor)
- Transmission case temperature (measured via a temperature sensor)
Vorzugsweise ist die Steuerung 26 angepasst, das Ventil 14 abhängig von der Motordrehzahl und/oder dem Motordrehmoment zu öffnen und zu schließen, wobei ein oder mehrere der oben erwähnten Parameter zusätzlich in die Steuerung mit einbezogen werden können. Beispielsweise könnte das Ventil 14 abhängig von der Motordrehzahl, dem Motordrehmoment, der Kühlmitteltemperatur und der Kurbelgehäusetemperatur gesteuert werden. Durch eine bestimmte Motordrehzahl und ein bestimmtes Motordrehmoment ergibt sich eine Motorleistung. Beispielsweise ist das Ventil 14 oberhalb einer bestimmten Motorleistung geöffnet und unterhalb dieser Motorleistung geschlossen. Mehr bevorzugt öffnet das Ventil 14 ab einer Motorleistung von 60%, noch mehr bevorzugt öffnet das Ventil 14 ab einer Motorleistung von 70%, noch mehr bevorzugt öffnet das Ventil 14 ab einer Motorleistung von 80%. Die Steuerung des Ventils 14 kann auch so realisiert werden, dass in der Steuerung 26 Steuerungskennlinien oder Steuerungstabellenzuordnungen bestimmten Werten der oben genannten Parameter bestimmte Schaltzustände des Ventils 14 zugeordnet sind.Preferably, the
Zu erwähnen ist ferner, dass im geschlossenen Zustand des Ventils 14 weiterhin Kühlmittel durch den Motorölkühlkreislauf 16 strömen kann. Das Ventil 14 schaltet daher nicht den Motorölkühlkreislauf 16.It should also be mentioned that in the closed state of the
So ist beispielsweise ein Ausgang des Kurbelgehäusewassermantels 13 und des Zylinderkopfwassermantels 12 nicht am äußeren Ende des jeweiligen Wassermantels angeordnet, sondern im Bereich der/des vorletzten Zylinderbohrung bzw. Zylinderkopfes, wodurch sich die Strömungsverhältnisse im jeweiligen Wassermantel etwas verändern, wie durch entsprechende Strömungspfeile dargestellt.For example, an output of the
Die bevorzugte Ausführung der Einrichtung 21 ist ein Getriebeöl-Wärmetauscher, kann jedoch auch der Wassermantel sein, der im ersten Ausführungsbeispiel bereits beschrieben wurde.The preferred embodiment of the
Im zweiten Ausführungsbeispiel ist zusätzlich eine Bypassleitung 29 vorgesehen, über die das Wärmemanagementmodul 15 bei Bedarf den Kühler 2 umgehen kann. Beispielsweise um eine schnellere Aufheizung des Kühlmittels zu erreichen.In the second embodiment, a
Ein Heizungswärmetauscher 23 ist an das Wärmemanagementmodul 15 angeschlossen und wird bei Bedarf aus dem Wärmemanagementmodul 15 mit Kühlmittel versorgt, welches stromabwärts des Heizungswärmetauschers 23 wieder zurück in das Wärmemanagementmodul 15 geführt wird.A
Parallel zum Zylinderkopfwassermantel 12 ist ein Kühlkreislauf zur Kühlung eines zylinderkopfintegrierten Krümmers 24 geschaltet. Zwischen einem äußeren Ende des Zylinderkopfwassermantels 12 und einem Ausgang des Heizungswärmetauschers 23 ist Kühlkreislauf für einen Abgasturbolader 25 geschaltet.Parallel to the cylinder
Der Motorölkühlkreislauf 16 entspricht dem Getriebekühlkreislauf 19, denn wie in
Der Vollständigkeit halber soll erwähnt sein, dass in
Der Kühlkreislauf 1 umfasst, wie in den vorhergehenden Ausführungsbeispielen, einen Motorkühlkreislauf, welcher einen Zylinderkopfkühlkreislauf 10 und einen Kurbelgehäusekühlkreislauf 11 aufweist. Der Zylinderkopfkühlkreislauf 10 sowie der Kurbelgehäusekühlkreislauf 11 erstrecken sich vorzugsweise gemeinsam als Motorkühlkreislauf durch den Kühler 2. Stromabwärts des Kühlers 2 teilt sich der Motorkühlkreislauf an der Kühlmittelpumpe 5 bzw. der Verzweigung in die getrennt voneinander verlaufenden Abschnitte des Zylinderkopfkühlkreislaufs 10 und des Kurbelgehäusekühlkreislauf 11 auf. Nach dem Durchströmen der jeweiligen Wassermäntel 12 und 13 werden der Zylinderkopfkühlkreislauf 10 und der Kurbelgehäusekühlkreislauf 11 wieder zusammengeführt, beispielsweise in dem Wärmemanagementmodul 15, und führen wieder zurück zum Kühler 2.The cooling circuit 1 comprises, as in the preceding embodiments, an engine cooling circuit having a cylinder
