EP3372700A1 - Method for making forged tial components - Google Patents
Method for making forged tial components Download PDFInfo
- Publication number
- EP3372700A1 EP3372700A1 EP17160397.0A EP17160397A EP3372700A1 EP 3372700 A1 EP3372700 A1 EP 3372700A1 EP 17160397 A EP17160397 A EP 17160397A EP 3372700 A1 EP3372700 A1 EP 3372700A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- forging
- blank
- deformation
- forged
- degree
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 42
- 238000005242 forging Methods 0.000 claims abstract description 42
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 39
- 239000000956 alloy Substances 0.000 claims abstract description 39
- 229910010038 TiAl Inorganic materials 0.000 claims abstract description 34
- 239000011265 semifinished product Substances 0.000 claims abstract description 23
- 238000004519 manufacturing process Methods 0.000 claims abstract description 11
- 238000010438 heat treatment Methods 0.000 claims description 18
- 239000000463 material Substances 0.000 claims description 14
- 238000003754 machining Methods 0.000 claims description 13
- 238000000137 annealing Methods 0.000 claims description 12
- 238000010275 isothermal forging Methods 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 10
- 230000009466 transformation Effects 0.000 claims description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 8
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- 238000001953 recrystallisation Methods 0.000 claims description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- 239000000470 constituent Substances 0.000 claims description 6
- 238000001816 cooling Methods 0.000 claims description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims description 6
- 229910052758 niobium Inorganic materials 0.000 claims description 6
- 239000010955 niobium Substances 0.000 claims description 6
- 239000010936 titanium Substances 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- 239000011733 molybdenum Substances 0.000 claims description 5
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 5
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 229910052796 boron Inorganic materials 0.000 claims description 4
- 238000005266 casting Methods 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 239000011651 chromium Substances 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- 238000001513 hot isostatic pressing Methods 0.000 claims description 4
- 239000001257 hydrogen Substances 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 230000006641 stabilisation Effects 0.000 claims description 4
- 238000011105 stabilization Methods 0.000 claims description 4
- 229910052727 yttrium Inorganic materials 0.000 claims description 4
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 3
- 238000010146 3D printing Methods 0.000 claims description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 2
- 239000000654 additive Substances 0.000 claims description 2
- 230000000996 additive effect Effects 0.000 claims description 2
- 238000005253 cladding Methods 0.000 claims description 2
- 150000002431 hydrogen Chemical class 0.000 claims description 2
- 239000012535 impurity Substances 0.000 claims description 2
- 238000001746 injection moulding Methods 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 238000004663 powder metallurgy Methods 0.000 claims description 2
- 238000003825 pressing Methods 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 238000003801 milling Methods 0.000 claims 1
- 238000003672 processing method Methods 0.000 claims 1
- 239000002994 raw material Substances 0.000 claims 1
- 239000007789 gas Substances 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000012805 post-processing Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910021324 titanium aluminide Inorganic materials 0.000 description 3
- 229910021325 alpha 2-Ti3Al Inorganic materials 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000010587 phase diagram Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 229910006281 γ-TiAl Inorganic materials 0.000 description 2
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- OQPDWFJSZHWILH-UHFFFAOYSA-N [Al].[Al].[Al].[Ti] Chemical compound [Al].[Al].[Al].[Ti] OQPDWFJSZHWILH-UHFFFAOYSA-N 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000010313 vacuum arc remelting Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21J—FORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
- B21J5/00—Methods for forging, hammering, or pressing; Special equipment or accessories therefor
- B21J5/02—Die forging; Trimming by making use of special dies ; Punching during forging
- B21J5/025—Closed die forging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21J—FORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
- B21J1/00—Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
- B21J1/06—Heating or cooling methods or arrangements specially adapted for performing forging or pressing operations
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C14/00—Alloys based on titanium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/16—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
- C22F1/18—High-melting or refractory metals or alloys based thereon
- C22F1/183—High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/147—Construction, i.e. structural features, e.g. of weight-saving hollow blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
- F01D5/286—Particular treatment of blades, e.g. to increase durability or resistance against corrosion or erosion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/30—Application in turbines
- F05D2220/32—Application in turbines in gas turbines
- F05D2220/323—Application in turbines in gas turbines for aircraft propulsion, e.g. jet engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/10—Manufacture by removing material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/20—Manufacture essentially without removing material
- F05D2230/25—Manufacture essentially without removing material by forging
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/40—Heat treatment
- F05D2230/41—Hardening; Annealing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/10—Metals, alloys or intermetallic compounds
- F05D2300/17—Alloys
- F05D2300/174—Titanium alloys, e.g. TiAl
Definitions
- the present invention relates to a method for producing forged components from a TiAl alloy, in particular components for gas turbines, preferably aircraft turbines and in particular turbine blades for low-pressure turbines.
- titanium aluminides or TiAl alloys Due to their low specific weight and their mechanical properties, components made of titanium aluminides or TiAl alloys are of interest for use in gas turbines, in particular aircraft turbines.
- Titanium aluminides or TiAl alloys are hereby understood as meaning alloys which contain titanium and aluminum as main constituents, so that their chemical composition has constituents with the highest proportions of aluminum and titanium.
- TiAl alloys are characterized by the formation of intermetallic phases, such as ⁇ - TiAl or ⁇ 2 - Ti 3 Al, which give the material good strength properties.
- TiAl alloys are not easy to process and the microstructures of TiAl materials need to be precisely adjusted to achieve the desired mechanical properties.
- the invention proposes that, in the case of a forging process for the production of a forged component from a TiAl alloy, the forming by forging be carried out in such a way that a homogeneous deformation takes place for the entire component. It has been shown that with a uniform deformation over the entire component, in a simple manner a homogeneous microstructure of the forged component can be achieved, so that the property profile of the forged component over the entire component is homogeneous. Accordingly, a blank is provided for the forging, the shape of which is selected such that the deformation over the entire volume of the blank or of the blank forged from the blank is substantially the same.
- a defined degree of deformation is set, of which only for ⁇ 1 over the entire usable volume of the forged Derived from the semi-finished product.
- the usable volume of the forged semi-finished product is understood to be the area of the forged semi-finished product which corresponds to the forged component to be produced, for example the area or the volume of a turbine blade to be produced. Accordingly, the usable volume of the forged semi-finished product is understood to be the area of the forged semi-finished product which remains after the forging as a finished component after a material-removing post-processing.
- a forged semi-finished product can thus be understood in particular to be a forged upper part or forged intermediate product, which can be processed via one or more processing steps to form a finished component, for example a turbine blade.
- Under a blank can be understood in particular a forging material, which can be processed by a forging process to the semifinished product.
