[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP3319724A1 - Zeolitic adsorbents, method for the production thereof, and uses of same - Google Patents

Zeolitic adsorbents, method for the production thereof, and uses of same

Info

Publication number
EP3319724A1
EP3319724A1 EP16741570.2A EP16741570A EP3319724A1 EP 3319724 A1 EP3319724 A1 EP 3319724A1 EP 16741570 A EP16741570 A EP 16741570A EP 3319724 A1 EP3319724 A1 EP 3319724A1
Authority
EP
European Patent Office
Prior art keywords
zeolite
adsorbent
potassium
barium
adsorbent according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16741570.2A
Other languages
German (de)
French (fr)
Inventor
Ludivine Bouvier
Catherine Laroche
Julien Grandjean
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Arkema France SA
Original Assignee
IFP Energies Nouvelles IFPEN
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN, Arkema France SA filed Critical IFP Energies Nouvelles IFPEN
Publication of EP3319724A1 publication Critical patent/EP3319724A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/12Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers
    • C07C7/13Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers by molecular-sieve technique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • B01J20/186Chemical treatments in view of modifying the properties of the sieve, e.g. increasing the stability or the activity, also decreasing the activity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/067C8H10 hydrocarbons
    • C07C15/08Xylenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C201/00Preparation of esters of nitric or nitrous acid or of compounds containing nitro or nitroso groups bound to a carbon skeleton
    • C07C201/06Preparation of nitro compounds
    • C07C201/16Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/82Purification; Separation; Stabilisation; Use of additives
    • C07C209/86Separation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/68Purification; separation; Use of additives, e.g. for stabilisation
    • C07C37/70Purification; separation; Use of additives, e.g. for stabilisation by physical treatment
    • C07C37/82Purification; separation; Use of additives, e.g. for stabilisation by physical treatment by solid-liquid treatment; by chemisorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C205/00Compounds containing nitro groups bound to a carbon skeleton
    • C07C205/06Compounds containing nitro groups bound to a carbon skeleton having nitro groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/44Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring
    • C07C211/49Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring having at least two amino groups bound to the carbon skeleton
    • C07C211/50Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring having at least two amino groups bound to the carbon skeleton with at least two amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton

