EP3319724A1 - Zeolitic adsorbents, method for the production thereof, and uses of same - Google Patents
Zeolitic adsorbents, method for the production thereof, and uses of sameInfo
- Publication number
- EP3319724A1 EP3319724A1 EP16741570.2A EP16741570A EP3319724A1 EP 3319724 A1 EP3319724 A1 EP 3319724A1 EP 16741570 A EP16741570 A EP 16741570A EP 3319724 A1 EP3319724 A1 EP 3319724A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- zeolite
- adsorbent
- potassium
- barium
- adsorbent according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000003463 adsorbent Substances 0.000 title claims abstract description 118
- 238000000034 method Methods 0.000 title claims description 71
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 239000010457 zeolite Substances 0.000 claims abstract description 131
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims abstract description 113
- 229910021536 Zeolite Inorganic materials 0.000 claims abstract description 109
- 239000011734 sodium Substances 0.000 claims abstract description 55
- 239000013078 crystal Substances 0.000 claims abstract description 45
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims abstract description 37
- 239000011591 potassium Substances 0.000 claims abstract description 37
- 229910052700 potassium Inorganic materials 0.000 claims abstract description 36
- 238000000926 separation method Methods 0.000 claims abstract description 32
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims abstract description 30
- 229910052788 barium Inorganic materials 0.000 claims abstract description 25
- 229910052708 sodium Inorganic materials 0.000 claims abstract description 20
- 125000003118 aryl group Chemical group 0.000 claims abstract description 18
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims abstract description 15
- 239000008096 xylene Substances 0.000 claims abstract description 9
- 150000003738 xylenes Chemical class 0.000 claims abstract description 9
- URLKBWYHVLBVBO-UHFFFAOYSA-N Para-Xylene Chemical group CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 claims description 66
- 238000001179 sorption measurement Methods 0.000 claims description 51
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Inorganic materials [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 claims description 45
- 230000008569 process Effects 0.000 claims description 30
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Natural products CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 28
- 239000011230 binding agent Substances 0.000 claims description 27
- 229910001414 potassium ion Inorganic materials 0.000 claims description 24
- 229910001422 barium ion Inorganic materials 0.000 claims description 22
- 239000007791 liquid phase Substances 0.000 claims description 18
- 239000000243 solution Substances 0.000 claims description 16
- 238000005054 agglomeration Methods 0.000 claims description 15
- 230000002776 aggregation Effects 0.000 claims description 15
- DSNHSQKRULAAEI-UHFFFAOYSA-N 1,4-Diethylbenzene Chemical compound CCC1=CC=C(CC)C=C1 DSNHSQKRULAAEI-UHFFFAOYSA-N 0.000 claims description 14
- 150000004945 aromatic hydrocarbons Chemical class 0.000 claims description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 12
- 125000004432 carbon atom Chemical group C* 0.000 claims description 12
- 239000012071 phase Substances 0.000 claims description 12
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 claims description 12
- 229910001948 sodium oxide Inorganic materials 0.000 claims description 12
- 238000001035 drying Methods 0.000 claims description 9
- 238000005406 washing Methods 0.000 claims description 8
- 238000005341 cation exchange Methods 0.000 claims description 7
- 239000004927 clay Substances 0.000 claims description 7
- CHWRSCGUEQEHOH-UHFFFAOYSA-N potassium oxide Chemical compound [O-2].[K+].[K+] CHWRSCGUEQEHOH-UHFFFAOYSA-N 0.000 claims description 7
- 229910001950 potassium oxide Inorganic materials 0.000 claims description 7
- 238000001354 calcination Methods 0.000 claims description 6
- 125000002091 cationic group Chemical group 0.000 claims description 6
- 238000007493 shaping process Methods 0.000 claims description 6
- PBWHJRFXUPLZDS-UHFFFAOYSA-N (1-Ethylpropyl)benzene Chemical compound CCC(CC)C1=CC=CC=C1 PBWHJRFXUPLZDS-UHFFFAOYSA-N 0.000 claims description 5
- VOZKAJLKRJDJLL-UHFFFAOYSA-N 2,4-diaminotoluene Chemical compound CC1=CC=C(N)C=C1N VOZKAJLKRJDJLL-UHFFFAOYSA-N 0.000 claims description 5
- 230000009471 action Effects 0.000 claims description 5
- 230000004913 activation Effects 0.000 claims description 5
- 150000001896 cresols Chemical class 0.000 claims description 5
- VLZLOWPYUQHHCG-UHFFFAOYSA-N nitromethylbenzene Chemical compound [O-][N+](=O)CC1=CC=CC=C1 VLZLOWPYUQHHCG-UHFFFAOYSA-N 0.000 claims description 5
- 150000005846 sugar alcohols Polymers 0.000 claims description 5
- 150000003613 toluenes Chemical class 0.000 claims description 5
- 239000000377 silicon dioxide Substances 0.000 claims description 4
- 229940118888 barium cation Drugs 0.000 claims description 3
- XDFCIPNJCBUZJN-UHFFFAOYSA-N barium(2+) Chemical group [Ba+2] XDFCIPNJCBUZJN-UHFFFAOYSA-N 0.000 claims description 3
- 239000003637 basic solution Substances 0.000 claims description 3
- SYSQUGFVNFXIIT-UHFFFAOYSA-N n-[4-(1,3-benzoxazol-2-yl)phenyl]-4-nitrobenzenesulfonamide Chemical class C1=CC([N+](=O)[O-])=CC=C1S(=O)(=O)NC1=CC=C(C=2OC3=CC=CC=C3N=2)C=C1 SYSQUGFVNFXIIT-UHFFFAOYSA-N 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 229910001413 alkali metal ion Inorganic materials 0.000 claims 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 claims 1
- 239000000203 mixture Substances 0.000 description 24
- 239000007864 aqueous solution Substances 0.000 description 13
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 11
- 238000004458 analytical method Methods 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 9
- 238000003786 synthesis reaction Methods 0.000 description 9
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 239000003054 catalyst Substances 0.000 description 7
- 150000001768 cations Chemical class 0.000 description 7
- 238000005553 drilling Methods 0.000 description 7
- 238000005342 ion exchange Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 238000012512 characterization method Methods 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- 238000011282 treatment Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- WDIHJSXYQDMJHN-UHFFFAOYSA-L barium chloride Chemical compound [Cl-].[Cl-].[Ba+2] WDIHJSXYQDMJHN-UHFFFAOYSA-L 0.000 description 5
- 229910001626 barium chloride Inorganic materials 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 239000001103 potassium chloride Substances 0.000 description 5
- 235000011164 potassium chloride Nutrition 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 238000007873 sieving Methods 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 238000004876 x-ray fluorescence Methods 0.000 description 5
- 239000005995 Aluminium silicate Substances 0.000 description 4
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 4
- 238000001994 activation Methods 0.000 description 4
- 235000012211 aluminium silicate Nutrition 0.000 description 4
- 125000004429 atom Chemical group 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 239000012013 faujasite Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- -1 sodium cations Chemical class 0.000 description 4
- 238000004627 transmission electron microscopy Methods 0.000 description 4
- 241000370685 Arge Species 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 238000010306 acid treatment Methods 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 229910000323 aluminium silicate Inorganic materials 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 238000004587 chromatography analysis Methods 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 238000009616 inductively coupled plasma Methods 0.000 description 3
- 238000004064 recycling Methods 0.000 description 3
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical group CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000012670 alkaline solution Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000001636 atomic emission spectroscopy Methods 0.000 description 2
- 229960000892 attapulgite Drugs 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000008119 colloidal silica Substances 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- WOZVHXUHUFLZGK-UHFFFAOYSA-N dimethyl terephthalate Chemical compound COC(=O)C1=CC=C(C(=O)OC)C=C1 WOZVHXUHUFLZGK-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- ICXADQHBWHLSCI-UHFFFAOYSA-N dubinine Natural products C1=CC=C2C(OC)=C(CC(O3)C(C)(O)COC(C)=O)C3=NC2=C1 ICXADQHBWHLSCI-UHFFFAOYSA-N 0.000 description 2
- 238000001033 granulometry Methods 0.000 description 2
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910052622 kaolinite Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- IVSZLXZYQVIEFR-UHFFFAOYSA-N m-xylene Chemical group CC1=CC=CC(C)=C1 IVSZLXZYQVIEFR-UHFFFAOYSA-N 0.000 description 2
