[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP3398696B1 - Cooling facility and method - Google Patents

Cooling facility and method Download PDF

Info

Publication number
EP3398696B1
EP3398696B1 EP18159076.1A EP18159076A EP3398696B1 EP 3398696 B1 EP3398696 B1 EP 3398696B1 EP 18159076 A EP18159076 A EP 18159076A EP 3398696 B1 EP3398696 B1 EP 3398696B1
Authority
EP
European Patent Office
Prior art keywords
ingot
cooling
spray
plate
ramps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18159076.1A
Other languages
German (de)
French (fr)
Other versions
EP3398696A1 (en
Inventor
Vincent Duhoux
Bruno Magnin
Daniel BELLOT
José ROCHE
Pierre AUCOUTURIER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Constellium Neuf Brisach SAS
Original Assignee
Constellium Neuf Brisach SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51610169&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3398696(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Constellium Neuf Brisach SAS filed Critical Constellium Neuf Brisach SAS
Publication of EP3398696A1 publication Critical patent/EP3398696A1/en
Application granted granted Critical
Publication of EP3398696B1 publication Critical patent/EP3398696B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/004Heating the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0218Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for strips, sheets, or plates
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • C21D11/005Process control or regulation for heat treatments for cooling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B2001/225Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length by hot-rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B2003/001Aluminium or its alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B2045/0212Cooling devices, e.g. using gaseous coolants using gaseous coolants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/02Transverse dimensions
    • B21B2261/04Thickness, gauge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/02Transverse dimensions
    • B21B2261/06Width
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/12Length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/20Temperature

Definitions

  • the invention relates to the field of rolling plates or trays made of aluminum alloys.
  • the invention relates to a particularly rapid, homogeneous and reproducible cooling process for the plate between the homogenization and hot rolling operations.
  • DE 198 23 790 A1 discloses a method according to the preamble of claim 1.
  • the invention also relates to the installation or equipment allowing the implementation of said method.
  • the transformation of the aluminum alloy rolling plates resulting from the casting requires, before hot rolling, a metallurgical homogenization heat treatment.
  • This heat treatment is carried out at a temperature close to the solvus of the alloy, higher than the hot rolling temperature.
  • the difference between the homogenization temperature and the hot rolling temperature is between 30 and 150 ° C, depending on the alloys.
  • the plate must therefore be cooled between its exit from the homogenization furnace and its hot rolling. For reasons either of productivity or of metallurgical structure, in particular to avoid certain surface defects on the finished sheet, it is very desirable to be able to cool the plate quickly between its exit from the homogenization furnace and the hot rolling mill. .
  • This desired plate cooling rate is between 150 and 500 ° C / h.
  • the air cooling is particularly slow: the air cooling speed of a 600 mm plate thickness is included between 40 ° C / h in still air or under natural convection, and 100 ° C / h in ventilated air or forced convection.
  • Cooling by means of a liquid or a mist is much faster because the value of the exchange coefficient, known to those skilled in the art under the name HTC (Heat Transfer Coefficient), between a liquid or a mist and the hot surface of the metal plate is clearly greater than the value of this same coefficient between the air and the plate.
  • HTC Heat Transfer Coefficient
  • the liquid chosen alone or in the mist is for example water and, in this case, ideally deionized water.
  • the HTC coefficient is between 2000 and 20,000 W / (m 2 .K) between water and the hot plate while it is between 10 and 30 W / (m 2 .K) between air and hot platter.
  • Thermal heterogeneity is a major handicap in cooling using a liquid or a mist. It poses a problem not only for the following process, that is to say the hot rolling, but it is also potentially harmful for the final quality of the product, namely the aluminum alloy sold in the form of coils or high sheets. mechanical characteristics.
  • the subject of the invention is a process for cooling a rolling plate made of aluminum alloy with typical dimensions of 250 to 800 mm in thickness, 1000 to 2000 mm in width and 2000 to 8000 mm in length according to claim 1.
  • thermal difference is understood to mean the maximum difference between temperatures recorded over the entire volume of the plate, or else DTmax.
  • the cooling is carried out in at least two phases: A first spraying phase during which the plate is cooled in an enclosure comprising ramps of nozzles or nozzles for spraying liquid or cooling mist under pressure, distributed in the upper and lower parts of said cell, so as to spray the two large faces, upper and lower of said plate,
  • this time is about 30 min for a total cooling of the order of 150 ° C from substantially 500 ° C, and a few minutes for a cooling of the order of 30 ° C.
  • the spraying and thermal uniformization phases are repeated, in the case of very thick plates and for an overall average cooling greater than 80 ° C.
  • the coolant including in a mist, is water, and preferably deionized water.
  • the head and the foot of the plate that is typically the 300 to 600 mm at the ends, are less cooled than the rest of the plate, so as to maintain a hot head and foot, a configuration favorable to the plate engagement during reversible hot rolling.
  • the cooling of the head and of the foot can be modulated either by starting or switching off the nozzle ramps or spray nozzles, or by the presence of screens preventing or reducing the spraying by said nozzles or nozzles.
  • the phases of spraying, and no thermal uniformization can be repeated, and the head and the foot of the plate, typically 300 to 600 mm at the ends, cooled differently than the rest of the plate at least in one spray cells.
  • the first spraying pass is carried out with a zero heel, that is to say a continuous watering of the plate as in figure 14 , followed, without a first phase of thermal uniformization, by a second spraying pass with a heel of a couple of ramps as in figure 12 , thus making it possible to significantly reduce the duration of the final uniformization phase necessary for the thermal balancing of the plate.
  • the longitudinal thermal uniformity of the plate is improved by a relative movement of the plate with respect to the sprinkling system: scrolling or back and forth of the plate facing a fixed sprinkling system or vice versa, displacement of the nozzles or nozzles relative to the plate.
  • the plate scrolls horizontally in the spray cell and its scroll speed is greater than or equal to 20 mm / s, ie 1.2 m / min.
  • the transverse thermal uniformity of the plate is ensured by modulating the sprinkling across the width of the plate by switching on / off nozzles or nozzles, or screening said sprinkling.
  • the subject of the invention is also an installation for carrying out the method as above, comprising a spray cell provided with ramps of nozzles or spray nozzles for liquid or pressurized cooling mist arranged in upper parts and bottom of said cell, so as to spray the two large faces, upper and lower of said plate,
  • a uniformization tunnel with calm air coming out of the spray cell in a tunnel with interior walls and the roof in an internally reflective material, allowing thermal uniformization of the plate by diffusion of heat in said plate, the heart by warming the surfaces.
  • the pairs of upper and lower nozzle ramps are placed substantially facing each other, so that the upper and lower spray lengths are substantially equal and facing each other.
  • the spraying length is controlled so as to promote the lateral evacuation of the liquid or mist sprayed on the upper face, by guiding it towards the banks of the plate where it is evacuated in the form of a cascade without touching the small faces of the plate thus allowing a very homogeneous cooling in temperature in the longitudinal and transverse directions of the plate.
  • the liquid alone or contained in the cooling mist it can be recovered, typically in a container located under the installation, recycled and thermally controlled.
  • the entire installation, spray cell and uniformization tunnel is controlled by a thermal model coded on a PLC, the thermal model determining the settings of the installation as a function of the temperature estimated by thermal measurement at the start of the spray cell and depending on the target outlet temperature, in general the temperature at the start of hot rolling.
  • the Figure 19 illustrates the thermal field of a 600 mm thick AA6016 type alloy plate cooled by about 50 ° C in one pass in the sprinkler machine set with a sprinkler head of a single boom at the ends of the table, in accordance with figure 13 . This adjustment results in a very uniform thermal field with slightly hotter ends, which is favorable for rolling.
  • the invention essentially consists of a cooling process using a cooling liquid or mist for a plate or a rolling plate of aluminum alloy, from 30 to 150 ° C in a few minutes, that is to say at an average cooling rate of between 150 and 500 ° C / hour.
  • the plate is cooled in an enclosure comprising nozzles or nozzles for spraying liquid or mist cooling under pressure, typically water and preferably deionized.
  • the nozzles or nozzles are distributed in the upper and lower parts of said cell, so as to spray the two large faces, upper and lower, of the plate.
  • the option of a step-by-step process makes it possible to limit the risks of hot spots linked to the contacts between the plate and its support, generally made up of cylindrical or conical rollers.
  • the average cooling of the tray ( ⁇ Tmoy tray) is controlled by the sprinkling time seen by each section of the tray.
  • the plate is thermally very heterogeneous in its thickness, due to a high Biot number value.
  • the spraying phase is therefore designed to limit thermal heterogeneities in the three directions of the plate.
  • the invention makes it possible in particular to control the thermal profiles in the transverse direction and in the long direction of the plate, which is very appreciable since possible thermal gradients along these two large dimensions would be difficult to absorb in a short time.
  • the thermal uniformization phase of the plate follows: After sprinkling, the plate is kept for a few minutes in a configuration of low heat exchange with its environment. These thermal conditions allow the thermal uniformization of the tray, in a few minutes for cooling of less than 30 ° C and in approximately 30 minutes maximum for cooling of 150 ° C. This phase is essential to achieve the required thermal uniformity specifications. It makes it possible to achieve a thermal difference DTmax of less than 40 ° C on a large plate.
  • the invention can also be adapted to high absolute values of cooling.
  • the average cooling of the desired plate is typically greater than 80 ° C, it is possible to cycle several times all of the “spraying” and “uniformization” phases, reducing at each “spraying-uniformization” cycle the average temperature of a very thick tray.
  • the method thus described ensures rapid and controlled cooling of a thick plate, in particular a rolling plate, made of aluminum alloy. It is also robust and avoids the known risks of local over-cooling.
  • the machine, or cooling installation itself consists of at least one spray cell, typically horizontal to the parade, on the one hand and, on the other hand, of at least one thermal uniformization tunnel.
  • the spray cell allows the implementation of phase 1 of the process described above.
  • the spray cell is made up of ramps fitted with nozzles or nozzles for pressurized distribution of the liquid or cooling mist.
  • the spraying machine can advantageously, for reasons of economy in particular, operate in a closed cycle, for example with a collecting basin placed under the spraying machine.
  • the travel speed of the plate is greater than or equal to 20 mm / s, ie 1.2 m / min.
  • the tray On leaving the spray cell, the tray is transferred, for example using automatic trolleys, into one or more uniformization tunnel (s).
  • the objective of the tunnel is to reduce as much as possible the heat transfers between the plate and the air, which is favorable to a better thermal uniformization of the plate. This thermal uniformization takes place by diffusion of heat in the plate, the core heating the surfaces of the plate.
  • the standardization tunnel consists of vertical walls and a roof in an ideally reflective material on the inside of the tunnel.
  • the machine or cooling installation made up of the spray cell and the standardization tunnel is controlled by a thermal model coded on the machine's PLC.
  • the thermal model determines the machine settings as a function of the temperature at the start of the spray cell, or inlet temperature, and as a function of the target outlet temperature, in general the rolling temperature.
  • Example 1 Uniform cooling of 40 ° C of an alloy plate of the AA3104 type.
  • the figure 5 illustrates the cooling of 40 ° C of an alloy plate of the AA3104 type according to the designations defined by the “Aluminum Association” in the “Registration Record Series” that it publishes regularly.
  • the thickness of the top is 600 mm, its width is 1850 mm and its length is 4100 mm.
  • the tray comes out of the homogenization oven at 600 ° C.
  • the plate cooling process is the one-pass process, described in figure 1 .
  • the surface spraying flow rate is 500 1 / (min.m 2 ) on the two large sides of the plate.
  • the spray heel is set to ramp torque, as described in figure 12 .
  • the tray is dry and transferred in 30 s to a uniformization tunnel for a period determined by the thermal model encoded in the automaton, here 300 s, ie 5 minutes.
  • the plate is transferred to the hot rolling mill, with a thermal uniformity better than 40 ° C on the complete plate.
  • the surface temperature of the tray drops to around 320 ° C, while the core of the tray remains almost isothermal during the spraying phase. Then, by diffusion of heat between the heart and the surface, the heart gives up heat to the surface, the plate becomes thermally uniform.
  • the thermal difference in the plate (DTmax) is maximum at the end of the spraying phase, its value is approximately 280 ° C for this configuration. It is rapidly reduced as soon as the spraying of the tray ceases: in 6 minutes of waiting (transfer then standardization in the tunnel), the thermal difference DTmax is reduced to less than 40 ° C.
  • Example 2 Uniform cooling of 135 ° C of an alloy plate of the AA6016 type.
  • the figure 6 illustrates the 135 ° C cooling of an AA6016 type alloy pan.
  • the thickness of the top is 600 mm, its width is 1850 mm and its length is 4100 mm.
  • the tray comes out of the homogenization oven at 530 ° C.
  • the platen cooling process is the two-pass process, described in figure 2 .
  • each point of the tray outside the ends (head and foot) undergoes watering for 51 seconds.
  • the surface spraying flow rate is 800 1 / (min.m 2 ) on the two large sides of the plate.
  • the watering heel is set to a ramp, as described in figure 13 .
  • the tray is transferred in 60 s to the second sprinkler cell without passing, in this example, through the optional intermediate standardization tunnel.
  • the plate then undergoes a second watering, identical to the first: each point of the plate excluding the ends is subjected to watering for 51 seconds, at a surface flow rate of 800 1 / (min.m 2 ).
  • the tray On leaving the second spray cell, the tray is transferred to the uniformization tunnel in 30 seconds. The plateau waits several minutes in the standardization tunnel. At the end, the plate is transferred to the hot rolling mill, with a thermal uniformity better than 40 ° C on the complete plate.
  • the surface temperature of the tray drops to about 60 ° C.
  • the heart of the tray remains almost isothermal during the first spraying phase and then cools down during the second spraying phase. Then, by diffusion of heat between the heart and the surface, the heart gives up heat to the surface, the plate becomes thermally uniform.
  • the thermal difference in the plate (DTmax) is maximum at the end of each of the spraying phases, its value is approximately 470 ° C for this configuration. It is rapidly reduced as soon as the spraying of the tray ceases: the thermal difference DTmax of the tray is 55 ° C after 13 minutes of waiting in the tunnel and becomes less than 40 ° C after 23 minutes spent in the tunnel.
  • Example 3 Uniform cooling of 125 ° C of an alloy plate of the AA6016 type.
  • the thickness of the top is 600 mm, its width is 1850 mm and its length is 4100 mm.
  • the tray comes out of the homogenization oven at 530 ° C.
  • the platen cooling process is the two-pass process, described in figure 2 .
  • each point of the tray is watered for 51 seconds.
  • the surface spraying flow rate is 500 1 / (min.m 2 ) on the two large sides of the plate.
  • the watering stub is zero, as described in figure 14 .
  • the tray is therefore sprayed entirely in the same way, which generates a longitudinal thermal profile with cold ends.
  • the tray is transferred in 60 s to the second sprinkler cell without passing, in this example, through the optional intermediate standardization tunnel.
  • the tray then undergoes a second watering, different from the first.
  • the plate, but this time outside the ends undergoes a second watering of 51 seconds, at a surface flow rate of 500 1 / (min.m 2 ).
  • the sprinkler stub is a couple of ramps, as described figure 12 . This adjustment tends to straighten the cold-ended thermal profile, thereby generating an almost flat longitudinal thermal profile exiting the second spray cell.
  • the tray is transferred to the standardization tunnel in 30 seconds. The plateau waits only 10 minutes in the standardization tunnel.
  • the plate is transferred to the hot rolling mill, with a thermal uniformity better than 40 ° C on the complete plate.
  • Example 3 shows that the judicious choice of the watering heels makes it possible to significantly reduce the duration of uniformization after sprinkling.
  • the choice of beads may differ from pass to pass.
  • the heel chosen in the first pass is better than the heel chosen in the second pass.
  • a first pass with a zero heel (continuous watering of the plate) followed by a second pass with a heel of a couple of ramps makes it possible to significantly reduce the uniformization time necessary for thermal balancing of the plate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Metal Rolling (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Continuous Casting (AREA)
  • Heat Treatment Of Articles (AREA)
  • Fertilizers (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