Definitions

  • the invention relates to adsorbents based on agglomerated crystals of zeolite X comprising barium and potassium, their preparation process and their uses.
  • adsorbents may be used more particularly for the production in the liquid phase or gas phase of very pure para-xylene from an aromatic hydrocarbon feed containing isomers containing 8 carbon atoms.
  • adsorbents comprising crystalline aluminosilicates can be used to separate certain hydrocarbons from mixtures containing them.
  • aromatic hydrocarbon separation and in particular the separation of aromatic C8 isomers, it is generally recognized that the use of particular cations in cationic sites of zeolitic crystalline aluminosilicates improves the selectivity of the zeolite for C8-aromatic isomers.
  • This differentiated adsorption within the zeolite allows the separation of the different C8-aromatic isomers, which is used industrially for the production of very pure para-xylene from an aromatic hydrocarbon feed containing 8-atom isomers. carbon.
  • zeolitic adsorbents consisting of X or Y zeolites comprising, besides sodium cations, barium, potassium or strontium ions, alone or in mixtures, for selectively adsorbing the para-xylene in the liquid phase in a liquid phase.
  • mixture of aromatic hydrocarbons is well known from the prior art.
  • zeolites for aromatic hydrocarbons containing 8 carbon atoms vary. very finely depending on the size and shape of the pores as well as the position of the cations inside the structure that affect both the electrostatic field present inside the zeolite and the shape accessible volume in the pores.
  • Other parameters, such as the polarizability of cations and molecules or the flexibility of the structure can also have an influence. It is therefore extremely difficult to predict theoretically and precisely the adsorption characteristics of a zeolite with respect to aromatic hydrocarbons containing 8 carbon atoms.
  • Patent FR 2,903,978 teaches that potassium ions may represent up to 1/3 of exchangeable sites occupied by barium and potassium, but this patent does not fill any adsorbent containing potassium and provides no teaching allowing to anticipate the impact of potassium on adsorption selectivities.
  • US Pat. Nos. 8,283,274 and 8,557,028 describe adsorbents having potassium content by weight of between 0.25% and 0.9% by weight, corresponding to molar ratios K20 / (BaO + K 2 0 + Na 2). 0) of between 1.3% and 4.5%.
  • US Pat. No. 8,557,028 claims adsorbents having potassium content by weight of between 0.9 and 1.5%, equivalent to K20 / (BaO + K 2 0 + Na 2 0) molar ratios of between 4.5% and 7.5%.
  • the examples of the latter patent show that productivity and operating costs are improved with adsorbents having potassium contents of between 0.7% and 1.2% by weight.
  • CN 1267185 discloses adsorbents having molar ratios BaO / K 2 0 of between 10 and 40 corresponding to molar ratios K 2 0 / (BaO + K 2 0 + Na 2 0) of between 2.4% and 9, 1%.
  • the recent patent US 2015/0105600 describes meanwhile an adsorbent based on zeolite X, barium and potassium, having a molar ratio K 2 0 / (BaO + K 2 0 + Na 2 0) between 15 % and 40%.
  • zeolites The synthesis of zeolites leads to crystals (generally in the form of powder) whose use on an industrial scale is particularly difficult (significant pressure losses during handling). Agglomerated forms of these crystals, in the form of grains, yarns and other agglomerates, are preferred, these forms being able to be obtained by extrusion, pelletizing, and other agglomeration techniques known to those skilled in the art. These agglomerates do not have the disadvantages inherent to the pulverulent materials.
  • agglomerates whether in the form of platelets, beads, extrudates, and the like, are generally formed of zeolite crystals (s), which constitute the active element (in the sense of adsorption ) and a binder intended to ensure the cohesion of the crystals in the form of agglomerates and to give them sufficient mechanical strength to withstand the vibrations and the movements to which they are subjected during the operations of separating the isomers of the aromatic cuts in C8 .
  • zeolite crystals which constitute the active element (in the sense of adsorption ) and a binder intended to ensure the cohesion of the crystals in the form of agglomerates and to give them sufficient mechanical strength to withstand the vibrations and the movements to which they are subjected during the operations of separating the isomers of the aromatic cuts in C8 .
  • the adsorption properties of these agglomerates are obviously reduced compared to the crystal powder, because of the presence of agglomeration binder inert with respect to
  • zeolitization To easily perform this operation, zeolitizable binders are used, most often clays belonging to the family of kaolinite, and preferably previously calcined at temperatures generally between 500 ° C and 700 ° C.
  • patent application FR 2 789 914 describes a process for the production of agglomerates of zeolite X, with an Si / Al ratio of between 1, 15 and 1.5, containing barium and optionally potassium.
  • the agglomerates thus obtained, after zeolization of the binder, have, from the point of view of the adsorption of the para-xylene contained in the C8 aromatic cuts, improved properties compared with adsorbents prepared from the same amount of zeolite X and binder, but whose binder is not zeolite.
  • the important factors that influence the performance of an adsorption separation process include in particular the adsorption selectivity, the adsorption capacity and the material transfer kinetics which defines the adsorption rates and desorption of the various compounds.
  • the adsorbent must therefore have good material transfer properties in order to guarantee a sufficient number of theoretical plates to achieve effective separation of the species in mixture, as Ruthven indicates in the book entitled “Principles of Adsorption and Adsorption Processes"("Principles of Adsorption and Adsorption Processes”), John Wiley & Sons, (1984), pages 326 and 407.
  • the diffusional resistance between the crystals (also called macroporous resistance) is in turn proportional to the square of the rays of the agglomerates and inversely proportional to the diffusivity of the molecules in the macropores.
  • the diffusivities are fixed, and the only way to improve the transfer of material is to reduce the crystal diameter. A gain on the overall transfer will thus be obtained by reducing the size of the crystals.
  • agglomerated zeolite adsorbents having both good xylenes adsorption capacity and good selectivity for para-xylene, have very good separation properties.
  • xylenes when they are made from small zeolite crystals in liquid phase processes for separating para-xylene contained in C8 aromatic cuts, for example of simulated countercurrent type.
  • Those skilled in the art are, however, unable to define a priori or theoretically and precisely the adsorption characteristics of a FAU zeolite, especially of type X, having a particular composition of barium and potassium, opposite aromatic hydrocarbons having 8 carbon atoms.
  • the present invention aims to provide novel adsorbents based on zeolite X comprising barium, potassium and sodium and having a particular composition of barium, potassium and sodium, optimal for simultaneously maximize productivity and minimize the production costs of the para-xylene separation process contained in the C8 aromatic cuts.
  • the present invention also provides a process for the separation of xylenes using an X-zeolite adsorbent having a particular composition of barium, potassium and sodium, allowing the production of high purity para-xylene with a improved productivity from an aromatic hydrocarbon feed containing 8-carbon isomers.
  • the invention relates to a zeolitic adsorbent comprising crystals of zeolite X and comprising barium, potassium and sodium, in which the molar ratio K 2 0 / (K 2 0 + BaO + Na 2 0) (species in the form of oxides) is between 9.5% and 14.5%, preferably between 10% and 14%, and preferably between 11% and 13%.
  • the molar ratio in K 2 0 / (K 2 0 + BaO + Na 2 O) is equal to 12%.
  • the molar ratio K 2 0 / (K 2 0 + BaO + Na 2 0) is expressed as a percentage of the number of moles of K 2 0 relative to the sum of the number of moles of (K 2 0 + BaO + Na 2 O).
  • the sodium oxide content Na 2 0 is preferably less than 0.3% by weight and preferably less than 0.2% by weight relative to the total mass of the adsorbent.
  • the total content of oxides of alkaline or alkaline earth ions other than barium oxide BaO, potassium oxide K 2 0 and sodium oxide Na 2 0 is advantageously less than 1% by weight, preferably between 0 and 0.5% by weight, and very preferably between 0 and 0.3% by weight, relative to the total mass of the adsorbent.
  • the zeolite crystals X advantageously have an Si / Al atomic ratio of between 1, 00 and 1, 50, preferably between 1, 05 and 1, 50 and more preferably between 1, 10 and 1, 50.
  • the number average diameter of the zeolite crystals X is less than or equal to 1.5 ⁇ , preferably between 0.1 ⁇ and 1.2 ⁇ , more preferably between 0.1 ⁇ and 1, 0 ⁇ .
  • the loss on ignition of the adsorbent according to the invention measured at 950 ° C according to the standard NF EN 196-2 is advantageously between 4.0 and 7.7% and preferably between 4.5 and 6 , 5% and most preferably between 4.8 and 6% by weight.
  • the average diameter in number of the adsorbent according to the invention may be between 0.2 mm and 2 mm, in particular between 0.2 mm and 0.8 mm and preferably between 0.2 mm and 0 mm. , 65 mm.
  • the invention also relates to a process for preparing an adsorbent as described above, comprising at least the steps of:
  • the process for preparing the adsorbent implements a step b) of zeolitization of the binder.
  • Preference or solutions of barium ions, or potassium or barium and potassium steps c) and d) have a concentration between 0.2M and 2M.
  • the invention also relates to an adsorbent as described above, obtainable according to the preparation method above.
  • the invention also relates to the use of said adsorbent according to the invention in the processes of:
  • the invention also relates to a process for recovering para-xylene from cuts of aromatic hydrocarbon isomers containing 8 carbon atoms, in the liquid phase, by adsorption of para-xylene by means of said adsorbent according to US Pat. invention in the presence of a desorbent, preferably selected from toluene and para-diethylbenzene.
  • Said method may be simulated moving bed type, preferably simulated counter current.
  • the invention also relates to a process for recovering para-xylene from aromatic hydrocarbon isomer cuts containing 8 carbon atoms, in the gas phase, by adsorption of para-xylene by means of said adsorbent according to US Pat. invention in the presence of a desorbent, preferably selected from toluene and para-diethylbenzene.
  • the invention further relates to a process for separating polyhydric alcohols using said adsorbent according to the invention.
  • the invention further relates to a process for separating isomers of substituted toluene such as nitrotoluene, diethyltoluene, toluenediamine, using said adsorbent according to the invention.
  • the invention finally relates to a process for separating cresols using said adsorbent according to the invention.
  • the present invention thus has for its first object zeolite X-based zeolite adsorbents. These adsorbents are particularly suitable for use in a process for separating para-xylene in the liquid phase, preferably of simulated countercurrent type.
  • the present invention relates to a zeolite adsorbent comprising zeolite X crystals and comprising barium, potassium and sodium, in which the molar ratio K 2 0 / (K 2 0 + BaO + Na 2 0) is between 9.5% and 14.5%, preferably between 10% and 14%, and preferably between 11% and 13%.
  • the molar ratio in K 2 0 / (K 2 0 + BaO + Na 2 0), expressed in terms of oxides is equal to 12%.
  • the adsorbents according to the invention may also comprise a non-zeolitic phase, that is to say a non-crystalline phase which is essentially inert with respect to the adsorption.
  • a non-zeolitic phase the molar ratio K 2 0 / (K 2 0 + BaO + Na 2 0) takes into account the oxides included in said non-zeolitic phase.
  • the content of sodium oxide Na 2 0 in the adsorbent according to the invention is advantageously less than 0.3% by weight and preferably less than 0.2% by weight relative to the total mass of the adsorbent.
  • the total content of oxides of alkaline or alkaline-earth ions other than barium oxide BaO, potassium oxide K 2 0 and sodium oxide Na 2 0 in the adsorbent according to the invention is advantageously less than at 1% by weight, preferably between 0 and 0.5% by weight, and very preferably between 0 and 0.3% by weight, relative to the total mass of the adsorbent.
  • the zeolitic adsorbent according to the present invention is an adsorbent based on zeolite crystals FAU type X.
  • zeolite X is meant zeolites whose Si / Al atomic ratio is between 1, 00 and 1, 50, preferably between 1, 05 and 1, 50 and even more preferably between 1, 10 and 1 50.
  • zeolites X it is now generally accepted to recognize two subgroups called zeolites LSX and zeolites MSX.
  • the LSX zeolites have an Si / Al atomic ratio equal to about 1 and the MSX zeolites have an Si / Al atomic ratio of between about 1.05 and about 1.15.
  • the term "zeolite type FAU X" means the zeolites FAU type X defined above, said zeolites being hierarchically porous that is, zeolites of type X with hierarchical porosity (or zeolite XPH), zeolites of MSX type with hierarchical porosity (or MSXPH) and zeolites of LSX type with hierarchical porosity (or LSXPH), and more especially the FAU zeolites with a hierarchical porosity and Si / Al atomic ratio of between 1, 00 and 1, 50, preferably between 1.05 and 1.5, more preferably between 1.05 and 1.40, and even more preferred, between 1, 15 and 1, 40.
  • the invention also comprises zeolitic adsorbents comprising mixtures of two or more FAU zeolites with hierarchical porosity as they have just been defined.
  • zeolite By “hierarchically porous zeolite” is meant a zeolite having both micropores and mesopores, ie a zeolite both microporous and mesoporous.
  • mesoporous zeolite By “mesoporous zeolite” is meant a zeolite whose microporous zeolite crystals have, together with the microporosity, internal cavities of nanometric size (mesoporosity), easily identifiable by observation by means of a Transmission Electron Microscope (TEM or "TEM"). In the English language), as described for example in US Pat. No.
  • TEM transmission electron microscopy
  • the crystalline structure of the X-type FAU zeolite in the zeolite adsorbent of the present invention is identifiable by X-ray diffraction (known to those skilled in the art under the acronym DRX).
  • the zeolite adsorbent has an Si / Al atomic ratio of between 1.00 and 2.00, preferably between 1.00 and 1.80, more preferably between 1.15 and 1. , 80, and even more preferably between 1, 15 and 1, 60.
  • the term "number average diameter" or "size” is used for zeolite crystals and for zeolite agglomerates. The method of measuring these quantities is explained later in description.
  • the number average diameter of the zeolite crystals X is less than or equal to 1.5 ⁇ , preferably between 0.1 ⁇ and 1.2 ⁇ , more preferably included between 0.1 ⁇ and 1,0 ⁇ .
  • the zeolite adsorbent of the invention is preferably in the form of an agglomerate, that is to say it consists of zeolite crystals (s) and at least one non-zeolite phase which may comprise an agglomeration binder allowing the cohesion of the crystals between them.
  • agglomerated agglomerated
  • the mass fraction of zeolite X in the adsorbent according to the present invention may be at least 80% by weight of zeolite (s) X relative to the total weight of the adsorbent, preferably at least 90% by weight. %, this mass fraction being up to 100% and typically up to 99.5% by weight.
  • the zeolite adsorbent according to the invention has a loss on ignition measured at 950 ° C according to the NF EN 196-2 standard of between 4.0% and 7.7%, preferably between 4.5 and 6.5% and advantageously between 4.8 and 6%.
  • the zeolitic adsorbent according to the present invention preferably has a mechanical strength generally greater than or equal to 1.8 MPa, typically greater than or equal to 2.1 MPa. This mechanical resistance is measured by the Shell method SMS1471 -74 series suitable for agglomerates of size less than 1, 6 mm.
  • the adsorption capacity is measured by measuring the microporous volume of the adsorbent evaluated according to the Dubinin-Raduskevitch equation by adsorption of nitrogen (N 2 ) at a temperature of 77K, after degassing. under vacuum at 300 ° C for 16 hours.
  • the microporous volume of the zeolite adsorbents of the invention was thus measured to be greater than 0.250 cm 3 / g, typically in a range from 0.256 cm 3 / g to 0.288 cm 3 / g.
  • the invention relates to a method for preparing zeolite agglomerates as just defined, which process comprises at least the steps of:
  • the process for preparing zeolite agglomerates implements a step b) of zeolitization of the binder.
  • Preference or solutions of barium ions, or potassium or barium and potassium steps c) and d) have a concentration between 0.2M and 2M.
  • the size of the zeolite X crystals used in step a) is measured by observation under a scanning electron microscope (SEM) or observation by transmission electron microscope (TEM). This observation MEB or MET also confirms the presence of non-zeolite phase comprising for example the binder or the unconverted residual binder during the optional zeolitization step or any other amorphous phase in the agglomerates.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the zeolite X used in step a) comprises, preferably is, an X type FAU zeolite with hierarchical porosity.
  • the X-type FAU zeolite crystals with a hierarchical porosity having a large external surface can be obtained according to various methods known to those skilled in the art and for example according to the synthesis described by Inayat et al. (Angew Chem Int.Ed., (2012), 51, 1962-1965).
  • the post-treatment processes generally consist in eliminating atoms of the zeolite network already formed, either by one or more acid treatments which dealuminate the solid, treatment (s) followed by one or more washing (s) to sodium hydroxide (NaOH) in order to eliminate the aluminum residues formed, as described for example by D. Verboekend et al. ⁇ Adv. Funct. Mater., 22, (2012), pp. 916-928), or else by treatments which combine the action of an acid and that of a structuring agent which improve the efficiency of the acid treatment, as described for example in the application WO2013 / 106816.
  • the agglomeration and the shaping (step a) can be carried out according to all the techniques known to those skilled in the art, such as extrusion, compaction, agglomeration, and others.
  • the proportions of agglomeration binder, optionally zeolitizable (see definition below) and zeolite (s) used are typically those of the prior art, that is to say from 5 parts to 20 parts by weight binder for 95 parts to 80 parts by weight of zeolite.
  • the agglomerates resulting from stage a), whether in the form of beads, extrudates or the like, generally have a number average diameter (or their largest dimension when they are not spherical) between 0.degree. , 2 mm and 2 mm, and in particular between 0.2 mm and 0.8 mm and preferably between 0.2 mm and 0.65 mm.
  • the finer agglomerates particles can be removed by cycloning and / or sieving and / or too large particles by sieving or crushing, in the case of extrudates, for example.
  • the agglomeration binder used in step a) can be zeolitizable. It then contains at least 80% preferably, at least 90%, more preferably at least 95%, more particularly at least 96%, by weight, of zeolitic clay and may also contain other inorganic binders such as bentonite, attapulgite, and others.
  • zeolitizable clay is meant a clay or a mixture of clays which are capable of being converted into zeolite material (that is to say, active material in the sense of adsorption), most often by action of a basic alkaline solution.
  • Zeolizable clay generally belongs to the family of kaolin, kaolinite, nacrite, dickite, halloysite and / or metakaolin. Kaolin is preferred and most commonly used.
  • clays such as in particular sepiolite or attapulgite may also be used.
  • the clays can be used in their raw state or may be previously subjected to one or more treatments, for example selected from calcination, acid treatment, chemical modification, and others.
  • the zeolite X powder used in step a) can be derived from the synthesis of zeolite X crystals comprising predominantly, see only sodium cations, for example NaX zeolites, but we would not go outside the box. of the invention using a powder having undergone one or more cationic exchanges, after its synthesis and before its implementation in step a).
  • one or more additives may also be added, for example additives intended to facilitate the agglomeration or to improve the hardening of the formed agglomerates such as lignin, starch, carboxymethylcellulose, and other additives known to those skilled in the art.
  • Silica can also be added.
  • the possible source of silica may be of any type known to those skilled in the art, specialist in the synthesis of zeolites, by example of colloidal silica, diatoms, perlite, fly ash in English, sand, or any other form of solid silica.
  • step a After drying in step a), the calcination is conducted at a temperature generally between 500 ° C and 600 ° C.
  • this step makes it possible to transform the zeolite clay, typically kaolin, into metakaolin which can after being converted into zeolite during the zeolitization step (step b)) .
  • the principle is set forth in D.W. Breck's "Zeolite Molecular Sieves," John Wiley and Sons, New York, (1973), p. 314-315.
  • the zeolitization of the agglomeration binder is carried out according to any method known to those skilled in the art and may for example be carried out by immersion of the product of step a) in an alkaline basic solution, generally aqueous, for example an aqueous solution of sodium hydroxide and / or potassium hydroxide.
  • an alkaline basic solution generally aqueous, for example an aqueous solution of sodium hydroxide and / or potassium hydroxide.
  • the concentration of the alkaline zeolitization solution is preferably between 0.5M and 5M.
  • the zeolitization is preferably carried out hot, at a temperature above room temperature, and typically at room temperature. temperatures of the order of 80 ° C to 100 ° C, for example between room temperature (about 20 ° C) and the boiling temperature of the alkaline solution of zeolitization.
  • the duration of the zeolitization process is generally between a few tens of minutes and a few hours, preferably between about 1 hour and 8 hours.
  • Steps c) and d) of barium and / or potassium exchange of the zeolite X cations are carried out according to the conventional methods known to those skilled in the art, and most often by contacting the agglomerates from step a) or step b) with a salt, such as barium chloride (BaCl 2 ) for barium exchange and / or potassium chloride (KCl) for exchange at potassium, in aqueous solution at a temperature between room temperature and 100 ° C, and preferably between 80 ° C and 100 ° C.
  • a salt such as barium chloride (BaCl 2 ) for barium exchange and / or potassium chloride (KCl) for exchange at potassium
  • one or more ion exchange (s) are made using solutions aqueous solutions of barium ions and aqueous solutions of potassium ions, for example potassium chloride and barium chloride, at concentrations typically between 0.05 M and 1.5 M, preferably between 0.1 M and 1 M , 2 M.
  • at least one ion exchange is carried out using an aqueous solution of barium ions and potassium ions (corresponding to step c)).
  • step d) of the method of the invention is not performed. This embodiment is the preferred mode.
  • At least one ion exchange is first carried out using an aqueous solution of barium ions (corresponding to step c)), then at least one ion exchange is carried out in using an aqueous solution of potassium ions (corresponding to step d)).
  • At least one ion exchange is first carried out using an aqueous solution of potassium ions (corresponding to step c)), then at least one ion exchange is carried out in using an aqueous solution of barium ions (corresponding to step d)).
  • Each exchange step can be performed one or more times.
  • the exchange or exchanges are carried out according to the techniques well known to those skilled in the art, for example at temperatures between room temperature (ie about 20 ° C) and 100 ° C, preferably between 80 and 100 ° C, generally at atmospheric pressure, the exchange or exchanges being generally carried out for periods ranging from a few minutes to a few hours, preferably typically between 30 minutes and 3 hours.
  • the adjustment of the molar ratio K 2 0 / (K 2 0 + BaO + Na 2 0) is carried out according to any methods known to those skilled in the art, and for example by exchanging with a large excess of barium ions so to obtain rapidly low levels of sodium oxide Na 2 0, ie less than 1%, preferably less than 0.3%, and then performing an exchange with an aqueous solution of potassium ions containing the necessary molar amount of potassium ions to obtain the desired molar ratio K 2 0 / (K 2 0 + BaO + Na 2 0).
  • step a) it is also possible to agglomerate in step a) of the zeolite X powder already containing potassium ions (pre-exchange of the cations present in the starting zeolite X, typically sodium cations, by potassium ions before step a)) and free or not potassium exchanges in steps c) and / or d).
  • the activation which follows the drying is carried out in a conventional manner, according to the methods known to those skilled in the art, for example at a temperature in general of between 100 ° C. and 400 ° C., preferably between 200 ° C. C and 300 ° C.
  • This step f) The purpose of the activation is to set the optimum water content and loss of the adsorbent for the intended use.
  • thermal activation is carried out preferably between 200 ° C and 300 ° C for a predetermined period depending on the desired water content and loss on fire, typically 1 to 6 hours.
  • the invention relates in particular to a process for recovering para-xylene at high purity from aromatic isomer cuts with 8 carbon atoms comprising the use, as para-xylene adsorption agent, of a zeolite adsorbent according to the invention, implemented in processes in the liquid phase but also in the gas phase.
  • para-xylene of high purity we mean a product suitable for use in the production of terephthalic acid or dimethyl terephthalate, that is to say a purity of at least 99.5% by weight, preferably at at least 99.7% by weight, preferably at least 99.8% by weight and more preferably at least 99.9% by weight.
  • the purity of para-xylene can be determined by chromatographic methods.
  • a gas chromatographic method that can be used both for determining the purity of para-xylene and specific amounts of impurities is ASTM Method D-3798.
  • the process for recovering para-xylene according to the invention using the adsorbent described according to the invention has the advantage of maximizing productivity but also of minimizing the operating costs of the process, that is to say both to maximize the load flow to be treated and to minimize the desorbent flow required. This is particularly true under the following simulated countercurrent industrial adsorption unit operating conditions: • number of beds: 6 to 30,
  • Desorbent / charge flow ratio between 0.7 and 2.5, for example between 0.9 and 1.8, for a single adsorption unit (stand alone) and between 0.7 and 1.4 for a unit. adsorption combined with a crystallization unit,
  • Recycling rate i.e. ratio of the average recycling rate (average of zone flow weighted by the number of beds per zone) to the load flow rate) between 2.5 and 12, preferably between 3.5 and 6.
  • the desorption solvent may be any desorbent known to those skilled in the art and whose boiling point is lower than that of the filler, such as toluene but also a desorbent whose boiling point is greater than that of the feed, such as para-diethylbenzene (PDEB).
  • PDEB para-diethylbenzene
  • the selectivity of the adsorbents according to the invention for the adsorption of para-xylene contained in C8 aromatic cuts is optimal when their loss on ignition measured at 950 ° C. is generally between 4.0% and 7.7%. and preferably between 4.5% and 6.5%, and very preferably between 4.8% and 6.0%.
  • the estimation of the number average diameter of the zeolite X crystals used in step a) and the zeolite X crystals contained in the agglomerates is carried out by observation under a scanning electron microscope (SEM) or by microscopic observation. transmission electronics (MET).
  • SEM scanning electron microscope
  • MET transmission electronics
  • An elemental chemical analysis of the final product obtained at the end of steps a) to f) described above, can be carried out according to various analytical techniques known to those skilled in the art. Among these techniques, mention may be made of the technique of chemical analysis by X-ray fluorescence as described in standard NF EN ISO 12677: 201 1 on a wavelength dispersive spectrometer (WDXRF), for example Tiger S8 of the Bruker company.
  • WDXRF wavelength dispersive spectrometer
  • X-ray fluorescence is a non-destructive spectral technique exploiting the photoluminescence of atoms in the X-ray domain to establish the elemental composition of a sample.
  • the excitation of the atoms generally by an X-ray beam or by bombardment with electrons, generates specific radiations after return to the ground state of the atom.
  • the X-ray fluorescence spectrum has the advantage of relying very little on the chemical combination of the element, which offers a precise determination, both quantitative and qualitative. A measurement uncertainty of less than 0.4% by weight is obtained conventionally after calibration for each oxide.
  • the barium, silicon, and aluminum contents are preferably measured by the X-ray fluorescence method described above.
  • ICP-OES inductively coupled plasma
  • ICP is a method of analysis by atomic emission spectrometry whose source is a plasma generated by inductive coupling. This method is also commonly used to determine the contents of various elements such as silicon, aluminum, potassium, sodium and barium.
  • the sodium and potassium contents are preferably measured by the ICP method according to the UOP 961-12 standard.
  • the sodium an uncertainty of less than 0.01% is obtained for the content by weight of the sodium oxide in the adsorbent and for potassium an uncertainty on the measurement of less than 0.02% for the content by weight of the potassium oxide in the adsorbent.
  • the quality of the ion exchange is related to the number of moles of sodium oxide, Na 2 0, remaining in the zeolite agglomerate after exchange. More specifically, the exchange rate by the barium ions is determined by the ratio between the number of moles of barium oxide, BaO, and the number of moles of the whole (BaO + K 2 0 + Na 2 0). . Similarly, the exchange rate by the potassium ions is determined by the ratio between the number of moles of potassium oxide, K 2 0, and the number of moles of the whole (BaO + K 2 0 + Na 2 0). BaO, K 2 0 and Na 2 0 are expressed as oxides.
  • the total exchange rate by barium and potassium ions is estimated from the sum of the two exchange rates described above, corresponding to the ratio between the sum of the number of moles of barium oxide and potassium oxide (BaO + K 2 0) and the number of moles of the group (BaO + K 2 0 + Na 2 0). It should be noted that the contents of various oxides are given in percentage by weight relative to the total weight of the anhydrous zeolite adsorbent. In the description of the present invention, the measurement uncertainty on the molar ratio K 2 0 / (K 2 O + BaO + Na 2 0) is 0.3%.
  • the determination of the number average diameter of the zeolite adsorbents obtained at the end of step a) of agglomeration and shaping is carried out by analysis of the particle size distribution of an agglomerate sample by imaging according to ISO 13322-2: 2006, using a treadmill that allows the sample to pass in front of the camera lens.
  • the number average diameter is then calculated from the particle size distribution by applying the ISO 9276-2: 2001 standard.
  • the term "average number diameter” or "size” is used for zeolite agglomerates.
  • the accuracy is of the order of 0.01 mm for the agglomerate size range of the invention.
  • SMS1471 -74 series Shell Method Series SMS1471 -74 Determination of Bulk Crushing Strength of Catalysts, Compression-Sieve Method "), associated with the" BCS Tester "apparatus marketed by Vinci Technologies, this method initially intended for characterization catalysts from 3 to 6 mm is based on the use of a screen of 425 ⁇ which will allow in particular to separate the fines created during the crash.
  • the use of a 425 ⁇ sieve remains suitable for particles with a diameter greater than 1.6 mm, but must be adapted according to the particle size of the zeolitic adsorbents that are to be characterized.
  • ASTM D7084-04 which also describes a method for measuring the catalyst bed crush strength ("Determination of Bulk Crush Strength of Catalysts and Catalyst Carriers") defines the passage of the sieve to be used as being equal to the half the diameter of the catalyst particles to be characterized. The method provides a preliminary step of sieving the sample of catalysts or adsorbents to be characterized. If an amount equal to 10% weight of the sample passes through the grid, a smaller pass screen will be used.
  • the agglomerates of the present invention generally in the form of beads or extrudates, generally have a number average diameter or a length, ie the largest dimension in the case of non-spherical agglomerates, of between 0.2 mm. and 2 mm, and in particular between 0.2 mm and 0.8 mm and preferably between 0.2 mm and 0.65 mm. Therefore, a suitable screen such that less than 10% by weight of the sample passes through the grid during a prior sieving step is used in place of the 425 ⁇ sieve mentioned in the standard Shell method SMS1471 -74 .
  • the measuring protocol is as follows: a 20 cm 3 sample of agglomerated adsorbents, previously sieved with the appropriate sieve and previously dried in an oven for at least 2 hours at 250 ° C. (instead of 300 ° C.) C mentioned in the standard Shell method SMS1471 -74), is placed in a metal cylinder of known internal section. An increasing force is imposed in stages on this sample by means of a piston, through a bed of 5 cm 3 of steel balls in order to better distribute the force exerted by the piston on the agglomerates of adsorbents (use balls of 2 mm diameter for particles of spherical shape of diameter strictly less than 1, 6 mm). The fines obtained at the different pressure levels are separated by sieving (with a suitable sieve) and weighed.
  • the crush resistance in bed is determined by the pressure in megaPascal (MPa) for which the amount of cumulative fines passing through the sieve is 0.5% by weight of the sample. This value is obtained by plotting the mass of fines obtained as a function of the force applied on the adsorbent bed and by interpolating at 0.5% by mass of cumulated fines.
  • the mechanical resistance to crushing in a bed is typically between a few hundred kPa and a few tens of MPa and generally between 0.3 MPa and 4 MPa. The accuracy is conventionally less than 0.1 MPa. Determination of zeolite fractions of zeolite adsorbents:
  • the crystallinity of the agglomerates is also evaluated by measuring their microporous volume by comparing it with that of a suitable reference (100% crystalline zeolite under identical cationic treatment conditions or theoretical zeolite). This microporous volume is determined from the measurement of the gas adsorption isotherm, such as nitrogen, at its liquefaction temperature. Prior to adsorption, the zeolite adsorbent is degassed between 300 ° C. and 450 ° C. for a period of 9 hours to 16 hours, under vacuum (P ⁇ 6.7 ⁇ 10 -4 Pa).
  • 77K nitrogen adsorption is then carried out on a Micromeritics ASAP 2010 M type apparatus, taking at least 35 measurement points at relative pressures of P / P 0 ratio between 0.002 and 1.
  • the microporous volume is determined according to Dubinin and Rohskevitch from the obtained isotherm, applying the ISO 15901 -3: 2007 standard
  • the microporous volume evaluated according to Dubinin and Rohskevitch is expressed in cm 3 of liquid adsorbate per gram of adsorbent. measurement is ⁇ 0.003.
  • the loss on ignition is determined in an oxidizing atmosphere, by calcination of the sample in air at a temperature of 950 ° C. ⁇ 25 ° C., as described in standard NF EN 196-2 (April 2006). The standard deviation of measurement is less than 0.1%.
  • the technique used to characterize the adsorption of molecules in liquid phase on a porous solid is the so-called drilling technique, described by Ruthven in “Principles of Adsorption and Adsorption Processes” (Chapters 8 and 9, John Wiley & Sons, 1984) which defines the technique of breakthrough curves as the study of the response to the injection of a step of adsorbable constituents.
  • the analysis of the average time of exit (first moment) of the drilling curves provides information on the adsorbed quantities and also makes it possible to evaluate the selectivities, that is to say the separation factor, between two adsorbable constituents.
  • the injection of a non-adsorbable component used as a tracer is recommended for the estimation of non-selective volumes.
  • a homogeneous mixture is prepared and 800 g of NaX zeolite crystals are agglomerated according to the procedure described in the patent application FR 2 999 098 (synthesis of Example B) with 105 g of kaolin (expressed as calcined equivalent). and 45 g of colloidal silica sold under the trade name Klebosol ® 30 (containing 30% by weight of Si0 2 and 0.5% Na 2 0) with the amount of water which allows the extrusion of the mixture. The extrudates are dried, crushed so as to recover grains whose number average diameter is equal to 0.5 mm, and then calcined at 550 ° C. under a stream of nitrogen for 2 hours.
  • agglomerates obtained 200 g are placed in a glass reactor equipped with a controlled double jacket at a temperature of 100 ° C. ⁇ 1 ° C., and then 1.5 L of an aqueous solution of hydroxide is added. of 2.5 M sodium concentration and the reaction medium is left stirring for a period of 4 hours.
  • the agglomerates are washed in 3 successive operations of washing with water followed by the emptying of the reactor.
  • the effectiveness of the washing is ensured by measuring the final pH of the washings between 10.0 and 10.5.
  • the sodium cations of the agglomerates obtained are exchanged with barium and potassium ions using an aqueous solution of 0.5M potassium chloride and barium chloride at 95 ° C in 4 steps.
  • the concentrations of potassium chloride and barium chloride in the solution are adapted in order to reach the targeted barium and potassium contents in the adsorbent and thus the K 2 0 / (K 2 0 + BaO + Na 2 0 molar ratios. ) referred to ( Figure 1).
  • the molar ratio K 2 0 / (K 2 0 + BaO + Na 2 0) of 12.0% is achieved with an aqueous solution of barium chloride of 0.36 M concentration and 0 concentration potassium chloride.
  • the volume ratio of solution to mass of solid is 20 ml / g and the exchange is continued for 3 hours each time. Between each exchange, the solid is washed several times in order to rid it of excess salt. The agglomerates are then dried at 80 ° C for 2 hours and finally activated at 250 ° C for 2 hours under a stream of nitrogen. [00104]
  • the measured loss on ignition, as described above, is 5.6% ⁇ 0.1% for each sample.
  • the barium-potassium exchange rate of the agglomerates calculated from elemental analyzes of barium and sodium oxides by X-ray fluorescence as described in the characterization techniques is 99.7 ⁇ 0.2%.
  • the content of sodium oxide Na 2 0 is 0.05% by weight relative to the total weight of the adsorbent
  • the content of barium oxide BaO is 33.83% by weight relative to the total weight of the adsorbent
  • the content of K 2 0 potassium oxide is 2.85% by weight relative to to the total weight of the adsorbent
  • a drilling test (frontal chromatography) is then performed on the agglomerates obtained in Example 1 to evaluate their effectiveness.
  • the amount of adsorbent used for this test is about 30 g.
  • the pressure is sufficient for the charge to remain in the liquid phase, ie 1 MPa.
  • the adsorption temperature is 175 ° C.
  • the composition of the load used for the tests is as follows:
  • This equation 8 refers to the adsorptivity K, of the various constituents, as well as to the parameter 3 ⁇ 4 of each section j defined by equation 7:
  • the binary selectivity a i / k between the compounds i and k is equal to the ratio of the adsorptivities K, / K k .
  • the reduced flow rate of each section of the unit is defined as the ratio of the flow rate of the liquid phase to the flow rate of the adsorbed phase. Equation 8 indicates which flow rates are reduced for each section.
  • the feed rate corresponds to the difference between the flow rate in zone 3 and the flow rate in zone 2
  • the desorbent flow rate corresponds to the difference between the flow rate in zone 1 and the flow in zone 4.
  • a high performance adsorbent is that which allows both to maximize the flow rate of the feedstock to be treated and to minimize the necessary desorbent flow rate.
  • the composition of the liquid phase which gives the strongest stress in zone 2 and in zone 3 is the composition of the liquid phase at the point of injection of the charge into unit. Indeed, from this point the concentration of para-xylene, which is the most adsorbed compound, increases in the direction of circulation of the solid in zone 2, and decreases in the direction of circulation of the liquid in zone 3. to approximate the composition of this point to the composition of the charge to be treated, and it is this composition that will be used to evaluate the term ⁇ 2 and ⁇ 3 of equation 8.
  • the terms ⁇ 2 and ⁇ 3 being defined by the equation 7 mentioned above.
  • the composition of the liquid phase which gives the strongest stress in zone 1 and in zone 4 is the composition of the liquid phase at the desorbent injection point in the unit . At this point, the liquid phase essentially contains desorbent.
  • the reduced flow rate min (m De ) is calculated from the binary selectivity values measured experimentally.
  • the ratio between max (m ch arge) and min (m D és) allows at the same time to maximize the productivity and minimize the operating costs of the paraxylene separation process contained in the C8 aromatic cuts.
  • the ratio of reduced flows between max (m Ch arge) and min (m De ) is plotted against the molar ratio K 2 0 / (K 2 0 + BaO + Na 2 0) ( Figure 1). It can be seen that the ratio max (m Ch arge) / min (m De ) is improved for a molar ratio K 2 0 / (K 2 0 + BaO + Na 2 0) of between 9.5% and 14.5 %.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The invention relates to zeolitic adsorbents based on agglomerated crystals of zeolite X comprising barium, potassium and sodium. These adsorbents are applicable in the separation of fractions of aromatic C8 isomers, especially xylenes.