- the degree of deformation ⁇ is defined as the natural logarithm of the ratio of final dimension x 1 after deformation to initial dimension x 0 in the case of a one-dimensional dimensional change in a Cartesian reference system.
- the blank can now be shaped in such a way that the degree of deformation has a defined value in one of the directions of the reference system, for example the x, y or z direction of a Cartesian reference system, in one of the directions of the reference system, and only within that or that the degree of deformation in several directions of the reference system or in each direction, in particular each main direction of the reference system has a defined value and deviates from this only within the allowable fluctuation range.
- the shape of the blank can be chosen so that the transformation to be performed has a defined degree of deformation, which is within the usable volume of the forged Semifinished from the defined value of the degree of deformation by a maximum of ⁇ 0.5, in particular ⁇ 0.25 deviates.
- the defined value of the degree of deformation may in particular be greater than or equal to 0.7, so that a minimum deformation takes place to that extent.
- the degree of deformation of 0.7 within the usable volume is not exceeded, so that the entire material of the forged semi-finished product undergoes a minimum deformation by forging.
- the defined value of the degree of deformation can be kept as low as possible in order to keep the cost of forming low. Accordingly, the value of the degree of deformation may be less than or equal to 2.5, in particular less than or equal to 2.0.
- the forming speed, ie the change in the degree of deformation per unit time, during forging can be in the range of 0.01 to 0.5 1 / s and in particular in the range of 0.025 to 0.25 1 / s.
- the shape of the blank can be selected so that along the longitudinal axis of the blank, so the axis with the largest dimension, the mass is distributed so that more mass is present at the two ends than in the middle of the blank.
- the blank can be divided along its longitudinal axis into three equally long regions or sections, namely a first and second end region and a central region wherein the mass of the blank is distributed in the regions so that there is more mass in the end regions than in the central region , Accordingly, the blank may be formed such that M M ⁇ M E1 ⁇ M E2 where M M is the mass of the blank in the central region, M E1 is the mass of the blank in the first end region and M E2 is the mass of the blank in the second end region.
- the blank can satisfy the condition: M M ⁇ M E2 / 1.25.
- alloyed titanium aluminide alloys which are especially suitable for niobium and molybdenum can be used.
- Such alloys are also referred to as TNM alloys.
- an alloy of 27 to 30 weight percent aluminum, 8 to 10 weight percent niobium, and 1 to 3 weight percent molybdenum may be used, the remainder being titanium.
- the aluminum content may be selected in the range of 28.1 to 29.1 weight percent aluminum, while 8.5 to 9.6 weight percent niobium and 1.8 to 2.8 weight percent molybdenum may be added.
- the alloy may be alloyed with boron in the range of 0.01 to 0.04 weight percent boron, more preferably 0.019 to 0.034 weight percent boron.
- the alloy may include unavoidable impurities such as carbon, oxygen, nitrogen, hydrogen, chromium, silicon, iron, copper, nickel and yttrium, the content of which is ⁇ 0.05% by weight of chromium, ⁇ 0.05% by weight of silicon, ⁇ 0.08 wt% oxygen, ⁇ 0.02 wt% carbon, ⁇ 0.015 wt% nitrogen, ⁇ 0.005 wt% hydrogen, ⁇ 0.06 wt% iron, ⁇ 0.15 wt% copper, ⁇ 0.02 wt% nickel and ⁇ 0.001 wt% yttrium , Further constituents may be contained individually in the range of 0 to 0.05 percent by weight or in total from 0 to 0.2 percent by weight.
- unavoidable impurities such as carbon, oxygen, nitrogen, hydrogen, chromium, silicon, iron, copper, nickel and yttrium, the content of which is ⁇ 0.05% by weight of chromium, ⁇ 0.05% by weight of silicon,
- the forging of the blank can be carried out in particular as isothermal forging, wherein only a single-stage forming, so only one forming step preferably can be carried out in only one forging without a further forming or forging takes place in another forging die. In this way, the cost of forming can be kept low.
- one-stage means both that the forming process takes place in a single continuous process, and that only a single transformation takes place in the production process.
- the forming of the cast, for example, not yet formed blank for semi-finished can be done in a single forging step, without further transformation to the finished component is necessary. So it does not have to be pressed several times and from different directions, but it is only a press or a die with two forms required between which the blank is inserted and formed during pressing of the two forms against each other. The forged part does not have to be moved or moved between different forging steps.
- the forging of the corresponding components can be carried out by drop forging in the temperature range of the ⁇ + ⁇ + ⁇ phase region, wherein the forging temperature in the range of 1150 ° C to 1200 ° C can lie.
- a corresponding die can be kept at the temperature by heating during the forging process.
- an inert ambient atmosphere may be adjusted during forging.
- the forged semi-finished products may be subjected to a two-stage heat treatment, wherein the first stage of the heat treatment provides for recrystallization annealing below the y / a transformation temperature for a period of 50 to 100 minutes.
- Annealing at a temperature below the y / a conversion temperature where ⁇ -titanium is converted to ⁇ -TiAl according to the phase diagram for the TiAl alloy used, can be as close as possible to the y / a transition temperature, with a temperature of 8%, in particular 4%, below the y / a - conversion temperature should not be fallen below.
- the recrystallization annealing may preferably be carried out for 60 to 90 minutes, especially 70 to 80 minutes.
- the first stage of the heat treatment with the recrystallization annealing may be followed by a second stage of heat treatment with stabilizing annealing in the temperature range of 800 ° C to 950 ° C for 5 to 7 hours.
- the stabilization annealing can be carried out in particular in the temperature range from 825 ° C. to 925 ° C., preferably from 850 ° C. to 900 ° C., with a holding time of from 345 minutes to 375 minutes.
- the cooling in the recrystallization annealing can be done by air cooling, wherein in the temperature range between 1300 ° C and 900 ° C, the cooling rate ⁇ 3 ° C per second should be to set a fine-lamellar microstructure of ⁇ 2 -Ti 3 Al and ⁇ -TiAl, which required mechanical properties guaranteed.
- the cooling in the second heat treatment stage, so the stabilization annealing, can be done with correspondingly lower cooling rates in the oven.
- the heat treatment steps are carried out as accurately as possible at the corresponding selected temperature.
- an increasingly accurate adjustment of the temperature and keeping the components at the appropriate temperatures with increasing Expenses connected so that for an economically meaningful processing a compromise must be found.
- a temperature adjustment with a deviation in the range of 5 ° C to 10 ° C up and down from the setpoint temperature has proven to be advantageous.
- the selected target temperature for the heat treatment steps of the present invention can be set and held up and down in a corresponding temperature window of 5 ° C to 10 ° C deviation from the target temperature.