Im Ausführungsbeispiel gemäß
Zwischen der Verzweigung in Zylinderkopfkühlkreislauf 10 und Kurbelgehäusekühlkreislauf 11 einerseits und dem Eingang des Kurbelgehäusewassermantels 13 andererseits oder anders ausgedrückt stromabwärts der Verzweigung und stromaufwärts des Kurbelgehäusewassermantels 13 zweigt der Getriebekühlkreislauf 19 ab. Der Eingang des Kurbelgehäusewassermantels 13 ist definiert als die Stelle, wo der Kurbelgehäusekreislauf 13 erstmalig nach Eintritt in das Kurbelgehäuse in einen einen Zylinder geschlossen umgebenden Hohlraum mündet. An der Stelle, an der der Getriebekühlkreislauf 19 vom Kurbelgehäusekühlkreislauf 11 abzweigt, ist das Ventil 14 vorgesehen. Das Ventil 14 ist vorzugsweise ein elektrisches Ventil, kann jedoch auch einer der vorhergehend genannten Ausgestaltungen entsprechen. Insbesondere bildet das Ventil 14 die Abzweigung des Getriebekühlkreislauf 19 vom Kurbelgehäusekühlkreislauf 11. Das Ventil 14 kann abhängig von einer Bestromung eine Strömung von Kühlmittel sowohl im Kurbelgehäusekühlkreislauf 11 als auch im Getriebekühlkreislauf 19 zulassen oder unterbinden. Zwischenstellungen sind auch möglich. Alternativ kann das Ventil 14 im in
Alternativ kann das in
Weitere, nicht zeichnerisch dargestellte Ausführungsbeispiele der Erfindung, werden im Folgenden beschrieben. Es wird auf die Beschreibung der vorhergehenden Ausführungsbeispiele verwiesen und nur auf Unterschiede eingegangen:
So kann der Getriebekühlkreislauf 19 beispielsweise auch vom Zylinderkopfkühlkreislauf 10 zwischen der Kühlmittelpumpe 5 (bzw. der Verzweigung) und dem Zylinderkopfwassermantel 12 abzweigen. Der Effekt, dass der Getriebekühlkreislauf 19 abhängig vom Kurbelgehäusekühlkreislauf 11 aktiviert wird, kann auch bei dieser Anordnung realisiert werden, indem der Getriebekühlkreislauf 19 in den Kurbelgehäusekühlkreislauf 11 mündet und stromabwärts dieser Einmündung von dem Ventil 14 geschaltet wird, wie vorstehend beschrieben.Further, non-illustrated embodiments of the invention will be described below. Reference is made to the description of the preceding embodiments and only differences:
For example, the
Ebenso kann, wie bereits erwähnt, die Kühlmittelpumpe 5 so angeordnet sein, dass eine Verzweigung in Zylinderkopfkühlkreislauf 10 und Zylindergehäusekühlkreislauf 11 stromabwärts der Kühlmittelpumpe 5 vorgesehen ist. Es wäre dann auch möglich, den Getriebekühlkreislauf stromabwärts der Kühlmittelpumpe 5 und stromaufwärts der Verzweigung abzuzweigen.Likewise, as already mentioned, the
Ferner müsste der Getriebekühlkreislauf 19 nicht zwangsläufig in den Zylindergehäusewassermantel 13 eingeleitet werden. Der Getriebekühlkreislauf 19 könnte auch direkt in das Wärmemanagementmodul 15 oder in den Ausgang des Zylinderkopfwassermantels 12 eingeleitet werden. In diesem Fall müsste jedoch das Ventil 14 mit der oben beschriebenen Funktion im Getriebekühlkreislauf vorgesehen sein, so dass die Strömung im Getriebekühlkreislauf 14, d.h. nur die Strömung im Getriebekühlkreislauf, wie oben beschrieben geschaltet werden kann.Furthermore, the
Vorstehend wurde beschrieben, dass der Motorkühlkreislauf einen Zylinderkopfkühlkreislauf 10 und einen Kurbelgehäusekühlkreislauf 11 aufweist, wobei über einen bestimmten Abschnitt der Zylinderkopfkühlkreislauf 10 und der Kurbelgehäusekühlkreislauf 11 zusammen verlaufen, dann aufgeteilt werden, über einen jeweiligen Abschnitt getrennt voneinander verlaufen und dann wieder zusammengeführt werden. Die Erfindung ist jedoch nicht darauf beschränkt und die beiden Kühlkreisläufe 10 und 11 könnten auch vollständig getrennt verlaufen.It has been described above that the engine cooling circuit comprises a cylinder
In dem in
In dem in
In dem in