Domaine de l'inventionField of the invention

L'invention concerne le domaine du laminage des plaques ou plateaux en alliages d'aluminium.The invention relates to the field of rolling plates or trays made of aluminum alloys.

Plus précisément, l'invention concerne un procédé de refroidissement particulièrement rapide, homogène et reproductible du plateau entre les opérations d'homogénéisation et de laminage à chaud Le document DE 198 23 790 A1 divulgue un procédé selon le préambule de la revendication 1.More precisely, the invention relates to a particularly rapid, homogeneous and reproducible cooling process for the plate between the homogenization and hot rolling operations. DE 198 23 790 A1 discloses a method according to the preamble of claim 1.

L'invention concerne également l'installation ou équipement permettant la mise en œuvre dudit procédé.The invention also relates to the installation or equipment allowing the implementation of said method.

Etat de la techniqueState of the art

La transformation des plateaux de laminage en alliage d'aluminium issus de la coulée exige, avant laminage à chaud, un traitement thermique d'homogénéisation métallurgique. Ce traitement thermique est opéré à une température proche du solvus de l'alliage, plus élevée que la température de laminage à chaud. L'écart entre la température d'homogénéisation et la température de laminage à chaud est compris entre 30 et 150°C, selon les alliages. Le plateau doit donc être refroidi entre sa sortie du four d'homogénéisation et son laminage à chaud. Pour des raisons soit de productivité, soit de Structure métallurgique, notamment éviter certains défauts de surface sur la tôle finie, il est très souhaitable de pouvoir réaliser le refroidissement du plateau entre sa sortie du four d'homogénéisation et le laminoir à chaud de manière rapide.The transformation of the aluminum alloy rolling plates resulting from the casting requires, before hot rolling, a metallurgical homogenization heat treatment. This heat treatment is carried out at a temperature close to the solvus of the alloy, higher than the hot rolling temperature. The difference between the homogenization temperature and the hot rolling temperature is between 30 and 150 ° C, depending on the alloys. The plate must therefore be cooled between its exit from the homogenization furnace and its hot rolling. For reasons either of productivity or of metallurgical structure, in particular to avoid certain surface defects on the finished sheet, it is very desirable to be able to cool the plate quickly between its exit from the homogenization furnace and the hot rolling mill. .

Cette vitesse de refroidissement du plateau souhaitée est comprise entre 150 et 500°C/h.This desired plate cooling rate is between 150 and 500 ° C / h.

Compte tenu de la forte épaisseur des plateaux de laminage en alliage d'aluminium, soit entre 250 et 800 mm, le refroidissement à l'air est particulièrement lent : la vitesse de refroidissement à l'air d'un plateau de 600 mm d'épaisseur est comprise entre 40°C/h à l'air calme ou sous convection naturelle, et 100°C/h sous air ventilé ou convection forcée.Taking into account the great thickness of the aluminum alloy rolling plates, i.e. between 250 and 800 mm, the air cooling is particularly slow: the air cooling speed of a 600 mm plate thickness is included between 40 ° C / h in still air or under natural convection, and 100 ° C / h in ventilated air or forced convection.

Le refroidissement à l'air ne permet donc pas d'atteindre les vitesses de refroidissement souhaitées.Air cooling therefore does not make it possible to achieve the desired cooling rates.

Le refroidissement au moyen d'un liquide ou d'un brouillard (mélange d'air et de liquide) est nettement plus rapide car la valeur du coefficient d'échange, connu de l'homme du métier sous l'appellation HTC (Heat Transfer Coefficient), entre un liquide ou un brouillard et la surface chaude du plateau métallique est nettement supérieure à la valeur de ce même coefficient entre l'air et le plateau.Cooling by means of a liquid or a mist (mixture of air and liquid) is much faster because the value of the exchange coefficient, known to those skilled in the art under the name HTC (Heat Transfer Coefficient), between a liquid or a mist and the hot surface of the metal plate is clearly greater than the value of this same coefficient between the air and the plate.

Le liquide choisi seul ou dans le brouillard est par exemple de l'eau et, dans ce cas, idéalement de l'eau désionisée. Ainsi, le coefficient HTC est compris entre 2000 et 20000 W/(m2.K) entre de l'eau et le plateau chaud tandis qu'il est compris entre 10 et 30 W/(m2.K) entre de l'air et le plateau chaud.The liquid chosen alone or in the mist is for example water and, in this case, ideally deionized water. Thus, the HTC coefficient is between 2000 and 20,000 W / (m 2 .K) between water and the hot plate while it is between 10 and 30 W / (m 2 .K) between air and hot platter.

En revanche, le refroidissement au moyen d'un liquide ou brouillard génère habituellement de manière naturelle de forts gradients thermiques dans le plateau :

  • Le nombre adimensionnel de Biot illustre l'homogénéité thermique du refroidissement. Il correspond au rapport de la résistance thermique interne d'un corps (transfert de chaleur interne par conduction) à sa résistance thermique de surface (transfert de chaleur par convection et rayonnement). Bi = HTC D λ
    Figure imgb0001
    • HTC étant le coefficient d'échange entre le fluide et le plateau,
    • D, la dimension caractéristique du système, ici la demi-épaisseur du plateau,
    • λ, la conductivité thermique du métal, par exemple, pour un alliage d'aluminium, 160 W/(m2.K).
On the other hand, cooling by means of a liquid or a mist usually generates in a natural way strong thermal gradients in the plate:
  • The dimensionless Biot number illustrates the thermal homogeneity of cooling. It corresponds to the ratio of the internal thermal resistance of a body (internal heat transfer by conduction) to its surface thermal resistance (heat transfer by convection and radiation). Bi = HTC D λ
    Figure imgb0001
    • HTC being the coefficient of exchange between the fluid and the plate,
    • D, the characteristic dimension of the system, here the half-thickness of the plate,
    • λ, the thermal conductivity of the metal, for example, for an aluminum alloy, 160 W / (m2.K).

Si Bi « 1, le système est pratiquement isotherme, le refroidissement est uniforme. Si Bi » 1, le système est thermiquement très hétérogène et le plateau est le siège de forts gradients thermiques.If Bi “1, the system is practically isothermal, the cooling is uniform. If Bi »1, the system is thermally very heterogeneous and the plateau is the site of strong thermal gradients.

Pour un plateau d'épaisseur 600 mm, le nombre de Biot vaut :

  • Entre 0.02 et 0.06 pour un refroidissement à l'air calme ou ventilé. Le nombre de Biot est faible devant 1, le plateau est refroidi de manière isotherme.
  • Entre 4 et 40 pour un refroidissement à l'eau. Le nombre de Biot est fort devant 1, le plateau est refroidi de manière très hétérogène dans son épaisseur.
For a 600 mm thick plate, the Biot number is equal to:
  • Between 0.02 and 0.06 for still or ventilated air cooling. The Biot number is low compared to 1, the plate is cooled isothermally.
  • Between 4 and 40 for water cooling. The Biot number is strong in front of 1, the plate is cooled in a very heterogeneous way in its thickness.

Cette hétérogénéité se traduit également dans la largeur du plateau, en raison des effets de bords et d'arêtes, naturellement plus refroidies que les grandes faces du plateau.This heterogeneity is also reflected in the width of the plate, due to the effects of edges and ridges, naturally more cooled than the large sides of the plate.

Elle se traduit aussi dans la longueur du plateau, par effet de coin, naturellement refroidi suivant les trois faces le constituant.It is also reflected in the length of the plate, by wedge effect, naturally cooled along the three faces constituting it.

L'hétérogénéité thermique est un handicap majeur du refroidissement à l'aide d'un liquide ou brouillard. Elle pose problème non seulement pour le procédé suivant, c'est à dire le laminage à chaud mais elle est aussi potentiellement néfaste pour la qualité finale du produit, à savoir l'alliage d'aluminium vendu sous forme de bobines ou de tôles à hautes caractéristiques mécaniques.Thermal heterogeneity is a major handicap in cooling using a liquid or a mist. It poses a problem not only for the following process, that is to say the hot rolling, but it is also potentially harmful for the final quality of the product, namely the aluminum alloy sold in the form of coils or high sheets. mechanical characteristics.