Description

ADSORBANTS ZÉOLITHIQUES,  ZEOLITHIC ADSORBENTS,
LEUR PROCÉDÉ DE PRÉPARATION ET LEURS UTILISATIONS  PREPARATION METHOD AND USES THEREOF
DOMAINE TECHNIQUE TECHNICAL AREA
[0001] L'invention concerne des adsorbants à base de cristaux agglomérés de zéolithe X comprenant du baryum et du potassium, leur procédé de préparation et leurs utilisations.  The invention relates to adsorbents based on agglomerated crystals of zeolite X comprising barium and potassium, their preparation process and their uses.
[0002] Ces adsorbants peuvent être utilisés plus particulièrement pour la production en phase liquide ou phase gaz de para-xylène très pur à partir d'une charge d'hydrocarbures aromatiques contenant des isomères à 8 atomes de carbone.  These adsorbents may be used more particularly for the production in the liquid phase or gas phase of very pure para-xylene from an aromatic hydrocarbon feed containing isomers containing 8 carbon atoms.
TECHNIQUE ANTERIEURE  PRIOR ART
[0003] Il est connu dans l'art antérieur que des adsorbants comprenant des aluminosilicates cristallins peuvent être utilisés pour séparer certains hydrocarbures à partir de mélanges les contenant. Dans le domaine de la séparation d'hydrocarbures aromatiques et en particulier la séparation d'isomères en C8 aromatiques, il est généralement reconnu que l'utilisation de cations particuliers dans les sites cationiques d'aluminosilicates cristallins zéolithiques améliore la sélectivité de la zéolithe pour un des isomères en C8-aromatique. Cette adsorption différenciée au sein de la zéolithe permet la séparation des différents isomères en C8-aromatique, ce qui est utilisé industriellement pour la production de para-xylène très pur à partir d'une charge d'hydrocarbures aromatiques contenant des isomères à 8 atomes de carbone. [0003] It is known in the prior art that adsorbents comprising crystalline aluminosilicates can be used to separate certain hydrocarbons from mixtures containing them. In the field of aromatic hydrocarbon separation and in particular the separation of aromatic C8 isomers, it is generally recognized that the use of particular cations in cationic sites of zeolitic crystalline aluminosilicates improves the selectivity of the zeolite for C8-aromatic isomers. This differentiated adsorption within the zeolite allows the separation of the different C8-aromatic isomers, which is used industrially for the production of very pure para-xylene from an aromatic hydrocarbon feed containing 8-atom isomers. carbon.
[0004] Ainsi, l'utilisation d'adsorbants zéolithiques constitués de zéolithes X ou Y comprenant, outre des cations sodium, des ions baryum, potassium ou strontium, seuls ou en mélanges, pour adsorber sélectivement en phase liquide le para-xylène dans un mélange d'hydrocarbures aromatiques, est bien connue de l'art antérieur. Thus, the use of zeolitic adsorbents consisting of X or Y zeolites comprising, besides sodium cations, barium, potassium or strontium ions, alone or in mixtures, for selectively adsorbing the para-xylene in the liquid phase in a liquid phase. mixture of aromatic hydrocarbons, is well known from the prior art.
[0005] Les brevets US 3 558 730, US 3 558 732, US 3 626 020, US 3 663 638 et US 3 960 774 montrent que des adsorbants zéolithiques comprenant des aluminosilicates de structure faujasite (FAU) à base de sodium et de baryum ou à base de sodium, de baryum et de potassium, sont efficaces pour la séparation du para-xylène présent dans des coupes aromatiques en C8 (coupes comprenant des hydrocarbures aromatiques à 8 atomes de carbone). Les adsorbants ci-dessus sont de préférence utilisés comme agents d'adsorption dans les procédés en phase liquide, notamment de type contre-courant simulé, similaires à ceux décrits dans le brevet US 2 985 589 et qui s'appliquent, entre autres, aux coupes aromatiques en C8. No. 3,558,730, US 3,558,732, US 3,626,020, US 3,663,638 and US 3,960,774 show that zeolitic adsorbents comprising aluminosilicates of faujasite structure (FAU) based on sodium and barium. or based on sodium, barium and potassium, are effective for the separation of para-xylene present in C8 aromatic cuts (cuts comprising aromatic hydrocarbons with 8 carbon atoms). The above adsorbents are preferably used as adsorption agents in liquid phase processes, especially of simulated counter-current type, similar to those described in US Pat. No. 2,985,589 and which apply, inter alia, to aromatic cuts in C8.
[0006] Cependant, de manière générale, les propriétés d'adsorption des zéolithes pour les hydrocarbures aromatiques à 8 atomes de carbone (xylènes et éthylbenzène) varient de manière très fine en fonction de la taille et de la forme des pores ainsi que de la position des cations à l'intérieur de la structure qui influent à la fois sur le champ électrostatique présent à l'intérieur de la zéolithe et sur la forme du volume accessible dans les pores. D'autres paramètres, tels que la polarisabilité des cations et des molécules ou la flexibilité de la structure peuvent également avoir une influence. Il est donc extrêmement difficile de prévoir théoriquement et avec précision les caractéristiques d'adsorption d'une zéolithe vis-à-vis des hydrocarbures aromatiques à 8 atomes de carbone. However, in general, the adsorption properties of zeolites for aromatic hydrocarbons containing 8 carbon atoms (xylenes and ethylbenzene) vary. very finely depending on the size and shape of the pores as well as the position of the cations inside the structure that affect both the electrostatic field present inside the zeolite and the shape accessible volume in the pores. Other parameters, such as the polarizability of cations and molecules or the flexibility of the structure can also have an influence. It is therefore extremely difficult to predict theoretically and precisely the adsorption characteristics of a zeolite with respect to aromatic hydrocarbons containing 8 carbon atoms.
[0007] Pour améliorer la sélectivité d'adsorption de zéolithes ayant la structure faujasite pour les isomères aromatiques en C8, de nombreuses études ont fait mention de l'influence du rapport Si/AI de la zéolithe, de la nature des cations d'échange, ainsi que de leur teneur en eau. De la même manière, il est très difficile de prédire le degré d'amélioration parce que ces facteurs exercent des actions combinées sur les caractéristiques d'adsorption des zéolithes. En particulier, il est difficile de prévoir l'impact de la proportion relative d'ions baryum, et potassium dans le cas d'une zéolithe de structure faujasite (FAU) à base de baryum et de potassium, et plus précisément dans le cas d'une zéolithe de structure faujasite (FAU) de type X, à base de baryum et de potassium.  To improve the adsorption selectivity of zeolites having the faujasite structure for the C 8 aromatic isomers, numerous studies have mentioned the influence of the Si / Al ratio of the zeolite, the nature of the exchange cations. , as well as their water content. Similarly, it is very difficult to predict the degree of improvement because these factors exert combined actions on the adsorption characteristics of zeolites. In particular, it is difficult to predict the impact of the relative proportion of barium and potassium ions in the case of a zeolite of faujasite structure (FAU) based on barium and potassium, and more specifically in the case of a zeolite of Faujasite structure (FAU) type X, based on barium and potassium.
[0008] Le brevet FR 2 903 978 enseigne que les ions potassiums peuvent représenter jusqu'à 1/3 des sites échangeables occupés par le baryum et le potassium, mais ce brevet n'exemplifie aucun adsorbant contenant du potassium et ne fournit aucun enseignement permettant d'anticiper l'impact du potassium sur les sélectivités d'adsorption.  Patent FR 2,903,978 teaches that potassium ions may represent up to 1/3 of exchangeable sites occupied by barium and potassium, but this patent does not fill any adsorbent containing potassium and provides no teaching allowing to anticipate the impact of potassium on adsorption selectivities.
[0009] Les brevets US 8,283,274 et US 8,557,028 décrivent des adsorbants présentant des teneurs en poids en potassium comprises entre 0,25% et 0,9% en poids, correspondant à des rapports molaires K20/(BaO+K20+Na20) compris entre 1 ,3% et 4,5%. Le brevet US 8,557,028 revendique des adsorbants ayant des teneurs en poids en potassium comprises entre 0,9 et 1 ,5%, équivalents à des rapports molaires K20/(BaO+K20+Na20) compris entre 4,5% et 7,5%. Les exemples de ce dernier brevet montrent que la productivité et les coûts d'opération sont améliorés avec des adsorbants présentant des teneurs en potassium comprises entre 0,7% et 1 ,2% en poids. Le brevet CN 1267185 décrit des adsorbants présentant des rapports molaires BaO/K20 compris entre 10 et 40 correspondant à des rapports molaires K20/(BaO+K20+Na20) compris entre 2,4% et 9,1 %. [0010] Le brevet récent US 2015/0105600 décrit quant à lui un adsorbant à base de zéolithe X, de baryum et de potassium, ayant un rapport molaire K20/(BaO+K20+Na20) compris entre 15% et 40%. US Pat. Nos. 8,283,274 and 8,557,028 describe adsorbents having potassium content by weight of between 0.25% and 0.9% by weight, corresponding to molar ratios K20 / (BaO + K 2 0 + Na 2). 0) of between 1.3% and 4.5%. US Pat. No. 8,557,028 claims adsorbents having potassium content by weight of between 0.9 and 1.5%, equivalent to K20 / (BaO + K 2 0 + Na 2 0) molar ratios of between 4.5% and 7.5%. The examples of the latter patent show that productivity and operating costs are improved with adsorbents having potassium contents of between 0.7% and 1.2% by weight. CN 1267185 discloses adsorbents having molar ratios BaO / K 2 0 of between 10 and 40 corresponding to molar ratios K 2 0 / (BaO + K 2 0 + Na 2 0) of between 2.4% and 9, 1%. The recent patent US 2015/0105600 describes meanwhile an adsorbent based on zeolite X, barium and potassium, having a molar ratio K 2 0 / (BaO + K 2 0 + Na 2 0) between 15 % and 40%.
[0011] La synthèse des zéolithes conduit à des cristaux (généralement sous forme de poudre) dont l'emploi à l'échelle industrielle est particulièrement malaisé (pertes de charges importantes lors des manipulations). On préfère alors les formes agglomérées de ces cristaux, sous forme de grains, de filés et autres agglomérés, ces dites formes pouvant être obtenues par extrusion, pastillage, et autres techniques d'agglomération connues de l'homme du métier. Ces agglomérés ne présentent pas les inconvénients inhérents aux matières pulvérulentes.  The synthesis of zeolites leads to crystals (generally in the form of powder) whose use on an industrial scale is particularly difficult (significant pressure losses during handling). Agglomerated forms of these crystals, in the form of grains, yarns and other agglomerates, are preferred, these forms being able to be obtained by extrusion, pelletizing, and other agglomeration techniques known to those skilled in the art. These agglomerates do not have the disadvantages inherent to the pulverulent materials.
[0012] Ces agglomérés, qu'ils soient sous forme de plaquettes, de billes, d'extrudés, et autres, sont en général formés de cristaux de zéolithe(s), qui constituent l'élément actif (au sens de l'adsorption) et d'un liant destiné à assurer la cohésion des cristaux sous forme d'agglomérés et de leur conférer une résistance mécanique suffisante pour résister aux vibrations et aux mouvements auxquels ils sont soumis au cours des opérations de séparations des isomères des coupes aromatiques en C8. Cependant, les propriétés d'adsorption de ces agglomérés sont évidemment réduites par rapport à la poudre de cristaux, en raison de la présence de liant d'agglomération inerte vis-à-vis de l'adsorption. Divers moyens ont déjà été proposés pour pallier cet inconvénient du liant d'agglomération d'être inerte quant aux performances d'adsorption, parmi lesquels, la transformation de la totalité ou d'au moins une partie du liant d'agglomération en zéolithe active du point de vue de l'adsorption. Cette opération est maintenant bien connue de l'homme du métier, par exemple sous la dénomination de « zéolithisation ». Pour effectuer facilement cette opération, on utilise des liants zéolithisables, le plus souvent des argiles appartenant à la famille de la kaolinite, et de préférence préalablement calcinés à des températures généralement comprises entre 500°C et 700°C.  These agglomerates, whether in the form of platelets, beads, extrudates, and the like, are generally formed of zeolite crystals (s), which constitute the active element (in the sense of adsorption ) and a binder intended to ensure the cohesion of the crystals in the form of agglomerates and to give them sufficient mechanical strength to withstand the vibrations and the movements to which they are subjected during the operations of separating the isomers of the aromatic cuts in C8 . However, the adsorption properties of these agglomerates are obviously reduced compared to the crystal powder, because of the presence of agglomeration binder inert with respect to the adsorption. Various means have already been proposed to overcome this disadvantage of the agglomeration binder to be inert with regard to the adsorption performance, among which, the conversion of all or at least part of the agglomeration binder into active zeolite of the point of view of adsorption. This operation is now well known to those skilled in the art, for example under the name of "zeolitization". To easily perform this operation, zeolitizable binders are used, most often clays belonging to the family of kaolinite, and preferably previously calcined at temperatures generally between 500 ° C and 700 ° C.
[0013] La demande de brevet FR 2 789 914 décrit par exemple un procédé de fabrication d'agglomérés de zéolithe X, de rapport Si/AI compris entre 1 ,15 et 1 ,5, contenant du baryum et éventuellement du potassium. Les agglomérés ainsi obtenus, après zéolithisation du liant, présentent, du point de vue de l'adsorption du para-xylène contenu dans les coupes aromatiques en C8, des propriétés améliorées par rapport à des adsorbants préparés à partir de la même quantité de zéolithe X et de liant, mais dont le liant n'est pas zéolithisé. For example, patent application FR 2 789 914 describes a process for the production of agglomerates of zeolite X, with an Si / Al ratio of between 1, 15 and 1.5, containing barium and optionally potassium. The agglomerates thus obtained, after zeolization of the binder, have, from the point of view of the adsorption of the para-xylene contained in the C8 aromatic cuts, improved properties compared with adsorbents prepared from the same amount of zeolite X and binder, but whose binder is not zeolite.
[0014] Les facteurs importants qui influencent les performances d'un procédé de séparation par adsorption englobent notamment la sélectivité d'adsorption, la capacité d'adsorption et la cinétique de transfert de matière qui définit les vitesses d'adsorption et de désorption des différents composés. L'adsorbant doit donc présenter de bonnes propriétés de transfert de matière afin de garantir un nombre de plateaux théoriques suffisants pour réaliser une séparation efficace des espèces en mélange, comme l'indique Ruthven dans l'ouvrage intitulé « Principles of Adsorption and Adsorption Processes » (« Principes de l'Adsorption et des Procédés d'Adsorption »), John Wiley & Sons, (1984), pages 326 et 407. Ruthven indique {ibid., page 243), que, dans le cas d'un adsorbant aggloméré, le transfert de matière global dépend de l'addition de la résistance diffusionnelle intra-cristalline et de la résistance diffusionnelle entre les cristaux. La résistance diffusionnelle intra-cristalline est proportionnelle au carré des rayons des cristaux et inversement proportionnelle à la diffusivité des molécules intracristalline. The important factors that influence the performance of an adsorption separation process include in particular the adsorption selectivity, the adsorption capacity and the material transfer kinetics which defines the adsorption rates and desorption of the various compounds. The adsorbent must therefore have good material transfer properties in order to guarantee a sufficient number of theoretical plates to achieve effective separation of the species in mixture, as Ruthven indicates in the book entitled "Principles of Adsorption and Adsorption Processes"("Principles of Adsorption and Adsorption Processes"), John Wiley & Sons, (1984), pages 326 and 407. Ruthven indicates (ibid., Page 243), that in the case of an agglomerated adsorbent the overall material transfer depends on the addition of intrafrustine diffusion resistance and diffusional resistance between the crystals. The intracrystalline diffusion resistance is proportional to the square of the crystal rays and inversely proportional to the diffusivity of the intracrystalline molecules.
[0015] La résistance diffusionnelle entre les cristaux (également appelée résistance macroporeuse) est quant à elle proportionnelle au carré des rayons des agglomérés et inversement proportionnelle à la diffusivité des molécules dans les macropores. Pour une structure zéolithique donnée, une taille d'aggloméré donnée et une température de fonctionnement donnée, les diffusivités sont fixées, et le seul moyen d'améliorer le transfert de matière consiste à réduire le diamètre des cristaux. Un gain sur le transfert global sera ainsi obtenu en réduisant la taille des cristaux. The diffusional resistance between the crystals (also called macroporous resistance) is in turn proportional to the square of the rays of the agglomerates and inversely proportional to the diffusivity of the molecules in the macropores. For a given zeolite structure, a given agglomerate size and a given operating temperature, the diffusivities are fixed, and the only way to improve the transfer of material is to reduce the crystal diameter. A gain on the overall transfer will thus be obtained by reducing the size of the crystals.
[0016] Par conséquent, l'homme du métier s'attend à ce que des adsorbants zéolithiques agglomérés présentant à la fois une bonne capacité d'adsorption des xylènes et une bonne sélectivité pour le para-xylène, possèdent de très bonnes propriétés de séparation des xylènes lorsqu'ils sont réalisés à partir de petits cristaux de zéolithe dans les procédés en phase liquide de séparation du para-xylène contenu dans les coupes aromatiques en C8, par exemple de type contre-courant simulé. L'homme du métier est cependant dans l'impossibilité de définir a priori ou théoriquement et avec précision les caractéristiques d'adsorption d'une zéolithe FAU, notamment de type X, présentant une composition particulière en baryum et potassium, vis-à-vis des hydrocarbures aromatiques à 8 atomes de carbone.  Therefore, one skilled in the art expects that agglomerated zeolite adsorbents having both good xylenes adsorption capacity and good selectivity for para-xylene, have very good separation properties. xylenes when they are made from small zeolite crystals in liquid phase processes for separating para-xylene contained in C8 aromatic cuts, for example of simulated countercurrent type. Those skilled in the art are, however, unable to define a priori or theoretically and precisely the adsorption characteristics of a FAU zeolite, especially of type X, having a particular composition of barium and potassium, opposite aromatic hydrocarbons having 8 carbon atoms.
[0017] La présente invention a pour objectif de fournir des nouveaux adsorbants à base de zéolithe X comprenant du baryum, du potassium et du sodium et présentant une composition particulière en baryum, potassium et sodium, optimale pour en même temps maximiser la productivité et minimiser les coûts de production du procédé de séparation du para-xylène contenu dans les coupes aromatiques en C8. La présente invention propose également un procédé de séparation des xylènes mettant en œuvre un adsorbant à base de zéolithe X présentant une composition particulière en baryum, potassium et sodium, permettant la production de para-xylène à haute pureté avec une productivité améliorée à partir d'une charge d'hydrocarbures aromatiques contenant des isomères à 8 atomes de carbone. The present invention aims to provide novel adsorbents based on zeolite X comprising barium, potassium and sodium and having a particular composition of barium, potassium and sodium, optimal for simultaneously maximize productivity and minimize the production costs of the para-xylene separation process contained in the C8 aromatic cuts. The present invention also provides a process for the separation of xylenes using an X-zeolite adsorbent having a particular composition of barium, potassium and sodium, allowing the production of high purity para-xylene with a improved productivity from an aromatic hydrocarbon feed containing 8-carbon isomers.
RESUME DE L'INVENTION SUMMARY OF THE INVENTION
[0018] L'invention concerne un adsorbant zéolithique comprenant des cristaux de zéolithe X et comprenant du baryum, du potassium et du sodium, dans lequel le ratio molaire K20 / (K20 + BaO + Na20) (des espèces sous forme d'oxydes) est compris entre 9,5 % et 14,5%, de préférence entre 10% et 14%, et de manière préférée entre 1 1 % et 13%. Dans une variante avantageuse, le ratio molaire en K20 / (K20 + BaO + Na20) est égal à 12%. Dans la présente invention, le ratio molaire K20 / (K20 + BaO + Na20) est exprimé en pourcentage du nombre de moles de K20 par rapport à la somme du nombre de moles de (K20 + BaO + Na20). The invention relates to a zeolitic adsorbent comprising crystals of zeolite X and comprising barium, potassium and sodium, in which the molar ratio K 2 0 / (K 2 0 + BaO + Na 2 0) (species in the form of oxides) is between 9.5% and 14.5%, preferably between 10% and 14%, and preferably between 11% and 13%. In an advantageous variant, the molar ratio in K 2 0 / (K 2 0 + BaO + Na 2 O) is equal to 12%. In the present invention, the molar ratio K 2 0 / (K 2 0 + BaO + Na 2 0) is expressed as a percentage of the number of moles of K 2 0 relative to the sum of the number of moles of (K 2 0 + BaO + Na 2 O).
[0019] La teneur en oxyde de sodium Na20 est avantageusement inférieure à 0,3% en poids et de manière préférée inférieure à 0,2% en poids par rapport la masse totale de l'adsorbant. La teneur totale en oxydes d'ions alcalins ou alcalino-terreux autres que l'oxyde de baryum BaO, l'oxyde de potassium K20 et l'oxyde de sodium Na20 est avantageusement inférieure à 1 % en poids, de préférence entre 0 et 0,5% en poids, et de manière très préférée entre 0 et 0,3% en poids, par rapport à la masse totale de l'adsorbant. The sodium oxide content Na 2 0 is preferably less than 0.3% by weight and preferably less than 0.2% by weight relative to the total mass of the adsorbent. The total content of oxides of alkaline or alkaline earth ions other than barium oxide BaO, potassium oxide K 2 0 and sodium oxide Na 2 0 is advantageously less than 1% by weight, preferably between 0 and 0.5% by weight, and very preferably between 0 and 0.3% by weight, relative to the total mass of the adsorbent.
[0020] Les cristaux de zéolithes X ont avantageusement un rapport atomique Si/AI compris entre 1 ,00 et 1 ,50, de préférence entre 1 ,05 et 1 ,50 et de manière encore préférée entre 1 ,10 et 1 ,50.  The zeolite crystals X advantageously have an Si / Al atomic ratio of between 1, 00 and 1, 50, preferably between 1, 05 and 1, 50 and more preferably between 1, 10 and 1, 50.