- 229910052625 palygorskite Inorganic materials 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000000700 radioactive tracer Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 241000206761 Bacillariophyta Species 0.000 description 1
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical class C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- NHTMVDHEPJAVLT-UHFFFAOYSA-N Isooctane Chemical compound CC(C)CC(C)(C)C NHTMVDHEPJAVLT-UHFFFAOYSA-N 0.000 description 1
- 241000282376 Panthera tigris Species 0.000 description 1
- 239000004113 Sepiolite Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- RMIBFJWHAHLICA-UHFFFAOYSA-N [K].[Ba] Chemical group [K].[Ba] RMIBFJWHAHLICA-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000002156 adsorbate Substances 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- HPTYUNKZVDYXLP-UHFFFAOYSA-N aluminum;trihydroxy(trihydroxysilyloxy)silane;hydrate Chemical compound O.[Al].[Al].O[Si](O)(O)O[Si](O)(O)O HPTYUNKZVDYXLP-UHFFFAOYSA-N 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000001955 cumulated effect Effects 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 229910001649 dickite Inorganic materials 0.000 description 1
- JVSWJIKNEAIKJW-UHFFFAOYSA-N dimethyl-hexane Natural products CCCCCC(C)C JVSWJIKNEAIKJW-UHFFFAOYSA-N 0.000 description 1
- 230000005686 electrostatic field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 229910052621 halloysite Inorganic materials 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000005453 pelletization Methods 0.000 description 1
- 239000010451 perlite Substances 0.000 description 1
- 235000019362 perlite Nutrition 0.000 description 1
- 238000005424 photoluminescence Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 229910052624 sepiolite Inorganic materials 0.000 description 1
- 235000019355 sepiolite Nutrition 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910001427 strontium ion Inorganic materials 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 238000007725 thermal activation Methods 0.000 description 1
- 238000000177 wavelength dispersive X-ray spectroscopy Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C7/00—Purification; Separation; Use of additives
- C07C7/12—Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers
- C07C7/13—Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers by molecular-sieve technique
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/04—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
- B01J20/041—Oxides or hydroxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/10—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
- B01J20/16—Alumino-silicates
- B01J20/18—Synthetic zeolitic molecular sieves
- B01J20/186—Chemical treatments in view of modifying the properties of the sieve, e.g. increasing the stability or the activity, also decreasing the activity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3085—Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C15/00—Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
- C07C15/02—Monocyclic hydrocarbons
- C07C15/067—C8H10 hydrocarbons
- C07C15/08—Xylenes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C201/00—Preparation of esters of nitric or nitrous acid or of compounds containing nitro or nitroso groups bound to a carbon skeleton
- C07C201/06—Preparation of nitro compounds
- C07C201/16—Separation; Purification; Stabilisation; Use of additives
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C209/00—Preparation of compounds containing amino groups bound to a carbon skeleton
- C07C209/82—Purification; Separation; Stabilisation; Use of additives
- C07C209/86—Separation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/74—Separation; Purification; Use of additives, e.g. for stabilisation
- C07C29/76—Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C37/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
- C07C37/68—Purification; separation; Use of additives, e.g. for stabilisation
- C07C37/70—Purification; separation; Use of additives, e.g. for stabilisation by physical treatment
- C07C37/82—Purification; separation; Use of additives, e.g. for stabilisation by physical treatment by solid-liquid treatment; by chemisorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/106—Silica or silicates
- B01D2253/108—Zeolites
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C205/00—Compounds containing nitro groups bound to a carbon skeleton
- C07C205/06—Compounds containing nitro groups bound to a carbon skeleton having nitro groups bound to carbon atoms of six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C211/00—Compounds containing amino groups bound to a carbon skeleton
- C07C211/43—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
- C07C211/44—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring
- C07C211/49—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring having at least two amino groups bound to the carbon skeleton
- C07C211/50—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring having at least two amino groups bound to the carbon skeleton with at least two amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
Definitions
- the invention relates to adsorbents based on agglomerated crystals of zeolite X comprising barium and potassium, their preparation process and their uses.
- adsorbents may be used more particularly for the production in the liquid phase or gas phase of very pure para-xylene from an aromatic hydrocarbon feed containing isomers containing 8 carbon atoms.
- adsorbents comprising crystalline aluminosilicates can be used to separate certain hydrocarbons from mixtures containing them.
- aromatic hydrocarbon separation and in particular the separation of aromatic C8 isomers, it is generally recognized that the use of particular cations in cationic sites of zeolitic crystalline aluminosilicates improves the selectivity of the zeolite for C8-aromatic isomers.
- This differentiated adsorption within the zeolite allows the separation of the different C8-aromatic isomers, which is used industrially for the production of very pure para-xylene from an aromatic hydrocarbon feed containing 8-atom isomers. carbon.
- zeolitic adsorbents consisting of X or Y zeolites comprising, besides sodium cations, barium, potassium or strontium ions, alone or in mixtures, for selectively adsorbing the para-xylene in the liquid phase in a liquid phase.
- mixture of aromatic hydrocarbons is well known from the prior art.
- zeolites for aromatic hydrocarbons containing 8 carbon atoms vary. very finely depending on the size and shape of the pores as well as the position of the cations inside the structure that affect both the electrostatic field present inside the zeolite and the shape accessible volume in the pores.
- Other parameters, such as the polarizability of cations and molecules or the flexibility of the structure can also have an influence. It is therefore extremely difficult to predict theoretically and precisely the adsorption characteristics of a zeolite with respect to aromatic hydrocarbons containing 8 carbon atoms.
- Patent FR 2,903,978 teaches that potassium ions may represent up to 1/3 of exchangeable sites occupied by barium and potassium, but this patent does not fill any adsorbent containing potassium and provides no teaching allowing to anticipate the impact of potassium on adsorption selectivities.
- US Pat. Nos. 8,283,274 and 8,557,028 describe adsorbents having potassium content by weight of between 0.25% and 0.9% by weight, corresponding to molar ratios K20 / (BaO + K 2 0 + Na 2). 0) of between 1.3% and 4.5%.
- US Pat. No. 8,557,028 claims adsorbents having potassium content by weight of between 0.9 and 1.5%, equivalent to K20 / (BaO + K 2 0 + Na 2 0) molar ratios of between 4.5% and 7.5%.
- the examples of the latter patent show that productivity and operating costs are improved with adsorbents having potassium contents of between 0.7% and 1.2% by weight.
- CN 1267185 discloses adsorbents having molar ratios BaO / K 2 0 of between 10 and 40 corresponding to molar ratios K 2 0 / (BaO + K 2 0 + Na 2 0) of between 2.4% and 9, 1%.
- the recent patent US 2015/0105600 describes meanwhile an adsorbent based on zeolite X, barium and potassium, having a molar ratio K 2 0 / (BaO + K 2 0 + Na 2 0) between 15 % and 40%.
- zeolites The synthesis of zeolites leads to crystals (generally in the form of powder) whose use on an industrial scale is particularly difficult (significant pressure losses during handling). Agglomerated forms of these crystals, in the form of grains, yarns and other agglomerates, are preferred, these forms being able to be obtained by extrusion, pelletizing, and other agglomeration techniques known to those skilled in the art. These agglomerates do not have the disadvantages inherent to the pulverulent materials.