Les dispositifs connus de l'art antérieur ne cherchent pas à limiter cette hétérogénéité du refroidissement.The devices known from the prior art do not seek to limit this heterogeneity of the cooling.

Les procédés de refroidissement à l'aide d'un liquide de refroidissement connus de l'art antérieur, notamment pour les tôles fortes, opèrent soit par immersion dans un bac, soit par passage dans un caisson d'aspersion mais sans attention particulière portée à la maîtrise de l'équilibre thermique du produit.The cooling processes using a cooling liquid known from the prior art, in particular for heavy plates, operate either by immersion in a tank, or by passage through a spray box but without particular attention paid to control of the thermal balance of the product.

Ainsi, ces procédés ne permettent :

  • Ni d'obtenir un champ thermique uniforme dans le plateau refroidi
  • Ni de garantir la reproductibilité du refroidissement d'un plateau à l'autre.
Thus, these processes do not allow:
  • Nor to obtain a uniform thermal field in the cooled plate
  • Nor to guarantee the reproducibility of cooling from one plate to another.

Problème poséProblem

L'invention a pour objectif de corriger l'ensemble des défauts majeurs liés aux procédés de refroidissement de plateaux épais de l'art antérieur et d'assurer :

  • Un refroidissement rapide, à une vitesse d'au moins 150°C/h, et conséquent, soit de 30 à 150°C de refroidissement à partir d'une température de l'ordre de 450 à 600°C
  • Un champ thermique homogène et maitrisé dans l'ensemble du plateau
  • L'assurance d'une parfaite reproductibilité d'un plateau épais à l'autre.
The object of the invention is to correct all the major defects linked to the methods of cooling thick plates of the prior art and to ensure:
  • Rapid cooling, at a rate of at least 150 ° C / h, and therefore, from 30 to 150 ° C cooling from a temperature of the order of 450 to 600 ° C
  • A homogeneous and controlled thermal field throughout the set
  • The assurance of perfect reproducibility from one thick plate to another.

Objet de l'inventionObject of the invention

L'invention a pour objet un procédé de refroidissement d'un plateau de laminage en alliage d'aluminium de dimensions typiques de 250 à 800 mm en épaisseur, 1000 à 2000 mm en largeur et 2000 à 8000 mm en longueur selon la revendication 1.The subject of the invention is a process for cooling a rolling plate made of aluminum alloy with typical dimensions of 250 to 800 mm in thickness, 1000 to 2000 mm in width and 2000 to 8000 mm in length according to claim 1.

On entend par écart thermique l'écart maximum entre températures relevées sur l'ensemble du volume du plateau, ou encore DTmax.The term thermal difference is understood to mean the maximum difference between temperatures recorded over the entire volume of the plate, or else DTmax.

Avantageusement, le refroidissement est effectué en au moins deux phases :
Une première phase d'aspersion au cours de laquelle le plateau est refroidi dans une enceinte comportant des rampes de buses ou tuyères d'aspersion de liquide ou brouillard de refroidissement sous pression, réparties en parties haute et basse de ladite cellule, de façon à asperger les deux grandes faces, supérieure et inférieure dudit plateau,
Advantageously, the cooling is carried out in at least two phases:
A first spraying phase during which the plate is cooled in an enclosure comprising ramps of nozzles or nozzles for spraying liquid or cooling mist under pressure, distributed in the upper and lower parts of said cell, so as to spray the two large faces, upper and lower of said plate,

Une phase complémentaire d'uniformisation thermique à l'air calme, dans un tunnel aux parois intérieures réflectives, d'une durée de 2 à 30 minutes selon le format du plateau et la valeur du refroidissement.An additional phase of thermal uniformization in still air, in a tunnel with reflective interior walls, lasting from 2 to 30 minutes depending on the size of the plate and the amount of cooling.

Typiquement, cette durée est d'environ 30 min pour un refroidissement total de l'ordre de 150°C à partir de sensiblement 500°C, et de quelques minutes pour un refroidissement de l'ordre de 30°C.Typically, this time is about 30 min for a total cooling of the order of 150 ° C from substantially 500 ° C, and a few minutes for a cooling of the order of 30 ° C.

Selon une variante de l'invention, les phases d'aspersion et uniformisation thermique sont répétées, dans le cas de plateaux très épais et pour un refroidissement moyen global supérieur à 80°C.According to a variant of the invention, the spraying and thermal uniformization phases are repeated, in the case of very thick plates and for an overall average cooling greater than 80 ° C.

Le plus couramment, le liquide de refroidissement, y compris dans un brouillard, est de l'eau, et de préférence de l'eau désionisée.Most commonly, the coolant, including in a mist, is water, and preferably deionized water.

Selon un mode de réalisation particulière, la tête et le pied du plateau, soit typiquement les 300 à 600 mm aux extrémités, sont moins refroidis que le reste du plateau, de façon à maintenir une tête et un pied chaud, configuration favorable à l'engagement du plateau lors d'un laminage à chaud réversible.According to a particular embodiment, the head and the foot of the plate, that is typically the 300 to 600 mm at the ends, are less cooled than the rest of the plate, so as to maintain a hot head and foot, a configuration favorable to the plate engagement during reversible hot rolling.

A cette fin, le refroidissement de la tête et du pied peut être modulé soit par la mise en route ou l'extinction des rampes de buses ou tuyères d'aspersion, soit par la présence d'écrans empêchant ou réduisant l'aspersion par lesdites buses ou tuyères. Par ailleurs, les phases d'aspersion, et pas d'uniformisation thermique, peuvent être répétées, et la tête et le pied du plateau, soit typiquement les 300 à 600 mm aux extrémités, refroidis différemment que le reste du plateau au moins dans une des cellules d'aspersion.To this end, the cooling of the head and of the foot can be modulated either by starting or switching off the nozzle ramps or spray nozzles, or by the presence of screens preventing or reducing the spraying by said nozzles or nozzles. In addition, the phases of spraying, and no thermal uniformization, can be repeated, and the head and the foot of the plate, typically 300 to 600 mm at the ends, cooled differently than the rest of the plate at least in one spray cells.

Selon une version conforme à cette dernière option, la première passe d'aspersion est effectuée avec un talon nul, soit un arrosage continu du plateau tel qu'en figure 14, suivie, sans première phase d'uniformisation thermique, d'une seconde passe d'aspersion avec un talon d'un couple de rampes tel qu'en figure 12, permettant ainsi de réduire notablement la durée de la phase finale d'uniformisation nécessaire à l'équilibrage thermique du plateau.According to a version conforming to this last option, the first spraying pass is carried out with a zero heel, that is to say a continuous watering of the plate as in figure 14 , followed, without a first phase of thermal uniformization, by a second spraying pass with a heel of a couple of ramps as in figure 12 , thus making it possible to significantly reduce the duration of the final uniformization phase necessary for the thermal balancing of the plate.

Selon une variante préférée de l'invention, l'uniformité thermique longitudinale du plateau est améliorée par un mouvement relatif du plateau par rapport au système d'aspersion : défilé ou va et vient du plateau face à un système d'aspersion fixe ou inversement, déplacement des buses ou tuyères par rapport au plateau. Typiquement, le plateau défile horizontalement dans la cellule d'aspersion et sa vitesse de défilement est supérieure ou égale à 20 mm/s, soit 1.2 m/min. Préférentiellement encore, l'uniformité thermique transversale du plateau est assurée par modulation de l'aspersion dans la largeur du plateau par allumage/extinction de buses ou tuyères, ou écrantage de ladite aspersion.According to a preferred variant of the invention, the longitudinal thermal uniformity of the plate is improved by a relative movement of the plate with respect to the sprinkling system: scrolling or back and forth of the plate facing a fixed sprinkling system or vice versa, displacement of the nozzles or nozzles relative to the plate. Typically, the plate scrolls horizontally in the spray cell and its scroll speed is greater than or equal to 20 mm / s, ie 1.2 m / min. Again preferably, the transverse thermal uniformity of the plate is ensured by modulating the sprinkling across the width of the plate by switching on / off nozzles or nozzles, or screening said sprinkling.

L'invention a également pour objet une installation pour mise en œuvre du procédé tel que ci-dessus, comportant une cellule d'aspersion munie de rampes de buses ou tuyères d'aspersion de liquide ou brouillard de refroidissement sous pression disposées en parties haute et basse de ladite cellule, de façon à asperger les deux grandes faces, supérieure et inférieure dudit plateau,The subject of the invention is also an installation for carrying out the method as above, comprising a spray cell provided with ramps of nozzles or spray nozzles for liquid or pressurized cooling mist arranged in upper parts and bottom of said cell, so as to spray the two large faces, upper and lower of said plate,

Un tunnel d'uniformisation à l'air calme au sortir de la cellule d'aspersion, dans un tunnel aux parois intérieures et au toit en une matière intérieurement réflective, autorisant une uniformisation thermique du plateau par diffusion de la chaleur dans ledit plateau, le cœur en réchauffant les surfaces.A uniformization tunnel with calm air coming out of the spray cell, in a tunnel with interior walls and the roof in an internally reflective material, allowing thermal uniformization of the plate by diffusion of heat in said plate, the heart by warming the surfaces.

Selon un mode de réalisation préférentielle :

  • Les buses de liquide ou brouillard de refroidissement génèrent des sprays ou jets à cône plein dont l'angle est compris entre 45 et 60°
  • Les axes des buses inférieures sont orientés normalement à la surface inférieure
According to a preferred embodiment:
  • The liquid or cooling mist nozzles generate sprays or full cone jets with an angle between 45 and 60 °
  • The axes of the lower nozzles are oriented normally to the lower surface

De préférence, les rampes de buses supérieures sont appariées dans le sens de défilement du plateau. Dans une même paire, les rampes supérieures sont inclinées de telle sorte que :

  • Les jets des deux rampes de buses supérieures appariées soient orientés en opposition l'un de l'autre.
  • Les jets présentent une bordure normale à la surface supérieure du plateau
  • Le recouvrement des deux jets soit compris entre le 1/3 et les 2/3 de la largeur de chaque jet, et préférentiellement sensiblement de la moitié
  • L'enveloppe des deux jets ainsi formée constitue un profil en M.
Preferably, the upper nozzle ramps are paired in the direction of travel of the plate. In the same pair, the upper ramps are inclined so that:
  • The jets of the two paired upper nozzle banks are oriented in opposition to each other.
  • Jets have a border normal to the top surface of the deck
  • The overlap of the two jets is between 1/3 and 2/3 of the width of each jet, and preferably substantially half
  • The envelope of the two jets thus formed constitutes an M profile.

Les paires de rampes de buses supérieures et inférieures sont placées sensiblement en vis-à-vis, de façon à ce que les longueurs d'aspersion supérieures et inférieures soient sensiblement égales et en vis-à-vis.The pairs of upper and lower nozzle ramps are placed substantially facing each other, so that the upper and lower spray lengths are substantially equal and facing each other.

Du fait de l'appariement des buses supérieures en opposition et du profil en M des jets, la longueur d'aspersion est contrôlée de façon à favoriser l'évacuation latérale du liquide ou brouillard aspergé en face supérieure, en le guidant vers les rives du plateau où il s'évacue sous forme d'une cascade sans toucher les petites faces du plateau autorisant ainsi un refroidissement très homogène en température dans les sens longitudinal et transversal du plateau.Due to the pairing of the upper nozzles in opposition and the M profile of the jets, the spraying length is controlled so as to promote the lateral evacuation of the liquid or mist sprayed on the upper face, by guiding it towards the banks of the plate where it is evacuated in the form of a cascade without touching the small faces of the plate thus allowing a very homogeneous cooling in temperature in the longitudinal and transverse directions of the plate.

Quant au liquide seul ou contenu dans le brouillard de refroidissement, il peut être récupéré, typiquement dans un conteneur situé sous l'installation, recyclé et thermiquement contrôlé.As for the liquid alone or contained in the cooling mist, it can be recovered, typically in a container located under the installation, recycled and thermally controlled.