[0021] Le diamètre moyen en nombre des cristaux de zéolithes X est inférieur ou égal à 1 ,5 μηι, de préférence compris entre 0,1 μηη et 1 ,2 μηι, de manière plus préférée compris entre 0,1 μηη et 1 ,0 μηι.  The number average diameter of the zeolite crystals X is less than or equal to 1.5 μηι, preferably between 0.1 μηη and 1.2 μηι, more preferably between 0.1 μηη and 1, 0 μηι.
[0022] La perte au feu de l'adsorbant selon l'invention, mesurée à 950 °C selon la norme NF EN 196-2 est avantageusement comprise entre 4,0 et 7,7% et de préférence entre 4,5 et 6,5 % et de manière très préférée entre 4,8 et 6% en poids.  The loss on ignition of the adsorbent according to the invention, measured at 950 ° C according to the standard NF EN 196-2 is advantageously between 4.0 and 7.7% and preferably between 4.5 and 6 , 5% and most preferably between 4.8 and 6% by weight.
[0023] Le diamètre moyen en nombre de l'adsorbant selon l'invention peut être compris entre 0,2 mm et 2 mm, en particulier entre 0,2 mm et 0,8 mm et de préférence entre 0,2 mm et 0,65 mm. The average diameter in number of the adsorbent according to the invention may be between 0.2 mm and 2 mm, in particular between 0.2 mm and 0.8 mm and preferably between 0.2 mm and 0 mm. , 65 mm.
[0024] L'invention concerne également un procédé de préparation d'un adsorbant tel que décrit ci-dessus, comprenant au moins les étapes de :  The invention also relates to a process for preparing an adsorbent as described above, comprising at least the steps of:
a) agglomération de cristaux de la zéolithe X avec un liant, et mise en forme, puis séchage et calcination,  a) agglomeration of zeolite X crystals with a binder, and shaping, then drying and calcining,
b) zéolithisation éventuelle du liant, c) échange cationique de l'aggloméré par mise en contact avec une solution d'ions baryum, ou d'ions potassium, ou d'ions baryum et d'ions potassium, b) possible zeolization of the binder, c) cationic exchange of the agglomerate by contact with a solution of barium ions, or potassium ions, or barium ions and potassium ions,
d) échange cationique au potassium lorsque l'étape c) d'échange est réalisée avec une solution d'ions baryum seuls, ou échange cationique au baryum lorsque l'étape c) d'échange est réalisée avec une solution d'ions potassium seuls, e) puis lavage et séchage du produit ainsi traité, et  d) cation exchange with potassium when the step c) of exchange is carried out with a solution of barium ions alone, or barium cation exchange when the step c) of exchange is carried out with a solution of potassium ions alone e) then washing and drying the product thus treated, and
f) activation de l'adsorbant zéolithique ainsi obtenu.  f) activation of the zeolite adsorbent thus obtained.
[0025] De préférence, le procédé de préparation de l'adsorbant met en œuvre une étape b) de zéolithisation du liant.  Preferably, the process for preparing the adsorbent implements a step b) of zeolitization of the binder.
[0026] Préférence la ou les solutions d'ions baryum, ou potassium ou baryum et potassium des étapes c) et d) ont une concentration comprise entre 0,2M et 2M.  Preference or solutions of barium ions, or potassium or barium and potassium steps c) and d) have a concentration between 0.2M and 2M.
[0027] L'invention concerne également un adsorbant tel que décrit précédemment, susceptible d'être obtenu selon le procédé de préparation ci-dessus.  The invention also relates to an adsorbent as described above, obtainable according to the preparation method above.
[0028] L'invention concerne également l'utilisation dudit adsorbant selon l'invention dans les procédés de :  The invention also relates to the use of said adsorbent according to the invention in the processes of:
• séparation de coupes d'isomères aromatiques en C8 et notamment des xylènes, Separation of sections of C8 aromatic isomers and in particular xylenes,
• séparation d'isomères de toluène substitué tels que nitrotoluène, diéthyltoluène, toluènediamine, et autres, Separation of isomers of substituted toluene such as nitrotoluene, diethyltoluene, toluene diamine, and others,
• séparation des crésols,  • separation of cresols,
• séparation des alcools polyhydriques,  • separation of polyhydric alcohols,
et notamment pour la séparation de para-xylène à partir de coupes d'isomères aromatiques à 8 atomes de carbone. and in particular for the separation of para-xylene from sections of aromatic isomers with 8 carbon atoms.
[0029] L'invention concerne également un procédé de récupération de para-xylène à partir de coupes d'isomères d'hydrocarbures aromatiques contenant 8 atomes de carbone, en phase liquide, par adsorption du para-xylène au moyen dudit adsorbant selon l'invention en présence d'un désorbant, de préférence choisi parmi le toluène et le para-diéthylbenzène.  The invention also relates to a process for recovering para-xylene from cuts of aromatic hydrocarbon isomers containing 8 carbon atoms, in the liquid phase, by adsorption of para-xylene by means of said adsorbent according to US Pat. invention in the presence of a desorbent, preferably selected from toluene and para-diethylbenzene.
[0030] Ledit procédé peut être de type lit mobile simulé, de préférence à contre-courant simulé.  Said method may be simulated moving bed type, preferably simulated counter current.
[0031] L'invention concerne également un procédé de récupération de para-xylène à partir de coupes d'isomères d'hydrocarbures aromatiques contenant 8 atomes de carbone, en phase gazeuse, par adsorption du para-xylène au moyen dudit adsorbant selon l'invention en présence d'un désorbant, de préférence choisi parmi le toluène et le para-diéthylbenzène.  The invention also relates to a process for recovering para-xylene from aromatic hydrocarbon isomer cuts containing 8 carbon atoms, in the gas phase, by adsorption of para-xylene by means of said adsorbent according to US Pat. invention in the presence of a desorbent, preferably selected from toluene and para-diethylbenzene.
[0032] L'invention concerne en outre un procédé de séparation d'alcools polyhydriques mettant en œuvre ledit adsorbant selon l'invention. [0033] L'invention concerne en outre un procédé de séparation d'isomères de toluène substitué tels que nitrotoluène, diéthyltoluène, toluènediamine, mettant en œuvre ledit adsorbant selon l'invention. The invention further relates to a process for separating polyhydric alcohols using said adsorbent according to the invention. The invention further relates to a process for separating isomers of substituted toluene such as nitrotoluene, diethyltoluene, toluenediamine, using said adsorbent according to the invention.
[0034] L'invention concerne enfin un procédé de séparation des crésols mettant en œuvre ledit adsorbant selon l'invention.  The invention finally relates to a process for separating cresols using said adsorbent according to the invention.
[0035] Dans ce qui va suivre, et à moins d'une autre indication, les bornes d'un domaine de valeurs sont comprises dans ce domaine, notamment dans les expressions « compris entre » et « allant de ... à ... ».  In what follows, and unless otherwise indicated, the boundaries of a domain of values are included in this field, especially in the expressions "between" and "ranging from ... to .. . "
DESCRIPTION DETAILLEE DE L'INVENTION DETAILED DESCRIPTION OF THE INVENTION
[0036] La présente invention a ainsi pour premier objet des adsorbants zéolithiques à base de zéolithe X. Ces adsorbants sont particulièrement adaptés pour une utilisation dans un procédé de séparation du para-xylène en phase liquide, de préférence de type contre-courant simulé. The present invention thus has for its first object zeolite X-based zeolite adsorbents. These adsorbents are particularly suitable for use in a process for separating para-xylene in the liquid phase, preferably of simulated countercurrent type.
[0037] Ainsi, la présente invention concerne un adsorbant zéolithique comprenant des cristaux de zéolithe X et comprenant du baryum, du potassium et du sodium, dans lequel le ratio molaire K20 / (K20 + BaO + Na20) est compris entre 9,5% et 14,5%, de préférence entre 10% et 14%, et de manière préférée entre 1 1 % et 13%. Dans une variante avantageuse, le ratio molaire en K20 / (K20 + BaO + Na20), exprimé en termes d'oxydes, est égal à 12%. Thus, the present invention relates to a zeolite adsorbent comprising zeolite X crystals and comprising barium, potassium and sodium, in which the molar ratio K 2 0 / (K 2 0 + BaO + Na 2 0) is between 9.5% and 14.5%, preferably between 10% and 14%, and preferably between 11% and 13%. In an advantageous variant, the molar ratio in K 2 0 / (K 2 0 + BaO + Na 2 0), expressed in terms of oxides, is equal to 12%.
[0038] Les adsorbants selon l'invention peuvent également comprendre une phase non zéolithique, c'est-à-dire une phase non cristalline qui est essentiellement inerte vis-à-vis de l'adsorption. Dans le cas où l'adsorbant selon l'invention comprend une phase non zéolithique, le ratio molaire K20 / (K20 + BaO + Na20) prend en compte les oxydes compris dans ladite phase non zéolithique. The adsorbents according to the invention may also comprise a non-zeolitic phase, that is to say a non-crystalline phase which is essentially inert with respect to the adsorption. In the case where the adsorbent according to the invention comprises a non-zeolitic phase, the molar ratio K 2 0 / (K 2 0 + BaO + Na 2 0) takes into account the oxides included in said non-zeolitic phase.
[0039] La teneur en oxyde de sodium Na20 dans l'adsorbant selon l'invention est avantageusement inférieure à 0,3% en poids et de manière préférée inférieure à 0,2% en poids par rapport la masse totale de l'adsorbant. La teneur totale en oxydes d'ions alcalins ou alcalino-terreux autres que l'oxyde de baryum BaO, l'oxyde de potassium K20 et l'oxyde de sodium Na20 dans l'adsorbant selon l'invention est avantageusement inférieure à 1 % en poids, de préférence entre 0 et 0,5% en poids, et de manière très préférée entre 0 et 0,3% en poids, par rapport à la masse totale de l'adsorbant. The content of sodium oxide Na 2 0 in the adsorbent according to the invention is advantageously less than 0.3% by weight and preferably less than 0.2% by weight relative to the total mass of the adsorbent. The total content of oxides of alkaline or alkaline-earth ions other than barium oxide BaO, potassium oxide K 2 0 and sodium oxide Na 2 0 in the adsorbent according to the invention is advantageously less than at 1% by weight, preferably between 0 and 0.5% by weight, and very preferably between 0 and 0.3% by weight, relative to the total mass of the adsorbent.
[0040] L'adsorbant zéolithique selon la présente invention est un adsorbant à base de cristaux de zéolithe FAU de type X . Par « zéolithe X », on entend les zéolithes dont le ratio atomique Si/AI est compris entre 1 ,00 et 1 ,50, de préférence entre 1 ,05 et 1 ,50 et de manière encore plus préférée entre 1 ,10 et 1 ,50. [0041] Parmi les zéolithes X, il est maintenant communément admis de reconnaître deux sous-groupes dénommés zéolithes LSX et zéolithes MSX. Les zéolithes LSX présentent un ratio atomique Si/AI égal à environ 1 et les zéolithes MSX présentent un ratio atomique Si/AI compris entre environ 1 ,05 et environ 1 ,15. The zeolitic adsorbent according to the present invention is an adsorbent based on zeolite crystals FAU type X. By "zeolite X" is meant zeolites whose Si / Al atomic ratio is between 1, 00 and 1, 50, preferably between 1, 05 and 1, 50 and even more preferably between 1, 10 and 1 50. Among the zeolites X, it is now generally accepted to recognize two subgroups called zeolites LSX and zeolites MSX. The LSX zeolites have an Si / Al atomic ratio equal to about 1 and the MSX zeolites have an Si / Al atomic ratio of between about 1.05 and about 1.15.
[0042] Dans l'adsorbant zéolithique de la présente invention, et selon un mode de réalisation préféré, par « zéolithe FAU de type X », on entend les zéolithes FAU de type X définies ci-dessus, ces dites zéolithes étant à porosité hiérarchisée c'est-à-dire, les zéolithes de type X à porosité hiérarchisée (ou zéolithe XPH), les zéolithes de type MSX à porosité hiérarchisée (ou MSXPH) et les zéolithes de type LSX à porosité hiérarchisée (ou LSXPH), et plus particulièrement les zéolithes FAU à porosité hiérarchisée et de rapport atomique Si/AI compris entre 1 ,00 et 1 ,50, de préférence entre 1 ,05 et 1 ,50, de préférence encore entre 1 ,05 et 1 ,40, et de manière encore plus préférée, entre 1 , 15 et 1 ,40.  In the zeolite adsorbent of the present invention, and according to a preferred embodiment, the term "zeolite type FAU X" means the zeolites FAU type X defined above, said zeolites being hierarchically porous that is, zeolites of type X with hierarchical porosity (or zeolite XPH), zeolites of MSX type with hierarchical porosity (or MSXPH) and zeolites of LSX type with hierarchical porosity (or LSXPH), and more especially the FAU zeolites with a hierarchical porosity and Si / Al atomic ratio of between 1, 00 and 1, 50, preferably between 1.05 and 1.5, more preferably between 1.05 and 1.40, and even more preferred, between 1, 15 and 1, 40.
[0043] L'invention comprend également les adsorbants zéolithiques comprenant des mélanges de deux ou plusieurs zéolithes FAU à porosité hiérarchisée telles qu'elles viennent d'être définies.  The invention also comprises zeolitic adsorbents comprising mixtures of two or more FAU zeolites with hierarchical porosity as they have just been defined.
[0044] Par « zéolithe à porosité hiérarchisée », on entend une zéolithe possédant à la fois des micropores et des mésopores, autrement dit une zéolithe à la fois microporeuse et mésoporeuse. Par « zéolithe mésoporeuse », on entend une zéolithe dont les cristaux zéolithiques microporeux présentent, conjointement à la microporosité, des cavités internes de taille nanométrique (mésoporosité), facilement identifiables par observation au moyen d'un Microscope Électronique à Transmission (MET ou « TEM » en langue anglaise), comme décrit par exemple dans US 7 785 563 : l'observation par microscopie électronique à transmission (MET) permet de vérifier si les cristaux zéolithiques sont des cristaux de zéolithe pleins (i.e. non mésoporeux) ou des agrégats de cristaux de zéolithes pleins ou des cristaux mésoporeux ou des agrégats de cristaux mésoporeux.  By "hierarchically porous zeolite" is meant a zeolite having both micropores and mesopores, ie a zeolite both microporous and mesoporous. By "mesoporous zeolite" is meant a zeolite whose microporous zeolite crystals have, together with the microporosity, internal cavities of nanometric size (mesoporosity), easily identifiable by observation by means of a Transmission Electron Microscope (TEM or "TEM"). In the English language), as described for example in US Pat. No. 7,785,563: observation by transmission electron microscopy (TEM) makes it possible to verify whether the zeolite crystals are solid zeolite crystals (ie non-mesoporous) or aggregates of crystals solid zeolites or mesoporous crystals or aggregates of mesoporous crystals.
[0045] La structure cristalline de la zéolithe FAU de type X dans l'adsorbant zéolithique de la présente invention, est identifiable par diffraction des rayons X (connue de l'homme du métier sous l'acronyme DRX). The crystalline structure of the X-type FAU zeolite in the zeolite adsorbent of the present invention is identifiable by X-ray diffraction (known to those skilled in the art under the acronym DRX).
[0046] Selon un mode de réalisation préféré, l'adsorbant zéolithique présente un rapport atomique Si/AI compris entre 1 ,00 et 2,00 de préférence entre 1 ,00 et 1 ,80, de préférence encore entre 1 ,15 et 1 ,80, et de manière encore plus préférée entre 1 ,15 et 1 ,60.  According to a preferred embodiment, the zeolite adsorbent has an Si / Al atomic ratio of between 1.00 and 2.00, preferably between 1.00 and 1.80, more preferably between 1.15 and 1. , 80, and even more preferably between 1, 15 and 1, 60.
[0047] Dans le présent document, on emploie l'appellation « diamètre moyen en nombre » ou bien « taille » pour les cristaux de zéolithe et pour les agglomérés zéolithiques. La méthode de mesure de ces grandeurs est explicitée plus loin dans la description. Selon un mode de réalisation préféré de la présente invention, le diamètre moyen en nombre des cristaux de zéolithes X est inférieur ou égal à 1 ,5 μηη, de préférence compris entre 0,1 μηη et 1 ,2 μηη, de manière plus préférée compris entre 0,1 μηη et 1 ,0 μηη. In this document, the term "number average diameter" or "size" is used for zeolite crystals and for zeolite agglomerates. The method of measuring these quantities is explained later in description. According to a preferred embodiment of the present invention, the number average diameter of the zeolite crystals X is less than or equal to 1.5 μηη, preferably between 0.1 μηη and 1.2 μηη, more preferably included between 0.1 μηη and 1,0 μηη.
[0048] L'adsorbant zéolithique de l'invention est de préférence sous la forme d'un aggloméré, c'est-à-dire qu'il est constitué de cristaux de zéolithe(s) et d'au moins une phase non zéolithique qui peut comprendre un liant d'agglomération permettant la cohésion des cristaux entre eux. Ainsi l'adsorbant zéolithique de l'invention est souvent dénommé « aggloméré » dans le présent exposé.  The zeolite adsorbent of the invention is preferably in the form of an agglomerate, that is to say it consists of zeolite crystals (s) and at least one non-zeolite phase which may comprise an agglomeration binder allowing the cohesion of the crystals between them. Thus the zeolitic adsorbent of the invention is often referred to as "agglomerated" in the present disclosure.
[0049] La fraction massique de zéolithe X dans l'adsorbant selon la présente invention peut être d'au moins 80% en poids de zéolithe(s) X par rapport au poids total de l'adsorbant, de préférence d'au moins 90%, cette fraction massique pouvant aller jusqu'à 100% et typiquement jusqu'à 99,5% en poids.  The mass fraction of zeolite X in the adsorbent according to the present invention may be at least 80% by weight of zeolite (s) X relative to the total weight of the adsorbent, preferably at least 90% by weight. %, this mass fraction being up to 100% and typically up to 99.5% by weight.
[0050] Selon un mode de réalisation préféré, l'adsorbant zéolithique selon l'invention présente une perte au feu mesurée à 950 °C selon la norme NF EN 196-2 comprise entre 4,0% et 7,7%, préférence entre 4,5 et 6,5 % et avantageusement entre 4,8 et 6%.  According to a preferred embodiment, the zeolite adsorbent according to the invention has a loss on ignition measured at 950 ° C according to the NF EN 196-2 standard of between 4.0% and 7.7%, preferably between 4.5 and 6.5% and advantageously between 4.8 and 6%.
[0051] L'adsorbant zéolithique selon la présente invention présente préférentiellement une résistance mécanique généralement supérieure ou égale à 1 ,8 MPa, typiquement supérieure ou égale à 2,1 MPa. Cette résistance mécanique est mesurée par la méthode Shell série SMS1471 -74 adaptée pour des agglomérés de taille inférieure à 1 ,6 mm. The zeolitic adsorbent according to the present invention preferably has a mechanical strength generally greater than or equal to 1.8 MPa, typically greater than or equal to 2.1 MPa. This mechanical resistance is measured by the Shell method SMS1471 -74 series suitable for agglomerates of size less than 1, 6 mm.
[0052] La capacité d'adsorption est quant à elle mesurée par mesure du volume microporeux de l'adsorbant évalué d'après l'équation de Dubinin-Raduskevitch par adsorption d'azote (N2) à une température de 77K, après dégazage sous vide à 300°C pendant 16 heures. Le volume microporeux des adsorbants zéolithiques de l'invention a ainsi été mesuré comme étant supérieur à 0,250 cm3/g, typiquement dans une plage allant de 0,256 cm3/g à 0,288 cm3/g. The adsorption capacity is measured by measuring the microporous volume of the adsorbent evaluated according to the Dubinin-Raduskevitch equation by adsorption of nitrogen (N 2 ) at a temperature of 77K, after degassing. under vacuum at 300 ° C for 16 hours. The microporous volume of the zeolite adsorbents of the invention was thus measured to be greater than 0.250 cm 3 / g, typically in a range from 0.256 cm 3 / g to 0.288 cm 3 / g.
[0053] Selon un autre aspect, l'invention concerne un procédé de préparation des agglomérés zéolithiques tels qu'ils viennent d'être définis, procédé qui comprend au moins les étapes de :  According to another aspect, the invention relates to a method for preparing zeolite agglomerates as just defined, which process comprises at least the steps of:
a) agglomération de cristaux (poudre) de zéolithe X avec un liant, et mise en forme, puis séchage et calcination,  a) agglomeration of crystals (powder) of zeolite X with a binder, and shaping, then drying and calcination,
b) zéolithisation éventuelle dudit liant, de préférence par action d'une solution basique alcaline,  b) possible zeolitization of said binder, preferably by the action of an alkaline basic solution,
c) échange cationique de l'aggloméré par mise en contact avec une solution d'ions baryum, ou d'ions potassium, ou d'ions baryum et d'ions potassium, d) échange cationique au potassium lorsque l'étape c) d'échange est réalisée avec une solution d'ions baryum seuls, ou échange cationique au baryum lorsque l'étape c) d'échange est réalisée avec une solution d'ions potassium seuls, e) puis lavage et séchage du produit ainsi traité, et c) cationic exchange of the agglomerate by contact with a solution of barium ions, or potassium ions, or barium ions and potassium ions, d) cation exchange with potassium when the step c) of exchange is carried out with a solution of barium ions alone, or barium cation exchange when the step c) of exchange is carried out with a solution of potassium ions alone e) then washing and drying the product thus treated, and
f) activation de l'aggloméré zéolithique.  f) activation of the zeolite agglomerate.
[0054] De préférence, le procédé de préparation des agglomérés zéolithiques met en œuvre une étape b) de zéolithisation du liant.  Preferably, the process for preparing zeolite agglomerates implements a step b) of zeolitization of the binder.
[0055] Préférence la ou les solutions d'ions baryum, ou potassiums ou baryum et potassium des étapes c) et d) ont une concentration comprise entre 0,2M et 2M.  Preference or solutions of barium ions, or potassium or barium and potassium steps c) and d) have a concentration between 0.2M and 2M.
[0056] La taille des cristaux de zéolithe X utilisés à l'étape a) est mesurée par observation au microscope électronique à balayage (MEB) ou par observation au microscope électronique en transmission (MET). Cette observation MEB ou MET permet également de confirmer la présence de phase non zéolithique comprenant par exemple le liant ou le liant résiduel non converti lors de l'étape optionnelle de zéolithisation ou toute autre phase amorphe dans les agglomérés. The size of the zeolite X crystals used in step a) is measured by observation under a scanning electron microscope (SEM) or observation by transmission electron microscope (TEM). This observation MEB or MET also confirms the presence of non-zeolite phase comprising for example the binder or the unconverted residual binder during the optional zeolitization step or any other amorphous phase in the agglomerates.