- agglomerates whether in the form of platelets, beads, extrudates, and the like, are generally formed of zeolite crystals (s), which constitute the active element (in the sense of adsorption ) and a binder intended to ensure the cohesion of the crystals in the form of agglomerates and to give them sufficient mechanical strength to withstand the vibrations and the movements to which they are subjected during the operations of separating the isomers of the aromatic cuts in C8 .
- zeolite crystals which constitute the active element (in the sense of adsorption ) and a binder intended to ensure the cohesion of the crystals in the form of agglomerates and to give them sufficient mechanical strength to withstand the vibrations and the movements to which they are subjected during the operations of separating the isomers of the aromatic cuts in C8 .
- the adsorption properties of these agglomerates are obviously reduced compared to the crystal powder, because of the presence of agglomeration binder inert with respect to
- zeolitization To easily perform this operation, zeolitizable binders are used, most often clays belonging to the family of kaolinite, and preferably previously calcined at temperatures generally between 500 ° C and 700 ° C.
- patent application FR 2 789 914 describes a process for the production of agglomerates of zeolite X, with an Si / Al ratio of between 1, 15 and 1.5, containing barium and optionally potassium.
- the agglomerates thus obtained, after zeolization of the binder, have, from the point of view of the adsorption of the para-xylene contained in the C8 aromatic cuts, improved properties compared with adsorbents prepared from the same amount of zeolite X and binder, but whose binder is not zeolite.
- the important factors that influence the performance of an adsorption separation process include in particular the adsorption selectivity, the adsorption capacity and the material transfer kinetics which defines the adsorption rates and desorption of the various compounds.
- the adsorbent must therefore have good material transfer properties in order to guarantee a sufficient number of theoretical plates to achieve effective separation of the species in mixture, as Ruthven indicates in the book entitled “Principles of Adsorption and Adsorption Processes"("Principles of Adsorption and Adsorption Processes”), John Wiley & Sons, (1984), pages 326 and 407.
- the diffusional resistance between the crystals (also called macroporous resistance) is in turn proportional to the square of the rays of the agglomerates and inversely proportional to the diffusivity of the molecules in the macropores.
- the diffusivities are fixed, and the only way to improve the transfer of material is to reduce the crystal diameter. A gain on the overall transfer will thus be obtained by reducing the size of the crystals.
- agglomerated zeolite adsorbents having both good xylenes adsorption capacity and good selectivity for para-xylene, have very good separation properties.
- xylenes when they are made from small zeolite crystals in liquid phase processes for separating para-xylene contained in C8 aromatic cuts, for example of simulated countercurrent type.
- Those skilled in the art are, however, unable to define a priori or theoretically and precisely the adsorption characteristics of a FAU zeolite, especially of type X, having a particular composition of barium and potassium, opposite aromatic hydrocarbons having 8 carbon atoms.
- the present invention aims to provide novel adsorbents based on zeolite X comprising barium, potassium and sodium and having a particular composition of barium, potassium and sodium, optimal for simultaneously maximize productivity and minimize the production costs of the para-xylene separation process contained in the C8 aromatic cuts.
- the present invention also provides a process for the separation of xylenes using an X-zeolite adsorbent having a particular composition of barium, potassium and sodium, allowing the production of high purity para-xylene with a improved productivity from an aromatic hydrocarbon feed containing 8-carbon isomers.
- the invention relates to a zeolitic adsorbent comprising crystals of zeolite X and comprising barium, potassium and sodium, in which the molar ratio K 2 0 / (K 2 0 + BaO + Na 2 0) (species in the form of oxides) is between 9.5% and 14.5%, preferably between 10% and 14%, and preferably between 11% and 13%.
- the molar ratio in K 2 0 / (K 2 0 + BaO + Na 2 O) is equal to 12%.
- the molar ratio K 2 0 / (K 2 0 + BaO + Na 2 0) is expressed as a percentage of the number of moles of K 2 0 relative to the sum of the number of moles of (K 2 0 + BaO + Na 2 O).
- the sodium oxide content Na 2 0 is preferably less than 0.3% by weight and preferably less than 0.2% by weight relative to the total mass of the adsorbent.
- the total content of oxides of alkaline or alkaline earth ions other than barium oxide BaO, potassium oxide K 2 0 and sodium oxide Na 2 0 is advantageously less than 1% by weight, preferably between 0 and 0.5% by weight, and very preferably between 0 and 0.3% by weight, relative to the total mass of the adsorbent.
- the zeolite crystals X advantageously have an Si / Al atomic ratio of between 1, 00 and 1, 50, preferably between 1, 05 and 1, 50 and more preferably between 1, 10 and 1, 50.
- the number average diameter of the zeolite crystals X is less than or equal to 1.5 ⁇ , preferably between 0.1 ⁇ and 1.2 ⁇ , more preferably between 0.1 ⁇ and 1, 0 ⁇ .
- the loss on ignition of the adsorbent according to the invention measured at 950 ° C according to the standard NF EN 196-2 is advantageously between 4.0 and 7.7% and preferably between 4.5 and 6 , 5% and most preferably between 4.8 and 6% by weight.
- the average diameter in number of the adsorbent according to the invention may be between 0.2 mm and 2 mm, in particular between 0.2 mm and 0.8 mm and preferably between 0.2 mm and 0 mm. , 65 mm.
- the invention also relates to a process for preparing an adsorbent as described above, comprising at least the steps of:
- the process for preparing the adsorbent implements a step b) of zeolitization of the binder.
- Preference or solutions of barium ions, or potassium or barium and potassium steps c) and d) have a concentration between 0.2M and 2M.
- the invention also relates to an adsorbent as described above, obtainable according to the preparation method above.
- the invention also relates to the use of said adsorbent according to the invention in the processes of:
- the invention also relates to a process for recovering para-xylene from cuts of aromatic hydrocarbon isomers containing 8 carbon atoms, in the liquid phase, by adsorption of para-xylene by means of said adsorbent according to US Pat. invention in the presence of a desorbent, preferably selected from toluene and para-diethylbenzene.
- Said method may be simulated moving bed type, preferably simulated counter current.
- the invention also relates to a process for recovering para-xylene from aromatic hydrocarbon isomer cuts containing 8 carbon atoms, in the gas phase, by adsorption of para-xylene by means of said adsorbent according to US Pat. invention in the presence of a desorbent, preferably selected from toluene and para-diethylbenzene.
- the invention further relates to a process for separating polyhydric alcohols using said adsorbent according to the invention.
- the invention further relates to a process for separating isomers of substituted toluene such as nitrotoluene, diethyltoluene, toluenediamine, using said adsorbent according to the invention.
- the invention finally relates to a process for separating cresols using said adsorbent according to the invention.
- the present invention thus has for its first object zeolite X-based zeolite adsorbents. These adsorbents are particularly suitable for use in a process for separating para-xylene in the liquid phase, preferably of simulated countercurrent type.
- the present invention relates to a zeolite adsorbent comprising zeolite X crystals and comprising barium, potassium and sodium, in which the molar ratio K 2 0 / (K 2 0 + BaO + Na 2 0) is between 9.5% and 14.5%, preferably between 10% and 14%, and preferably between 11% and 13%.
- the molar ratio in K 2 0 / (K 2 0 + BaO + Na 2 0), expressed in terms of oxides is equal to 12%.
- the adsorbents according to the invention may also comprise a non-zeolitic phase, that is to say a non-crystalline phase which is essentially inert with respect to the adsorption.
- a non-zeolitic phase the molar ratio K 2 0 / (K 2 0 + BaO + Na 2 0) takes into account the oxides included in said non-zeolitic phase.
- the content of sodium oxide Na 2 0 in the adsorbent according to the invention is advantageously less than 0.3% by weight and preferably less than 0.2% by weight relative to the total mass of the adsorbent.
- the total content of oxides of alkaline or alkaline-earth ions other than barium oxide BaO, potassium oxide K 2 0 and sodium oxide Na 2 0 in the adsorbent according to the invention is advantageously less than at 1% by weight, preferably between 0 and 0.5% by weight, and very preferably between 0 and 0.3% by weight, relative to the total mass of the adsorbent.