Selon un mode de mise en œuvre perfectionnée, l'ensemble de l'installation, cellule d'aspersion et tunnel d'uniformisation, est piloté par un modèle thermique codé sur automate, le modèle thermique déterminant les réglages de l'installation en fonction de la température estimée par mesure thermique en début de cellule d'aspersion et en fonction de la température cible de sortie, en général la température de début de laminage à chaud.According to a perfected mode of implementation, the entire installation, spray cell and uniformization tunnel, is controlled by a thermal model coded on a PLC, the thermal model determining the settings of the installation as a function of the temperature estimated by thermal measurement at the start of the spray cell and depending on the target outlet temperature, in general the temperature at the start of hot rolling.

Selon un mode de réalisation avantageux, la mise en œuvre de l'installation, comporte les étapes suivantes :

  • Centrage du plateau, à l'entrée de l'installation
  • Mesure de la température de surface supérieure du plateau
  • Calcul par l'automate, à l'aide du modèle thermique, des réglages de la cellule d'aspersion en fonction de la température cible d'entrée et de la température cible de sortie, c'est dire du refroidissement cible du plateau, incluant la détermination du nombre de rampes activées, du nombre de buses ouvertes en rives, de la vitesse de défilement du plateau dans la cellule d'aspersion, des démarrages et arrêts des rampes d'aspersion, et du temps de maintien dans le tunnel d'uniformisation
  • Défilement du plateau dans la cellule d'aspersion, arrosage supérieur et inférieur suivant les calculs de l'automate
  • Transfert du plateau de la cellule d'aspersion vers le tunnel d'uniformisation
  • Maintien du plateau dans le tunnel d'uniformisation pendant une durée déterminée par l'automate.
According to an advantageous embodiment, the implementation of the installation comprises the following steps:
  • Centering of the plate, at the entry of the installation
  • Measuring the top surface temperature of the platen
  • Calculation by the PLC, using the thermal model, of the settings of the spray cell according to the target inlet temperature and the target outlet temperature, i.e. the target cooling of the tray, including determining the number of booms activated, the number of nozzles open on the banks, the speed at which the plate travels in the spray cell, the starts and stops of the spray booms, and the holding time in the spray tunnel standardization
  • Scrolling of the tray in the spraying cell, upper and lower watering according to the automaton's calculations
  • Transfer of the tray from the spray cell to the standardization tunnel
  • Maintenance of the plate in the standardization tunnel for a period determined by the automaton.

Description des figuresDescription of figures

  • La figure 1 représente un schéma de principe du procédé selon l'invention en une passe. Le plateau est défourné du four d'homogénéisation 1 à sa température d'homogénéisation. Il est transféré vers la machine de refroidissement, centré latéralement puis sa température de surface est mesurée (2) par thermocouple de surface, par contact ou à l'aide d'un pyromètre infrarouge mais qui sera moins précis. Le modèle thermique détermine le réglage de la cellule d'aspersion 3 (nombre de couples de rampes activées et vitesse de défilement du plateau). Puis le plateau est traité dans la cellule d'aspersion. A sa sortie, il est sec et transféré (4) vers un tunnel d'uniformisation 5 pour une durée déterminée par modèle thermique ou selon l'amplitude du refroidissement subi. A l'issue, il est transféré vers le laminoir à chaud 6.The figure 1 represents a block diagram of the method according to the invention in one pass. The tray is removed from the homogenization oven 1 at its homogenization temperature. It is transferred to the cooling machine, centered laterally then its surface temperature is measured (2) by surface thermocouple, by contact or using an infrared pyrometer, but which will be less precise. The thermal model determines the setting of spray cell 3 (number of pairs of ramps activated and speed of travel of the plate). Then the tray is treated in the spray cell. On leaving, it is dry and transferred (4) to a uniformization tunnel 5 for a period determined by thermal model or according to the amplitude of the cooling undergone. At the end, it is transferred to the hot rolling mill 6.
  • La figure 2 représente un schéma de principe du procédé selon l'invention en deux passes ou plus. Lorsque l'amplitude cible de refroidissement est supérieure à 100°C, un seul passage dans la machine de refroidissement peut être insuffisant. Dans ce cas, le plateau est refroidi une première fois dans la première cellule d'aspersion 3. Puis, avec ou sans passage dans le tunnel d'uniformisation intermédiaire 5, le plateau est transféré dans la seconde machine de refroidissement composée des éléments 6, 7 et 8, où il subit un cycle complet : cellule d'aspersion puis obligatoirement tunnel d'uniformisation 8. La durée de la dernière phase d'uniformisation dépend de la diffusivité thermique du matériau, donc de l'alliage, de l'amplitude cible de refroidissement, et de la sévérité de l'uniformité thermique cible avant laminage à chaud 9.
    Le refroidissement multi passes peut également être réalisé avec une seule machine, par passages successifs.
    The figure 2 represents a block diagram of the process according to the invention in two or more passes. When the target cooling amplitude is greater than 100 ° C, one pass through the cooling machine may be insufficient. In this case, the tray is cooled a first time in the first spray cell 3. Then, with or without passage through the intermediate uniformization tunnel 5, the tray is transferred to the second cooling machine made up of the elements 6, 7 and 8, where it undergoes a complete cycle: spray cell then necessarily uniformization tunnel 8. The duration of the last uniformization phase depends on the thermal diffusivity of the material, therefore on the alloy, on the amplitude cooling target, and the severity of the target thermal uniformity before hot rolling 9.
    Multi-pass cooling can also be achieved with a single machine, by successive passes.
  • La figure 3 est un plan schématique de la machine d'aspersion, vue de profil, le plateau défilant de gauche à droite. Elle illustre la disposition des jets de liquide ou brouillard aspergé sur le plateau, vue de profil, en face supérieure et en face inférieure. Les rampes d'arrosage supérieures et inférieures sont appariées et en vis à vis par paire, pour garantir une bonne uniformité de refroidissement dans l'épaisseur du plateau. Les rampes supérieures appariées sont orientées en opposition, ce qui garantit une évacuation du liquide ou brouillard aspergé transversalement au plateau. Les axes des buses inférieures sont orientés normalement à la surface inférieure du plateau, le liquide s'écoule par gravité. Des rampes d'air comprimé (1 à 4) encadrent les extrémités de la cellule d'aspersion pour éviter tout ruissellement résiduel de liquide sur le plateau en dehors de ladite cellule.The figure 3 is a schematic plan of the spraying machine, seen from the side, the plate moving from left to right. It illustrates the arrangement of the jets of liquid or spray sprayed on the plate, seen from the side, on the upper side and on the lower side. The upper and lower spray bars are matched and opposite each other, to ensure good cooling uniformity in the thickness of the plate. The matched upper ramps are oriented in opposition, which guarantees an evacuation of the liquid or spray sprayed transversely to the plate. The axes of the lower nozzles are oriented normally to the lower surface of the tray, the liquid flows by gravity. Compressed air ramps (1 to 4) surround the ends of the spray cell to prevent any residual liquid runoff on the plate outside said cell.
  • La figure 4 illustre l'impact des jets de liquide ou brouillard supérieurs, en vue de dessus du plateau. On note la concentration du débit surfacique de liquide ou brouillard à l'intersection des jets en opposition. Ce schéma d'arrosage est favorable à l'évacuation du liquide le long de cette ligne transverse à fort débit surfacique.The figure 4 illustrates the impact of upper jets of liquid or mist, viewed from above of the tray. We note the concentration of the surface flow of liquid or mist at the intersection of the jets in opposition. This sprinkling scheme is favorable to the evacuation of the liquid along this transverse line with a high surface flow.
  • La figure 5 représente la cinétique thermique d'un plateau de 600 mm, calculée dans le cas d'un refroidissement moyen de 40°C, en une passe dans la machine d'aspersion, pour un alliage du type AA3104 selon les désignations définies par l' « Aluminum Association » dans les « Registration Record Sériés » qu'elle publie régulièrement. Y figurent les évolutions des températures minimum Tmin, maximum Tmax et moyenne Tmoy dans le plateau, ainsi que de l'écart maximum de température dans tout le volume du plateau, au cours du temps (DTmax).The figure 5 represents the thermal kinetics of a 600 mm plate, calculated in the case of an average cooling of 40 ° C, in one pass in the spraying machine, for an alloy of the type AA3104 according to the designations defined by " Aluminum Association ”in the“ Registration Record Series ”that it publishes regularly. It shows the changes in the minimum temperatures Tmin, maximum Tmax and average Tmoy in the tray, as well as the maximum temperature difference in the entire volume of the tray, over time (DTmax).
  • La figure 6 représente la cinétique thermique d'un plateau de 600 mm, calculée dans le cas d'un refroidissement moyen de 130°C, en deux passes dans la machine d'aspersion, pour un alliage du type AA6016 selon les désignations définies par l' « Aluminum Association » dans les « Registration Record Sériés » qu'elle publie régulièrement. Y figurent de la même façon les évolutions des températures minimum Tmin, maximum Tmax et moyenne Tmoy dans le plateau, ainsi que de l'écart maximum de température dans tout le volume du plateau, au cours du temps (DTmax).The figure 6 represents the thermal kinetics of a 600 mm plate, calculated in the case of an average cooling of 130 ° C, in two passes in the spraying machine, for an alloy of the type AA6016 according to the designations defined by " Aluminum Association ”in the“ Registration Record Series ”that it publishes regularly. The changes in the minimum Tmin, maximum Tmax and average Tmoy temperatures in the tray are shown in the same way, as well as the maximum temperature difference in the entire volume of the tray, over time (DTmax).
  • Les figures 7 à 9 illustrent trois modes ou stratégies d'arrosage en sens travers de la machine d'aspersion, avec représentation de la position des buses sur les rampes d'aspersion, la machine d'aspersion étant vue de face dans tous les cas :
    • Figure 7 : Profil thermique uniforme dans la largeur du plateau
    • Figure 8 : Profil thermique à rives froides, créé par un surplus d'arrosage sur les rives du plateau
    • Figure 9 : Profil thermique à rives chaudes, créé par un déficit d'arrosage sur les rives du plateau.
    The figures 7 to 9 illustrate three watering modes or strategies in the cross direction of the sprinkler machine, with representation of the position of the nozzles on the sprinkler booms, the sprinkler machine being seen from the front in all cases:
    • Figure 7 : Uniform thermal profile across the board width
    • Figure 8 : Thermal profile with cold edges, created by excess watering on the banks of the plateau
    • Figure 9 : Thermal profile with warm shores, created by a lack of watering on the shores of the plateau.
  • La figure 10 présente deux modes ou stratégies de largeur d'arrosage d'un même plateau en alliage d'aluminium de 600 mm d'épaisseur et de 1700 mm de largeur, à gauche un profil thermique dans le sens travers à rives froides avec 11 buses en action, à droite un profil thermique à rives chaudes avec 9 buses en action.The figure 10 presents two modes or strategies of spraying width of the same plate in aluminum alloy 600 mm thick and 1700 mm wide, on the left a thermal profile in the transverse direction with cold edges with 11 nozzles in action , on the right a thermal profile with hot edges with 9 nozzles in action.
  • La figure 11 est la conséquence sur le profil thermique (température en °C en fonction de la position dans le sens travers, à partir de l'axe du plateau, en m) de ces deux modes d'aspersion.The figure 11 is the consequence on the thermal profile (temperature in ° C as a function of the position in the transverse direction, from the axis of the plate, in m) of these two spray modes.
  • Les Figures 12 à 14 illustrent trois exemples de modes ou stratégies de déclenchement de l'arrosage.
    En effet, le profil thermique dans le sens long du plateau est maitrisé par : L'absence ou le très faible ruissellement dans le sens long du plateau, grâce au montage des rampes supérieures en opposition,
    Le déclenchement et l'arrêt de l'arrosage de chaque couple de rampes à une position précise du plateau : c'est la notion de talon d'arrosage. La figure 12 correspond à une gestion du profil thermique dans le sens long à extrémités chaudes, la figure 13 à extrémités tièdes et la figure 14 à extrémités froides (avec un ruissellement en 1).
    The Figures 12 to 14 illustrate three examples of watering initiation modes or strategies.
    Indeed, the thermal profile in the long direction of the plate is controlled by: The absence or very low runoff in the long direction of the plate, thanks to the assembly of the upper ramps in opposition,
    The triggering and stopping of the watering of each pair of ramps at a precise position of the plate: this is the concept of the watering heel. The figure 12 corresponds to a management of the thermal profile in the long direction with hot ends, the figure 13 with warm ends and the figure 14 with cold ends (with a runoff in 1).
  • La Figure 15 illustre les profils thermiques longitudinaux (température en °C en fonction de la position dans la longueur L du plateau en m) pour les trois stratégies de gestion thermique des extrémités du plateau précitées. Dans cet exemple, le plateau est en alliage du type AA6016, d'épaisseur 600 mm, son refroidissement moyen est de 100°C en deux passes, et le temps en caisson d'uniformisation thermique est de 10 min.The Figure 15 illustrates the longitudinal thermal profiles (temperature in ° C as a function of the position in the length L of the plate in m) for the three strategies for thermal management of the aforementioned ends of the plate. In this example, the plate is made of an AA6016 type alloy, 600 mm thick, its average cooling is 100 ° C. in two passes, and the time in the thermal uniformization box is 10 min.
  • Les Figures 16 à 18 illustrent le champ thermique, en visualisation 3D, du même exemple, en entrée de laminage à chaud, pour les trois stratégies de gestion thermique des extrémités du plateau précitées, la figure 16 à extrémités chaudes, la figure 17 à extrémités tièdes et la figure 18 à extrémités froides.The Figures 16 to 18 illustrate the thermal field, in 3D visualization, of the same example, at the hot rolling input, for the three thermal management strategies of the aforementioned ends of the plate, the figure 16 with hot ends, the figure 17 with warm ends and the figure 18 with cold ends.