Darüber hinaus offenbart die Erfindung gemäß einem Ausführungsbeispiel ein Steuerungsverfahren für einen Kühlmittelkreislauf 1 mit einem Motorkühlkreislauf 10, 11 in dem Kühlmittel zur Kühlung eines Verbrennungsmotors 6, 8 zirkulierbar ist; einem Getriebekühlkreislauf 19 zur Kühlung eines Getriebes 20, der von dem Motorkühlkreislauf 10, 11 abzweigt; einem Ventil 14, welches in dem Getriebekühlkreislauf 19 angeordnet ist, wobei das Ventil 14 abhängig von einem Betriebszustand des Motors und/oder des Getriebes geöffnet und geschlossen wird.In addition, the invention according to one embodiment discloses a control method for a coolant circuit 1 with an
Gemäß einem weiteren Ausführungsbeispiel wird das Ventil 14 abhängig von einer Motordrehzahl und/oder einem Motordrehmoment geöffnet und geschlossen.According to another embodiment, the
Gemäß einem weiteren Ausführungsbeispiel wird das Ventil 14 nur oberhalb eines bestimmten Schwellenwerts der Motordrehzahl und/oder des Motordrehmoments geöffnet.In another embodiment, the
Während die Erfindung detailliert in den Zeichnungen und der vorangehenden Beschreibung veranschaulicht und beschrieben wurde, ist diese Veranschaulichung und Beschreibung als veranschaulichend oder beispielhaft und nicht als beschränkend zu verstehen und es ist nicht beabsichtigt die Erfindung auf die offenbarten Ausführungsbeispiele zu beschränken. Die bloße Tatsache, dass bestimmte Merkmale in verschiedenen abhängigen Ansprüchen genannt sind, soll nicht andeuten, dass eine Kombination dieser Merkmale nicht auch vorteilhaft genutzt werden könnte.While the invention has been illustrated and described in detail in the drawings and the foregoing description, this illustration and description is to be considered illustrative or exemplary, and not restrictive, and it is not intended that the invention be limited to the disclosed embodiments restrict. The mere fact that certain features are mentioned in various dependent claims is not intended to imply that a combination of these features could not be used to advantage.
Claims (10)
- A coolant circuit (1) with
an engine cooling circuit (10, 11) in which coolant for cooling an internal combustion engine (6, 8) can be circulated, which comprises a cylinder-head cooling circuit (10) and separately therefrom a crankcase cooling circuit (11), wherein the engine cooling circuit (10, 11) branches into the cylinder-head cooling circuit (10) and the crankcase cooling circuit (11) at a bifurcation;
a transmission cooling circuit (19) for cooling a transmission (20), which circuit branches off from the crankcase cooling circuit (11) downstream from the bifurcation and upstream from a crankcase water jacket (13) of the crankcase cooling circuit (11);
a valve (14) which is arranged in the transmission cooling circuit (19), and
a control means (26) which is adapted to open and close the valve (14) dependent on an operating state of the internal combustion engine and/or of the transmission. - A coolant circuit (1) according to Claim 1, wherein
the crankcase cooling circuit (11) has the crankcase water jacket (13), which is guided around cylinder bores (7), and
the transmission cooling circuit (19) opens into the crankcase water jacket (13) downstream from a means (21) for absorbing heat from the transmission (20). - A coolant circuit (1) according to Claim 2, wherein the valve (14) is located downstream from the crankcase water jacket (13).
- A coolant circuit (1) according to Claim 3, wherein the cylinder-head cooling circuit (10) and the crankcase cooling circuit (11) are merged again downstream from the valve (14).
- A coolant circuit (1) according to one of the preceding claims, wherein the crankcase cooling circuit (11) downstream from the bifurcation branches into a crankcase water jacket (13) and an engine-oil cooling circuit (16) which is adapted to cool an engine oil by means of a heat exchanger (17), and wherein the transmission cooling circuit (19) branches off from the engine-oil cooling circuit (16).
- A coolant circuit (1) according to one of the preceding claims, wherein a non-return valve (22) is provided in the transmission cooling circuit (16).