- the zeolitic adsorbent according to the present invention is an adsorbent based on zeolite crystals FAU type X.
- zeolite X is meant zeolites whose Si / Al atomic ratio is between 1, 00 and 1, 50, preferably between 1, 05 and 1, 50 and even more preferably between 1, 10 and 1 50.
- zeolites X it is now generally accepted to recognize two subgroups called zeolites LSX and zeolites MSX.
- the LSX zeolites have an Si / Al atomic ratio equal to about 1 and the MSX zeolites have an Si / Al atomic ratio of between about 1.05 and about 1.15.
- the term "zeolite type FAU X" means the zeolites FAU type X defined above, said zeolites being hierarchically porous that is, zeolites of type X with hierarchical porosity (or zeolite XPH), zeolites of MSX type with hierarchical porosity (or MSXPH) and zeolites of LSX type with hierarchical porosity (or LSXPH), and more especially the FAU zeolites with a hierarchical porosity and Si / Al atomic ratio of between 1, 00 and 1, 50, preferably between 1.05 and 1.5, more preferably between 1.05 and 1.40, and even more preferred, between 1, 15 and 1, 40.
- the invention also comprises zeolitic adsorbents comprising mixtures of two or more FAU zeolites with hierarchical porosity as they have just been defined.
- zeolite By “hierarchically porous zeolite” is meant a zeolite having both micropores and mesopores, ie a zeolite both microporous and mesoporous.
- mesoporous zeolite By “mesoporous zeolite” is meant a zeolite whose microporous zeolite crystals have, together with the microporosity, internal cavities of nanometric size (mesoporosity), easily identifiable by observation by means of a Transmission Electron Microscope (TEM or "TEM"). In the English language), as described for example in US Pat. No.
- TEM transmission electron microscopy
- the crystalline structure of the X-type FAU zeolite in the zeolite adsorbent of the present invention is identifiable by X-ray diffraction (known to those skilled in the art under the acronym DRX).
- the zeolite adsorbent has an Si / Al atomic ratio of between 1.00 and 2.00, preferably between 1.00 and 1.80, more preferably between 1.15 and 1. , 80, and even more preferably between 1, 15 and 1, 60.
- the term "number average diameter" or "size” is used for zeolite crystals and for zeolite agglomerates. The method of measuring these quantities is explained later in description.
- the number average diameter of the zeolite crystals X is less than or equal to 1.5 ⁇ , preferably between 0.1 ⁇ and 1.2 ⁇ , more preferably included between 0.1 ⁇ and 1,0 ⁇ .
- the zeolite adsorbent of the invention is preferably in the form of an agglomerate, that is to say it consists of zeolite crystals (s) and at least one non-zeolite phase which may comprise an agglomeration binder allowing the cohesion of the crystals between them.
- agglomerated agglomerated
- the mass fraction of zeolite X in the adsorbent according to the present invention may be at least 80% by weight of zeolite (s) X relative to the total weight of the adsorbent, preferably at least 90% by weight. %, this mass fraction being up to 100% and typically up to 99.5% by weight.
- the zeolite adsorbent according to the invention has a loss on ignition measured at 950 ° C according to the NF EN 196-2 standard of between 4.0% and 7.7%, preferably between 4.5 and 6.5% and advantageously between 4.8 and 6%.
- the zeolitic adsorbent according to the present invention preferably has a mechanical strength generally greater than or equal to 1.8 MPa, typically greater than or equal to 2.1 MPa. This mechanical resistance is measured by the Shell method SMS1471 -74 series suitable for agglomerates of size less than 1, 6 mm.
- the adsorption capacity is measured by measuring the microporous volume of the adsorbent evaluated according to the Dubinin-Raduskevitch equation by adsorption of nitrogen (N 2 ) at a temperature of 77K, after degassing. under vacuum at 300 ° C for 16 hours.
- the microporous volume of the zeolite adsorbents of the invention was thus measured to be greater than 0.250 cm 3 / g, typically in a range from 0.256 cm 3 / g to 0.288 cm 3 / g.
- the invention relates to a method for preparing zeolite agglomerates as just defined, which process comprises at least the steps of:
- the process for preparing zeolite agglomerates implements a step b) of zeolitization of the binder.
- Preference or solutions of barium ions, or potassium or barium and potassium steps c) and d) have a concentration between 0.2M and 2M.
- the size of the zeolite X crystals used in step a) is measured by observation under a scanning electron microscope (SEM) or observation by transmission electron microscope (TEM). This observation MEB or MET also confirms the presence of non-zeolite phase comprising for example the binder or the unconverted residual binder during the optional zeolitization step or any other amorphous phase in the agglomerates.
- SEM scanning electron microscope
- TEM transmission electron microscope
- the zeolite X used in step a) comprises, preferably is, an X type FAU zeolite with hierarchical porosity.
- the X-type FAU zeolite crystals with a hierarchical porosity having a large external surface can be obtained according to various methods known to those skilled in the art and for example according to the synthesis described by Inayat et al. (Angew Chem Int.Ed., (2012), 51, 1962-1965).
- the post-treatment processes generally consist in eliminating atoms of the zeolite network already formed, either by one or more acid treatments which dealuminate the solid, treatment (s) followed by one or more washing (s) to sodium hydroxide (NaOH) in order to eliminate the aluminum residues formed, as described for example by D. Verboekend et al. ⁇ Adv. Funct. Mater., 22, (2012), pp. 916-928), or else by treatments which combine the action of an acid and that of a structuring agent which improve the efficiency of the acid treatment, as described for example in the application WO2013 / 106816.
- the agglomeration and the shaping (step a) can be carried out according to all the techniques known to those skilled in the art, such as extrusion, compaction, agglomeration, and others.
- the proportions of agglomeration binder, optionally zeolitizable (see definition below) and zeolite (s) used are typically those of the prior art, that is to say from 5 parts to 20 parts by weight binder for 95 parts to 80 parts by weight of zeolite.
- the agglomerates resulting from stage a), whether in the form of beads, extrudates or the like, generally have a number average diameter (or their largest dimension when they are not spherical) between 0.degree. , 2 mm and 2 mm, and in particular between 0.2 mm and 0.8 mm and preferably between 0.2 mm and 0.65 mm.
- the finer agglomerates particles can be removed by cycloning and / or sieving and / or too large particles by sieving or crushing, in the case of extrudates, for example.
- the agglomeration binder used in step a) can be zeolitizable. It then contains at least 80% preferably, at least 90%, more preferably at least 95%, more particularly at least 96%, by weight, of zeolitic clay and may also contain other inorganic binders such as bentonite, attapulgite, and others.
- zeolitizable clay is meant a clay or a mixture of clays which are capable of being converted into zeolite material (that is to say, active material in the sense of adsorption), most often by action of a basic alkaline solution.
- Zeolizable clay generally belongs to the family of kaolin, kaolinite, nacrite, dickite, halloysite and / or metakaolin. Kaolin is preferred and most commonly used.
- clays such as in particular sepiolite or attapulgite may also be used.
- the clays can be used in their raw state or may be previously subjected to one or more treatments, for example selected from calcination, acid treatment, chemical modification, and others.
- the zeolite X powder used in step a) can be derived from the synthesis of zeolite X crystals comprising predominantly, see only sodium cations, for example NaX zeolites, but we would not go outside the box. of the invention using a powder having undergone one or more cationic exchanges, after its synthesis and before its implementation in step a).
- one or more additives may also be added, for example additives intended to facilitate the agglomeration or to improve the hardening of the formed agglomerates such as lignin, starch, carboxymethylcellulose, and other additives known to those skilled in the art.
- Silica can also be added.
- the possible source of silica may be of any type known to those skilled in the art, specialist in the synthesis of zeolites, by example of colloidal silica, diatoms, perlite, fly ash in English, sand, or any other form of solid silica.