On voit que la stratégie de déclenchement de l'arrosage permet clairement de maitriser le profil thermique longitudinal du plateau.It can be seen that the strategy for triggering the watering clearly makes it possible to control the longitudinal thermal profile of the tray.

La Figure 19 illustre le champ thermique d'un plateau en alliage du type AA6016, de 600 mm d'épaisseur, refroidi d'environ 50°C en une passe dans la machine d'aspersion réglée avec un talon d'arrosage d'une seule rampe aux extrémités du plateau, conformément à la figure 13. Ce réglage conduit à un champ thermique très uniforme avec des extrémités légèrement plus chaudes, ce qui est favorable au laminage.The Figure 19 illustrates the thermal field of a 600 mm thick AA6016 type alloy plate cooled by about 50 ° C in one pass in the sprinkler machine set with a sprinkler head of a single boom at the ends of the table, in accordance with figure 13 . This adjustment results in a very uniform thermal field with slightly hotter ends, which is favorable for rolling.

Description de l'inventionDescription of the invention

L'invention consiste essentiellement dans un procédé de refroidissement à l'aide d'un liquide ou brouillard de refroidissement d'une plaque ou d'un plateau de laminage d'alliage d'aluminium, de 30 à 150°C en quelques minutes, c'est-à-dire à une vitesse de refroidissement moyenne comprise entre 150 et 500°C/heure.The invention essentially consists of a cooling process using a cooling liquid or mist for a plate or a rolling plate of aluminum alloy, from 30 to 150 ° C in a few minutes, that is to say at an average cooling rate of between 150 and 500 ° C / hour.

Il est constitué principalement de deux phases :

  • Une première phase d'aspersion du plateau à l'aide d'un liquide ou brouillard de refroidissement, typiquement au défilé
  • Une deuxième phase d'uniformisation thermique du plateau.
It mainly consists of two phases:
  • A first phase of spraying the tray with a cooling liquid or mist, typically in the process
  • A second phase of thermal standardization of the plate.

Pendant la première phase d'aspersion, le plateau est refroidi dans une enceinte comportant des buses ou tuyères d'aspersion de liquide ou brouillard refroidissant sous pression, typiquement de l'eau et de préférence désionisée.During the first spraying phase, the plate is cooled in an enclosure comprising nozzles or nozzles for spraying liquid or mist cooling under pressure, typically water and preferably deionized.

Les buses ou tuyères sont réparties en parties haute et basse de ladite cellule, de façon à asperger les deux grandes faces, supérieure et inférieure, du plateau. L'option d'un procédé au défilé permet de limiter les risques de points chauds liés aux contacts entre le plateau et son support, en général constitué de rouleaux cylindriques ou coniques.The nozzles or nozzles are distributed in the upper and lower parts of said cell, so as to spray the two large faces, upper and lower, of the plate. The option of a step-by-step process makes it possible to limit the risks of hot spots linked to the contacts between the plate and its support, generally made up of cylindrical or conical rollers.

Le refroidissement moyen du plateau (ΔTmoy plateau) est contrôlé par la durée d'aspersion vue par chaque section du plateau.The average cooling of the tray (ΔTmoy tray) is controlled by the sprinkling time seen by each section of the tray.

Durant cette phase, le plateau est thermiquement très hétérogène dans son épaisseur, du fait d'une valeur du nombre de Biot élevée.During this phase, the plate is thermally very heterogeneous in its thickness, due to a high Biot number value.

L'homogénéité de refroidissement dans la largeur du plateau est maitrisée par :

  1. a) Le contrôle de la largeur d'arrosage dans le sens travers du plateau, par le nombre de buses activées ou l'utilisation d'écrans
  2. b) Une méthode d'aspersion favorisant l'évacuation latérale de l'eau aspergée en face supérieure. En effet, le liquide de refroidissement est guidé vers les rives du plateau et s'évacue sous forme d'une cascade sans toucher les petites faces dudit plateau. Le refroidissement du plateau est de ce fait très homogène. Cette méthode consiste en fait à apparier deux rampes de buses, placées en opposition, comme le montrent notamment les figures 3 et 4.
The uniformity of cooling across the width of the tray is controlled by:
  1. a) Control of the irrigation width in the transverse direction of the plate, by the number of activated nozzles or the use of screens
  2. b) A method of sprinkling favoring the lateral evacuation of the water sprinkled on the upper face. Indeed, the cooling liquid is guided towards the edges of the plate and is evacuated in the form of a cascade without touching the small faces of said plate. The cooling of the plate is therefore very homogeneous. This method in fact consists in pairing two rows of nozzles, placed in opposition, as shown in particular by the figures 3 and 4 .

L'homogénéité de refroidissement dans la longueur du plateau est maitrisée par :

  • c) Le contrôle du début et de la fin de l'aspersion par déclenchement des rampes d'aspersion à la position souhaitée sur le plateau ou, à nouveau, par l'utilisation d'écrans. Ainsi la tête et le pied du plateau peuvent ne pas être aspergés. On obtient alors un plateau avec une tête et un pied chaud, ce qui est favorable à son engagement lors du laminage réversible à chaud
  • d) La forte réduction du ruissellement dans le sens long du plateau. Ce très faible ruissellement est obtenu grâce à la caractéristique b) ci-dessus de l'invention, favorisant l'évacuation latérale du liquide de refroidissement aspergé en face supérieure du plateau.
The cooling uniformity along the length of the tray is controlled by:
  • c) Control of the start and end of spraying by triggering the spray booms at the desired position on the plate or, again, by using screens. Thus the head and the foot of the plate can not be sprayed. A plate is then obtained with a hot head and foot, which is favorable to its engagement during the hot reversible rolling.
  • d) The strong reduction in runoff along the plateau. This very low runoff is obtained by virtue of characteristic b) above of the invention, favoring the lateral evacuation of the cooling liquid sprayed on the upper face of the plate.

La phase d'aspersion est donc conçue pour limiter les hétérogénéités thermiques dans les trois directions du plateau, L'invention permet tout particulièrement de maîtriser les profils thermiques dans le sens travers et dans le sens long du plateau, ce qui est très appréciable puisque des éventuels gradients thermiques le long de ces deux grandes dimensions seraient difficiles à résorber dans un court délai.The spraying phase is therefore designed to limit thermal heterogeneities in the three directions of the plate. The invention makes it possible in particular to control the thermal profiles in the transverse direction and in the long direction of the plate, which is very appreciable since possible thermal gradients along these two large dimensions would be difficult to absorb in a short time.

Suit la phase d'uniformisation thermique du plateau :
Après aspersion, le plateau est maintenu quelques minutes dans une configuration de faible échange de chaleur avec son environnement. Ces conditions thermiques permettent l'uniformisation thermique du plateau, en quelques minutes pour les refroidissements de moins de 30°C et en environ 30 minutes maximum pour des refroidissements de 150°C. Cette phase est essentielle à l'atteinte des spécifications d'uniformité thermique demandées. Elle permet d'atteindre un écart thermique DTmax de moins de 40°C sur un plateau de grandes dimensions.
The thermal uniformization phase of the plate follows:
After sprinkling, the plate is kept for a few minutes in a configuration of low heat exchange with its environment. These thermal conditions allow the thermal uniformization of the tray, in a few minutes for cooling of less than 30 ° C and in approximately 30 minutes maximum for cooling of 150 ° C. This phase is essential to achieve the required thermal uniformity specifications. It makes it possible to achieve a thermal difference DTmax of less than 40 ° C on a large plate.

L'invention peut également être adaptée à des valeurs absolues de refroidissements élevées. Ainsi, lorsque le refroidissement moyen du plateau souhaité est supérieur à typiquement 80°C, il est possible de cycler plusieurs fois l'ensemble des phases «aspersion» et «uniformisation», en réduisant à chaque cycle d'« aspersion-uniformisation » la température moyenne d'un plateau très épais.The invention can also be adapted to high absolute values of cooling. Thus, when the average cooling of the desired plate is typically greater than 80 ° C, it is possible to cycle several times all of the “spraying” and “uniformization” phases, reducing at each “spraying-uniformization” cycle the average temperature of a very thick tray.

Le procédé ainsi décrit assure un refroidissement rapide et maîtrisé d'une plaque épaisse, notamment un plateau de laminage, en alliage d'aluminium. Il est par ailleurs robuste et évite les risques connus de sur-refroidissements locaux.The method thus described ensures rapid and controlled cooling of a thick plate, in particular a rolling plate, made of aluminum alloy. It is also robust and avoids the known risks of local over-cooling.

La machine, ou installation de refroidissement, elle-même est constituée d'au moins une cellule d'aspersion, typiquement horizontale au défilé, d'une part et, d'autre part, d'au moins un tunnel d'uniformisation thermique.The machine, or cooling installation, itself consists of at least one spray cell, typically horizontal to the parade, on the one hand and, on the other hand, of at least one thermal uniformization tunnel.

La cellule d'aspersion permet la mise en œuvre de la phase 1 du procédé décrit plus haut.The spray cell allows the implementation of phase 1 of the process described above.

Les étapes de traitement du plateau dans cette machine ou installation sont les suivantes :

  1. 1) Centrage du plateau, à l'entrée de la machine
  2. 2) Mesure de la température de surface supérieure du plateau
  3. 3) Calcul par l'automate, à l'aide du modèle thermique, des réglages de la cellule d'aspersion en fonction de la température d'entrée et de la température cible de sortie, c'est à dire du refroidissement cible du plateau, incluant la détermination du nombre de rampes de buses activées, du nombre de buses ouvertes en rives, de la vitesse de défilement du plateau dans la cellule d'aspersion, des démarrages et arrêts des rampes d'aspersion, du temps de maintien dans le tunnel d'uniformisation
  4. 4) Défilement du plateau dans la cellule d'aspersion, arrosage supérieur et inférieur suivant les calculs de l'automate.
The stages of processing the tray in this machine or installation are as follows:
  1. 1) Centering of the plate, at the entrance of the machine
  2. 2) Measurement of the top surface temperature of the plate
  3. 3) Calculation by the PLC, using the thermal model, of the settings of the spray cell according to the inlet temperature and the target outlet temperature, i.e. the target cooling of the plate , including the determination of the number of activated nozzle ramps, the number of nozzles open on the banks, the speed at which the plate travels in the spray cell, the starts and stops of the spray ramps, the holding time in the standardization tunnel
  4. 4) Scrolling of the plate in the sprinkling cell, upper and lower watering according to the automaton's calculations.