- the precursor material may also be made by metal injection molding (MIM), powder metallurgy, additive processes (e.g., 3D printing, cladding), or combinations thereof.
- MIM metal injection molding
- the blanks or the starting material can be hot-isostatically pressed before forging. It may be advantageous to machine the starting material before forging on all sides or locally with a material-removing machining process in order to work off surface edge zones and / or to give the blank the desired shape for the subsequent shaping. Any suitable method can be used as the material-removing machining method, in particular metal-cutting methods or electrochemical machining methods.
- the blanks can be produced by melting in vacuo or inert gas with self-consumable electrodes or in the cooled crucible by means of plasma arc melting, wherein a single or multiple remelting of the alloy can be performed.
- the remelting may be by vacuum induction melting or vacuum arc remelting (VIM vacuum induction melting), and the cast material may be hot isostatically pressed using temperatures ⁇ 1200 ° C at a pressure ⁇ 100 MPa and a holding time ⁇ 4 hours can.
- the forged semi-finished product can be post-processed with a material-removing machining process to produce the finished component.
- a material-removing machining process Any suitable method can be used as the material-removing machining method, in particular metal-cutting methods or electrochemical machining methods.
- FIGS. 1a and 1b show the sequence of process steps in the implementation of an embodiment of the method according to the invention.
- a blank 5 is produced by filling a molten TiAl alloy into a mold 1 having a cavity 2 corresponding to the shape of the blank 5 to be produced.
- the casting blank 4 After pouring the TiAl alloy in the mold 1 and solidifying the TiAl alloy, the casting blank 4 can be correspondingly pressed in a system 3 for hot isostatic pressing in order to compact the green cast iron 4 and to close possible cast blanks or the like.
- the hot - isostatic pressing thus does not serve the transformation of the casting blank 4, but only the material compression.
- the blank 5 can be additionally subjected to a material-removing post-processing, for example by machining or by electrochemical machining.
- the correspondingly produced blank 5 is forged in a drop forging 6 to a near net shape, forged semi-finished 9, wherein the drop forge 6 has two Gesenkhohlformen 7 and 8, which define between them a cavity corresponding to the shape of the forged semi-finished product 9, as in the dashed representation of the FIG. 1b is shown.
- the TiAl alloy is formed into the forged semifinished product 9.
- the deformation of the blank 5 for the forged semi-finished product 9 can be carried out by isothermal forging at a temperature which is as constant as possible.
- the compression of the Gesenkhohlformen 7 and 8 is indicated by the arrows in the FIG. 1b shown.
- a finished turbine blade 10 with an airfoil 13, a blade root 11 and a shroud 12 is present.
- results in the process of the invention can be prepared by a single forming step by isothermal forging in a drop forging 6 a near net shape of the component to be produced, so that the post-processing can be minimized.
- FIG. 2 shows in Examples 1 to 3 different courses of the mass distribution over the longitudinal axis of a blank 5, as they can be used in the present invention.
- FIG. 2 shows that a blank 5 can be divided into equal sections along the longitudinal axis of the blank 5, wherein within these sections different masses of the blank are present, namely at the two ends of the longitudinal axis respectively more mass than in a central region.
- the mass of the respective areas at the ends can be the same or different sizes.
- FIG. 3 shows a so-called quasibinary state diagram of a TiAl alloy as can be used in the present invention.
- Quasi-binary means that in the state shown only the proportions of two components, in the present case Ti and Al change, and the other alloying constituents, in this case Nb and Mo, remain constant.
- the dashed working field 14 lies in the ⁇ + ⁇ + ⁇ phase region and indicates the temperature range in which isothermal forging can be carried out with the corresponding composition of the TiAl alloy.
- the y / a conversion temperature in the phase diagram corresponds to the line between the ⁇ + ⁇ phase region and the ⁇ + ⁇ + ⁇ phase region
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Architecture (AREA)
- Forging (AREA)
Abstract
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines geschmiedeten Bauteils aus einer TiAl - Legierung, insbesondere einer Turbinenschaufel (10), bei welchem ein Rohling aus einer TiAl - Legierung bereitgestellt wird und durch Schmieden zu einem geschmiedeten Halbzeug (9) umgeformt wird, wobei in dem geschmiedeten Halbzeug ein nutzbares Volumen definiert ist, welches dem herzustellenden, geschmiedeten Bauteil entspricht, wobei die Form des Rohlings so gewählt wird, dass der Umformgrad innerhalb des nutzbaren Volumens des geschmiedeten Halbzeugs durch das Schmieden einen definierten Wert aufweist, der über das nutzbare Volumen maximal um ± 1 von dem definierten Wert abweicht.The present invention relates to a method for producing a forged component from a TiAl alloy, in particular a turbine blade (10), in which a blank of a TiAl alloy is provided and formed by forging into a forged semi - finished product (9), wherein the forged semi-finished product a usable volume is defined, which corresponds to the forged component to be produced, wherein the shape of the blank is selected so that the degree of deformation within the usable volume of the forged semi-finished by forging has a defined value, the maximum on the usable volume deviates by ± 1 from the defined value.
Description
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von geschmiedeten Bauteilen aus einer TiAl - Legierung, insbesondere von Bauteilen für Gasturbinen, vorzugsweise Flugturbinen und insbesondere Turbinenschaufeln für Niederdruckturbinen.The present invention relates to a method for producing forged components from a TiAl alloy, in particular components for gas turbines, preferably aircraft turbines and in particular turbine blades for low-pressure turbines.
Bauteile aus Titanaluminiden bzw. TiAl - Legierungen sind aufgrund ihres geringen spezifischen Gewichts und ihrer mechanischen Eigenschaften für den Einsatz in Gasturbinen, insbesondere Flugturbinen, interessant.Due to their low specific weight and their mechanical properties, components made of titanium aluminides or TiAl alloys are of interest for use in gas turbines, in particular aircraft turbines.
Unter Titanaluminiden bzw. TiAl - Legierungen werden hierbei Legierungen verstanden, die als Hauptbestandteile Titan und Aluminium aufweisen, sodass deren chemische Zusammensetzung als Bestandteile mit den höchsten Anteilen Aluminium und Titan aufweist. Darüber hinaus zeichnen sich TiAl - Legierungen durch die Ausbildung von intermetallischen Phasen, wie γ - TiAl oder α2 - Ti3Al aus, die dem Werkstoff gute Festigkeitseigenschaften verleihen.Titanium aluminides or TiAl alloys are hereby understood as meaning alloys which contain titanium and aluminum as main constituents, so that their chemical composition has constituents with the highest proportions of aluminum and titanium. In addition, TiAl alloys are characterized by the formation of intermetallic phases, such as γ - TiAl or α 2 - Ti 3 Al, which give the material good strength properties.