- step a After drying in step a), the calcination is conducted at a temperature generally between 500 ° C and 600 ° C.
- this step makes it possible to transform the zeolite clay, typically kaolin, into metakaolin which can after being converted into zeolite during the zeolitization step (step b)) .
- the principle is set forth in D.W. Breck's "Zeolite Molecular Sieves," John Wiley and Sons, New York, (1973), p. 314-315.
- the zeolitization of the agglomeration binder is carried out according to any method known to those skilled in the art and may for example be carried out by immersion of the product of step a) in an alkaline basic solution, generally aqueous, for example an aqueous solution of sodium hydroxide and / or potassium hydroxide.
- an alkaline basic solution generally aqueous, for example an aqueous solution of sodium hydroxide and / or potassium hydroxide.
- the concentration of the alkaline zeolitization solution is preferably between 0.5M and 5M.
- the zeolitization is preferably carried out hot, at a temperature above room temperature, and typically at room temperature. temperatures of the order of 80 ° C to 100 ° C, for example between room temperature (about 20 ° C) and the boiling temperature of the alkaline solution of zeolitization.
- the duration of the zeolitization process is generally between a few tens of minutes and a few hours, preferably between about 1 hour and 8 hours.
- Steps c) and d) of barium and / or potassium exchange of the zeolite X cations are carried out according to the conventional methods known to those skilled in the art, and most often by contacting the agglomerates from step a) or step b) with a salt, such as barium chloride (BaCl 2 ) for barium exchange and / or potassium chloride (KCl) for exchange at potassium, in aqueous solution at a temperature between room temperature and 100 ° C, and preferably between 80 ° C and 100 ° C.
- a salt such as barium chloride (BaCl 2 ) for barium exchange and / or potassium chloride (KCl) for exchange at potassium
- one or more ion exchange (s) are made using solutions aqueous solutions of barium ions and aqueous solutions of potassium ions, for example potassium chloride and barium chloride, at concentrations typically between 0.05 M and 1.5 M, preferably between 0.1 M and 1 M , 2 M.
- at least one ion exchange is carried out using an aqueous solution of barium ions and potassium ions (corresponding to step c)).
- step d) of the method of the invention is not performed. This embodiment is the preferred mode.
- At least one ion exchange is first carried out using an aqueous solution of barium ions (corresponding to step c)), then at least one ion exchange is carried out in using an aqueous solution of potassium ions (corresponding to step d)).
- At least one ion exchange is first carried out using an aqueous solution of potassium ions (corresponding to step c)), then at least one ion exchange is carried out in using an aqueous solution of barium ions (corresponding to step d)).
- Each exchange step can be performed one or more times.
- the exchange or exchanges are carried out according to the techniques well known to those skilled in the art, for example at temperatures between room temperature (ie about 20 ° C) and 100 ° C, preferably between 80 and 100 ° C, generally at atmospheric pressure, the exchange or exchanges being generally carried out for periods ranging from a few minutes to a few hours, preferably typically between 30 minutes and 3 hours.
- the adjustment of the molar ratio K 2 0 / (K 2 0 + BaO + Na 2 0) is carried out according to any methods known to those skilled in the art, and for example by exchanging with a large excess of barium ions so to obtain rapidly low levels of sodium oxide Na 2 0, ie less than 1%, preferably less than 0.3%, and then performing an exchange with an aqueous solution of potassium ions containing the necessary molar amount of potassium ions to obtain the desired molar ratio K 2 0 / (K 2 0 + BaO + Na 2 0).
- step a) it is also possible to agglomerate in step a) of the zeolite X powder already containing potassium ions (pre-exchange of the cations present in the starting zeolite X, typically sodium cations, by potassium ions before step a)) and free or not potassium exchanges in steps c) and / or d).
- the activation which follows the drying is carried out in a conventional manner, according to the methods known to those skilled in the art, for example at a temperature in general of between 100 ° C. and 400 ° C., preferably between 200 ° C. C and 300 ° C.
- This step f) The purpose of the activation is to set the optimum water content and loss of the adsorbent for the intended use.
- thermal activation is carried out preferably between 200 ° C and 300 ° C for a predetermined period depending on the desired water content and loss on fire, typically 1 to 6 hours.
- the invention relates in particular to a process for recovering para-xylene at high purity from aromatic isomer cuts with 8 carbon atoms comprising the use, as para-xylene adsorption agent, of a zeolite adsorbent according to the invention, implemented in processes in the liquid phase but also in the gas phase.
- para-xylene of high purity we mean a product suitable for use in the production of terephthalic acid or dimethyl terephthalate, that is to say a purity of at least 99.5% by weight, preferably at at least 99.7% by weight, preferably at least 99.8% by weight and more preferably at least 99.9% by weight.
- the purity of para-xylene can be determined by chromatographic methods.
- a gas chromatographic method that can be used both for determining the purity of para-xylene and specific amounts of impurities is ASTM Method D-3798.
- the process for recovering para-xylene according to the invention using the adsorbent described according to the invention has the advantage of maximizing productivity but also of minimizing the operating costs of the process, that is to say both to maximize the load flow to be treated and to minimize the desorbent flow required. This is particularly true under the following simulated countercurrent industrial adsorption unit operating conditions: • number of beds: 6 to 30,
- Desorbent / charge flow ratio between 0.7 and 2.5, for example between 0.9 and 1.8, for a single adsorption unit (stand alone) and between 0.7 and 1.4 for a unit. adsorption combined with a crystallization unit,
- Recycling rate i.e. ratio of the average recycling rate (average of zone flow weighted by the number of beds per zone) to the load flow rate) between 2.5 and 12, preferably between 3.5 and 6.
- the desorption solvent may be any desorbent known to those skilled in the art and whose boiling point is lower than that of the filler, such as toluene but also a desorbent whose boiling point is greater than that of the feed, such as para-diethylbenzene (PDEB).
- PDEB para-diethylbenzene
- the selectivity of the adsorbents according to the invention for the adsorption of para-xylene contained in C8 aromatic cuts is optimal when their loss on ignition measured at 950 ° C. is generally between 4.0% and 7.7%. and preferably between 4.5% and 6.5%, and very preferably between 4.8% and 6.0%.
- the estimation of the number average diameter of the zeolite X crystals used in step a) and the zeolite X crystals contained in the agglomerates is carried out by observation under a scanning electron microscope (SEM) or by microscopic observation. transmission electronics (MET).
- SEM scanning electron microscope
- MET transmission electronics
- An elemental chemical analysis of the final product obtained at the end of steps a) to f) described above, can be carried out according to various analytical techniques known to those skilled in the art. Among these techniques, mention may be made of the technique of chemical analysis by X-ray fluorescence as described in standard NF EN ISO 12677: 201 1 on a wavelength dispersive spectrometer (WDXRF), for example Tiger S8 of the Bruker company.
- WDXRF wavelength dispersive spectrometer
- X-ray fluorescence is a non-destructive spectral technique exploiting the photoluminescence of atoms in the X-ray domain to establish the elemental composition of a sample.
- the excitation of the atoms generally by an X-ray beam or by bombardment with electrons, generates specific radiations after return to the ground state of the atom.
- the X-ray fluorescence spectrum has the advantage of relying very little on the chemical combination of the element, which offers a precise determination, both quantitative and qualitative. A measurement uncertainty of less than 0.4% by weight is obtained conventionally after calibration for each oxide.
- the barium, silicon, and aluminum contents are preferably measured by the X-ray fluorescence method described above.
- ICP-OES inductively coupled plasma
- ICP is a method of analysis by atomic emission spectrometry whose source is a plasma generated by inductive coupling. This method is also commonly used to determine the contents of various elements such as silicon, aluminum, potassium, sodium and barium.
- the sodium and potassium contents are preferably measured by the ICP method according to the UOP 961-12 standard.
- the sodium an uncertainty of less than 0.01% is obtained for the content by weight of the sodium oxide in the adsorbent and for potassium an uncertainty on the measurement of less than 0.02% for the content by weight of the potassium oxide in the adsorbent.