- A coolant circuit (1) according to one of the preceding claims, wherein the bifurcation is formed by a coolant pump (5).
- A coolant circuit (1) according to one of the preceding claims, wherein the control means (26) is adapted to open and close the valve (14) dependent on an engine speed and/or an engine torque.
- A coolant circuit (1) according to Claim 8, wherein the control means (26) is adapted to open the valve (14) only above a particular threshold value of the engine speed and/or of the engine torque.
- A motor vehicle having a coolant circuit according to one of the preceding claims.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102015212733.8A DE102015212733A1 (en) | 2015-07-08 | 2015-07-08 | Coolant circuit for liquid-cooled gearboxes |
PCT/EP2016/062934 WO2017005438A1 (en) | 2015-07-08 | 2016-06-08 | Coolant circuit for a liquid-cooled transmission |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3320197A1 EP3320197A1 (en) | 2018-05-16 |
EP3320197B1 true EP3320197B1 (en) | 2019-04-17 |
Family
ID=56117706
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16728292.0A Active EP3320197B1 (en) | 2015-07-08 | 2016-06-08 | Coolant circuit for a liquid-cooled transmission |
Country Status (5)
Country | Link |
---|---|
US (1) | US10480389B2 (en) |
EP (1) | EP3320197B1 (en) |
CN (1) | CN107532500B (en) |
DE (1) | DE102015212733A1 (en) |
WO (1) | WO2017005438A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015014514B4 (en) * | 2015-11-11 | 2023-10-26 | Deutz Aktiengesellschaft | "Common-Rail" water jacket |
CN110454269A (en) * | 2019-07-18 | 2019-11-15 | 中国第一汽车股份有限公司 | A kind of engine-cooling system |
CN113062793B (en) * | 2021-03-31 | 2022-06-03 | 贵州电子科技职业学院 | Water return pipeline structure of automobile radiator |
CN115217939B (en) * | 2022-01-04 | 2024-01-23 | 广州汽车集团股份有限公司 | Temperature control system and control method of transmission |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007128123A1 (en) * | 2006-05-08 | 2007-11-15 | Magna Powertrain Inc. | Vehicle cooling system with directed flows |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19512783A1 (en) * | 1995-04-05 | 1996-10-10 | Bayerische Motoren Werke Ag | Device for influencing the transmission oil temperature in motor vehicles |
US6427640B1 (en) * | 2000-10-11 | 2002-08-06 | Ford Global Tech., Inc. | System and method for heating vehicle fluids |
EP1458965A1 (en) * | 2001-11-30 | 2004-09-22 | Delphi Technologies, Inc. | Cylinder deactivation to improve vehicle interior heating |
JP4196802B2 (en) * | 2003-10-07 | 2008-12-17 | 株式会社デンソー | Cooling water circuit |
JP4497082B2 (en) * | 2005-11-17 | 2010-07-07 | トヨタ自動車株式会社 | Engine coolant circulation device |
DE102009001129B4 (en) * | 2009-02-25 | 2014-07-10 | Ford Global Technologies, Llc | Cooling strategy for internal combustion engines |
DE102010010594B4 (en) * | 2010-03-08 | 2014-10-09 | Audi Ag | Cooling circuit for an internal combustion engine |
EP2609348B1 (en) * | 2010-08-25 | 2014-03-19 | Daimler AG | Hydraulic control for an automatic transmission of a motor vehicle |
DE102012200746A1 (en) * | 2012-01-19 | 2013-07-25 | Ford Global Technologies, Llc | Internal combustion engine having a pump arranged in the coolant circuit and method for operating such an internal combustion engine |
JP5552507B2 (en) * | 2012-07-20 | 2014-07-16 | 本田技研工業株式会社 | Internal combustion engine |
JP6094231B2 (en) * | 2013-01-22 | 2017-03-15 | 株式会社デンソー | Internal combustion engine cooling system |
JP2014145326A (en) * | 2013-01-30 | 2014-08-14 | Daihatsu Motor Co Ltd | Internal combustion engine |
US8944017B2 (en) * | 2013-05-30 | 2015-02-03 | GM Global Technology Operations LLC | Powertrain cooling system with cooling and heating modes for heat exchangers |
DE102013217154A1 (en) * | 2013-08-28 | 2015-03-05 | Ford Global Technologies, Llc | Temperature control arrangement for transmission oil of a motor vehicle and method for controlling the temperature of transmission oil of a motor vehicle |
US9222571B2 (en) | 2013-09-13 | 2015-12-29 | Gm Global Technology Operations, Llc | Temperature management system for transmission using split engine cooling |
DE102013019687B3 (en) * | 2013-11-26 | 2015-03-26 | Audi Ag | Cooling system for a hybrid vehicle comprising at least one electric drive machine and at least one internal combustion engine and method for its regulation |
US20170241324A1 (en) * | 2014-08-21 | 2017-08-24 | Borgwarner Inc. | Thermal management system with heat recovery and method of making and using the same |
WO2016069257A1 (en) * | 2014-10-28 | 2016-05-06 | Borgwarner Inc. | A fluid system and method of making and using the same |
DE202015101010U1 (en) * | 2015-03-02 | 2015-03-20 | Ford Global Technologies, Llc | Heat exchanger arrangement for a motor vehicle |
-
2015
- 2015-07-08 DE DE102015212733.8A patent/DE102015212733A1/en not_active Withdrawn
-
2016
- 2016-06-08 CN CN201680022283.7A patent/CN107532500B/en active Active
- 2016-06-08 EP EP16728292.0A patent/EP3320197B1/en active Active
- 2016-06-08 WO PCT/EP2016/062934 patent/WO2017005438A1/en active Application Filing
-
2017
- 2017-10-30 US US15/796,922 patent/US10480389B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007128123A1 (en) * | 2006-05-08 | 2007-11-15 | Magna Powertrain Inc. | Vehicle cooling system with directed flows |
Also Published As