Allerdings sind TiAl - Legierungen nicht einfach zu verarbeiten und die Gefüge von TiAl - Werkstoffen müssen exakt eingestellt werden, um die gewünschten mechanischen Eigenschaften zu erzielen.However, TiAl alloys are not easy to process and the microstructures of TiAl materials need to be precisely adjusted to achieve the desired mechanical properties.
So ist beispielsweise aus der
In der europäischen Offenlegungsschrift
Es ist deshalb Aufgabe der vorliegenden Erfindung, ein Herstellungsverfahren für die Herstellung von Bauteilen aus TiAl - Werkstoffen bereit zu stellen, welche in Gasturbinen, insbesondere Flugturbinen, vorzugsweise im Bereich der Niederdruckturbine, eingesetzt werden können und eine homogene Gefügeausbildung und somit ein homogenes Eigenschaftsprofil aufweisen.It is therefore an object of the present invention to provide a production method for the production of components made of TiAl materials, which can be used in gas turbines, in particular aircraft turbines, preferably in the region of the low-pressure turbine, and have a homogeneous microstructure and thus a homogeneous property profile.
Diese Aufgabe wird gelöst durch ein Verfahren mit den Merkmalen des Anspruchs 1. Vorteilhafte Ausgestaltungen sind Gegenstand der abhängigen Ansprüche.This object is achieved by a method having the features of
Die Erfindung schlägt vor, bei einem Schmiedeverfahren zur Herstellung eines geschmiedeten Bauteils aus einer TiAl - Legierung die Umformung durch das Schmieden so durchzuführen, dass eine homogene Umformung für das gesamte Bauteil stattfindet. Es hat sich nämlich gezeigt, dass bei einer gleichmäßigen Umformung über das gesamte Bauteil hinweg, in einfacher Weise eine homogene Gefügeausbildung des geschmiedeten Bauteils erreicht werden kann, sodass auch das Eigenschaftsprofil des geschmiedeten Bauteils über das gesamte Bauteil homogen ist. Entsprechend wird für das Schmieden ein Rohling bereitgestellt, dessen Form so gewählt wird, dass die Umformung über dem gesamten Volumen des Rohlings bzw. des aus dem Rohling geschmiedeten Halbzeugs im Wesentlichen gleich ist. Hierzu wird ein definierter Umformgrad eingestellt, von dem lediglich um ±1 über dem gesamten nutzbaren Volumen des geschmiedeten Halbzeugs abgewichen wird. Unter nutzbarem Volumen des geschmiedeten Halbzeugs wird der Bereich des geschmiedeten Halbzeugs verstanden, der dem herzustellenden, geschmiedeten Bauteil entspricht, beispielsweise dem Bereich oder dem Volumen einer herzustellenden Turbinenschaufel. Entsprechend wird unter dem nutzbaren Volumen des geschmiedeten Halbzeugs der Bereich des geschmiedeten Halbzeugs verstanden, der nach einer materialabtragenden Nachbearbeitung nach dem Schmieden als fertiges Bauteil verbleibt. Unter einem geschmiedeten Halbzeug kann somit insbesondere ein Schmiederohteil oder geschmiedetes Zwischenerzeugnis verstanden werden, das über einen oder mehrere Bearbeitungsschritte zu einem fertigen Bauteil, beispielsweise einer Turbinenschaufel, bearbeitet werden kann. Unter einem Rohling kann insbesondere ein Schmiedeeinsatzmaterial verstanden werden, das durch einen Schmiedeprozess zu dem Halbzeug verarbeitet werden kann.The invention proposes that, in the case of a forging process for the production of a forged component from a TiAl alloy, the forming by forging be carried out in such a way that a homogeneous deformation takes place for the entire component. It has been shown that with a uniform deformation over the entire component, in a simple manner a homogeneous microstructure of the forged component can be achieved, so that the property profile of the forged component over the entire component is homogeneous. Accordingly, a blank is provided for the forging, the shape of which is selected such that the deformation over the entire volume of the blank or of the blank forged from the blank is substantially the same. For this purpose, a defined degree of deformation is set, of which only for ± 1 over the entire usable volume of the forged Derived from the semi-finished product. The usable volume of the forged semi-finished product is understood to be the area of the forged semi-finished product which corresponds to the forged component to be produced, for example the area or the volume of a turbine blade to be produced. Accordingly, the usable volume of the forged semi-finished product is understood to be the area of the forged semi-finished product which remains after the forging as a finished component after a material-removing post-processing. A forged semi-finished product can thus be understood in particular to be a forged upper part or forged intermediate product, which can be processed via one or more processing steps to form a finished component, for example a turbine blade. Under a blank can be understood in particular a forging material, which can be processed by a forging process to the semifinished product.
Der Umformgrad ϕ ist hierbei bei einer eindimensionalen Abmessungsänderung in einem kartesischen Bezugssystem definiert als der natürliche Logarithmus des Verhältnisses von Endabmessung x1 nach der Umformung zur Anfangsabmessung x0. Bei einer dreidimensionalen Umformung wird die Umformung durch den größten Umformungsgrad ϕg charakterisiert, der gegeben ist durch:
Der Rohling kann nun so geformt werden, dass der Umformgrad bei der Umformung zum gewünschten geschmiedeten Halbzeug in einer der Richtungen des Bezugssystems, also beispielsweise der x - , y - oder z - Richtung eines kartesischen Bezugssystems einen definierten Wert aufweist und von diesem nur innerhalb der zulässigen Schwankungsbreite abweicht oder dass der Umformgrad in mehreren Richtungen des Bezugssystems oder in jeder Richtung, insbesondere jeder Hauptrichtung des Bezugssystems einen definierten Wert aufweist und von diesem nur innerhalb der zulässigen Schwankungsbreite abweicht. Darüber hinaus ist es auch möglich den Rohling so auszubilden, dass von den Umformgraden verschiedener Richtungen der wertmäßig größte und/oder der wertmäßig kleinste Umformgrad die vorgegebenen Bedingungen der homogenen Umformung erfüllt.The blank can now be shaped in such a way that the degree of deformation has a defined value in one of the directions of the reference system, for example the x, y or z direction of a Cartesian reference system, in one of the directions of the reference system, and only within that or that the degree of deformation in several directions of the reference system or in each direction, in particular each main direction of the reference system has a defined value and deviates from this only within the allowable fluctuation range. Moreover, it is also possible to form the blank in such a way that from the degree of deformation of different directions the value-wise largest and / or the value-wise smallest degree of forming fulfills the given conditions of the homogeneous forming.