La cellule d'aspersion est constituée de rampes munies de buses ou tuyères de distribution sous pression du liquide ou brouillard de refroidissement.The spray cell is made up of ramps fitted with nozzles or nozzles for pressurized distribution of the liquid or cooling mist.

Dans le cas où ce dernier est de l'eau, celle-ci est idéalement desionisée ou du moins très propre et très peu minéralisée, afin d'éviter l'encrassement des buses et pour assurer la stabilité du transfert de chaleur entre l'eau et le plateau. La machine d'aspersion peut avantageusement, pour des raisons d'économie notamment, fonctionner en cycle fermé, avec par exemple un bassin récupérateur placé sous la machine d'aspersion.If the latter is water, it is ideally deionized or at least very clean and very little mineralized, in order to avoid clogging of the nozzles and to ensure the stability of the heat transfer between the water. and the plateau. The spraying machine can advantageously, for reasons of economy in particular, operate in a closed cycle, for example with a collecting basin placed under the spraying machine.

Les buses de liquide ou brouillard de refroidissement choisies génèrent des sprays ou jets à cône plein, dont l'angle est compris entre 45 et 60° (dans l'exemple : buses à cône plein à 60° d'angle, de marque LECHLER). Les axes des buses des rampes inférieures sont orientés normalement à la surface inférieure. Les rampes supérieures sont appariées. Dans une même paire de rampes supérieures, les rampes sont inclinées de telle sorte que :

  • Les jets des deux rampes soient orientés en opposition l'un de l'autre
  • Les jets présentent une bordure normale à la surface supérieure du plateau
  • Le recouvrement des deux jets soit compris entre le 1/3 et les 2/3 de la largeur du jet, et préférentiellement sensiblement de la moitié
  • L'enveloppe des deux jets ainsi formée constitue donc un profil en M
  • Les paires de rampes de buses supérieures et inférieures sont placées sensiblement en vis-à-vis, de façon à ce que les longueurs d'aspersion supérieures et inférieures soient sensiblement égales et en vis-à-vis.
The liquid or cooling mist nozzles chosen generate sprays or full cone jets, the angle of which is between 45 and 60 ° (in the example: full cone nozzles at 60 ° angle, LECHLER brand) . The axes of the lower boom nozzles are oriented normally to the lower surface. The upper ramps are matched. In the same pair of upper ramps, the ramps are inclined such that:
  • The jets of the two ramps are oriented in opposition to each other
  • Jets have a border normal to the top surface of the deck
  • The overlap of the two jets is between 1/3 and 2/3 of the width of the jet, and preferably substantially half
  • The envelope of the two jets thus formed therefore constitutes an M-shaped profile
  • The pairs of upper and lower nozzle ramps are placed substantially facing each other, so that the upper and lower spray lengths are substantially equal and facing each other.

Dans le cas d'un traitement au défilé, la vitesse de défilement du plateau est supérieure ou égale à 20 mm/s, soit 1.2 m/min.In the case of a flow treatment, the travel speed of the plate is greater than or equal to 20 mm / s, ie 1.2 m / min.

Au sortir de la cellule d'aspersion, le plateau est transféré, par exemple à l'aide de chariots automatiques, dans un ou plusieurs tunnel(s) d'uniformisation. L'objectif du tunnel est de réduire au maximum les transferts thermiques entre le plateau et l'air, ce qui est favorable à une meilleure uniformisation thermique du plateau. Cette uniformisation thermique a lieu par diffusion de la chaleur dans le plateau, le cœur réchauffant les surfaces du plateau.On leaving the spray cell, the tray is transferred, for example using automatic trolleys, into one or more uniformization tunnel (s). The objective of the tunnel is to reduce as much as possible the heat transfers between the plate and the air, which is favorable to a better thermal uniformization of the plate. This thermal uniformization takes place by diffusion of heat in the plate, the core heating the surfaces of the plate.

Le tunnel d'uniformisation est constitué de parois verticales et d'un toit dans une matière idéalement réflective côté intérieur du tunnel.The standardization tunnel consists of vertical walls and a roof in an ideally reflective material on the inside of the tunnel.

Il évite les courants d'air autour du plateau, assurant l'absence de transfert de chaleur par convection forcée. Par ailleurs, il réduit les transferts de chaleur par convection naturelle et limite les transferts radiatifs si les parois sont réflectives.It avoids drafts around the tray, ensuring the absence of heat transfer by forced convection. In addition, it reduces heat transfer by natural convection and limits radiative transfers if the walls are reflective.

Enfin, la machine ou installation de refroidissement composée de la cellule d'aspersion et du tunnel d'uniformisation, est pilotée par un modèle thermique codé sur l'automate de la machine. Le modèle thermique détermine les réglages de la machine en fonction de la température en début de cellule d'aspersion, ou température d'entrée, et en fonction de la température cible de sortie, en général la température de laminage.Finally, the machine or cooling installation made up of the spray cell and the standardization tunnel, is controlled by a thermal model coded on the machine's PLC. The thermal model determines the machine settings as a function of the temperature at the start of the spray cell, or inlet temperature, and as a function of the target outlet temperature, in general the rolling temperature.

ExemplesExamples

Exemple 1 : Refroidissement uniforme de 40°C d'un plateau en alliage du type AA3104. Example 1 : Uniform cooling of 40 ° C of an alloy plate of the AA3104 type.

La figure 5 illustre le refroidissement de 40°C d'un plateau en alliage du type AA3104 selon les désignations définies par l' « Aluminum Association » dans les « Registration Record Sériés » qu'elle publie régulièrement. L'épaisseur du plateau est de 600 mm, sa largeur de 1850 mm et sa longueur de 4100 mm. Le plateau sort du four d'homogénéisation à 600°C.The figure 5 illustrates the cooling of 40 ° C of an alloy plate of the AA3104 type according to the designations defined by the “Aluminum Association” in the “Registration Record Series” that it publishes regularly. The thickness of the top is 600 mm, its width is 1850 mm and its length is 4100 mm. The tray comes out of the homogenization oven at 600 ° C.

Le procédé de refroidissement du plateau est le procédé à une passe, décrit en figure 1.The plate cooling process is the one-pass process, described in figure 1 .

Le plateau est transféré vers la machine de refroidissement en 180 s. Ce temps de transfert comprend :

  • le déplacement du plateau entre la sortie du four et l'entrée de la machine de refroidissement
  • le centrage latéral du plateau
  • la mesure de la température de surface supérieure du plateau
  • le temps de calcul par l'automate des réglages de la machine de refroidissement (cellule d'aspersion et tunnel).
The tray is transferred to the cooling machine in 180 s. This transfer time includes:
  • the displacement of the plate between the exit of the furnace and the entry of the cooling machine
  • the lateral centering of the plate
  • measuring the top surface temperature of the tray
  • the time taken by the automaton to calculate the settings of the cooling machine (spray cell and tunnel).

Puis le plateau défile dans la cellule d'aspersion, chaque point du plateau hors extrémités (tête et pied) subit un arrosage durant 46 secondes. Le débit surfacique d'aspersion est de 500 1/(min.m2) sur les deux grandes faces du plateau. Le talon d'arrosage est réglé à un couple de rampe, comme décrit en figure 12. A sa sortie de la cellule d'aspersion, le plateau est sec et transféré en 30 s vers un tunnel d'uniformisation pour une durée déterminée par le modèle thermique codé dans l'automate, ici de 300 s, soit 5 minutes. A l'issue, le plateau est transféré vers le laminoir à chaud, avec une uniformité thermique meilleure que 40°C sur le plateau complet.Then the tray scrolls through the sprinkling cell, each point of the tray outside the ends (head and foot) undergoes watering for 46 seconds. The surface spraying flow rate is 500 1 / (min.m 2 ) on the two large sides of the plate. The spray heel is set to ramp torque, as described in figure 12 . On leaving the spray cell, the tray is dry and transferred in 30 s to a uniformization tunnel for a period determined by the thermal model encoded in the automaton, here 300 s, ie 5 minutes. At the end, the plate is transferred to the hot rolling mill, with a thermal uniformity better than 40 ° C on the complete plate.

La température de surface du plateau descend à environ 320°C, tandis que le cœur du plateau reste quasiment isotherme durant la phase d'aspersion. Puis, par diffusion de la chaleur entre le cœur et la surface, le cœur cède de la chaleur à la surface, le plateau s'uniformise thermiquement.The surface temperature of the tray drops to around 320 ° C, while the core of the tray remains almost isothermal during the spraying phase. Then, by diffusion of heat between the heart and the surface, the heart gives up heat to the surface, the plate becomes thermally uniform.

L'écart thermique dans le plateau (DTmax) est maximal à la fin de la phase d'aspersion, sa valeur est de 280°C environ pour cette configuration. Il se réduit rapidement dès lors que l'aspersion du plateau cesse : en 6 minutes d'attente (transfert puis uniformisation dans le tunnel), l'écart thermique DTmax est réduit à moins de 40°C.The thermal difference in the plate (DTmax) is maximum at the end of the spraying phase, its value is approximately 280 ° C for this configuration. It is rapidly reduced as soon as the spraying of the tray ceases: in 6 minutes of waiting (transfer then standardization in the tunnel), the thermal difference DTmax is reduced to less than 40 ° C.

Exemple 2 : Refroidissement uniforme de 135°C d'un plateau en alliage du type AA6016. Example 2: Uniform cooling of 135 ° C of an alloy plate of the AA6016 type.

La figure 6 illustre le refroidissement de 135°C d'un plateau en alliage du type AA6016. L'épaisseur du plateau est de 600 mm, sa largeur de 1850 mm et sa longueur de 4100 mm. Le plateau sort du four d'homogénéisation à 530°C.The figure 6 illustrates the 135 ° C cooling of an AA6016 type alloy pan. The thickness of the top is 600 mm, its width is 1850 mm and its length is 4100 mm. The tray comes out of the homogenization oven at 530 ° C.

Le procédé de refroidissement du plateau est le procédé à deux passes, décrit en figure 2.The platen cooling process is the two-pass process, described in figure 2 .

Le plateau est transféré vers la machine de refroidissement en 100 s. Ce temps de transfert comprend :

  • le déplacement du plateau entre la sortie du four et l'entrée de la machine de refroidissement
  • le centrage latéral du plateau
  • la mesure de la température de surface supérieure du plateau
  • le temps de calcul par l'automate des réglages des machines de refroidissement.
The tray is transferred to the cooling machine in 100 s. This transfer time includes:
  • the displacement of the plate between the exit of the furnace and the entry of the cooling machine
  • the lateral centering of the plate
  • measuring the top surface temperature of the tray
  • the time taken to calculate the settings of the cooling machines by the PLC.

Puis le plateau défile dans la cellule d'aspersion, chaque point du plateau hors extrémités (tête et pied) subit un arrosage durant 51 secondes. Le débit surfacique d'aspersion est de 800 1/(min.m2) sur les deux grandes faces du plateau. Le talon d'arrosage est réglé à une rampe, comme décrit en figure 13. A sa sortie de la cellule d'aspersion, le plateau est transféré en 60 s vers la seconde cellule d'aspersion sans passer, dans cet exemple, par le tunnel d'uniformisation intermédiaire optionnel. Le plateau subit alors un second arrosage, identique au premier : chaque point du plateau hors extrémités subit un arrosage de 51 secondes, au débit surfacique de 800 1/(min.m2). A sa sortie de la seconde cellule d'aspersion, le plateau est transféré vers le tunnel d'uniformisation en 30 secondes. Le plateau attend plusieurs minutes dans le tunnel d'uniformisation. A l'issue, le plateau est transféré vers le laminoir à chaud, avec une uniformité thermique meilleure que 40°C sur le plateau complet.Then the tray scrolls in the spray cell, each point of the tray outside the ends (head and foot) undergoes watering for 51 seconds. The surface spraying flow rate is 800 1 / (min.m 2 ) on the two large sides of the plate. The watering heel is set to a ramp, as described in figure 13 . On leaving the sprinkler cell, the tray is transferred in 60 s to the second sprinkler cell without passing, in this example, through the optional intermediate standardization tunnel. The plate then undergoes a second watering, identical to the first: each point of the plate excluding the ends is subjected to watering for 51 seconds, at a surface flow rate of 800 1 / (min.m 2 ). On leaving the second spray cell, the tray is transferred to the uniformization tunnel in 30 seconds. The plateau waits several minutes in the standardization tunnel. At the end, the plate is transferred to the hot rolling mill, with a thermal uniformity better than 40 ° C on the complete plate.