[0057] Selon un mode de réalisation, la zéolithe X utilisée à l'étape a) comprend, de préférence est, une zéolithe FAU de type X à porosité hiérarchisée. Les cristaux de zéolithe FAU de type X à porosité hiérarchisée présentant une importante surface externe peuvent être obtenus selon diverses méthodes connues de l'homme du métier et par exemple selon la synthèse décrite par Inayat et coll. (Angew. Chem. Int. Ed., (2012), 51, 1962-1965).  According to one embodiment, the zeolite X used in step a) comprises, preferably is, an X type FAU zeolite with hierarchical porosity. The X-type FAU zeolite crystals with a hierarchical porosity having a large external surface can be obtained according to various methods known to those skilled in the art and for example according to the synthesis described by Inayat et al. (Angew Chem Int.Ed., (2012), 51, 1962-1965).
[0058] Il est également possible de préparer lesdits cristaux par synthèse par ensemencement et/ou par ajustement des conditions opératoires de synthèse tels que le rapport S1O2/AI2O3, la teneur en sodium et l'alcalinité du mélange de synthèse ou encore selon des procédés de post-traitement de cristaux de zéolithe FAU de type X conventionnels et connus de l'homme du métier. It is also possible to prepare said crystals by synthesis by seeding and / or by adjusting the synthesis operating conditions such as the SiO 2 / Al 2 O 3 ratio, the sodium content and the alkalinity of the synthesis mixture or according to post-treatment processes of conventional X-type FAU zeolite crystals known to those skilled in the art.
[0059] Les procédés de post-traitements consistent généralement à éliminer des atomes du réseau zéolithique déjà formé, soit par un ou plusieurs traitements acides qui désaluminent le solide, traitement(s) suivi(s) par un ou plusieurs lavage(s) à la soude (NaOH) afin d'éliminer les résidus aluminiques formés, comme décrit par exemple par D. Verboekend et coll. {Adv. Funct. Mater., 22, (2012), pp. 916-928), soit encore par des traitements qui associent l'action d'un acide et celle d'un agent structurant qui améliorent l'efficacité du traitement acide, comme décrit par exemple dans la demande WO2013/106816.  The post-treatment processes generally consist in eliminating atoms of the zeolite network already formed, either by one or more acid treatments which dealuminate the solid, treatment (s) followed by one or more washing (s) to sodium hydroxide (NaOH) in order to eliminate the aluminum residues formed, as described for example by D. Verboekend et al. {Adv. Funct. Mater., 22, (2012), pp. 916-928), or else by treatments which combine the action of an acid and that of a structuring agent which improve the efficiency of the acid treatment, as described for example in the application WO2013 / 106816.
[0060] L'agglomération et la mise en forme (étape a) peuvent être réalisées selon toutes les techniques connues de l'homme de l'art, telles qu'extrusion, compactage, agglomération, et autres. Les proportions de liant d'agglomération, éventuellement zéolithisable, (voir définition plus loin) et de zéolithe(s) mises en œuvre sont typiquement celles de l'art antérieur, c'est-à-dire de 5 parties à 20 parties en poids de liant pour 95 parties à 80 parties en poids de zéolithe. Les agglomérés issus de l'étape a), qu'ils soient sous forme de billes, d'extrudés ou autres, ont en général un diamètre moyen en nombre (ou leur plus grande dimension lorsqu'ils ne sont pas sphériques) compris entre 0,2 mm et 2 mm, et en particulier comprise entre 0,2 mm et 0,8 mm et de préférence entre 0,2 mm et 0,65 mm. The agglomeration and the shaping (step a) can be carried out according to all the techniques known to those skilled in the art, such as extrusion, compaction, agglomeration, and others. The proportions of agglomeration binder, optionally zeolitizable (see definition below) and zeolite (s) used are typically those of the prior art, that is to say from 5 parts to 20 parts by weight binder for 95 parts to 80 parts by weight of zeolite. The agglomerates resulting from stage a), whether in the form of beads, extrudates or the like, generally have a number average diameter (or their largest dimension when they are not spherical) between 0.degree. , 2 mm and 2 mm, and in particular between 0.2 mm and 0.8 mm and preferably between 0.2 mm and 0.65 mm.
[0061] À l'issue de l'étape a), les particules d'agglomérés les plus fines peuvent être éliminées par cyclonage et/ou tamisage et/ou les particules trop grosses par tamisage ou concassage, dans le cas d'extrudés, par exemple.  After step a), the finer agglomerates particles can be removed by cycloning and / or sieving and / or too large particles by sieving or crushing, in the case of extrudates, for example.
[0062] Le liant d'agglomération mis en œuvre à l'étape a) peut être zéolithisable. Il contient alors au moins 80 % de préférence, au moins 90%, de préférence encore au moins 95%, plus particulièrement au moins 96%, en poids, d'argile zéolithisable et peut également contenir d'autres liants minéraux tels que bentonite, attapulgite, et autres. Par argile zéolithisable, on entend une argile ou un mélange d'argiles qui sont susceptibles d'être converties en matière zéolithique (c'est-à-dire matière active au sens de l'adsorption), le plus souvent par action d'une solution basique alcaline. L'argile zéolithisable appartient en général à la famille des kaolins, kaolinites, nacrites, dickites, halloysite et/ou métakaolins. Le kaolin est préféré et le plus couramment utilisé.  The agglomeration binder used in step a) can be zeolitizable. It then contains at least 80% preferably, at least 90%, more preferably at least 95%, more particularly at least 96%, by weight, of zeolitic clay and may also contain other inorganic binders such as bentonite, attapulgite, and others. By zeolitizable clay is meant a clay or a mixture of clays which are capable of being converted into zeolite material (that is to say, active material in the sense of adsorption), most often by action of a basic alkaline solution. Zeolizable clay generally belongs to the family of kaolin, kaolinite, nacrite, dickite, halloysite and / or metakaolin. Kaolin is preferred and most commonly used.
[0063] D'autres argiles telles que notamment la sépiolite ou l'attapulgite peuvent également être utilisées. Other clays such as in particular sepiolite or attapulgite may also be used.
[0064] Dans tous les cas, les argiles peuvent être utilisées dans leur état brut ou peuvent être préalablement soumises à un ou plusieurs traitements, par exemple choisis parmi calcination, traitement à l'acide, modification chimique, et autres.  In all cases, the clays can be used in their raw state or may be previously subjected to one or more treatments, for example selected from calcination, acid treatment, chemical modification, and others.
[0065] La poudre de zéolithe X mise en œuvre à l'étape a) peut être issue de la synthèse de cristaux de zéolithe X comprenant majoritairement, voir exclusivement des cations sodium, par exemple les zéolithes NaX, mais on ne sortirait pas du cadre de l'invention en utilisant une poudre ayant subi un ou plusieurs échanges cationiques, après sa synthèse et avant sa mise en œuvre à l'étape a). The zeolite X powder used in step a) can be derived from the synthesis of zeolite X crystals comprising predominantly, see only sodium cations, for example NaX zeolites, but we would not go outside the box. of the invention using a powder having undergone one or more cationic exchanges, after its synthesis and before its implementation in step a).
[0066] Lors de l'étape a), outre la poudre de zéolithe X et le liant, un ou plusieurs additifs peuvent également être ajoutés, par exemple des additifs destinés à faciliter l'agglomération ou à améliorer le durcissement des agglomérés formés tels que la lignine, l'amidon, la carboxyméthylcellulose, et autres additifs connus de l'homme du métier. De la silice peut également être ajoutée. La source éventuelle de silice peut être de tout type connu de l'homme du métier, spécialiste de la synthèse de zéolithes, par exemple de la silice colloïdale, des diatomées, de la perlite, des cendres de calcination (« fly ash » en langue anglaise), du sable, ou toute autre forme de silice solide. In step a), in addition to the zeolite powder X and the binder, one or more additives may also be added, for example additives intended to facilitate the agglomeration or to improve the hardening of the formed agglomerates such as lignin, starch, carboxymethylcellulose, and other additives known to those skilled in the art. Silica can also be added. The possible source of silica may be of any type known to those skilled in the art, specialist in the synthesis of zeolites, by example of colloidal silica, diatoms, perlite, fly ash in English, sand, or any other form of solid silica.
[0067] Après le séchage à l'étape a), la calcination est menée à une température en général comprise entre 500°C et 600°C. Dans le cas où la mise en forme est réalisée avec une argile zéolithisable, cette étape permet de transformer l'argile zéolithisable, typiquement le kaolin, en métakaolin qui peut après être converti en zéolithe lors de l'étape de zéolithisation (étape b)). Le principe en est exposé dans « Zeolite Molecular Sieves » de D.W. Breck, John Wiley and Sons, New York, (1973), p. 314-315. After drying in step a), the calcination is conducted at a temperature generally between 500 ° C and 600 ° C. In the case where the shaping is carried out with a zeolitic clay, this step makes it possible to transform the zeolite clay, typically kaolin, into metakaolin which can after being converted into zeolite during the zeolitization step (step b)) . The principle is set forth in D.W. Breck's "Zeolite Molecular Sieves," John Wiley and Sons, New York, (1973), p. 314-315.
[0068] La zéolithisation du liant d'agglomération est pratiquée selon toute méthode connue de l'homme du métier et peut par exemple être réalisée par immersion du produit de l'étape a) dans une solution basique alcaline, en général aqueuse, par exemple une solution aqueuse d'hydroxyde de sodium et/ou d'hydroxyde de potassium. The zeolitization of the agglomeration binder is carried out according to any method known to those skilled in the art and may for example be carried out by immersion of the product of step a) in an alkaline basic solution, generally aqueous, for example an aqueous solution of sodium hydroxide and / or potassium hydroxide.
[0069] En règle générale, la concentration de la solution alcaline de zéolithisation est de préférence comprise entre 0,5 M et 5 M. La zéolithisation s'opère de préférence à chaud, à une température supérieure à la température ambiante, et typiquement à des températures de l'ordre de 80°C à 100°C, par exemple comprises entre la température ambiante (soit environ 20°C) et la température d'ébullition de la solution alcaline de zéolithisation. La durée du processus de zéolithisation est généralement comprise entre quelques dizaines de minutes et quelques heures, de préférence entre environ 1 heure et 8 heures. As a general rule, the concentration of the alkaline zeolitization solution is preferably between 0.5M and 5M. The zeolitization is preferably carried out hot, at a temperature above room temperature, and typically at room temperature. temperatures of the order of 80 ° C to 100 ° C, for example between room temperature (about 20 ° C) and the boiling temperature of the alkaline solution of zeolitization. The duration of the zeolitization process is generally between a few tens of minutes and a few hours, preferably between about 1 hour and 8 hours.
[0070] Les étapes c) et d) d'échange au baryum et/ou au potassium des cations de la zéolithe X s'effectuent selon les méthodes classiques connues de l'homme du métier, et le plus souvent par mise en contact des agglomérés issus de l'étape a) ou de l'étape b) avec un sel, tel que le chlorure de baryum (BaCI2) pour l'échange au baryum et/ou le chlorure de potassium (KCI) pour l'échange au potassium, en solution aqueuse à une température comprise entre la température ambiante et 100°C, et de préférence comprise entre 80°C et 100°C. Pour obtenir rapidement des teneurs en oxyde de sodium faibles, i.e. inférieures à 1 %, on préfère opérer avec un large excès d'ions baryum et/ou potassium par rapport aux cations de la zéolithe que l'on souhaite échanger, typiquement un excès de l'ordre de 10 à 12, avantageusement en procédant par échanges successifs. Steps c) and d) of barium and / or potassium exchange of the zeolite X cations are carried out according to the conventional methods known to those skilled in the art, and most often by contacting the agglomerates from step a) or step b) with a salt, such as barium chloride (BaCl 2 ) for barium exchange and / or potassium chloride (KCl) for exchange at potassium, in aqueous solution at a temperature between room temperature and 100 ° C, and preferably between 80 ° C and 100 ° C. In order to rapidly obtain low levels of sodium oxide, ie less than 1%, it is preferred to operate with a large excess of barium and / or potassium ions relative to the cations of the zeolite which it is desired to exchange, typically an excess of the order of 10 to 12, advantageously by proceeding by successive exchanges.
Afin d'atteindre le ratio molaire K20 / (K20 + BaO + Na20) comprise entre 9,5 et 14,5%, un ou plusieurs échange(s) ionique(s) sont réalisés en utilisant des solutions aqueuses d'ions baryum et des solutions aqueuses d'ions potassium, par exemple chlorure de potassium et chlorure de baryum, à des concentrations typiquement comprises entre 0,05 M et 1 ,5 M, de préférence comprises entre 0,1 M et 1 ,2 M. Selon un mode de réalisation particulier, au moins un échange ionique est réalisé en utilisant une solution aqueuse d'ions baryum et d'ions potassium (correspondant à l'étape c)). Dans ce mode de réalisation, l'étape d) du procédé de l'invention n'est pas réalisée. Ce mode de réalisation est le mode préféré. In order to reach the molar ratio K 2 0 / (K 2 0 + BaO + Na 2 O) of between 9.5 and 14.5%, one or more ion exchange (s) are made using solutions aqueous solutions of barium ions and aqueous solutions of potassium ions, for example potassium chloride and barium chloride, at concentrations typically between 0.05 M and 1.5 M, preferably between 0.1 M and 1 M , 2 M. According to a particular embodiment, at least one ion exchange is carried out using an aqueous solution of barium ions and potassium ions (corresponding to step c)). In this embodiment, step d) of the method of the invention is not performed. This embodiment is the preferred mode.
Selon un autre mode de réalisation de l'invention, au moins un échange ionique est tout d'abord réalisé en utilisant une solution aqueuse d'ions baryum (correspondant à l'étape c)), puis au moins un échange ionique est réalisé en utilisant une solution aqueuse d'ions potassium (correspondant à l'étape d)).  According to another embodiment of the invention, at least one ion exchange is first carried out using an aqueous solution of barium ions (corresponding to step c)), then at least one ion exchange is carried out in using an aqueous solution of potassium ions (corresponding to step d)).
Selon un autre mode de réalisation de l'invention, au moins un échange ionique est tout d'abord réalisé en utilisant une solution aqueuse d'ions potassium (correspondant à l'étape c)), puis au moins un échange ionique est réalisé en utilisant une solution aqueuse d'ions baryum (correspondant à l'étape d)).  According to another embodiment of the invention, at least one ion exchange is first carried out using an aqueous solution of potassium ions (corresponding to step c)), then at least one ion exchange is carried out in using an aqueous solution of barium ions (corresponding to step d)).
Chaque étape d'échange peut être réalisée une ou plusieurs fois.  Each exchange step can be performed one or more times.
Le ou les échanges sont réalisés selon les techniques bien connues de l'homme du métier, par exemple à des températures comprises entre la température ambiante (soit environ 20°C) et 100°C, de préférence entre 80 et 100°C, généralement à pression atmosphérique, le ou les échanges étant généralement effectués pendant des périodes allant de quelques minutes à quelques heures, de préférence typiquement entre 30 minutes et 3 heures.  The exchange or exchanges are carried out according to the techniques well known to those skilled in the art, for example at temperatures between room temperature (ie about 20 ° C) and 100 ° C, preferably between 80 and 100 ° C, generally at atmospheric pressure, the exchange or exchanges being generally carried out for periods ranging from a few minutes to a few hours, preferably typically between 30 minutes and 3 hours.
L'ajustement du ratio molaire K20 / (K20 + BaO + Na20) est réalisé selon toutes méthodes connues de l'homme du métier, et par exemple en réalisant un échange avec un large excès d'ions baryum afin d'obtenir rapidement des teneurs faibles en oxyde de sodium Na20, i.e. inférieures à 1 %, de préférence inférieures à 0,3%, et en réalisant ensuite un échange à l'aide d'une solution aqueuse d'ions potassium contenant la quantité molaire nécessaire d'ions potassium afin d'obtenir le ratio molaire K20 / (K20 + BaO + Na20) souhaité. The adjustment of the molar ratio K 2 0 / (K 2 0 + BaO + Na 2 0) is carried out according to any methods known to those skilled in the art, and for example by exchanging with a large excess of barium ions so to obtain rapidly low levels of sodium oxide Na 2 0, ie less than 1%, preferably less than 0.3%, and then performing an exchange with an aqueous solution of potassium ions containing the necessary molar amount of potassium ions to obtain the desired molar ratio K 2 0 / (K 2 0 + BaO + Na 2 0).
[0071] Comme indiqué précédemment, il est également possible d'agglomérer à l'étape a) de la poudre de zéolithe X contenant déjà des ions potassium (pré-échange des cations présents dans la zéolithe X de départ, typiquement cations sodium, par des ions potassium avant l'étape a)) et s'affranchir ou non des échanges au potassium lors des étapes c) et/ou d).  As indicated above, it is also possible to agglomerate in step a) of the zeolite X powder already containing potassium ions (pre-exchange of the cations present in the starting zeolite X, typically sodium cations, by potassium ions before step a)) and free or not potassium exchanges in steps c) and / or d).
[0072] On procède ensuite à un lavage, généralement et de préférence à l'eau, puis d'un séchage de l'aggloméré ainsi obtenu.  This is followed by washing, generally and preferably with water, followed by drying of the agglomerate thus obtained.
[0073] L'activation qui suit le séchage, est conduite de manière classique, selon les méthodes connues de l'homme du métier, par exemple à une température en général comprise entre 100°C et 400°C, de préférence entre 200°C et 300°C. Cette étape f) d'activation a pour but de fixer la teneur en eau, ainsi que la perte au feu de l'adsorbant de façon optimale pour l'utilisation envisagée. On procède en général par activation thermique qu'on exécute préférentiellement entre 200°C et 300°C pendant une durée déterminée en fonction de la teneur en eau et de la perte au feu souhaitées, typiquement de 1 à 6 heures. The activation which follows the drying is carried out in a conventional manner, according to the methods known to those skilled in the art, for example at a temperature in general of between 100 ° C. and 400 ° C., preferably between 200 ° C. C and 300 ° C. This step f) The purpose of the activation is to set the optimum water content and loss of the adsorbent for the intended use. In general, thermal activation is carried out preferably between 200 ° C and 300 ° C for a predetermined period depending on the desired water content and loss on fire, typically 1 to 6 hours.
[0074] La présente invention concerne également les utilisations des adsorbants zéolithiques décrits ci-dessus comme agents d'adsorption susceptibles de remplacer avantageusement les agents d'adsorption décrits dans la littérature pour les utilisations listées ci-dessous :  The present invention also relates to the uses of the zeolite adsorbents described above as adsorption agents that may advantageously replace the adsorption agents described in the literature for the uses listed below:
• séparation de coupes d'isomères aromatiques en C8 et notamment des xylènes, Separation of sections of C8 aromatic isomers and in particular xylenes,
• séparation d'isomères de toluène substitué tels que nitrotoluène, diéthyltoluène, toluènediamine, et autres, Separation of isomers of substituted toluene such as nitrotoluene, diethyltoluene, toluene diamine, and others,
• séparation des crésols,  • separation of cresols,
• la séparation des alcools polyhydriques, tels que les sucres.  • the separation of polyhydric alcohols, such as sugars.
[0075] L'invention concerne notamment un procédé de récupération de para-xylène à haute pureté à partir de coupes d'isomères aromatiques à 8 atomes de carbone consistant à utiliser, comme agent d'adsorption du para-xylène, un adsorbant zéolithique selon l'invention, mis en œuvre dans des procédés en phase liquide mais aussi en phase gazeuse. Par para-xylène de haute pureté, nous entendons un produit approprié pour une utilisation dans la production d'acide téréphtalique ou de téréphtalate de diméthyle, c'est à dire une pureté d'au moins 99,5% en poids, de préférence au moins 99,7% en poids, de préférence au moins 99,8% en poids et plus préférablement encore au moins 99,9% en poids. La pureté du para-xylène peut-être déterminée par des méthodes chromatographiques. Une méthode de chromatographie en phase gazeuse utilisable à la fois pour la détermination de la pureté du para-xylène et des quantités spécifiques d'impuretés est la méthode ASTM D-3798.  The invention relates in particular to a process for recovering para-xylene at high purity from aromatic isomer cuts with 8 carbon atoms comprising the use, as para-xylene adsorption agent, of a zeolite adsorbent according to the invention, implemented in processes in the liquid phase but also in the gas phase. By para-xylene of high purity, we mean a product suitable for use in the production of terephthalic acid or dimethyl terephthalate, that is to say a purity of at least 99.5% by weight, preferably at at least 99.7% by weight, preferably at least 99.8% by weight and more preferably at least 99.9% by weight. The purity of para-xylene can be determined by chromatographic methods. A gas chromatographic method that can be used both for determining the purity of para-xylene and specific amounts of impurities is ASTM Method D-3798.
[0076] On peut ainsi séparer le produit désiré (para-xylène) par chromatographie liquide d'adsorption préparative (en batch), et avantageusement en continu en lit mobile simulé, c'est-à-dire à contre-courant simulé ou à co-courant simulé, et plus particulièrement à contre-courant simulé.  It is thus possible to separate the desired product (para-xylene) by preparative adsorption liquid chromatography (in batch), and advantageously continuously in simulated moving bed, that is to say against the simulated countercurrent or simulated co-current, and more particularly simulated countercurrent.