Publication number | Publication date |
---|---|
WO2017005438A1 (en) | 2017-01-12 |
CN107532500A (en) | 2018-01-02 |
EP3320197A1 (en) | 2018-05-16 |
CN107532500B (en) | 2019-12-10 |
DE102015212733A1 (en) | 2017-01-12 |
US10480389B2 (en) | 2019-11-19 |
US20180066566A1 (en) | 2018-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1947308B1 (en) | Integrated motor cooling system | |
EP1900919B1 (en) | Coolant circuit | |
DE102010025733B4 (en) | Heat exchange systems for motor vehicles | |
DE102017207159B4 (en) | POWERTRAIN THERMAL MANAGEMENT SYSTEM | |
DE19954327B4 (en) | Method and device for transporting heat energy generated in a motor vehicle | |
EP3320197B1 (en) | Coolant circuit for a liquid-cooled transmission | |
EP2562379B1 (en) | Coolant circuit | |
EP2309106A1 (en) | Cooling system | |
DE112016001062B4 (en) | Cooling device of an internal combustion engine for a vehicle and a method for its control | |
DE102015102551B4 (en) | Cooling device for a motor | |
EP1923549B1 (en) | Cooling system for a motor vehicle | |
EP3530901A1 (en) | Combustion engine and motor vehicle | |
DE102016205050A1 (en) | Intake air temperature control device for a vehicle engine | |
DE102018110234B4 (en) | Cooling device for an internal combustion engine | |
DE102004021551A1 (en) | Cooling system especially for vehicle has a main cooling circuit and with several parallel circuits with different performance to cool accessories | |
DE3424580C1 (en) | Cooling system for a liquid-cooled internal combustion engine | |
EP2562378B1 (en) | Strategy to operate a split coolant circuit | |
DE102013204056B4 (en) | Control of a cooling device for an internal combustion engine of a motor vehicle as a function of operating and environmental conditions of the internal combustion engine | |
DE112015004273T5 (en) | Control device and method for a refrigeration system | |
WO2003093661A1 (en) | Device and method for cooling an internal combustion engine | |
DE112008003840B4 (en) | Cooling device, cooling circuit and cooling method for an internal combustion engine | |
DE102006048527B4 (en) | Cooling circuit for an internal combustion engine | |
DE112014004338T5 (en) | Cooling system in a vehicle | |
DE112011104871B4 (en) | cooling system | |
DE102013211156A1 (en) | Liquid-cooled internal combustion engine with secondary circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170828 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20181126 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502016004243 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1121791 Country of ref document: AT Kind code of ref document: T Effective date: 20190515 Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190417 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190417 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190417 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190417 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190417 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190417 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190717 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190417 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190417 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190817 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190718 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190417 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190417 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190417 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190717 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190817 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502016004243 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190417 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190417 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190417 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190417 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190417 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190417 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190417 |
|
26N | No opposition filed |
Effective date: 20200120 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190417 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190608 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190630 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190630 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190608 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190630 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190417 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190417 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190417 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20160608 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190417 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1121791 Country of ref document: AT Kind code of ref document: T Effective date: 20210608 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210608 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230502 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240620 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240605 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240621 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240628 Year of fee payment: 9 |