- the quality of the ion exchange is related to the number of moles of sodium oxide, Na 2 0, remaining in the zeolite agglomerate after exchange. More specifically, the exchange rate by the barium ions is determined by the ratio between the number of moles of barium oxide, BaO, and the number of moles of the whole (BaO + K 2 0 + Na 2 0). . Similarly, the exchange rate by the potassium ions is determined by the ratio between the number of moles of potassium oxide, K 2 0, and the number of moles of the whole (BaO + K 2 0 + Na 2 0). BaO, K 2 0 and Na 2 0 are expressed as oxides.
- the total exchange rate by barium and potassium ions is estimated from the sum of the two exchange rates described above, corresponding to the ratio between the sum of the number of moles of barium oxide and potassium oxide (BaO + K 2 0) and the number of moles of the group (BaO + K 2 0 + Na 2 0). It should be noted that the contents of various oxides are given in percentage by weight relative to the total weight of the anhydrous zeolite adsorbent. In the description of the present invention, the measurement uncertainty on the molar ratio K 2 0 / (K 2 O + BaO + Na 2 0) is 0.3%.
- the determination of the number average diameter of the zeolite adsorbents obtained at the end of step a) of agglomeration and shaping is carried out by analysis of the particle size distribution of an agglomerate sample by imaging according to ISO 13322-2: 2006, using a treadmill that allows the sample to pass in front of the camera lens.
- the number average diameter is then calculated from the particle size distribution by applying the ISO 9276-2: 2001 standard.
- the term "average number diameter” or "size” is used for zeolite agglomerates.
- the accuracy is of the order of 0.01 mm for the agglomerate size range of the invention.
- SMS1471 -74 series Shell Method Series SMS1471 -74 Determination of Bulk Crushing Strength of Catalysts, Compression-Sieve Method "), associated with the" BCS Tester "apparatus marketed by Vinci Technologies, this method initially intended for characterization catalysts from 3 to 6 mm is based on the use of a screen of 425 ⁇ which will allow in particular to separate the fines created during the crash.
- the use of a 425 ⁇ sieve remains suitable for particles with a diameter greater than 1.6 mm, but must be adapted according to the particle size of the zeolitic adsorbents that are to be characterized.
- ASTM D7084-04 which also describes a method for measuring the catalyst bed crush strength ("Determination of Bulk Crush Strength of Catalysts and Catalyst Carriers") defines the passage of the sieve to be used as being equal to the half the diameter of the catalyst particles to be characterized. The method provides a preliminary step of sieving the sample of catalysts or adsorbents to be characterized. If an amount equal to 10% weight of the sample passes through the grid, a smaller pass screen will be used.
- the agglomerates of the present invention generally in the form of beads or extrudates, generally have a number average diameter or a length, ie the largest dimension in the case of non-spherical agglomerates, of between 0.2 mm. and 2 mm, and in particular between 0.2 mm and 0.8 mm and preferably between 0.2 mm and 0.65 mm. Therefore, a suitable screen such that less than 10% by weight of the sample passes through the grid during a prior sieving step is used in place of the 425 ⁇ sieve mentioned in the standard Shell method SMS1471 -74 .
- the measuring protocol is as follows: a 20 cm 3 sample of agglomerated adsorbents, previously sieved with the appropriate sieve and previously dried in an oven for at least 2 hours at 250 ° C. (instead of 300 ° C.) C mentioned in the standard Shell method SMS1471 -74), is placed in a metal cylinder of known internal section. An increasing force is imposed in stages on this sample by means of a piston, through a bed of 5 cm 3 of steel balls in order to better distribute the force exerted by the piston on the agglomerates of adsorbents (use balls of 2 mm diameter for particles of spherical shape of diameter strictly less than 1, 6 mm). The fines obtained at the different pressure levels are separated by sieving (with a suitable sieve) and weighed.
- the crush resistance in bed is determined by the pressure in megaPascal (MPa) for which the amount of cumulative fines passing through the sieve is 0.5% by weight of the sample. This value is obtained by plotting the mass of fines obtained as a function of the force applied on the adsorbent bed and by interpolating at 0.5% by mass of cumulated fines.
- the mechanical resistance to crushing in a bed is typically between a few hundred kPa and a few tens of MPa and generally between 0.3 MPa and 4 MPa. The accuracy is conventionally less than 0.1 MPa. Determination of zeolite fractions of zeolite adsorbents:
- the crystallinity of the agglomerates is also evaluated by measuring their microporous volume by comparing it with that of a suitable reference (100% crystalline zeolite under identical cationic treatment conditions or theoretical zeolite). This microporous volume is determined from the measurement of the gas adsorption isotherm, such as nitrogen, at its liquefaction temperature. Prior to adsorption, the zeolite adsorbent is degassed between 300 ° C. and 450 ° C. for a period of 9 hours to 16 hours, under vacuum (P ⁇ 6.7 ⁇ 10 -4 Pa).
- 77K nitrogen adsorption is then carried out on a Micromeritics ASAP 2010 M type apparatus, taking at least 35 measurement points at relative pressures of P / P 0 ratio between 0.002 and 1.
- the microporous volume is determined according to Dubinin and Rohskevitch from the obtained isotherm, applying the ISO 15901 -3: 2007 standard
- the microporous volume evaluated according to Dubinin and Rohskevitch is expressed in cm 3 of liquid adsorbate per gram of adsorbent. measurement is ⁇ 0.003.
- the loss on ignition is determined in an oxidizing atmosphere, by calcination of the sample in air at a temperature of 950 ° C. ⁇ 25 ° C., as described in standard NF EN 196-2 (April 2006). The standard deviation of measurement is less than 0.1%.
- the technique used to characterize the adsorption of molecules in liquid phase on a porous solid is the so-called drilling technique, described by Ruthven in “Principles of Adsorption and Adsorption Processes” (Chapters 8 and 9, John Wiley & Sons, 1984) which defines the technique of breakthrough curves as the study of the response to the injection of a step of adsorbable constituents.
- the analysis of the average time of exit (first moment) of the drilling curves provides information on the adsorbed quantities and also makes it possible to evaluate the selectivities, that is to say the separation factor, between two adsorbable constituents.
- the injection of a non-adsorbable component used as a tracer is recommended for the estimation of non-selective volumes.
- a homogeneous mixture is prepared and 800 g of NaX zeolite crystals are agglomerated according to the procedure described in the patent application FR 2 999 098 (synthesis of Example B) with 105 g of kaolin (expressed as calcined equivalent). and 45 g of colloidal silica sold under the trade name Klebosol ® 30 (containing 30% by weight of Si0 2 and 0.5% Na 2 0) with the amount of water which allows the extrusion of the mixture. The extrudates are dried, crushed so as to recover grains whose number average diameter is equal to 0.5 mm, and then calcined at 550 ° C. under a stream of nitrogen for 2 hours.
- agglomerates obtained 200 g are placed in a glass reactor equipped with a controlled double jacket at a temperature of 100 ° C. ⁇ 1 ° C., and then 1.5 L of an aqueous solution of hydroxide is added. of 2.5 M sodium concentration and the reaction medium is left stirring for a period of 4 hours.
- the agglomerates are washed in 3 successive operations of washing with water followed by the emptying of the reactor.
- the effectiveness of the washing is ensured by measuring the final pH of the washings between 10.0 and 10.5.
- the sodium cations of the agglomerates obtained are exchanged with barium and potassium ions using an aqueous solution of 0.5M potassium chloride and barium chloride at 95 ° C in 4 steps.
- the concentrations of potassium chloride and barium chloride in the solution are adapted in order to reach the targeted barium and potassium contents in the adsorbent and thus the K 2 0 / (K 2 0 + BaO + Na 2 0 molar ratios. ) referred to ( Figure 1).