[0077] Le procédé de récupération de para-xylène selon l'invention utilisant l'adsorbant décrit selon l'invention présente l'avantage de maximiser la productivité mais également de minimiser les coûts opératoires du procédé, c'est-à-dire à la fois de maximiser le débit de charge à traiter et de minimiser le débit de désorbant nécessaire. Ceci est particulièrement vrai dans les conditions opératoires d'unité industrielle d'adsorption de type contre-courant simulé suivantes : • nombre de lits : 6 à 30, The process for recovering para-xylene according to the invention using the adsorbent described according to the invention has the advantage of maximizing productivity but also of minimizing the operating costs of the process, that is to say both to maximize the load flow to be treated and to minimize the desorbent flow required. This is particularly true under the following simulated countercurrent industrial adsorption unit operating conditions: • number of beds: 6 to 30,
• nombre de zones : au moins 4 zones de fonctionnement, chacune étant localisées entre un point d'alimentation et un point de soutirage,  • number of zones: at least 4 operating zones, each located between a feed point and a draw-off point,
• température comprise entre 100°C et 250°C, de préférence entre 150°C et 190°C, • temperature between 100 ° C and 250 ° C, preferably between 150 ° C and 190 ° C,
• pression de l'unité industrielle comprise entre la pression de bulle des xylènes à la température du procédé et 3 MPa, Pressure of the industrial unit between the bubble pressure of the xylenes at the process temperature and 3 MPa,
• rapport des débits désorbant/charge compris entre 0,7 et 2,5, par exemple entre 0,9 et 1 ,8 pour une unité d'adsorption seule (stand alone) et entre 0,7 et 1 ,4 pour une unité d'adsorption combinée à une unité de cristallisation,  Desorbent / charge flow ratio between 0.7 and 2.5, for example between 0.9 and 1.8, for a single adsorption unit (stand alone) and between 0.7 and 1.4 for a unit. adsorption combined with a crystallization unit,
• taux de recyclage (i.e. ratio du débit de recyclage moyen (moyenne des débits de zones pondérée du nombre de lits par zones) sur le débit de charge) compris entre 2,5 et 12, de préférence entre 3,5 et 6.  • Recycling rate (i.e. ratio of the average recycling rate (average of zone flow weighted by the number of beds per zone) to the load flow rate) between 2.5 and 12, preferably between 3.5 and 6.
[0078] On pourra sur ce sujet se référer à l'enseignement des brevets US 2 985 589, US 5 284 992 et US 5 629 467.  On this subject, reference may be made to the teaching of patents US 2,985,589, US 5,284,992 and US 5,629,467.
[0079] Les conditions opératoires d'une unité industrielle d'adsorption à co-courant simulé sont en général les mêmes que celles fonctionnant à contre-courant simulé, à l'exception du taux de recyclage qui est en général compris entre 0,8 et 7. On pourra sur cet aspect se référer aux brevets US 4 402 832 et US 4 498 991 .  The operating conditions of a simulated co-current adsorption industrial unit are generally the same as those operating at simulated countercurrent, with the exception of the recycling rate which is generally between 0.8. and 7. On this aspect, reference may be made to US Pat. Nos. 4,402,832 and 4,498,991.
[0080] Le solvant de désorption peut être tout désorbant connu de l'homme du métier et dont le point d'ébullition est inférieur à celui de la charge, tel que le toluène mais aussi un désorbant dont le point d'ébullition est supérieur à celui de la charge, tel que le para-diéthylbenzène (PDEB). La sélectivité des adsorbants selon l'invention pour l'adsorption du para-xylène contenu dans des coupes aromatiques en C8 est optimale lorsque leur perte au feu mesurée à 950°C est comprise en général entre 4,0% et 7,7%, et de préférence entre 4,5% et 6,5%, et de manière très préférée entre 4,8% et 6,0%. The desorption solvent may be any desorbent known to those skilled in the art and whose boiling point is lower than that of the filler, such as toluene but also a desorbent whose boiling point is greater than that of the feed, such as para-diethylbenzene (PDEB). The selectivity of the adsorbents according to the invention for the adsorption of para-xylene contained in C8 aromatic cuts is optimal when their loss on ignition measured at 950 ° C. is generally between 4.0% and 7.7%. and preferably between 4.5% and 6.5%, and very preferably between 4.8% and 6.0%.
TECHNIQUES DE CARACTERISATION CHARACTERIZATION TECHNIQUES
Granulométrie des cristaux : Granulometry of the crystals:
[0081] L'estimation du diamètre moyen en nombre des cristaux de zéolithe X utilisées à l'étape a) et des cristaux de zéolithe X contenue dans les agglomérés est réalisée par observation au microscope électronique à balayage (MEB) ou par observation au microscope électronique en transmission (MET).  The estimation of the number average diameter of the zeolite X crystals used in step a) and the zeolite X crystals contained in the agglomerates is carried out by observation under a scanning electron microscope (SEM) or by microscopic observation. transmission electronics (MET).
[0082] Afin d'estimer la taille des cristaux de zéolithe sur les échantillons, on effectue un ensemble de clichés à un grossissement d'au moins 5000. On mesure ensuite le diamètre d'au moins 200 cristaux à l'aide d'un logiciel dédié, par exemple le logiciel Smile View de l'éditeur LoGraMi. La précision est de l'ordre de 3%. Analyse chimique des adsorbants zéolithiques - rapports Si/AI et K20 / (K20 + BaO + Na20): In order to estimate the size of the zeolite crystals on the samples, a set of images is carried out at a magnification of at least 5000. The diameter of at least 200 crystals is then measured using a dedicated software, for example the Smile View software from the LoGraMi editor. The accuracy is of the order of 3%. Chemical analysis of zeolitic adsorbents - Si / AI 2 0 and K / (K 2 0 + BaO + Na 2 0):
[0083] Une analyse chimique élémentaire du produit final obtenu à l'issue des étapes a) à f) décrites précédemment, peut être réalisée selon différentes techniques analytiques connues de l'homme du métier. Parmi ces techniques, on peut citer la technique d'analyse chimique par fluorescence de rayons X telle que décrite dans la norme NF EN ISO 12677 : 201 1 sur un spectromètre dispersif en longueur d'onde (WDXRF), par exemple Tiger S8 de la société Bruker.  An elemental chemical analysis of the final product obtained at the end of steps a) to f) described above, can be carried out according to various analytical techniques known to those skilled in the art. Among these techniques, mention may be made of the technique of chemical analysis by X-ray fluorescence as described in standard NF EN ISO 12677: 201 1 on a wavelength dispersive spectrometer (WDXRF), for example Tiger S8 of the Bruker company.
[0084] La fluorescence X est une technique spectrale non destructive exploitant la photoluminescence des atomes dans le domaine des rayons X, pour établir la composition élémentaire d'un échantillon. L'excitation des atomes généralement par un faisceau de rayons X ou par bombardement avec des électrons, génère des radiations spécifiques après retour à l'état fondamental de l'atome. Le spectre de fluorescence X a l'avantage de dépendre très peu de la combinaison chimique de l'élément, ce qui offre une détermination précise, à la fois quantitative et qualitative. On obtient de manière classique après étalonnage pour chaque oxyde une incertitude de mesure inférieure à 0,4% en poids. Dans la présente invention les teneurs en baryum, en silicium et en aluminium sont de préférence mesurées par la méthode fluorescence X décrite ci- dessus.  X-ray fluorescence is a non-destructive spectral technique exploiting the photoluminescence of atoms in the X-ray domain to establish the elemental composition of a sample. The excitation of the atoms generally by an X-ray beam or by bombardment with electrons, generates specific radiations after return to the ground state of the atom. The X-ray fluorescence spectrum has the advantage of relying very little on the chemical combination of the element, which offers a precise determination, both quantitative and qualitative. A measurement uncertainty of less than 0.4% by weight is obtained conventionally after calibration for each oxide. In the present invention, the barium, silicon, and aluminum contents are preferably measured by the X-ray fluorescence method described above.
[0085] En revanche pour les éléments plus légers en termes poids atomique tels que le sodium ou le potassium présents dans l'adsorbant, on préférera pour plus de précision la spectrométrie d'émission atomique avec plasma induit par haute fréquence (ICP-OES pour Inductively Coupled Plasma-Optical Emission Spectroscopy selon la terminologie anglo-saxonne) selon la norme UOP 961 -12.  On the other hand, for the elements that are lighter in atomic weight, such as sodium or potassium, present in the adsorbent, it is preferable for more precise accuracy for atomic emission spectrometry with inductively coupled plasma (ICP-OES). Inductively Coupled Plasma-Optical Emission Spectroscopy according to the English terminology) according to the UOP 961 -12 standard.
[0086] L'ICP est une méthode d'analyse par spectrométrie d'émission atomique dont la source est un plasma généré par couplage inductif. Cette méthode est également couramment employée pour déterminer les teneurs en divers éléments tels que le silicium, l'aluminium, le potassium le sodium et le baryum. Dans la présente invention les teneurs en sodium et en potassium sont de préférence mesurées par la méthode ICP selon la norme UOP 961 -12. On obtient dans ce cas pour le sodium une incertitude sur la mesure inférieure à 0,01 % pour la teneur en poids de l'oxyde de sodium dans l'adsorbant et pour le potassium une incertitude sur la mesure inférieure à 0,02% pour la teneur en poids de l'oxyde de potassium dans l'adsorbant.  ICP is a method of analysis by atomic emission spectrometry whose source is a plasma generated by inductive coupling. This method is also commonly used to determine the contents of various elements such as silicon, aluminum, potassium, sodium and barium. In the present invention, the sodium and potassium contents are preferably measured by the ICP method according to the UOP 961-12 standard. In this case, for the sodium, an uncertainty of less than 0.01% is obtained for the content by weight of the sodium oxide in the adsorbent and for potassium an uncertainty on the measurement of less than 0.02% for the content by weight of the potassium oxide in the adsorbent.
[0087] Ces analyses chimiques élémentaires permettent à la fois de vérifier le rapport atomique Si/AI de la zéolithe au sein de l'aggloméré, et de vérifier la qualité de l'échange ionique décrit à l'étape c) et à l'étape d). Dans la description de la présente invention, l'incertitude de mesure du ratio atomique Si/AI est de 0,05. These elementary chemical analyzes make it possible both to check the Si / Al atomic ratio of the zeolite within the agglomerate, and to check the quality of the exchange. ionic described in step c) and step d). In the description of the present invention, the measurement uncertainty of the Si / Al atomic ratio is 0.05.
[0088] La qualité de l'échange ionique est liée au nombre de mole d'oxyde de sodium, Na20, restant dans l'aggloméré zéolithique après échange. Plus précisément, le taux d'échange par les ions baryum est déterminé par le ratio entre le nombre de moles d'oxyde de baryum, BaO, et le nombre de moles de l'ensemble (BaO + K20 + Na20). De même, le taux d'échange par les ions potassium est déterminé par le ratio entre le nombre de moles d'oxyde de potassium, K20, et le nombre de moles de l'ensemble (BaO + K20 + Na20). BaO, K20 et Na20 sont exprimés sous forme d'oxydes. Le taux d'échange total par les ions baryum et potassium est estimé à partir de la somme des deux taux d'échange précédemment décrits, correspondant au rapport entre la somme du nombre de moles d'oxyde de baryum et oxyde de potassium (BaO + K20) et le nombre de moles de l'ensemble (BaO + K20 + Na20). Il est à noter que les teneurs en différents oxydes sont donnés, en pourcentage en poids par rapport au poids total de l'adsorbant zéolithique anhydre. Dans la description de la présente invention, l'incertitude de mesure sur le ratio molaire K20 / (K20 + BaO + Na20) est de 0,3%. The quality of the ion exchange is related to the number of moles of sodium oxide, Na 2 0, remaining in the zeolite agglomerate after exchange. More specifically, the exchange rate by the barium ions is determined by the ratio between the number of moles of barium oxide, BaO, and the number of moles of the whole (BaO + K 2 0 + Na 2 0). . Similarly, the exchange rate by the potassium ions is determined by the ratio between the number of moles of potassium oxide, K 2 0, and the number of moles of the whole (BaO + K 2 0 + Na 2 0). BaO, K 2 0 and Na 2 0 are expressed as oxides. The total exchange rate by barium and potassium ions is estimated from the sum of the two exchange rates described above, corresponding to the ratio between the sum of the number of moles of barium oxide and potassium oxide (BaO + K 2 0) and the number of moles of the group (BaO + K 2 0 + Na 2 0). It should be noted that the contents of various oxides are given in percentage by weight relative to the total weight of the anhydrous zeolite adsorbent. In the description of the present invention, the measurement uncertainty on the molar ratio K 2 0 / (K 2 O + BaO + Na 2 0) is 0.3%.
Granulométrie des adsorbants zéolithiques : Granulometry of zeolite adsorbents:
[0089] La détermination du diamètre moyen en nombre des adsorbants zéolithiques obtenus à l'issus de l'étape a) d'agglomération et de mise en forme est effectuée par analyse de la distribution granulométrique d'un échantillon d'aggloméré par imagerie selon la norme ISO 13322-2:2006, en utilisant un tapis roulant permettant à l'échantillon de passer devant l'objectif de la caméra.  The determination of the number average diameter of the zeolite adsorbents obtained at the end of step a) of agglomeration and shaping is carried out by analysis of the particle size distribution of an agglomerate sample by imaging according to ISO 13322-2: 2006, using a treadmill that allows the sample to pass in front of the camera lens.
[0090] Le diamètre moyen en nombre est ensuite calculé à partir de la distribution granulométrique en appliquant la norme ISO 9276-2:2001 . Dans le présent document, on emploie l'appellation « diamètre moyen en nombre » ou bien « taille » pour les agglomérés zéolithiques. La précision est de l'ordre de 0,01 mm pour la gamme de taille d'agglomérés de l'invention.  The number average diameter is then calculated from the particle size distribution by applying the ISO 9276-2: 2001 standard. In this document, the term "average number diameter" or "size" is used for zeolite agglomerates. The accuracy is of the order of 0.01 mm for the agglomerate size range of the invention.
Résistance mécanique des adsorbants zéolithiques :  Mechanical resistance of zeolite adsorbents:
[0091] La technique de caractérisation de la résistance mécanique représentative de l'écrasement de l'adsorbant au sein d'un lit ou d'un réacteur est la technique de caractérisation de la résistance mécanique en lit, telle que décrite dans la méthode Shell série SMS1471 -74 (Shell Method Séries SMS1471 -74 Détermination of Bulk Crushing Strength of Catalysts. Compression-Sieve Method") , associée à l'appareil "BCS Tester" commercialisé par la société Vinci Technologies. Cette méthode, initialement destinée à la caractérisation de catalyseurs de 3 à 6 mm est basée sur l'utilisation d'un tamis de 425 μπΊ qui va permettre notamment de séparer les fines créées lors de l'écrasement. L'utilisation d'un tamis de 425 μηι reste adaptée pour des particules de diamètre supérieur à 1 ,6mm, mais doit être adaptée selon la granulométrie des adsorbants zéolithiques que l'on cherche à caractériser. La norme ASTM D7084-04 qui décrit également une méthode de mesure de la résistance à l'écrasement en lit de catalyseurs ("Détermination of Bulk Crush Strength of Catalysts and Catalyst Carriers") définit le passage du tamis à utiliser comme étant égal à la moitié du diamètre des particules de catalyseurs à caractériser. La méthode prévoit une étape préliminaire de tamisage de l'échantillon de catalyseurs ou adsorbants à caractériser. Si une quantité égale à 10% poids de l'échantillon passe à travers la grille, un tamis de passage plus petit sera utilisé. The technique of characterization of the mechanical resistance representative of the crushing of the adsorbent within a bed or a reactor is the technique of characterization of the bed strength, as described in the Shell method. SMS1471 -74 series (Shell Method Series SMS1471 -74 Determination of Bulk Crushing Strength of Catalysts, Compression-Sieve Method "), associated with the" BCS Tester "apparatus marketed by Vinci Technologies, this method initially intended for characterization catalysts from 3 to 6 mm is based on the use of a screen of 425 μπΊ which will allow in particular to separate the fines created during the crash. The use of a 425 μηι sieve remains suitable for particles with a diameter greater than 1.6 mm, but must be adapted according to the particle size of the zeolitic adsorbents that are to be characterized. ASTM D7084-04 which also describes a method for measuring the catalyst bed crush strength ("Determination of Bulk Crush Strength of Catalysts and Catalyst Carriers") defines the passage of the sieve to be used as being equal to the half the diameter of the catalyst particles to be characterized. The method provides a preliminary step of sieving the sample of catalysts or adsorbents to be characterized. If an amount equal to 10% weight of the sample passes through the grid, a smaller pass screen will be used.
[0092] Les agglomérés de la présente invention, généralement sous forme de billes ou d'extrudés, ont en général un diamètre moyen en nombre ou une longueur, i.e. plus grande dimension dans le cas des agglomérés non sphériques, comprise entre 0,2 mm et 2 mm, et en particulier comprise entre 0,2 mm et 0,8 mm et de préférence entre 0,2 mm et 0,65 mm. Par conséquent, un tamis adapté tel que moins de 10% en poids de l'échantillon passe à travers la grille lors d'une étape préalable de tamisage est utilisé à la place du tamis de 425 μηι mentionné dans la méthode Shell standard SMS1471 -74. The agglomerates of the present invention, generally in the form of beads or extrudates, generally have a number average diameter or a length, ie the largest dimension in the case of non-spherical agglomerates, of between 0.2 mm. and 2 mm, and in particular between 0.2 mm and 0.8 mm and preferably between 0.2 mm and 0.65 mm. Therefore, a suitable screen such that less than 10% by weight of the sample passes through the grid during a prior sieving step is used in place of the 425 μηι sieve mentioned in the standard Shell method SMS1471 -74 .
[0093] Le protocole de mesure est le suivant : un échantillon de 20 cm3 d'adsorbants agglomérés, préalablement tamisé avec le tamis adapté et préalablement séché à l'étuve pendant au moins 2 heures à 250°C (au lieu de 300°C mentionné dans la méthode Shell standard SMS1471 -74), est placé dans un cylindre métallique de section interne connue. Une force croissante est imposée par paliers sur cet échantillon par l'intermédiaire d'un piston, à travers un lit de 5 cm3 de billes d'acier afin de mieux répartir la force exercée par le piston sur les agglomérés d'adsorbants (utilisation de billes de 2 mm de diamètre pour des particules de forme sphérique de diamètre strictement inférieur à 1 ,6 mm). Les fines obtenues aux différents paliers de pression sont séparées par tamisage (avec tamis adapté) et pesées. The measuring protocol is as follows: a 20 cm 3 sample of agglomerated adsorbents, previously sieved with the appropriate sieve and previously dried in an oven for at least 2 hours at 250 ° C. (instead of 300 ° C.) C mentioned in the standard Shell method SMS1471 -74), is placed in a metal cylinder of known internal section. An increasing force is imposed in stages on this sample by means of a piston, through a bed of 5 cm 3 of steel balls in order to better distribute the force exerted by the piston on the agglomerates of adsorbents (use balls of 2 mm diameter for particles of spherical shape of diameter strictly less than 1, 6 mm). The fines obtained at the different pressure levels are separated by sieving (with a suitable sieve) and weighed.
[0094] La résistance à l'écrasement en lit est déterminée par la pression en mégaPascal (MPa) pour laquelle la quantité de fines cumulées passant à travers le tamis s'élève à 0,5% pondéral de l'échantillon. Cette valeur est obtenue en traçant sur un graphique la masse de fines obtenue en fonction de la force appliquée sur le lit d'adsorbant et en interpolant à 0,5 % massique de fines cumulées. La résistance mécanique à l'écrasement en lit est typiquement comprise entre quelques centaines de kPa et quelques dizaines de MPa et généralement comprise entre 0,3 MPa et 4 MPa. La précision est de manière classique inférieure à 0,1 MPa. Détermination des fractions zéolithiques des adsorbants zéolithiques : The crush resistance in bed is determined by the pressure in megaPascal (MPa) for which the amount of cumulative fines passing through the sieve is 0.5% by weight of the sample. This value is obtained by plotting the mass of fines obtained as a function of the force applied on the adsorbent bed and by interpolating at 0.5% by mass of cumulated fines. The mechanical resistance to crushing in a bed is typically between a few hundred kPa and a few tens of MPa and generally between 0.3 MPa and 4 MPa. The accuracy is conventionally less than 0.1 MPa. Determination of zeolite fractions of zeolite adsorbents:
[0095] La nature et la quantité des différentes fractions zéolithiques sont déterminées par analyse par diffraction de rayons X, connue de l'homme du métier sous l'acronyme DRX. Cette analyse est réalisée sur un appareil de la marque Bruker, puis la quantité des fractions zéolithiques est évaluée au moyen du logiciel TOPAS de la société Bruker. Volume microporeux : The nature and the quantity of the various zeolite fractions are determined by X-ray diffraction analysis, known to those skilled in the art under the acronym DRX. This analysis is carried out on a Bruker brand apparatus, then the quantity of zeolite fractions is evaluated using Bruker's TOPAS software. Microporous volume:
[0096] La cristallinité des agglomérés est également évaluée par mesure de leur volume microporeux en le comparant à celui d'une référence appropriée (zéolithe 100% cristalline dans des conditions de traitements cationiques identiques ou zéolithe théorique). Ce volume microporeux est déterminé à partir de la mesure de l'isotherme d'adsorption de gaz, tel que l'azote, à sa température de liquéfaction. Préalablement à l'adsorption, l'adsorbant zéolithique est dégazé entre 300°C - 450°C pendant une durée de 9 heures à 16 heures, sous vide (P < 6,7.10"4 Pa). La mesure de l'isotherme d'adsorption d'azote à 77K est ensuite effectuée sur un appareil de type ASAP 2010 M de Micromeritics, en prenant au moins 35 points de mesure à des pressions relatives de rapport P/P0 compris entre 0,002 et 1 . Le volume microporeux est déterminé selon Dubinin et Raduskevitch à partir de l'isotherme obtenue, en appliquant la norme ISO 15901 -3:2007. Le volume microporeux évalué selon Dubinin et Raduskevitch s'exprime en cm3 d'adsorbat liquide par gramme d'adsorbant. L'incertitude de mesure est de ± 0,003. The crystallinity of the agglomerates is also evaluated by measuring their microporous volume by comparing it with that of a suitable reference (100% crystalline zeolite under identical cationic treatment conditions or theoretical zeolite). This microporous volume is determined from the measurement of the gas adsorption isotherm, such as nitrogen, at its liquefaction temperature. Prior to adsorption, the zeolite adsorbent is degassed between 300 ° C. and 450 ° C. for a period of 9 hours to 16 hours, under vacuum (P <6.7 × 10 -4 Pa). 77K nitrogen adsorption is then carried out on a Micromeritics ASAP 2010 M type apparatus, taking at least 35 measurement points at relative pressures of P / P 0 ratio between 0.002 and 1. The microporous volume is determined according to Dubinin and Raduskevitch from the obtained isotherm, applying the ISO 15901 -3: 2007 standard The microporous volume evaluated according to Dubinin and Raduskevitch is expressed in cm 3 of liquid adsorbate per gram of adsorbent. measurement is ± 0.003.
Perte au feu des adsorbants zéolithiques :  Loss on fire of zeolite adsorbents:
[0097] La perte au feu est déterminée en atmosphère oxydante, par calcination de l'échantillon à l'air à une température de 950°C ± 25°C, comme décrit dans la norme NF EN 196-2 (avril 2006). L'écart type de mesure est inférieur à 0,1 %.  The loss on ignition is determined in an oxidizing atmosphere, by calcination of the sample in air at a temperature of 950 ° C. ± 25 ° C., as described in standard NF EN 196-2 (April 2006). The standard deviation of measurement is less than 0.1%.
Caractérisation de l'adsorption en phase liquide par perçage : Characterization of liquid phase adsorption by drilling:
[0098] La technique utilisée pour caractériser l'adsorption de molécules en phase liquide sur un solide poreux est la technique dite de perçage, décrite par Ruthven dans « Principles of Adsorption and Adsorption Processes » (Chapitres 8 et 9, John Wiley & Sons, 1984) qui définit la technique des courbes de perçage (« breakthrough curves ») comme l'étude de la réponse à l'injection d'un échelon de constituants adsorbables. L'analyse du temps moyen de sortie (premier moment) des courbes de perçage fournit une information sur les quantités adsorbées et permet également d'évaluer les sélectivités, c'est-à-dire le facteur de séparation, entre deux constituants adsorbables. L'injection d'un constituant non adsorbable utilisé comme traceur est conseillée pour l'estimation des volumes non-sélectifs. L'analyse de la dispersion (second moment) des courbes de perçage, permet d'évaluer la hauteur équivalente de plateaux théoriques, basée sur la représentation d'une colonne par un nombre fini de réacteurs hypothétiques idéalement agités (étages théoriques), qui est une mesure directe de la dispersion axiale et de la résistance au transfert de matière du système. The technique used to characterize the adsorption of molecules in liquid phase on a porous solid is the so-called drilling technique, described by Ruthven in "Principles of Adsorption and Adsorption Processes" (Chapters 8 and 9, John Wiley & Sons, 1984) which defines the technique of breakthrough curves as the study of the response to the injection of a step of adsorbable constituents. The analysis of the average time of exit (first moment) of the drilling curves provides information on the adsorbed quantities and also makes it possible to evaluate the selectivities, that is to say the separation factor, between two adsorbable constituents. The injection of a non-adsorbable component used as a tracer is recommended for the estimation of non-selective volumes. Analysis of the dispersion (second moment) of the drilling curves makes it possible to evaluate the equivalent height of theoretical plates, based on the representation of a column by a finite number of ideally stirred hypothetical reactors (theoretical stages), which is a direct measure of axial dispersion and material transfer resistance of the system.
EXEMPLES EXAMPLES
[0099] Préparation des adsorbants zéolithiques  [0099] Preparation of zeolite adsorbents
[00100] On prépare un mélange homogène et on agglomère 800 g de cristaux de zéolithe NaX selon le mode opératoire décrit dans la demande de brevet FR2 999 098 (synthèse de l'exemple B) avec 105 g de kaolin (exprimés en équivalent calciné) et 45 g de silice colloïdale vendue sous la dénomination commerciale Klebosol®30 (contenant 30% en poids de Si02 et 0,5% de Na20) avec la quantité d'eau qui permet l'extrusion du mélange. Les extrudés sont séchés, concassés de manière à récupérer des grains dont le diamètre moyen en nombre est égal à 0,5 mm, puis calcinés à 550°C sous courant d'azote pendant 2 heures. A homogeneous mixture is prepared and 800 g of NaX zeolite crystals are agglomerated according to the procedure described in the patent application FR 2 999 098 (synthesis of Example B) with 105 g of kaolin (expressed as calcined equivalent). and 45 g of colloidal silica sold under the trade name Klebosol ® 30 (containing 30% by weight of Si0 2 and 0.5% Na 2 0) with the amount of water which allows the extrusion of the mixture. The extrudates are dried, crushed so as to recover grains whose number average diameter is equal to 0.5 mm, and then calcined at 550 ° C. under a stream of nitrogen for 2 hours.
[00101] 200 g d'agglomérés obtenus sont placés dans un réacteur en verre muni d'une double enveloppe régulée à une température de 100°C ± 1 °C, puis on ajoute 1 ,5 L d'une solution aqueuse d'hydroxyde de sodium de concentration 2,5 M et on laisse le milieu réactionnel sous agitation pendant une durée de 4 heures.  200 g of agglomerates obtained are placed in a glass reactor equipped with a controlled double jacket at a temperature of 100 ° C. ± 1 ° C., and then 1.5 L of an aqueous solution of hydroxide is added. of 2.5 M sodium concentration and the reaction medium is left stirring for a period of 4 hours.
[00102] On procède ensuite au lavage des agglomérés en 3 opérations successives de lavage à l'eau suivi de la vidange du réacteur. On s'assure de l'efficacité du lavage en mesurant le pH final des eaux de lavage compris entre 10,0 et 10,5.  Then the agglomerates are washed in 3 successive operations of washing with water followed by the emptying of the reactor. The effectiveness of the washing is ensured by measuring the final pH of the washings between 10.0 and 10.5.
Exemple 1 : Échange cationique au baryum et au potassium Example 1 Cation Exchange with Barium and Potassium
[00103] Les cations sodium des agglomérés obtenus sont échangés par des ions baryum et potassium au moyen d'une solution aqueuse à 0,5M de chlorure de potassium et de chlorure de baryum à 95°C en 4 étapes. Les concentrations de chlorure de potassium et de chlorure de baryum dans la solution sont adaptées afin d'atteindre les teneurs en baryum et potassium visées dans l'adsorbant et donc les ratios molaires K20 / (K20 + BaO + Na20) visés (Figure 1 ). En particulier, le ratio molaire K20 / (K20 + BaO + Na20) de 12,0% est atteint avec une solution aqueuse de chlorure de baryum de concentration 0,36 M et de chlorure de potassium de concentration 0,14 M. À chaque étape, le rapport volume de solution sur masse de solide est de 20 mL/g et l'échange est poursuivi pendant 3 heures à chaque fois. Entre chaque échange, le solide est lavé plusieurs fois de manière à le débarrasser des excédents de sel. Les agglomérés sont ensuite séchés à 80°C pendant 2 heures et enfin activés à 250°C pendant 2 heures sous courant d'azote. [00104] La perte au feu mesurée, comme décrit précédemment, est de 5,6% ± 0,1 % pour chaque échantillon. Le taux d'échange en baryum+potassium des agglomérés calculés à partir des analyses élémentaires des oxydes de baryum et de sodium par fluorescence X comme décrit dans les techniques de caractérisation est de 99,7 ± 0,2%. En particulier, pour le ratio molaire K20 / (K20 + BaO + Na20) de 12,0%, la teneur en oxyde de sodium Na20 est de 0,05% en poids par rapport au poids total de l'adsorbant, la teneur en oxyde de baryum BaO est de 33,83% en poids par rapport au poids total de l'adsorbant, et la teneur en oxyde de potassium K20 est de 2,85% en poids par rapport au poids total de l'adsorbant The sodium cations of the agglomerates obtained are exchanged with barium and potassium ions using an aqueous solution of 0.5M potassium chloride and barium chloride at 95 ° C in 4 steps. The concentrations of potassium chloride and barium chloride in the solution are adapted in order to reach the targeted barium and potassium contents in the adsorbent and thus the K 2 0 / (K 2 0 + BaO + Na 2 0 molar ratios. ) referred to (Figure 1). In particular, the molar ratio K 2 0 / (K 2 0 + BaO + Na 2 0) of 12.0% is achieved with an aqueous solution of barium chloride of 0.36 M concentration and 0 concentration potassium chloride. At each stage, the volume ratio of solution to mass of solid is 20 ml / g and the exchange is continued for 3 hours each time. Between each exchange, the solid is washed several times in order to rid it of excess salt. The agglomerates are then dried at 80 ° C for 2 hours and finally activated at 250 ° C for 2 hours under a stream of nitrogen. [00104] The measured loss on ignition, as described above, is 5.6% ± 0.1% for each sample. The barium-potassium exchange rate of the agglomerates calculated from elemental analyzes of barium and sodium oxides by X-ray fluorescence as described in the characterization techniques is 99.7 ± 0.2%. In particular, for the molar ratio K 2 0 / (K 2 0 + BaO + Na 2 0) of 12.0%, the content of sodium oxide Na 2 0 is 0.05% by weight relative to the total weight of the adsorbent, the content of barium oxide BaO is 33.83% by weight relative to the total weight of the adsorbent, and the content of K 2 0 potassium oxide is 2.85% by weight relative to to the total weight of the adsorbent
Exemple 2 :Test de perçage Example 2: Drilling Test
[00105] Un test de perçage (chromatographie frontale) est ensuite réalisé sur les agglomérés obtenus à l'exemple 1 pour évaluer leur efficacité. La quantité d'adsorbant utilisée pour ce test est d'environ 30 g.  A drilling test (frontal chromatography) is then performed on the agglomerates obtained in Example 1 to evaluate their effectiveness. The amount of adsorbent used for this test is about 30 g.
[00106] Le mode opératoire pour obtenir les courbes de perçage est le suivant :  The procedure for obtaining the drilling curves is as follows:
• Remplissage de la colonne par le tamis et mise en place dans le banc de test. • Fill the column by the sieve and set up in the test bench.
• Remplissage par un solvant (toluène) à température ambiante. • Filling with a solvent (toluene) at room temperature.
• Montée progressive à la température d'adsorption sous flux de solvant (2 cm3/min).• Gradual rise at the adsorption temperature under a stream of solvent (2 cm 3 / min).
• Injection de solvant à 2 cm3/min lorsque la température d'adsorption est atteinte.• Injection of solvent at 2 cm 3 / min when the adsorption temperature is reached.
• Permutation solvant/charge pour injecter la charge (2 cm3/min). • Solvent / charge permutation to inject the charge (2 cm 3 / min).
• L'injection de la charge est ensuite maintenue un temps suffisant pour atteindre l'équilibre thermodynamique.  • The injection of the charge is then maintained for a time sufficient to reach thermodynamic equilibrium.
• Collecte de la recette du perçage dans un flacon unique puis analyse de la composition de la recette par CPG.  • Collection of the recipe of the piercing in a single bottle then analysis of the composition of the recipe by GIC.
[00107] La pression est suffisante pour que la charge reste en phase liquide, soit 1 MPa. La température d'adsorption est de 175°C. La composition de la charge utilisée pour les tests est la suivante :  The pressure is sufficient for the charge to remain in the liquid phase, ie 1 MPa. The adsorption temperature is 175 ° C. The composition of the load used for the tests is as follows:
• Para-xylène : 18% en poids  • Para-xylene: 18% by weight
• Méta-xylène : 18% en poids  • Meta-xylene: 18% by weight
• Ortho-xylène : 18% en poids  • Ortho-xylene: 18% by weight
• Éthylbenzène : 18% en poids  • Ethylbenzene: 18% by weight
• Para-diéthylbenzène : 18% en poids  • Para-diethylbenzene: 18% by weight
• Iso-octane : 10% en poids (celui-ci est utilisé comme traceur pour l'estimation des volumes non-sélectifs et n'intervient pas dans la séparation) [00108] Les sélectivités binaires des composés deux à deux, notées sélectivités binaires oii/k sont calculées à partir des quantités adsorbées q, et qk des composés i et k, ces dernières étant déterminées par bilan matière à partir de l'analyse de la composition de la recette du perçage et de la composition de la charge (charge dans laquelle la fraction massique des composes ι et k est y, et yk) : ai Îk =—— • Iso-octane: 10% by weight (this one is used as tracer for the estimation of non-selective volumes and does not intervene in the separation) [00108] The binary selectivities of the two-to-two compounds, denoted binary selectivities oii / k, are calculated from the adsorbed quantities q, and q k of the compounds i and k, the latter being determined by material balance from the analysis of the composition of the recipe for piercing and the composition of the charge (charge in which the mass fraction of the compounds ι and k is y, and y k ): a i kk = -
[00109] L'évaluation du potentiel de ces adsorbants lors de la mise en œuvre à contre- courant simulé, est faite en se basant sur la théorie de l'équilibre appliquée aux systèmes multi-constituants à sélectivités constantes telle que décrite par Mazotti, Storti et Morbidelli dans Robust Design of Countercurrent Adsorption Séparation Processes: 2. Multicomponent Systems, AlChE Journal November 1994 Vol. 40, No. 1 1. En particulier, on se réfère ici à l'équation 8, qui décrit les conditions à satisfaire sur les débits réduits rrij des 4 sections (j=1 à 4) d'une unité de séparation à contre-courant telle que schématisée en Figure 1 de l'article cité pour obtenir une séparation complète. [00109] The evaluation of the potential of these adsorbents during the simulated countercurrent implementation is made on the basis of the theory of equilibrium applied to multi-constituent systems with constant selectivities as described by Mazotti. Storti and Morbidelli in Robust Design of Countercurrent Adsorption Separation Processes: 2. Multicomponent Systems, AlChE Journal November 1994 Vol. 40, No. 1 1. In particular, reference is made here to the equation 8, which describes the requirements to be met on reduced flow of 4 sections rri j (j = 1 to 4) of a separation unit against -current as shown schematically in Figure 1 of the article cited to obtain a complete separation.
Section 1 : Kss < τηιδι < +∞ Section 1: K ss <τη ι δ ι <+ ∞
Section 2 : Kwk < m2S2 < Ksk Section 2: K wk <m 2 S 2 <K sk
Section 3 : Kwk < m3S3 < Ksk (8) Section 3: K wk <m 3 S 3 <K sk (8)
Section 4 : χ τ < m4ô4 < Km Section 4: χ τ <m 4 ô 4 <K m
[00110] Cette équation 8 fait référence aux adsorptivités K, des différents constituants, ainsi qu'au paramètre ¾ de chaque section j défini par l'équation 7 : This equation 8 refers to the adsorptivity K, of the various constituents, as well as to the parameter ¾ of each section j defined by equation 7:
[00111] Il faut noter ici que par définition la sélectivité binaire ai /k entre les composés i et k est égal au rapport des adsorptivités K, / Kk. It should be noted here that by definition the binary selectivity a i / k between the compounds i and k is equal to the ratio of the adsorptivities K, / K k .
[00112] Le débit réduit de chaque section de l'unité est défini comme étant le rapport du débit de la phase liquide sur le débit de la phase adsorbée. L'équation 8 indique quels sont les débits réduits limites pour chaque section. Dans une unité de séparation à contre-courant à 4 sections, le débit de charge correspond à la différence entre le débit en zone 3 et le débit en zone 2, et le débit de désorbant correspond à la différence entre le débit en zone 1 et le débit en zone 4.  The reduced flow rate of each section of the unit is defined as the ratio of the flow rate of the liquid phase to the flow rate of the adsorbed phase. Equation 8 indicates which flow rates are reduced for each section. In a 4-section counter-current separation unit, the feed rate corresponds to the difference between the flow rate in zone 3 and the flow rate in zone 2, and the desorbent flow rate corresponds to the difference between the flow rate in zone 1 and the flow in zone 4.
[00113] Lorsque l'on évalue les performances d'un adsorbant dans le procédé de séparation du para-xylène contenu dans les coupes aromatiques en C8, on cherche à maximiser la productivité mais également à minimiser les coûts opératoires. Un adsorbant performant est celui qui permet à la fois de maximiser le débit de charge à traiter et de minimiser le débit de désorbant nécessaire. When evaluating the performance of an adsorbent in the para-xylene separation process contained in the C8 aromatic cuts, one seeks to maximize productivity but also to minimize operating costs. A high performance adsorbent is that which allows both to maximize the flow rate of the feedstock to be treated and to minimize the necessary desorbent flow rate.
[001 1 4] Pour déterminer la quantité maximale de charge que l'on pourra traiter, on évalue la différence entre le débit maximal en zone 3 et le débit minimal en zone 2. On pourra comparer les performances en terme de productivité maximale de deux adsorbants en comparant leur débit réduit maximal de charge déterminé à partir des débits réduits des zones 2 et 3, respectivement m2 et m3, selon la relation : max(mCharge) = max(m3) - min(m2). [001 1 4] To determine the maximum amount of load that can be processed, the difference between the maximum flow rate in zone 3 and the minimum flow rate in zone 2 is evaluated. It will be possible to compare the performances in terms of maximum productivity of two adsorbents by comparing their maximum reduced flow rate determined from the reduced flow rates of zones 2 and 3, respectively m 2 and m 3 , according to the relation: max (m C harge) = max (m 3 ) - min (m 2 ) .
[001 1 5] Si on considère un système à sélectivités constantes, la composition de la phase liquide qui donne la contrainte la plus forte en zone 2 et en zone 3 est la composition de la phase liquide au point d'injection de la charge dans l'unité. En effet, à partir de ce point la concentration en para-xylène, qui est le composé le plus adsorbé, augmente dans le sens de circulation du solide en zone 2, et diminue dans le sens de circulation du liquide en zone 3. On peut approximer la composition de ce point à la composition de la charge à traiter, et c'est cette composition qui sera utilisée pour évaluer le terme δ2 et δ3 de l'équation 8. Les termes δ2 et δ3 étant définis par l'équation 7 mentionnée ci-dessus. [001 1 5] If one considers a system with constant selectivities, the composition of the liquid phase which gives the strongest stress in zone 2 and in zone 3 is the composition of the liquid phase at the point of injection of the charge into unit. Indeed, from this point the concentration of para-xylene, which is the most adsorbed compound, increases in the direction of circulation of the solid in zone 2, and decreases in the direction of circulation of the liquid in zone 3. to approximate the composition of this point to the composition of the charge to be treated, and it is this composition that will be used to evaluate the term δ 2 and δ 3 of equation 8. The terms δ 2 and δ 3 being defined by the equation 7 mentioned above.
[001 1 6] Pour chaque adsorbant, ce débit réduit max(mCharge) est calculé à partir des valeurs de sélectivités binaires mesurées expérimentalement. [001 1 6] For each adsorbent, this reduced flow rate max (m C harge) is calculated from the experimentally measured binary selectivity values.
[001 1 7] Pour déterminer la quantité minimale de désorbant à injecter, on évalue la différence entre le débit minimal en zone 1 et le débit maximal en zone 4. On pourra comparer les performances en terme de régénérabilité de deux adsorbants en comparant leur débit réduit minimal de désorbant déterminé à partir des débits réduits des zones 1 et 4, respectivement m-i et m4, selon la relation : min(ms) = min(m1) - max(m4). [001 1 7] To determine the minimum amount of desorbent to be injected, the difference between the minimum flow rate in zone 1 and the maximum flow rate in zone 4 is evaluated. The performances in terms of regenerability of two adsorbents can be compared by comparing their flow rate. minimum desorbent reduction determined from the reduced flow rates of zones 1 and 4, respectively mi and m 4 , according to the relation: min (m De s) = min (m 1 ) - max (m 4 ).
[001 1 8] Pour un système à sélectivités constantes, la composition de la phase liquide qui donne la contrainte la plus forte en zone 1 et en zone 4 est la composition de la phase liquide au point d'injection de désorbant dans l'unité. Au niveau de ce point, la phase liquide contient essentiellement du désorbant. La composition utilisée pour évaluer le terme δι et δ4 de l'équation 8. Les termes δι et δ4 étant définis par l'équation 7 mentionnée ci-dessus. [001 1 8] For a system with constant selectivities, the composition of the liquid phase which gives the strongest stress in zone 1 and in zone 4 is the composition of the liquid phase at the desorbent injection point in the unit . At this point, the liquid phase essentially contains desorbent. The composition used to evaluate the term δι and δ 4 of equation 8. The terms δι and δ 4 being defined by equation 7 mentioned above.
[001 1 9] Pour chaque adsorbant, le débit réduit min(mDés) est calculé à partir des valeurs de sélectivités binaires mesurées expérimentalement. Le rapport entre max(mcharge) et min(mDés) permet en même temps de maximiser la productivité et minimiser les coûts d'opération du procédé de séparation du paraxylène contenu dans les coupes aromatiques en C8. Pour chaque adsorbant, le rapport de débits réduits entre max(mCharge) et min(mDés) est représenté en fonction du ratio molaire K20 / (K20 + BaO + Na20) (Figure 1 ). On s'aperçoit que le rapport max(mCharge) / min(mDés) est amélioré pour un ratio molaire K20 / (K20 + BaO + Na20) compris entre 9,5% et 14,5%. For each adsorbent, the reduced flow rate min (m De ) is calculated from the binary selectivity values measured experimentally. The ratio between max (m ch arge) and min (m D és) allows at the same time to maximize the productivity and minimize the operating costs of the paraxylene separation process contained in the C8 aromatic cuts. For each adsorbent, the ratio of reduced flows between max (m Ch arge) and min (m De ) is plotted against the molar ratio K 2 0 / (K 2 0 + BaO + Na 2 0) (Figure 1). It can be seen that the ratio max (m Ch arge) / min (m De ) is improved for a molar ratio K 2 0 / (K 2 0 + BaO + Na 2 0) of between 9.5% and 14.5 %.