Insbesondere kann die Form des Rohlings so gewählt werden, dass die durchzuführende Umformung einen definierten Umformgrad aufweist, der innerhalb des nutzbaren Volumens des geschmiedeten Halbzeugs von dem definierten Wert des Umformgrads maximal um ± 0,5, insbesondere ± 0,25 abweicht.In particular, the shape of the blank can be chosen so that the transformation to be performed has a defined degree of deformation, which is within the usable volume of the forged Semifinished from the defined value of the degree of deformation by a maximum of ± 0.5, in particular ± 0.25 deviates.
Der definierte Wert des Umformgrades kann insbesondere größer oder gleich 0,7 sein, sodass eine Mindestumformung in diesem Maße stattfindet. Vorzugsweise wird der Umformgrad von 0,7 innerhalb des nutzbaren Volumens nicht unterschritten, sodass das gesamte Material des geschmiedeten Halbzeugs eine Mindestumformung durch das Schmieden erfährt.The defined value of the degree of deformation may in particular be greater than or equal to 0.7, so that a minimum deformation takes place to that extent. Preferably, the degree of deformation of 0.7 within the usable volume is not exceeded, so that the entire material of the forged semi-finished product undergoes a minimum deformation by forging.
Darüber hinaus kann der definierte Wert des Umformgrades möglichst gering gehalten werden, um den Aufwand für das Umformen niedrig zu halten. Entsprechend kann der Wert des Umformgrades kleiner oder gleich 2,5, insbesondere kleiner oder gleich 2,0 betragen.In addition, the defined value of the degree of deformation can be kept as low as possible in order to keep the cost of forming low. Accordingly, the value of the degree of deformation may be less than or equal to 2.5, in particular less than or equal to 2.0.
Die Umformgeschwindigkeit, also die Änderung des Umformgrads pro Zeiteinheit, kann beim Schmieden im Bereich von 0,01 bis 0,5 1/s und insbesondere im Bereich von 0,025 bis 0,25 1/s liegen.The forming speed, ie the change in the degree of deformation per unit time, during forging can be in the range of 0.01 to 0.5 1 / s and in particular in the range of 0.025 to 0.25 1 / s.
Darüber hinaus kann die Form des Rohlings so gewählt werden, dass entlang der Längsachse des Rohlings, also der Achse mit der größten Dimension, die Masse so verteilt wird, dass an den beiden Enden mehr Masse vorliegt als in der Mitte des Rohlings. Hierzu kann der Rohling entlang seiner Längsachse in drei gleich lange Bereiche oder Abschnitte unterteilt werden, und zwar einen ersten und zweiten Endbereich sowie einen Mittelbereich wobei die Masse des Rohlings in den Bereichen so verteilt ist, dass in den Endbereichen mehr Masse vorliegt als in dem Mittelbereich. Entsprechend kann der Rohling so ausgebildet werden, dass gilt: MM < ME1 ≤ ME2 wobei MM die Masse des Rohlings im Mittelbereich, ME1 die Masse des Rohlings im ersten Endbereich und ME2 die Masse des Rohlings im zweiten Endbereich ist.In addition, the shape of the blank can be selected so that along the longitudinal axis of the blank, so the axis with the largest dimension, the mass is distributed so that more mass is present at the two ends than in the middle of the blank. For this purpose, the blank can be divided along its longitudinal axis into three equally long regions or sections, namely a first and second end region and a central region wherein the mass of the blank is distributed in the regions so that there is more mass in the end regions than in the central region , Accordingly, the blank may be formed such that M M <M E1 ≦ M E2 where M M is the mass of the blank in the central region, M E1 is the mass of the blank in the first end region and M E2 is the mass of the blank in the second end region.
Weiterhin kann der Rohling die Bedingung erfüllen: MM ≤ ME2 / 1,25.Furthermore, the blank can satisfy the condition: M M ≦ M E2 / 1.25.
Für die Herstellung von geschmiedeten Bauteilen aus TiAl-Legierungen, insbesondere für Gasturbinenbauteile, wie beispielsweise Niederdruckturbinen-Turbinenschaufeln, sind vor allem mit Niob und Molybdän legierte Titanaluminid - Legierungen verwendbar. Derartige Legierungen werden auch als TNM-Legierungen bezeichnet.For the production of forged components from TiAl alloys, in particular for gas turbine components, such as, for example, low-pressure turbine turbine blades, alloyed titanium aluminide alloys which are especially suitable for niobium and molybdenum can be used. Such alloys are also referred to as TNM alloys.
Für das vorliegende Verfahren kann eine Legierung mit 27 bis 30 Gewichtsprozent Aluminium, 8 bis 10 Gewichtsprozent Niob und 1 bis 3 Gewichtsprozent Molybdän verwendet werden, wobei der Rest durch Titan gebildet sein kann.For the present process, an alloy of 27 to 30 weight percent aluminum, 8 to 10 weight percent niobium, and 1 to 3 weight percent molybdenum may be used, the remainder being titanium.
Der Aluminiumgehalt kann insbesondere im Bereich von 28,1 bis 29,1 Gewichtsprozent Aluminium gewählt werden, während 8,5 bis 9,6 Gewichtsprozent Niob und 1,8 bis 2,8 Gewichtsprozent Molybdän zulegiert sein können.In particular, the aluminum content may be selected in the range of 28.1 to 29.1 weight percent aluminum, while 8.5 to 9.6 weight percent niobium and 1.8 to 2.8 weight percent molybdenum may be added.
Darüber hinaus kann die Legierung mit Bor legiert sein, und zwar im Bereich von 0,01 bis 0,04 Gewichtsprozent Bor, insbesondere 0,019 bis 0,034 Gewichtsprozent Bor.In addition, the alloy may be alloyed with boron in the range of 0.01 to 0.04 weight percent boron, more preferably 0.019 to 0.034 weight percent boron.