- the molar ratio K 2 0 / (K 2 0 + BaO + Na 2 0) of 12.0% is achieved with an aqueous solution of barium chloride of 0.36 M concentration and 0 concentration potassium chloride.
- the volume ratio of solution to mass of solid is 20 ml / g and the exchange is continued for 3 hours each time. Between each exchange, the solid is washed several times in order to rid it of excess salt. The agglomerates are then dried at 80 ° C for 2 hours and finally activated at 250 ° C for 2 hours under a stream of nitrogen. [00104]
- the measured loss on ignition, as described above, is 5.6% ⁇ 0.1% for each sample.
- the barium-potassium exchange rate of the agglomerates calculated from elemental analyzes of barium and sodium oxides by X-ray fluorescence as described in the characterization techniques is 99.7 ⁇ 0.2%.
- the content of sodium oxide Na 2 0 is 0.05% by weight relative to the total weight of the adsorbent
- the content of barium oxide BaO is 33.83% by weight relative to the total weight of the adsorbent
- the content of K 2 0 potassium oxide is 2.85% by weight relative to to the total weight of the adsorbent
- a drilling test (frontal chromatography) is then performed on the agglomerates obtained in Example 1 to evaluate their effectiveness.
- the amount of adsorbent used for this test is about 30 g.
- the pressure is sufficient for the charge to remain in the liquid phase, ie 1 MPa.
- the adsorption temperature is 175 ° C.
- the composition of the load used for the tests is as follows:
- This equation 8 refers to the adsorptivity K, of the various constituents, as well as to the parameter 3 ⁇ 4 of each section j defined by equation 7:
- the binary selectivity a i / k between the compounds i and k is equal to the ratio of the adsorptivities K, / K k .
- the reduced flow rate of each section of the unit is defined as the ratio of the flow rate of the liquid phase to the flow rate of the adsorbed phase. Equation 8 indicates which flow rates are reduced for each section.
- the feed rate corresponds to the difference between the flow rate in zone 3 and the flow rate in zone 2
- the desorbent flow rate corresponds to the difference between the flow rate in zone 1 and the flow in zone 4.
- a high performance adsorbent is that which allows both to maximize the flow rate of the feedstock to be treated and to minimize the necessary desorbent flow rate.
- the composition of the liquid phase which gives the strongest stress in zone 2 and in zone 3 is the composition of the liquid phase at the point of injection of the charge into unit. Indeed, from this point the concentration of para-xylene, which is the most adsorbed compound, increases in the direction of circulation of the solid in zone 2, and decreases in the direction of circulation of the liquid in zone 3. to approximate the composition of this point to the composition of the charge to be treated, and it is this composition that will be used to evaluate the term ⁇ 2 and ⁇ 3 of equation 8.
- the terms ⁇ 2 and ⁇ 3 being defined by the equation 7 mentioned above.
- the composition of the liquid phase which gives the strongest stress in zone 1 and in zone 4 is the composition of the liquid phase at the desorbent injection point in the unit . At this point, the liquid phase essentially contains desorbent.
- the reduced flow rate min (m De ) is calculated from the binary selectivity values measured experimentally.
- the ratio between max (m ch arge) and min (m D és) allows at the same time to maximize the productivity and minimize the operating costs of the paraxylene separation process contained in the C8 aromatic cuts.
- the ratio of reduced flows between max (m Ch arge) and min (m De ) is plotted against the molar ratio K 2 0 / (K 2 0 + BaO + Na 2 0) ( Figure 1). It can be seen that the ratio max (m Ch arge) / min (m De ) is improved for a molar ratio K 2 0 / (K 2 0 + BaO + Na 2 0) of between 9.5% and 14.5 %.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Water Supply & Treatment (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1556524A FR3038529B1 (en) | 2015-07-09 | 2015-07-09 | ZEOLITHIC ADSORBANTS, THEIR PREPARATION PROCESS AND THEIR USES |
PCT/EP2016/066296 WO2017005908A1 (en) | 2015-07-09 | 2016-07-08 | Zeolitic adsorbents, method for the production thereof, and uses of same |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3319724A1 true EP3319724A1 (en) | 2018-05-16 |
Family
ID=53879711
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16741570.2A Withdrawn EP3319724A1 (en) | 2015-07-09 | 2016-07-08 | Zeolitic adsorbents, method for the production thereof, and uses of same |
Country Status (6)
Country | Link |
---|---|
US (1) | US10745329B2 (en) |
EP (1) | EP3319724A1 (en) |
CN (1) | CN107847904B (en) |
FR (1) | FR3038529B1 (en) |
TW (1) | TWI759268B (en) |
WO (1) | WO2017005908A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112642391B (en) * | 2019-10-10 | 2022-07-15 | 中国石油化工股份有限公司 | Coalescence type p-disubstituted benzene adsorbent and preparation method thereof |
CN113457212A (en) * | 2021-06-25 | 2021-10-01 | 中触媒新材料股份有限公司 | Preparation and use method of trapping agent for simultaneously improving purity and chromaticity of m-methylphenol |
CN115990454B (en) * | 2021-10-20 | 2024-07-09 | 中国石油化工股份有限公司 | Modified X zeolite and preparation method and application thereof |
Family Cites Families (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2985589A (en) | 1957-05-22 | 1961-05-23 | Universal Oil Prod Co | Continuous sorption process employing fixed bed of sorbent and moving inlets and outlets |
US3558730A (en) | 1968-06-24 | 1971-01-26 | Universal Oil Prod Co | Aromatic hydrocarbon separation by adsorption |
US3626020A (en) | 1969-03-12 | 1971-12-07 | Universal Oil Prod Co | Separation of paraxylene from mixture of c aromatic utilizing crystalline aluminosilicate adsorbent |
US3558732A (en) | 1969-05-12 | 1971-01-26 | Universal Oil Prod Co | Aromatic hydrocarbon separation by adsorption |
US3663638A (en) | 1970-08-31 | 1972-05-16 | Universal Oil Prod Co | Aromatic hydrocarbon separation by adsorption |
US3686342A (en) | 1970-09-18 | 1972-08-22 | Universal Oil Prod Co | Aromatic hydrocarbon separation by adsorption |
US3706813A (en) * | 1971-07-08 | 1972-12-19 | Universal Oil Prod Co | Selectively adsorbing multibranched paraffins |
US3960774A (en) | 1973-05-02 | 1976-06-01 | Universal Oil Products Company | Zeolitic adsorbent for xylene separation |
US3943184A (en) * | 1974-02-15 | 1976-03-09 | Universal Oil Products Company | Aromatic hydrocarbon isomer separation process |
US3997620A (en) * | 1975-10-28 | 1976-12-14 | Uop Inc. | Process for separating para-xylene |
US4402832A (en) | 1982-08-12 | 1983-09-06 | Uop Inc. | High efficiency continuous separation process |
US4498991A (en) | 1984-06-18 | 1985-02-12 | Uop Inc. | Serial flow continuous separation process |
TW200454B (en) | 1991-09-05 | 1993-02-21 | Inst Of France Petroleum | |
FR2789914B1 (en) * | 1999-02-22 | 2001-04-06 | Ceca Sa | SINTERED BINDER ZEOLITIC ADSORBENTS WITH LOW INERT BINDER, PROCESS FOR OBTAINING SAME AND USES THEREOF |