Claims

REVENDICATIONS
1. Adsorbant zéolithique comprenant des cristaux de zéolithe X et comprenant du baryum, du potassium et du sodium, dans lequel le ratio molaire K20 / (K20 + BaO + Na20) est compris entre 9,5 % et 14,5%. Zeolitic adsorbent comprising zeolite X crystals and comprising barium, potassium and sodium, in which the K 2 0 / (K 2 0 + BaO + Na 2 O) molar ratio is between 9.5% and 14%. , 5%.
2. Adsorbant selon la revendication 1 , comprenant en outre une phase non zéolithique. 2. Adsorbent according to claim 1, further comprising a non-zeolitic phase.
3. Adsorbant selon la revendication 1 ou la revendication 2, dans lequel la teneur en oxyde de sodium Na20 est inférieure à 0,3% en poids par rapport la masse totale de l'adsorbant. 3. Adsorbent according to claim 1 or claim 2, wherein the sodium oxide content of Na 2 0 is less than 0.3% by weight based on the total weight of the adsorbent.
4. Adsorbant selon l'une quelconque des revendications précédentes, dans lequel la teneur totale en oxydes d'ions alcalins ou alcalino-terreux autres que l'oxyde de baryum BaO, l'oxyde de potassium K20 et l'oxyde de sodium Na20 est inférieure à 1 % en poids par rapport à la masse totale de l'adsorbant. 4. An adsorbent according to any one of the preceding claims, wherein the total content of alkali metal ions or alkaline earth oxides other than barium oxide BaO, potassium oxide K 2 0 and sodium oxide Na 2 0 is less than 1% by weight based on the total mass of the adsorbent.
5. Adsorbant selon l'une quelconque des revendications précédentes, dans lequel les cristaux de zéolithes X ont un rapport atomique Si/AI compris entre 1 ,00 et 1 ,50. 5. Adsorbent according to any one of the preceding claims, wherein the zeolite crystals X have an Si / Al atomic ratio of between 1.00 and 1.50.
6. Adsorbant selon l'une des quelconque revendications précédentes, ayant un diamètre moyen en nombre compris entre 0,2 mm et 2 mm. 6. Adsorbent according to any one of the preceding claims, having a number average diameter of between 0.2 mm and 2 mm.
7. Adsorbant selon l'une des quelconque revendications précédentes, dans lequel le diamètre moyen en nombre des cristaux de zéolithes X est inférieur ou égal à 1 ,5 μηη. Adsorbent according to any one of the preceding claims, wherein the number average diameter of the zeolite crystals X is less than or equal to 1.5 μηη.
8. Adsorbant selon l'une quelconque des revendications précédentes, ayant une perte au feu, mesurée à 950 °C selon la norme NF EN 196-2, comprise entre 4,0% et 7,7% en poids. 8. Adsorbent according to any one of the preceding claims, having a loss on ignition, measured at 950 ° C according to the standard NF EN 196-2, between 4.0% and 7.7% by weight.
9. Adsorbant selon l'une des quelconque revendications précédentes, dans lequel la fraction massique de zéolithe X est d'au moins 80% en poids de zéolithe(s) X par rapport au poids total de l'adsorbant. 9. Adsorbent according to any one of the preceding claims, wherein the mass fraction of zeolite X is at least 80% by weight of zeolite (s) X relative to the total weight of the adsorbent.
10. Procédé de préparation d'un adsorbant selon l'une quelconque des revendications précédentes, comprenant au moins les étapes de : A process for preparing an adsorbent according to any one of the preceding claims, comprising at least the steps of:
a) agglomération de cristaux de zéolithe X avec un liant, et mise en forme, puis séchage et calcination, a) agglomeration of zeolite X crystals with a binder, and shaping, then drying and calcination,
b) zéolithisation éventuelle du liant, b) possible zeolization of the binder,
c) échange cationique de l'aggloméré par mise en contact avec une solution d'ions baryum, ou d'ions potassium, ou d'ions baryum et d'ions potassium, c) cationic exchange of the agglomerate by contact with a solution of barium ions, or potassium ions, or barium ions and potassium ions,
d) échange cationique au potassium lorsque l'étape c) d'échange est réalisée avec une solution d'ions baryum seuls, ou échange cationique au baryum lorsque l'étape c) d'échange est réalisée avec une solution d'ions potassium seuls, d) cation exchange with potassium when the step c) of exchange is carried out with a solution of barium ions alone, or barium cation exchange when the step c) of exchange is carried out with a solution of potassium ions alone ,
e) puis lavage et séchage du produit ainsi traité, et e) then washing and drying the product thus treated, and
f) activation de l'adsorbant zéolithique ainsi obtenu. f) activation of the zeolite adsorbent thus obtained.
11. Procédé selon la revendication 10, dans lequel le liant mis en œuvre dans l'étape a) contient au moins 80 % en poids d'argile zéolithisable et une source de silice, et en ce que le procédé comprend une étape b) de zéolithisation dudit liant zéolithisable par action d'une solution basique alcaline, de préférence avec une solution de concentration comprise entre 0,5 M et 5 M et pendant une durée comprise entre quelques dizaines de minutes et quelques heures. 11. The method of claim 10, wherein the binder used in step a) contains at least 80% by weight of zeolitizable clay and a source of silica, and in that the process comprises a step b) of zeolitization of said zeolitizable binder by the action of an alkaline basic solution, preferably with a concentration solution of between 0.5 M and 5 M and for a duration of between a few tens of minutes and a few hours.
12. Procédé selon la revendication 10 ou la revendication 1 1 , dans lequel la zéolithe X utilisée à l'étape a) comprend, de préférence est, une zéolithe FAU de type X à porosité hiérarchisée. The method of claim 10 or claim 11, wherein the zeolite X used in step a) comprises, preferably is, a hierarchized porosity X type FAU zeolite.
13. Adsorbant selon l'une quelconque des revendications 1 à 9, susceptible d'être obtenu selon le procédé de l'une quelconque des revendications 10 à 12. 13. Adsorbent according to any one of claims 1 to 9, obtainable according to the method of any one of claims 10 to 12.
14. Utilisation d'un adsorbant selon l'une quelconque des revendications 1 à 9, ou selon la revendication 13, dans les procédés de : 14. Use of an adsorbent according to any one of claims 1 to 9, or according to claim 13, in the methods of:
• séparation de coupes d'isomères aromatiques en C8 et notamment des xylènes, Separation of sections of C8 aromatic isomers and in particular xylenes,
• séparation d'isomères de toluène substitué tels que nitrotoluène, diéthyltoluène, toluènediamine, et autres, Separation of isomers of substituted toluene such as nitrotoluene, diethyltoluene, toluene diamine, and others,
• séparation des crésols,  • separation of cresols,
• séparation des alcools polyhydriques.  • separation of polyhydric alcohols.
15. Utilisation selon la revendication 14, pour la séparation de para-xylène à partir de coupes d'isomères aromatiques à 8 atomes de carbone. 15. Use according to claim 14, for the separation of para-xylene from aromatic isomeric cuts with 8 carbon atoms.
16. Procédé de récupération de para-xylène à partir de coupes d'isomères d'hydrocarbures aromatiques contenant 8 atomes de carbone, en phase liquide, par adsorption du para-xylène, au moyen d'un adsorbant selon l'une quelconque des revendications 1 à 9 ou 13, en présence d'un désorbant, de préférence choisi parmi le toluène et le para-diéthylbenzène. 16. Process for recovering para-xylene from cuts of aromatic hydrocarbon isomers containing 8 carbon atoms, in the liquid phase, by adsorption of para-xylene, using an adsorbent according to any one of the claims. 1 to 9 or 13, in the presence of a desorbent, preferably selected from toluene and para-diethylbenzene.
17. Procédé de récupération de para-xylène selon la revendication 16, de type lit mobile simulé, de préférence à contre-courant simulé. 17. Process for recovering para-xylene according to claim 16, simulated moving bed type, preferably simulated countercurrent.
18. Procédé de récupération de para-xylène à partir de coupes d'isomères d'hydrocarbures aromatiques contenant 8 atomes de carbone, en phase gazeuse, par adsorption du para-xylène au moyen d'un adsorbant selon l'une quelconque des revendications 1 à 9 ou 13, en présence d'un désorbant, de préférence choisi parmi le toluène et le para-diéthylbenzène. 18. A process for recovering para-xylene from carbon-atom-containing aromatic hydrocarbon isomer sections, by adsorption of para-xylene by means of an adsorbent according to any one of claims 1 to at 9 or 13, in the presence of a desorbent, preferably selected from toluene and para-diethylbenzene.
19. Procédé de séparation d'alcools polyhydriques mettant en œuvre un adsorbant selon l'une quelconque des revendications 1 à 9 ou 13. 19. A process for separating polyhydric alcohols employing an adsorbent according to any one of claims 1 to 9 or 13.
20. Procédé de séparation d'isomères de toluène substitué tels que nitrotoluène, diéthyltoluène, toluènediamine, mettant en œuvre un adsorbant selon l'une quelconque des revendications 1 à 9 ou 13. 20. A process for separating isomers of substituted toluene such as nitrotoluene, diethyltoluene, toluenediamine, using an adsorbent according to any one of claims 1 to 9 or 13.
21. Procédé de séparation des crésols mettant en œuvre un adsorbant selon l'une quelconque des revendications 1 à 9 ou 13. 21. A process for separating cresols employing an adsorbent according to any one of claims 1 to 9 or 13.
EP16741570.2A 2015-07-09 2016-07-08 Zeolitic adsorbents, method for the production thereof, and uses of same Withdrawn EP3319724A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1556524A FR3038529B1 (en) 2015-07-09 2015-07-09 ZEOLITHIC ADSORBANTS, THEIR PREPARATION PROCESS AND THEIR USES
PCT/EP2016/066296 WO2017005908A1 (en) 2015-07-09 2016-07-08 Zeolitic adsorbents, method for the production thereof, and uses of same

Publications (1)

Publication Number Publication Date
EP3319724A1 true EP3319724A1 (en) 2018-05-16

Family

ID=53879711

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16741570.2A Withdrawn EP3319724A1 (en) 2015-07-09 2016-07-08 Zeolitic adsorbents, method for the production thereof, and uses of same

Country Status (6)

Country Link
US (1) US10745329B2 (en)
EP (1) EP3319724A1 (en)
CN (1) CN107847904B (en)
FR (1) FR3038529B1 (en)
TW (1) TWI759268B (en)
WO (1) WO2017005908A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112642391B (en) * 2019-10-10 2022-07-15 中国石油化工股份有限公司 Coalescence type p-disubstituted benzene adsorbent and preparation method thereof
CN113457212A (en) * 2021-06-25 2021-10-01 中触媒新材料股份有限公司 Preparation and use method of trapping agent for simultaneously improving purity and chromaticity of m-methylphenol
CN115990454B (en) * 2021-10-20 2024-07-09 中国石油化工股份有限公司 Modified X zeolite and preparation method and application thereof

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2985589A (en) 1957-05-22 1961-05-23 Universal Oil Prod Co Continuous sorption process employing fixed bed of sorbent and moving inlets and outlets
US3558730A (en) 1968-06-24 1971-01-26 Universal Oil Prod Co Aromatic hydrocarbon separation by adsorption
US3626020A (en) 1969-03-12 1971-12-07 Universal Oil Prod Co Separation of paraxylene from mixture of c aromatic utilizing crystalline aluminosilicate adsorbent
US3558732A (en) 1969-05-12 1971-01-26 Universal Oil Prod Co Aromatic hydrocarbon separation by adsorption
US3663638A (en) 1970-08-31 1972-05-16 Universal Oil Prod Co Aromatic hydrocarbon separation by adsorption
US3686342A (en) 1970-09-18 1972-08-22 Universal Oil Prod Co Aromatic hydrocarbon separation by adsorption
US3706813A (en) * 1971-07-08 1972-12-19 Universal Oil Prod Co Selectively adsorbing multibranched paraffins
US3960774A (en) 1973-05-02 1976-06-01 Universal Oil Products Company Zeolitic adsorbent for xylene separation
US3943184A (en) * 1974-02-15 1976-03-09 Universal Oil Products Company Aromatic hydrocarbon isomer separation process
US3997620A (en) * 1975-10-28 1976-12-14 Uop Inc. Process for separating para-xylene
US4402832A (en) 1982-08-12 1983-09-06 Uop Inc. High efficiency continuous separation process
US4498991A (en) 1984-06-18 1985-02-12 Uop Inc. Serial flow continuous separation process
TW200454B (en) 1991-09-05 1993-02-21 Inst Of France Petroleum
FR2789914B1 (en) * 1999-02-22 2001-04-06 Ceca Sa SINTERED BINDER ZEOLITIC ADSORBENTS WITH LOW INERT BINDER, PROCESS FOR OBTAINING SAME AND USES THEREOF
FR2791187B1 (en) 1999-03-15 2001-05-04 Schneider Electric Sa ELECTRICAL APPARATUS FOR LOCKING ONTO A RAIL
US6284021B1 (en) 1999-09-02 2001-09-04 The Boc Group, Inc. Composite adsorbent beads for adsorption process
FR2832077B1 (en) * 2001-11-12 2004-08-27 Air Liquide ZEOLITIC BARYUM AND CALCIUM ADSORBENT FOR THE PURIFICATION OF GAS, PARTICULARLY AIR
CN1267185C (en) 2003-06-30 2006-08-02 中国石油化工股份有限公司 Paraxylene sorbent and its preparing method
KR100727288B1 (en) 2005-10-14 2007-06-13 한국과학기술원 Method of the preparation of microporous crystalline molecular sieve possessing mesoporous frameworks
FR2903978B1 (en) * 2006-07-19 2010-09-24 Ceca Sa AGGLOMERATED ZEOLITIC ADSORBENTS, PROCESS FOR THEIR PREPARATION AND USES THEREOF
FR2925366B1 (en) 2007-12-20 2011-05-27 Ceca Sa AGGLOMERATED ZEOLITIC ADSORBENTS, PROCESS FOR THEIR PREPARATION AND USES THEREOF
CN101497022B (en) 2008-01-31 2011-06-15 中国石油化工股份有限公司 Coalescence type zeolite sorbent and preparation method thereof
US20090326308A1 (en) * 2008-06-30 2009-12-31 Uop Llc Binderless adsorbents comprising nano-size zeolite x and their use in the adsorptive separation of para-xylene
US8609925B2 (en) * 2008-06-30 2013-12-17 Uop Llc Adsorbents with improved mass transfer properties and their use in the adsorptive separation of para-xylene
US7820869B2 (en) * 2008-06-30 2010-10-26 Uop Llc Binderless adsorbents and their use in the adsorptive separation of para-xylene
CN102316977A (en) * 2008-12-17 2012-01-11 环球油品公司 The adsorbent medium that contains the Li exchanging zeolite
US8283274B2 (en) 2009-07-20 2012-10-09 Uop Llc Binderless zeolitic adsorbents, methods for producing binderless zeolitic adsorbents, and processes for adsorptive separation of para-xylene from mixed xylenes using the binderless zeolitic adsorbents
FR2970184B1 (en) * 2011-01-07 2013-08-02 Air Liquide ZEOLITIC COMPOSITION SUITABLE FOR AIR CLEANING
US8557028B2 (en) 2011-03-31 2013-10-15 Uop Llc Binderless zeolitic adsorbents, methods for producing binderless zeolitic adsorbents, and adsorptive separation processes using the binderless zeolitic adsorbents
US8603433B2 (en) * 2011-04-13 2013-12-10 Uop Llc Aluminosilicate X-type zeolite compositions with low LTA-type zeolite
US8603434B2 (en) * 2011-04-13 2013-12-10 Uop Llc Binder-converted aluminosilicate X-type zeolite compositions with low LTA-type zeolite
US8431764B2 (en) * 2011-04-13 2013-04-30 Uop Llc Para-xylene-separation with aluminosilicate X-type zeolite compositions with low LTA-type zeolite
CA2850979A1 (en) 2012-01-13 2013-07-18 Rive Technology, Inc. Introduction of mesoporosity into low silica zeolites
KR101584751B1 (en) 2012-08-16 2016-01-12 주식회사 케이티 Method for uplink control channel resource configuration, transmission/reception point thereof, method for mapping uplink control channel resource and terminal thereof
FR2999098B1 (en) * 2012-12-12 2022-01-14 Ceca Sa ZEOLITHIC ADSORBENTS, THEIR PREPARATION PROCESS AND THEIR USES
FR3002461B1 (en) * 2013-02-22 2016-12-09 Ifp Energies Now METHOD FOR SEPARATING SIMPLE MOBILE BED XYLENES BY MEANS OF A ZEOLITHIC ADSORBENT SOLANIZING SOLIDITY BETWEEN 150 AND 500 MICRONS
FR3004966B1 (en) 2013-04-30 2016-02-05 IFP Energies Nouvelles ZEOLITHIC ADSORBENTS COMPRISING ZEOLITE EMT, PROCESS FOR PREPARING THEM AND USES THEREOF
FR3010402B1 (en) 2013-09-09 2015-08-28 Ceca Sa EXTERNAL HIGH SURFACE ZEOLITHIC ADSORBENTS, PROCESS FOR THEIR PREPARATION AND USES THEREOF
US20150105600A1 (en) 2013-10-15 2015-04-16 Uop Llc Adsorbents for the separation of para-xylene from c8 alkyl aromatic hydrocarbon mixtures, methods for separating para-xylene using the adsorbents and methods for making the adsorbents
KR102194141B1 (en) * 2013-11-06 2020-12-22 삼성전자주식회사 Carbon dioxide adsorbent comprising mesoporous chabazite zeolite and methods for preparing the same
FR3028430B1 (en) * 2014-11-13 2018-08-17 IFP Energies Nouvelles LSX ZEOLITHIC ZEOLITHIC ADSORBENTS WITH EXTERNAL SURFACE CONTROL, PREPARATION METHOD AND USES THEREOF
FR3028431B1 (en) * 2014-11-13 2016-11-18 Ceca Sa ZEOLITHIC ADSORBENTS BASED ON LOW BLEED ZEOLITHEX X WITH LOW EXTERNAL SURFACE, PREPARATION METHOD AND USES THEREOF

Also Published As

Publication number Publication date
CN107847904A (en) 2018-03-27
US10745329B2 (en) 2020-08-18
TW201707786A (en) 2017-03-01
FR3038529A1 (en) 2017-01-13
CN107847904B (en) 2022-01-28
WO2017005908A1 (en) 2017-01-12
TWI759268B (en) 2022-04-01
US20180201556A1 (en) 2018-07-19
FR3038529B1 (en) 2020-10-23

Similar Documents

Publication Publication Date Title
EP2931417B1 (en) Zeolitic adsorbents and uses thereof
EP3043902B1 (en) Zeolitic adsorbents with large external surface area comprising baryum and/or potassium and uses thereof
EP2991760B1 (en) Zeolite adsorbents comprising emt zeolite, method for preparing same and uses thereof
EP3319723B1 (en) Zeolitic adsorbents, method for the production thereof, and uses of same
EP3218100B1 (en) Zeolite adsorbents made from x zeolite with low binder content and low external surface area, method for preparation of same and uses thereof
EP3177381B1 (en) Zeolite adsorbents with low binder content and large external surface area, method for preparation of same and uses thereof
EP3218101A1 (en) Zeolite adsorbents made from lsx zeolite with a controlled external surface area, method for preparation of same and uses thereof
EP3727628B1 (en) Zeolitic adsorbents containing baryum, strontium, potassium and sodium, method for preparation thereof and uses of the same
EP3319724A1 (en) Zeolitic adsorbents, method for the production thereof, and uses of same
EP3177584B1 (en) Method for separating meta-xylene using a zeolitic adsorbent with a large external surface area
EP4076732A1 (en) Zeolite adsorbent for the separation of hydrocarbon isomers
FR3075792B1 (en) ZEOLITIC ADSORBENTS CONTAINING STRONTIUM

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180207

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LAROCHE, CATHERINE

Inventor name: BOUVIER, LUDIVINE

Inventor name: GRANDJEAN, JULIEN

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210329

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20240201