La température de surface du plateau descend à environ 60°C. Le cœur du plateau reste quasiment isotherme durant la première phase d'aspersion puis refroidit au cours de la seconde phase d'aspersion. Puis, par diffusion de la chaleur entre le cœur et la surface, le cœur cède de la chaleur à la surface, le plateau s'uniformise thermiquement.The surface temperature of the tray drops to about 60 ° C. The heart of the tray remains almost isothermal during the first spraying phase and then cools down during the second spraying phase. Then, by diffusion of heat between the heart and the surface, the heart gives up heat to the surface, the plate becomes thermally uniform.

L'écart thermique dans le plateau (DTmax) est maximal à la fin de chacune des phases d'aspersion, sa valeur est de 470°C environ pour cette configuration. Il se réduit rapidement dès lors que l'aspersion du plateau cesse : l'écart thermique DTmax du plateau est de 55°C après 13 minutes d'attente dans le tunnel et devient inférieur à 40°C après 23 minutes passées dans le tunnel.The thermal difference in the plate (DTmax) is maximum at the end of each of the spraying phases, its value is approximately 470 ° C for this configuration. It is rapidly reduced as soon as the spraying of the tray ceases: the thermal difference DTmax of the tray is 55 ° C after 13 minutes of waiting in the tunnel and becomes less than 40 ° C after 23 minutes spent in the tunnel.

Exemple 3 : Refroidissement uniforme de 125°C d'un plateau en alliage du type AA6016. Example 3 : Uniform cooling of 125 ° C of an alloy plate of the AA6016 type.

L'épaisseur du plateau est de 600 mm, sa largeur de 1850 mm et sa longueur de 4100 mm. Le plateau sort du four d'homogénéisation à 530°C.The thickness of the top is 600 mm, its width is 1850 mm and its length is 4100 mm. The tray comes out of the homogenization oven at 530 ° C.

Le procédé de refroidissement du plateau est le procédé à deux passes, décrit en figure 2.The platen cooling process is the two-pass process, described in figure 2 .

Le plateau est transféré vers la machine de refroidissement en 100 s. Ce temps de transfert comprend :

  • le déplacement du plateau entre la sortie du four et l'entrée de la machine de refroidissement
  • le centrage latéral du plateau
  • la mesure de la température de surface supérieure du plateau
  • le temps de calcul par l'automate des réglages des machines de refroidissement.
The tray is transferred to the cooling machine in 100 s. This transfer time includes:
  • the displacement of the plate between the exit of the furnace and the entry of the cooling machine
  • the lateral centering of the plate
  • measuring the top surface temperature of the tray
  • the time taken to calculate the settings of the cooling machines by the PLC.

Puis le plateau défile dans la cellule d'aspersion, chaque point du plateau subit un arrosage durant 51 secondes. Le débit surfacique d'aspersion est de 500 1/(min.m2) sur les deux grandes faces du plateau. Le talon d'arrosage est nul, comme décrit en figure 14. Le plateau est donc arrosé entièrement de manière identique, ce qui génère un profil thermique longitudinal à extrémités froides. A sa sortie de la cellule d'aspersion, le plateau est transféré en 60 s vers la seconde cellule d'aspersion sans passer, dans cet exemple, par le tunnel d'uniformisation intermédiaire optionnel. Le plateau subit alors un second arrosage, différent du premier. Le plateau, mais cette fois-ci hors extrémités, subit un second arrosage de 51 secondes, au débit surfacique de 500 1/(min.m2). Le talon d'arrosage est d'un couple de rampes, tel que décrit figure 12. Ce réglage tend à redresser le profil thermique à extrémités froides, générant ainsi un profil thermique longitudinal presque plat au sortir de la seconde cellule d'aspersion. A sa sortie de la seconde cellule d'aspersion, le plateau est transféré vers le tunnel d'uniformisation en 30 secondes. Le plateau n'attend que 10 minutes dans le tunnel d'uniformisation. A l'issue, le plateau est transféré vers le laminoir à chaud, avec une uniformité thermique meilleure que 40°C sur le plateau complet.Then the tray scrolls through the spray cell, each point of the tray is watered for 51 seconds. The surface spraying flow rate is 500 1 / (min.m 2 ) on the two large sides of the plate. The watering stub is zero, as described in figure 14 . The tray is therefore sprayed entirely in the same way, which generates a longitudinal thermal profile with cold ends. On leaving the sprinkler cell, the tray is transferred in 60 s to the second sprinkler cell without passing, in this example, through the optional intermediate standardization tunnel. The tray then undergoes a second watering, different from the first. The plate, but this time outside the ends, undergoes a second watering of 51 seconds, at a surface flow rate of 500 1 / (min.m 2 ). The sprinkler stub is a couple of ramps, as described figure 12 . This adjustment tends to straighten the cold-ended thermal profile, thereby generating an almost flat longitudinal thermal profile exiting the second spray cell. When it leaves the second spray cell, the tray is transferred to the standardization tunnel in 30 seconds. The plateau waits only 10 minutes in the standardization tunnel. At the end, the plate is transferred to the hot rolling mill, with a thermal uniformity better than 40 ° C on the complete plate.

L'exemple 3 montre que le choix judicieux des talons d'arrosage permet de réduire notablement la durée d'uniformisation après aspersion. Pour un procédé de refroidissement à plusieurs passes, le choix des talons peut être différent d'une passe à l'autre. Pour un procédé de refroidissement en 2 passes, le talon choisi en première passe gagne à être contraire au talon choisi en seconde passe. De manière optimisée et pour un refroidissement à 2 passes, une première passe avec un talon nul (arrosage continu du plateau) suivie d'une seconde passe avec un talon d'un couple de rampes permet de réduire notablement la durée d'uniformisation nécessaire à l'équilibrage thermique du plateau.Example 3 shows that the judicious choice of the watering heels makes it possible to significantly reduce the duration of uniformization after sprinkling. For a multi-pass cooling process, the choice of beads may differ from pass to pass. For a 2-pass cooling process, the heel chosen in the first pass is better than the heel chosen in the second pass. In an optimized manner and for 2-pass cooling, a first pass with a zero heel (continuous watering of the plate) followed by a second pass with a heel of a couple of ramps makes it possible to significantly reduce the uniformization time necessary for thermal balancing of the plate.

Claims (17)

  1. A method for cooling a rolling ingot made of an aluminium alloy with typical dimensions of 250 to 800 mm in thickness, 1000 to 2000 mm in width and 2000 to 8000 mm in length, after the heat treatment for the metallurgical homogenisation of said ingot at a temperature typically comprised between 450 to 600°C depending on the alloys and before hot-rolling thereof, the cooling representing a value of between 30 and 150°C, characterised in that the cooling is carried out at a speed of between 150 and 500°C/h, with a thermal difference of less than 40°C over the entire ingot cooled from its homogenisation temperature and wherein the cooling homogeneity across the width of the ingot is controlled by:
    a) the control of the sprinkling width in the transverse direction of the ingot, by the number of activated nozzles or the use of screens,
    b) a spraying method favouring the lateral evacuation of the cooling liquid sprayed on the upper face.
  2. The method according to claim 1 characterised in that the cooling is carried out in at least two phases:
    A first spraying phase during which the ingot is cooled in an enclosure including ramps of nozzles for spraying pressurised cooling liquid or mist, distributed in the upper and lower parts of said cell, so as to spray the two large upper and lower faces of said ingot, A complementary phase of thermal uniformisation in still air, in a tunnel with reflective interior walls, with a duration of 2 to 30 minutes depending on the size of the ingot and the amount of cooling.
  3. The method according to claim 2 characterised in that the uniformisation phase is of few minutes for cooling of less than 30°C and of 30 minutes maximum for cooling of 150°C.
  4. The method according to claim 2, characterised in that the spraying and thermal uniformisation phases are repeated, in the case of very thick ingots and for an overall average cooling greater than 80°C.
  5. The method according to one of claims 2 to 4, characterised in that the cooling liquid, including in a mist, is water, which is preferably very little mineralised and preferably deionised water.
  6. The method according to one of claims 1 to 5, characterised in that the head and the foot of the ingot, or typically 300 to 600 mm at the ends, are less cooled than the rest of the ingot so as to maintain a hot head and foot, a configuration which is favourable to the engagement of the ingot during reversible hot-rolling.
  7. The method according to one of claims 2 to 6, characterised in that the cooling of the head and the foot is modulated by the initiation or the shutdown of the spray nozzle ramps.
  8. The method according to one of claims 2 to 7, characterised in that the cooling of the head and the foot is modulated by the presence of screens.
  9. The method according to claim 8 wherein the cooling liquid is guided towards the edges of the ingot and is discharged in the shape of a cascade without touching the small faces of said ingot.
  10. The method according to claim 9 wherein the upper nozzle ramps are paired in the direction of scrolling of the ingot and wherein, in the same pair, the upper ramps are inclined in such a way that
    - the jets of the two paired upper nozzle ramps are oriented opposing one another.
    - the jets have a border normal to the upper surface of the ingot
    - the overlap of the two jets is comprised between 1/3 and 2/3 and preferably substantially half the width of each jet
    - the envelope of the two jets thus formed constitutes an M profile.
  11. The method according to any one of claims 2 to 10 wherein the start and end of the spraying is controlled by triggering the spray ramps to the desired position on the ingot or by the use of screens.
  12. The method according to claim 11, wherein the head and the foot of the ingot are not sprayed at the start and at the end of the spraying.
  13. A facility for implementing the method according to one of claims 1 to 12, characterised in that it includes:
    A spray cell provided with nozzle ramps for spraying pressurised cooling liquid or mist disposed in the upper and lower parts of said cell, so as to spray the two large upper and lower faces of said ingot,
    A uniformisation tunnel in still air at the exit of the spray cell, in a tunnel with interior walls and roof made of an internally reflective material, allowing thermal uniformisation of the ingot by diffusion of heat in said ingot, the mid-thickness by heating the surfaces.
  14. The facility according to claim 13, characterised in that:
    The cooling liquid or mist nozzles of the spray cell generate full cone jets with an angle comprised between 45 and 60°
    The axes of the lower nozzles are oriented normally to the lower surface The upper nozzle ramps are paired in the direction of scrolling of the ingot. In the same pair, the upper ramps are inclined so that:
    - The jets of the two paired nozzle ramps are oriented opposing one another.
    - The jets have a border normal to the upper surface of the ingot
    - The overlap of the jets of the two paired ramps is comprised between 1/3 and 2/3 and preferably substantially half the width of each jet.
    - The envelope of the two jets thus formed constitutes an M profile.
    The upper and lower nozzle ramp pairs are placed substantially facing each other, so that the upper and lower spray lengths are substantially equal and facing each other.
  15. The facility according to one of claims 13 or 14, characterised in that the cooling liquid is recovered after spraying, typically in a container located under the facility, which is recycled and thermally controlled.
  16. An implementation of the facility according to one of claims 13 to 15, characterised in that the entire facility, spray cell and uniformisation tunnel, is piloted by a thermal model coded on a PLC, the thermal model determining the settings of the facility according to the temperature estimated by thermal measurement at the start of the spray cell and according to the target outlet temperature, in general the temperature at the start of hot-rolling.
  17. The implementation of the facility according to claim 16, characterised in that it includes the following steps:
    - Centring the ingot, at the entrance to the facility
    - Measuring the upper surface temperature of the ingot
    - Calculating by the PLC, using the thermal model, the settings of the spray cell according to the inlet temperature and the target outlet temperature, that is to say the target cooling of the ingot, including determining the number of activated ramps, the number of activated nozzles on the edges, the speed at which the ingot is scrolling in the spray cell, the start-up and the stopping of the spray ramps, and the dwell time in the uniformisation tunnel
    - Scrolling the ingot in the spray cell, upper and lower sprinkling according to the calculations of the PLC
    - Transferring the ingot from the spray cell to the uniformisation tunnel
    - Maintaining the ingot in the uniformisation tunnel for a duration determined by the PLC.
EP18159076.1A 2014-07-23 2015-07-10 Cooling facility and method Active EP3398696B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1401679A FR3024058B1 (en) 2014-07-23 2014-07-23 METHOD AND EQUIPMENT FOR COOLING
EP15753101.3A EP3171996B1 (en) 2014-07-23 2015-07-10 Cooling facility and method
PCT/FR2015/051915 WO2016012691A1 (en) 2014-07-23 2015-07-10 Cooling facility and method