Ferner kann die Legierung unvermeidbare Verunreinigungen bzw. weitere Bestandteile wie Kohlenstoff, Sauerstoff, Stickstoff, Wasserstoff, Chrom, Silizium, Eisen, Kupfer, Nickel und Yttrium aufweisen, wobei deren Gehalt ≤ 0,05 Gewichtsprozent Chrom, ≤ 0,05 Gewichtsprozent Silizium, ≤ 0,08 Gewichtsprozent Sauerstoff, ≤ 0,02 Gewichtsprozent Kohlenstoff, ≤ 0,015 Gewichtsprozent Stickstoff, ≤ 0,005 Gewichtsprozent Wasserstoff, ≤ 0,06 Gewichtsprozent Eisen, ≤ 0,15 Gewichtsprozent Kupfer, ≤ 0,02 Gewichtsprozent Nickel und ≤ 0,001 Gewichtsprozent Yttrium betragen kann. Weitere Bestandteile können einzeln im Bereich von 0 bis 0,05 Gewichtsprozent bzw. insgesamt von 0 bis 0,2 Gewichtsprozent enthalten sein.Further, the alloy may include unavoidable impurities such as carbon, oxygen, nitrogen, hydrogen, chromium, silicon, iron, copper, nickel and yttrium, the content of which is ≦ 0.05% by weight of chromium, ≦ 0.05% by weight of silicon, ≦ 0.08 wt% oxygen, ≤ 0.02 wt% carbon, ≤ 0.015 wt% nitrogen, ≤ 0.005 wt% hydrogen, ≤ 0.06 wt% iron, ≤ 0.15 wt% copper, ≤ 0.02 wt% nickel and ≤ 0.001 wt% yttrium , Further constituents may be contained individually in the range of 0 to 0.05 percent by weight or in total from 0 to 0.2 percent by weight.
Das Schmieden des Rohlings kann insbesondere als isothermes Schmieden durchgeführt werden, wobei lediglich eine einstufige Umformung, also lediglich ein Umformschritt vorzugsweise in lediglich einem Schmiedegesenk vorgenommen werden kann, ohne dass ein weiteres Umformen oder Schmieden in einem anderen Schmiedegesenk erfolgt. Auf diese Weise kann der Aufwand für das Umformen niedrig gehalten werden.The forging of the blank can be carried out in particular as isothermal forging, wherein only a single-stage forming, so only one forming step preferably can be carried out in only one forging without a further forming or forging takes place in another forging die. In this way, the cost of forming can be kept low.
Einstufig bedeutet hierbei somit sowohl, dass der Umformvorgang in einem einzigen kontinuierlichen Vorgang stattfindet, als auch, dass nur eine einzige Umformung im Herstellungsverfahren stattfindet.In this case, one-stage means both that the forming process takes place in a single continuous process, and that only a single transformation takes place in the production process.
Demnach kann das Umformen des beispielsweise gegossenen, noch nicht umgeformten Rohlings zum Halbzeug in einem einzigen Schmiedeschritt erfolgen, ohne dass eine weitere Umformung zum fertigen Bauteil nötig ist. Es muss also nicht mehrfach und aus unterschiedlichen Richtungen gepresst werden, sondern es ist lediglich eine Presse bzw. ein Gesenk mit zwei Formen erforderlich, zwischen denen der Rohling eingelegt und beim Pressen der beiden Formen gegeneinander umgeformt wird. Dabei muss das Schmiedeteil also nicht zwischen verschiedenen Schmiedeschritten umgelegt oder bewegt werden.Accordingly, the forming of the cast, for example, not yet formed blank for semi-finished can be done in a single forging step, without further transformation to the finished component is necessary. So it does not have to be pressed several times and from different directions, but it is only a press or a die with two forms required between which the blank is inserted and formed during pressing of the two forms against each other. The forged part does not have to be moved or moved between different forging steps.
Das Schmieden der entsprechenden Bauteile kann durch Gesenkschmieden im Temperaturbereich des α+γ+β - Phasengebiets erfolgen, wobei die Schmiedetemperatur im Bereich von 1150°C bis 1200°C liegen kann. Ein entsprechendes Gesenk kann durch Heizen während des Schmiedevorgangs auf der Temperatur gehalten werden. Abhängig vom Material des Gesenks kann eine inerte Umgebungsatmosphäre während des Schmiedens eingestellt werden.The forging of the corresponding components can be carried out by drop forging in the temperature range of the α + γ + β phase region, wherein the forging temperature in the range of 1150 ° C to 1200 ° C can lie. A corresponding die can be kept at the temperature by heating during the forging process. Depending on the material of the die, an inert ambient atmosphere may be adjusted during forging.
Nach dem Schmieden können die geschmiedeten Halbzeuge einer zweistufigen Wärmebehandlung unterzogen werden, wobei die erste Stufe der Wärmebehandlung ein Rekristallisationsglühen unterhalb der y/a - Umwandlungstemperatur für eine Zeitdauer von 50 bis 100 Minuten vorsieht. Das Glühen bei einer Temperatur unterhalb der y/a - Umwandlungstemperatur, bei der entsprechend dem Phasendiagramm für die verwendete TiAl - Legierung α-Titan in γ-TiAl umgewandelt wird, kann möglichst nahe an der y/a - Umwandlungstemperatur stattfinden, wobei eine Temperatur von 8 %, insbesondere 4 %, unterhalb der y/a - Umwandlungstemperatur nicht unterschritten werden soll.After forging, the forged semi-finished products may be subjected to a two-stage heat treatment, wherein the first stage of the heat treatment provides for recrystallization annealing below the y / a transformation temperature for a period of 50 to 100 minutes. Annealing at a temperature below the y / a conversion temperature, where α-titanium is converted to γ-TiAl according to the phase diagram for the TiAl alloy used, can be as close as possible to the y / a transition temperature, with a temperature of 8%, in particular 4%, below the y / a - conversion temperature should not be fallen below.
Das Rekristallisationsglühen kann vorzugsweise für 60 bis 90 Minuten, insbesondere 70 bis 80 Minuten, durchgeführt werden.The recrystallization annealing may preferably be carried out for 60 to 90 minutes, especially 70 to 80 minutes.
Der ersten Stufe der Wärmebehandlung mit dem Rekristallisationsglühen kann sich eine zweite Stufe der Wärmebehandlung mit einem Stabilisierungsglühen im Temperaturbereich von 800°C bis 950°C für 5 bis 7 Stunden anschließen.The first stage of the heat treatment with the recrystallization annealing may be followed by a second stage of heat treatment with stabilizing annealing in the temperature range of 800 ° C to 950 ° C for 5 to 7 hours.
Das Stabilisierungsglühen kann insbesondere im Temperaturbereich von 825°C bis 925°C, vorzugsweise von 850°C bis 900°C bei einer Haltedauer von 345 Minuten bis 375 Minuten durchgeführt werden.The stabilization annealing can be carried out in particular in the temperature range from 825 ° C. to 925 ° C., preferably from 850 ° C. to 900 ° C., with a holding time of from 345 minutes to 375 minutes.
Die Abkühlung beim Rekristallisationsglühen kann durch Luftabkühlung erfolgen, wobei im Temperaturbereich zwischen 1300°C und 900°C die Abkühlgeschwindigkeit ≥ 3°C pro Sekunde sein soll, um ein feinlamellares Gefüge aus α2-Ti3Al und γ-TiAl einzustellen, welches die erforderlichen mechanischen Eigenschaften gewährleistet.The cooling in the recrystallization annealing can be done by air cooling, wherein in the temperature range between 1300 ° C and 900 ° C, the cooling rate ≥ 3 ° C per second should be to set a fine-lamellar microstructure of α 2 -Ti 3 Al and γ-TiAl, which required mechanical properties guaranteed.