FR2791187B1 (en) | 1999-03-15 | 2001-05-04 | Schneider Electric Sa | ELECTRICAL APPARATUS FOR LOCKING ONTO A RAIL |
US6284021B1 (en) | 1999-09-02 | 2001-09-04 | The Boc Group, Inc. | Composite adsorbent beads for adsorption process |
FR2832077B1 (en) * | 2001-11-12 | 2004-08-27 | Air Liquide | ZEOLITIC BARYUM AND CALCIUM ADSORBENT FOR THE PURIFICATION OF GAS, PARTICULARLY AIR |
CN1267185C (en) | 2003-06-30 | 2006-08-02 | 中国石油化工股份有限公司 | Paraxylene sorbent and its preparing method |
KR100727288B1 (en) | 2005-10-14 | 2007-06-13 | 한국과학기술원 | Method of the preparation of microporous crystalline molecular sieve possessing mesoporous frameworks |
FR2903978B1 (en) * | 2006-07-19 | 2010-09-24 | Ceca Sa | AGGLOMERATED ZEOLITIC ADSORBENTS, PROCESS FOR THEIR PREPARATION AND USES THEREOF |
FR2925366B1 (en) | 2007-12-20 | 2011-05-27 | Ceca Sa | AGGLOMERATED ZEOLITIC ADSORBENTS, PROCESS FOR THEIR PREPARATION AND USES THEREOF |
CN101497022B (en) | 2008-01-31 | 2011-06-15 | 中国石油化工股份有限公司 | Coalescence type zeolite sorbent and preparation method thereof |
US20090326308A1 (en) * | 2008-06-30 | 2009-12-31 | Uop Llc | Binderless adsorbents comprising nano-size zeolite x and their use in the adsorptive separation of para-xylene |
US8609925B2 (en) * | 2008-06-30 | 2013-12-17 | Uop Llc | Adsorbents with improved mass transfer properties and their use in the adsorptive separation of para-xylene |
US7820869B2 (en) * | 2008-06-30 | 2010-10-26 | Uop Llc | Binderless adsorbents and their use in the adsorptive separation of para-xylene |
CN102316977A (en) * | 2008-12-17 | 2012-01-11 | 环球油品公司 | The adsorbent medium that contains the Li exchanging zeolite |
US8283274B2 (en) | 2009-07-20 | 2012-10-09 | Uop Llc | Binderless zeolitic adsorbents, methods for producing binderless zeolitic adsorbents, and processes for adsorptive separation of para-xylene from mixed xylenes using the binderless zeolitic adsorbents |
FR2970184B1 (en) * | 2011-01-07 | 2013-08-02 | Air Liquide | ZEOLITIC COMPOSITION SUITABLE FOR AIR CLEANING |
US8557028B2 (en) | 2011-03-31 | 2013-10-15 | Uop Llc | Binderless zeolitic adsorbents, methods for producing binderless zeolitic adsorbents, and adsorptive separation processes using the binderless zeolitic adsorbents |
US8603433B2 (en) * | 2011-04-13 | 2013-12-10 | Uop Llc | Aluminosilicate X-type zeolite compositions with low LTA-type zeolite |
US8603434B2 (en) * | 2011-04-13 | 2013-12-10 | Uop Llc | Binder-converted aluminosilicate X-type zeolite compositions with low LTA-type zeolite |
US8431764B2 (en) * | 2011-04-13 | 2013-04-30 | Uop Llc | Para-xylene-separation with aluminosilicate X-type zeolite compositions with low LTA-type zeolite |
CA2850979A1 (en) | 2012-01-13 | 2013-07-18 | Rive Technology, Inc. | Introduction of mesoporosity into low silica zeolites |
KR101584751B1 (en) | 2012-08-16 | 2016-01-12 | 주식회사 케이티 | Method for uplink control channel resource configuration, transmission/reception point thereof, method for mapping uplink control channel resource and terminal thereof |
FR2999098B1 (en) * | 2012-12-12 | 2022-01-14 | Ceca Sa | ZEOLITHIC ADSORBENTS, THEIR PREPARATION PROCESS AND THEIR USES |
FR3002461B1 (en) * | 2013-02-22 | 2016-12-09 | Ifp Energies Now | METHOD FOR SEPARATING SIMPLE MOBILE BED XYLENES BY MEANS OF A ZEOLITHIC ADSORBENT SOLANIZING SOLIDITY BETWEEN 150 AND 500 MICRONS |
FR3004966B1 (en) | 2013-04-30 | 2016-02-05 | IFP Energies Nouvelles | ZEOLITHIC ADSORBENTS COMPRISING ZEOLITE EMT, PROCESS FOR PREPARING THEM AND USES THEREOF |
FR3010402B1 (en) | 2013-09-09 | 2015-08-28 | Ceca Sa | EXTERNAL HIGH SURFACE ZEOLITHIC ADSORBENTS, PROCESS FOR THEIR PREPARATION AND USES THEREOF |
US20150105600A1 (en) | 2013-10-15 | 2015-04-16 | Uop Llc | Adsorbents for the separation of para-xylene from c8 alkyl aromatic hydrocarbon mixtures, methods for separating para-xylene using the adsorbents and methods for making the adsorbents |
KR102194141B1 (en) * | 2013-11-06 | 2020-12-22 | 삼성전자주식회사 | Carbon dioxide adsorbent comprising mesoporous chabazite zeolite and methods for preparing the same |
FR3028430B1 (en) * | 2014-11-13 | 2018-08-17 | IFP Energies Nouvelles | LSX ZEOLITHIC ZEOLITHIC ADSORBENTS WITH EXTERNAL SURFACE CONTROL, PREPARATION METHOD AND USES THEREOF |
FR3028431B1 (en) * | 2014-11-13 | 2016-11-18 | Ceca Sa | ZEOLITHIC ADSORBENTS BASED ON LOW BLEED ZEOLITHEX X WITH LOW EXTERNAL SURFACE, PREPARATION METHOD AND USES THEREOF |
-
2015
- 2015-07-09 FR FR1556524A patent/FR3038529B1/en not_active Expired - Fee Related
-
2016
- 2016-07-08 WO PCT/EP2016/066296 patent/WO2017005908A1/en active Application Filing
- 2016-07-08 US US15/742,636 patent/US10745329B2/en not_active Expired - Fee Related
- 2016-07-08 EP EP16741570.2A patent/EP3319724A1/en not_active Withdrawn
- 2016-07-08 CN CN201680040333.4A patent/CN107847904B/en active Active
- 2016-07-11 TW TW105121848A patent/TWI759268B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
CN107847904A (en) | 2018-03-27 |
US10745329B2 (en) | 2020-08-18 |
TW201707786A (en) | 2017-03-01 |
FR3038529A1 (en) | 2017-01-13 |
CN107847904B (en) | 2022-01-28 |
WO2017005908A1 (en) | 2017-01-12 |
TWI759268B (en) | 2022-04-01 |
US20180201556A1 (en) | 2018-07-19 |
FR3038529B1 (en) | 2020-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2931417B1 (en) | Zeolitic adsorbents and uses thereof | |
EP3043902B1 (en) | Zeolitic adsorbents with large external surface area comprising baryum and/or potassium and uses thereof | |
EP2991760B1 (en) | Zeolite adsorbents comprising emt zeolite, method for preparing same and uses thereof | |
EP3319723B1 (en) | Zeolitic adsorbents, method for the production thereof, and uses of same | |
EP3218100B1 (en) | Zeolite adsorbents made from x zeolite with low binder content and low external surface area, method for preparation of same and uses thereof | |
EP3177381B1 (en) | Zeolite adsorbents with low binder content and large external surface area, method for preparation of same and uses thereof | |
EP3218101A1 (en) | Zeolite adsorbents made from lsx zeolite with a controlled external surface area, method for preparation of same and uses thereof | |
EP3727628B1 (en) | Zeolitic adsorbents containing baryum, strontium, potassium and sodium, method for preparation thereof and uses of the same | |
EP3319724A1 (en) | Zeolitic adsorbents, method for the production thereof, and uses of same | |
EP3177584B1 (en) | Method for separating meta-xylene using a zeolitic adsorbent with a large external surface area | |
EP4076732A1 (en) | Zeolite adsorbent for the separation of hydrocarbon isomers | |
FR3075792B1 (en) | ZEOLITIC ADSORBENTS CONTAINING STRONTIUM |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180207 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: LAROCHE, CATHERINE Inventor name: BOUVIER, LUDIVINE Inventor name: GRANDJEAN, JULIEN |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20210329 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20240201 |