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
EP15753101.3A Division EP3171996B1 (en) 2014-07-23 2015-07-10 Cooling facility and method
EP15753101.3A Division-Into EP3171996B1 (en) 2014-07-23 2015-07-10 Cooling facility and method
PCT/FR2015/051915 Previously-Filed-Application WO2016012691A1 (en) 2014-07-23 2015-07-10 Cooling facility and method

Publications (2)

Publication Number Publication Date
EP3398696A1 EP3398696A1 (en) 2018-11-07
EP3398696B1 true EP3398696B1 (en) 2021-05-12

Family

ID=51610169

Family Applications (2)

Application Number Title Priority Date Filing Date
EP18159076.1A Active EP3398696B1 (en) 2014-07-23 2015-07-10 Cooling facility and method
EP15753101.3A Active EP3171996B1 (en) 2014-07-23 2015-07-10 Cooling facility and method

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP15753101.3A Active EP3171996B1 (en) 2014-07-23 2015-07-10 Cooling facility and method

Country Status (14)

Country Link
US (2) US10130980B2 (en)
EP (2) EP3398696B1 (en)
JP (1) JP6585155B2 (en)
KR (1) KR102336948B1 (en)
CN (1) CN106661648B (en)
BR (1) BR112017000205B1 (en)
CA (1) CA2954711C (en)
DE (1) DE15753101T1 (en)
FR (1) FR3024058B1 (en)
MX (1) MX2017000483A (en)
RU (1) RU2676272C2 (en)
SA (1) SA517380746B1 (en)
TW (1) TWI593476B (en)
WO (1) WO2016012691A1 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6208389B1 (en) 2016-07-14 2017-10-04 株式会社Uacj Method for producing rolled aluminum alloy material for forming comprising aluminum alloy having excellent bending workability and ridging resistance
WO2018073973A1 (en) * 2016-10-19 2018-04-26 新日鐵住金株式会社 Method and apparatus for cooling hot-rolled steel sheet
CN108237182A (en) * 2016-12-27 2018-07-03 天津市升发科技股份有限公司 A kind of cooling device for aluminum profiles
DE102017127470A1 (en) * 2017-11-21 2019-05-23 Sms Group Gmbh Chilled beams and cooling process with variable cooling rate for steel sheets
CN108225031A (en) * 2017-12-30 2018-06-29 苏州博能炉窑科技有限公司 A kind of Vaporizing cooling equipment of large size soaking pit
FR3076837B1 (en) 2018-01-16 2020-01-03 Constellium Neuf-Brisach PROCESS FOR THE MANUFACTURE OF THIN SHEETS OF HIGH-SURFACE ALUMINUM 6XXX ALLOY
ES2974725T3 (en) 2018-05-15 2024-07-01 Novelis Inc Aluminum alloy products of tempers F* and W and methods of manufacturing them
EP3755820A1 (en) * 2018-06-13 2020-12-30 Novelis, Inc. Systems and methods for quenching a metal strip after rolling
CN112703067B (en) * 2018-09-19 2022-09-16 日本制铁株式会社 Cooling device for hot-rolled steel sheet and cooling method for hot-rolled steel sheet
EP3666915A1 (en) 2018-12-11 2020-06-17 Constellium Neuf Brisach Method of making 6xxx aluminium sheets with high surface quality
EP3808466A1 (en) * 2019-10-16 2021-04-21 Primetals Technologies Germany GmbH Cooling device with coolant jets with hollow cross-section
ES2929001T3 (en) 2019-12-23 2022-11-24 Novelis Koblenz Gmbh Manufacturing process of an aluminum alloy rolled product
FR3112297B1 (en) 2020-07-07 2024-02-09 Constellium Neuf Brisach Cooling process and equipment on a hot reversible rolling mill
MX2022014448A (en) * 2020-06-04 2023-01-05 Constellium Neuf Brisach Method and equipment for cooling on a reversing hot rolling mill.
FR3124196B1 (en) 2021-06-17 2023-09-22 Constellium Neuf Brisach 6xxx alloy strip and manufacturing process
CN113432439B (en) * 2021-07-29 2022-09-06 东北大学 Cooling method for aluminum electrolysis cell after stopping operation
FR3129408B1 (en) 2021-11-25 2024-10-25 Constellium Muscle Shoals Llc 6xxx alloy strip and manufacturing process
FR3134119A1 (en) 2022-04-02 2023-10-06 Constellium Neuf-Brisach Recycled 6xxx alloy sheet and manufacturing process
CN116042969A (en) * 2022-12-29 2023-05-02 东北轻合金有限责任公司 Cooling device for aluminum alloy ingot casting and application method thereof
FR3144624A1 (en) 2022-12-31 2024-07-05 Constellium Neuf-Brisach Process for manufacturing a 6xxx alloy sheet with excellent surface quality.
FR3147572A1 (en) 2023-04-07 2024-10-11 Constellium Neuf-Brisach Heat exchanger based on an aluminum alloy

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53142954A (en) * 1977-05-19 1978-12-13 Kobe Steel Ltd Hot rolling method for slab of aluminum alloy
JPS60243226A (en) * 1984-05-15 1985-12-03 Kawasaki Steel Corp Method and device for controlling quality of hot rolled material
JPH0787928B2 (en) * 1987-07-03 1995-09-27 古河電気工業株式会社 Method for manufacturing aluminum foil
ZA908728B (en) * 1989-11-23 1991-08-28 Alusuisse Lonza Services Ag Cooling of cast billets
US6159312A (en) * 1997-12-19 2000-12-12 Exxonmobil Upstream Research Company Ultra-high strength triple phase steels with excellent cryogenic temperature toughness
DE19823790A1 (en) * 1998-05-28 1999-12-02 Vaw Ver Aluminium Werke Ag Multigrain aluminum or alloy strip used for making lithographic plate base and offset printing plate
CA2712316C (en) 2001-03-28 2013-05-14 Sumitomo Light Metal Industries, Ltd. Aluminum alloy sheet with excellent formability and paint bake hardenability and method for production thereof
JP4200082B2 (en) * 2003-11-18 2008-12-24 古河スカイ株式会社 Aluminum alloy plate for forming and method for producing the same
CN100437076C (en) 2005-08-24 2008-11-26 东北大学 Method for eliminating temperature gradient in metal strip sample heat treatment test
FI20070622L (en) 2007-08-17 2009-04-15 Outokumpu Oy Method and device for checking evenness during cooling of a strip made of stainless steel
EP2028290A1 (en) * 2007-08-21 2009-02-25 ArcelorMittal France Method and device for secondary descaling steel strip with low pressure water jets
EP2656932A1 (en) * 2012-04-26 2013-10-30 Siemens Aktiengesellschaft Thermo-mechanical rolling of an aluminium panel
CN202786334U (en) * 2012-09-10 2013-03-13 苏州明特威机械设备有限公司 Quenching and cooling device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
FR3024058B1 (en) 2016-07-15
BR112017000205A2 (en) 2017-10-31
BR112017000205B1 (en) 2023-03-14
US20170189949A1 (en) 2017-07-06
US10130980B2 (en) 2018-11-20
KR102336948B1 (en) 2021-12-09
KR20170039166A (en) 2017-04-10
RU2017105464A (en) 2018-08-27
EP3171996A1 (en) 2017-05-31
FR3024058A1 (en) 2016-01-29
CA2954711A1 (en) 2016-01-28
DE15753101T1 (en) 2017-07-27
RU2676272C2 (en) 2018-12-27
EP3171996B1 (en) 2018-04-11
CN106661648A (en) 2017-05-10
SA517380746B1 (en) 2021-04-15
CN106661648B (en) 2020-01-07
EP3398696A1 (en) 2018-11-07
TWI593476B (en) 2017-08-01
JP6585155B2 (en) 2019-10-02
CA2954711C (en) 2023-04-04
JP2017521260A (en) 2017-08-03
US20180236514A1 (en) 2018-08-23
RU2017105464A3 (en) 2018-11-29
MX2017000483A (en) 2017-07-28
WO2016012691A1 (en) 2016-01-28
TW201622843A (en) 2016-07-01

Similar Documents

Publication Publication Date Title
EP3398696B1 (en) Cooling facility and method
WO2014083292A1 (en) Method for melting powder, comprising heating of the area adjacent to the bath
EP2802427B1 (en) Double-jet cooling device for semicontinuous vertical casting mould
EP0170542B1 (en) Protection method against corrosion of a solid metal, its use in rolling
EP0092477A1 (en) Process and apparatus for casting hollow steel ingots
CA2013855A1 (en) Method and apparatus for casting and localized rolling of thin metal products
FR2833871A1 (en) Trimming the edges of a continuously cast thin metal strip involves cooling edge zones are to make them more brittle directly before cutting the edges away
WO2005054524A1 (en) Method and device for cooling a steel strip
FR2500849A1 (en) QUICK COOLING DEVICE FOR METALLIC TUBES
EP1062065B1 (en) Method and device for controlling the thickness profile of a metal strip resulting from continuous casting between two loose moulds
EP0407323A1 (en) Method and apparatus for twin roll continuous casting of thin metallic products suitable for cold rolling
EP0393005A2 (en) A method and device for cooling a continuously cast metal product
BE738234A (en)
LU87677A1 (en) DEVICE FOR SOLIDIFYING MOLTEN METALLURGICAL DAIRY
EP0709151A1 (en) Casting surface for a continuous metal casting mould with movable walls
BE1016113A3 (en) Secondary cooling procedure for a continuously cast metal slab uses cooling liquid delivered in jets that cool slabs of various widths
FR2618704A3 (en) Method and device for supplying an ingot mould for the continuous casting of thin products
BE874171A (en) PERFECTED PROCESS FOR MANUFACTURING A STEEL BAR BY CONTINUOUS CASTING
FR2750437A1 (en) Electrolytic coating of roller used for continuous casting
FR2821774A1 (en) METHOD FOR HEATING SLABS AND INSTALLATION FOR IMPLEMENTING SAME
FR2547518A1 (en) Method and installation for manufacturing steel sheets by means of continuous casting
BE351423A (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AC Divisional application: reference to earlier application

Ref document number: 3171996

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190502

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20191126

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201207

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 3171996

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015069351

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1391835

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210615

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210812

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20210721

Year of fee payment: 7

Ref country code: AT

Payment date: 20210621

Year of fee payment: 7

Ref country code: FR

Payment date: 20210726

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210912

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210813

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210913

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210812

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20210727

Year of fee payment: 7

Ref country code: CH

Payment date: 20210804

Year of fee payment: 7

Ref country code: DE

Payment date: 20210728

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015069351

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

26N No opposition filed

Effective date: 20220215

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210912

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210710

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210710

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210812

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602015069351

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 1391835

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210512

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1391835

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220710

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230201

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220710

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512