Die Abkühlung bei der zweiten Wärmebehandlungsstufe, also dem Stabilisierungsglühen, kann mit entsprechend niedrigeren Abkühlgeschwindigkeiten im Ofen erfolgen.The cooling in the second heat treatment stage, so the stabilization annealing, can be done with correspondingly lower cooling rates in the oven.
Für die Einstellung des Gefüges und Reproduzierbarkeit einer entsprechenden Gefügeeinstellung ist es von Bedeutung, dass die Wärmebehandlungsschritte möglichst genau bei der entsprechend gewählten Temperatur durchgeführt werden. Allerdings ist eine zunehmend exakte Einstellung der Temperatur und Halten der Bauteile auf den entsprechenden Temperaturen mit wachsendem Aufwand verbunden, so dass für eine wirtschaftlich sinnvolle Bearbeitung ein Kompromiss gefunden werden muss. Für die Wärmebehandlung von geschmiedeten TiAl - Bauteilen hat sich eine Temperatureinstellung mit einer Abweichung im Bereich von 5°C bis 10°C nach oben und unten von der Soll - Temperatur als vorteilhaft herausgestellt. Entsprechend kann die gewählte Soll - Temperatur für die Wärmebehandlungsschritte der vorliegenden Erfindung in einem entsprechenden Temperaturfenster mit 5°C bis 10°C Abweichung von der Soll - Temperatur nach oben und unten eingestellt und gehalten werden.For the adjustment of the microstructure and reproducibility of a corresponding structural adjustment, it is important that the heat treatment steps are carried out as accurately as possible at the corresponding selected temperature. However, an increasingly accurate adjustment of the temperature and keeping the components at the appropriate temperatures with increasing Expenses connected, so that for an economically meaningful processing a compromise must be found. For the heat treatment of forged TiAl components, a temperature adjustment with a deviation in the range of 5 ° C to 10 ° C up and down from the setpoint temperature has proven to be advantageous. Accordingly, the selected target temperature for the heat treatment steps of the present invention can be set and held up and down in a corresponding temperature window of 5 ° C to 10 ° C deviation from the target temperature.
Als Rohlinge für das Schmieden können gegossene und/oder heiß - isostatisch gepresste Rohlinge eingesetzt werden. Alternativ zum Gießen kann das Vormaterial auch über Metallformspritzen (MIM), pulvermetallurgische Verfahren, additive Verfahren (z.B. 3D-Druck, Auftragsschweißen) oder Kombinationen davon hergestellt werden. Unabhängig von der Herstellung können die Rohlinge bzw. das Vormaterial vor dem Schmieden heiß-isostatisch gepresst werden. Es kann vorteilhaft sein, das Vormaterial vor dem Schmieden allseitig oder lokal mit einem materialabtragenden Bearbeitungsverfahren zu bearbeiten, um Oberflächenrandzonen abzuarbeiten und/oder dem Rohling die gewünschte Form für die anschließende Umformung zu geben. Als materialabtragendes Bearbeitungsverfahren kann jedes geeignete Verfahren eingesetzt werden, insbesondere spanabhebende Verfahren oder elektrochemische Bearbeitungsverfahren.As blanks for forging cast and / or hot isostatically pressed blanks can be used. As an alternative to casting, the precursor material may also be made by metal injection molding (MIM), powder metallurgy, additive processes (e.g., 3D printing, cladding), or combinations thereof. Regardless of the production, the blanks or the starting material can be hot-isostatically pressed before forging. It may be advantageous to machine the starting material before forging on all sides or locally with a material-removing machining process in order to work off surface edge zones and / or to give the blank the desired shape for the subsequent shaping. Any suitable method can be used as the material-removing machining method, in particular metal-cutting methods or electrochemical machining methods.
Die Rohlinge können durch Erschmelzen im Vakuum oder Schutzgas mit selbstverzehrenden Elektroden oder im gekühlten Tiegel mittels Plasmalichtbogenschmelzen hergestellt werden, wobei ein einmaliges oder mehrmaliges Umschmelzen der Legierung durchgeführt werden kann. Das Umschmelzen kann mittels Vakuuminduktionsschmelzen oder Vakuumlichtbogenumschmelzen (VIM vacuum induction melting; VAR vacuum arc remelting) erfolgen und das abgegossene Material kann heiß-isostatisch gepresst werden, wobei Temperaturen ≥ 1200°C bei einem Druck ≥ 100 MPa und einer Haltezeit ≥ 4 Stunden angewendet werden können.The blanks can be produced by melting in vacuo or inert gas with self-consumable electrodes or in the cooled crucible by means of plasma arc melting, wherein a single or multiple remelting of the alloy can be performed. The remelting may be by vacuum induction melting or vacuum arc remelting (VIM vacuum induction melting), and the cast material may be hot isostatically pressed using temperatures ≥ 1200 ° C at a pressure ≥ 100 MPa and a holding time ≥ 4 hours can.
Nach dem Schmieden und vor oder vorzugsweise nach der zweistufigen Wärmebehandlung kann das geschmiedete Halbzeug mit einem materialabtragenden Bearbeitungsverfahren nachbearbeitet werden, um das fertige Bauteil zu erzeugen. Als materialabtragendes Bearbeitungsverfahren kann jedes geeignete Verfahren eingesetzt werden, insbesondere spanabhebende Verfahren oder elektrochemische Bearbeitungsverfahren.After forging and before or preferably after the two-stage heat treatment, the forged semi-finished product can be post-processed with a material-removing machining process to produce the finished component. Any suitable method can be used as the material-removing machining method, in particular metal-cutting methods or electrochemical machining methods.
Die beigefügten Zeichnungen zeigen in rein schematischer Weise in
- Figuren 1a und 1b
- einen Verfahrensablauf zur Herstellung einer Turbinenschaufel gemäß der vorliegenden Erfindung, in
Figur 2- ein Diagramm zur Verdeutlichung möglicher Masseverteilungen in einem Rohling für das Schmieden und in
Figur 3- ein Zustandsdiagramm für eine TiAl - Legierung, wie sie bei der vorliegenden Erfindung eingesetzt werden kann, mit der Angabe des Phasenfeldes, in dem das Schmieden bzw. die Umformung stattfindet.
- FIGS. 1a and 1b
- a method of manufacturing a turbine blade according to the present invention, in
- FIG. 2
- a diagram to illustrate possible mass distributions in a blank for forging and in
- FIG. 3
- a state diagram for a TiAl alloy, as can be used in the present invention, with the indication of the phase field in which the forging takes place or the transformation takes place.
Weitere Vorteile, Kennzeichen und Merkmale der vorliegenden Erfindung werden bei der nachfolgenden detaillierten Beschreibung der Ausführungsbeispiele deutlich. Allerdings ist die Erfindung nicht auf diese Ausführungsbeispiele beschränkt.Further advantages, characteristics and features of the present invention will become apparent in the following detailed description of the embodiments. However, the invention is not limited to these embodiments.
Die
Zu Beginn wird ein Rohling 5 hergestellt, indem in eine Gießform 1 mit einem Hohlraum 2 entsprechend der Form des herzustellenden Rohlings 5 eine schmelzflüssige TiAl - Legierung eingefüllt wird.Initially, a blank 5 is produced by filling a molten TiAl alloy into a
Nach dem Abgießen der TiAl - Legierung in der Form 1 und Erstarren der TiAl - Legierung kann der Gussrohling 4 in einer Anlage 3 für heiß - isostatisches Pressen entsprechend gepresst werden, um den Gussrohling 4 zu verdichten und mögliche Gusslunker oder dergleichen zu schließen. Das heiß - isostatische Pressen dient somit nicht der Umformung des Gussrohlings 4, sondern lediglich der Materialverdichtung.After pouring the TiAl alloy in the
Danach kann der Rohling 5 zusätzliche einer materialabtragenden Nachbearbeitung unterzogen werden, beispielsweise durch spanabhebende Verfahren oder durch elektrochemische Bearbeitung.Thereafter, the blank 5 can be additionally subjected to a material-removing post-processing, for example by machining or by electrochemical machining.
Der entsprechend hergestellte Rohling 5 wird in einer Gesenkschmiede 6 zu einem endkonturnahen, geschmiedeten Halbzeug 9 geschmiedet, wobei die Gesenkschmiede 6 zwei Gesenkhohlformen 7 und 8 aufweist, die zwischen sich eine Kavität entsprechend der Form des zu schmiedenden Halbzeugs 9 definieren, wie in der gestrichelten Darstellung der
Nach dem isothermen Schmieden liegt ein endkonturnahes, geschmiedetes Halbzeug 9 vor, welches zu dem fertigen Bauteil, nämlich einer Turbinenschaufel 10, durch eine materialabtragende Nachbearbeitung gefertigt werden kann. Die Nachbearbeitung durch Materialabtrag kann durch spanabhebende Verfahren oder elektrochemische Bearbeitungsverfahren durchgeführt werden.After isothermal forging, there is a forged,
Nach der Nachbearbeitung liegt eine fertige Turbinenschaufel 10 mit einem Schaufelblatt 13, einem Schaufelfuß 11 und einem Deckband 12 vor.After finishing, a
Wie sich aus den
Die
Die
Obwohl die vorliegende Erfindung anhand der Ausführungsbeispiele detailliert beschrieben worden ist, ist für den Fachmann selbst verständlich, dass die Erfindung nicht auf diese Ausführungsbeispiele beschränkt ist, sondern dass vielmehr Abwandlungen in der Weise vorgenommen werden können, dass einzelne Merkmale weggelassen oder andersartige Kombinationen von Merkmalen verwirklicht werden können, solange der Schutzbereich der beigefügten Ansprüche nicht verlassen wird.Although the present invention has been described in detail with reference to the embodiments, it will be understood by those skilled in the art that the invention is not limited to these embodiments, but rather modifications may be made such that individual features are omitted or other types of feature combinations realized as long as the scope of protection of the appended claims is not abandoned.
- 11
- Gießformmold
- 22
- Hohlraumcavity
- 33
- Anlage zum heiß - isostatischen PressenPlant for hot isostatic pressing
- 44
- Gießrohlingcast blank
- 55
- Rohlingblank
- 66
- GesenkschmiedeGesenkschmiede
- 77
- GesenkhohlformGesenkhohlform
- 88th
- GesenkhohlformGesenkhohlform
- 99
- geschmiedetes Halbzeugforged semi-finished product
- 1010
- Turbinenschaufelturbine blade
- 1111
- Schaufelfußblade
- 1212
- Deckbandshroud
- 1313
- Schaufelblattairfoil
- 1414
- Arbeitsfeldfield of work
Claims (20)
dadurch gekennzeichnet, dass
die Form des Rohlings (5) so gewählt wird, dass der Umformgrad innerhalb des nutzbaren Volumens des geschmiedeten Halbzeugs durch das Schmieden einen definierten Wert aufweist, der über das nutzbare Volumen maximal um ± 1 von dem definierten Wert abweicht.A method of making a forged (10) TiAl alloy component, particularly a turbine blade, in which a blank (5) is provided of a TiAl alloy and formed by forging into a forged stock (9), wherein the forged one Semifinished a usable volume is defined, which corresponds to the produced, forged component,
characterized in that
the shape of the blank (5) is selected so that the degree of deformation within the usable volume of the forged semi-finished product by forging has a defined value which deviates over the usable volume by a maximum of ± 1 from the defined value.
dadurch gekennzeichnet, dass
der verwendete Umformgrad der Umformgrad in einer oder mehreren Richtungen eines Bezugssystems ist, der Umformgrad in jeder Richtung eines Bezugssystems ist, der wertmäßig größte und/oder der wertmäßig kleinste Umformgrad ist oder der Umformgrad ϕg ist, wobei ϕg = |ϕmax | = ½(|ϕx|+|ϕy|+|ϕz|) ist und wobei ϕx, ϕy, ϕz die Umformgrade in x - , y - und z - Richtung sind.Method according to claim 1,
characterized in that
the degree of deformation used is the degree of deformation in one or more directions of a reference system which is the degree of deformation in each direction of a reference system which is the largest in terms of value and / or the smallest degree of deformation or the degree of deformation φ g , where φ g = | φ max | = ½ (| φ x | + | φ y | + | φ z |) and where φ x , φ y , φ z are the degrees of deformation in the x, y and z directions.
dadurch gekennzeichnet, dass
der Umformgrad innerhalb des nutzbaren Volumens des geschmiedeten Halbzeugs (9) von dem definierten Wert maximal um ± 0,5, insbesondere ± 0,25 abweicht.Method according to claim 1 or 2,
characterized in that
the degree of deformation within the usable volume of the forged semi-finished product (9) deviates from the defined value by a maximum of ± 0.5, in particular ± 0.25.
dadurch gekennzeichnet, dass
der definierte Wert des Umformgrades größer oder gleich 0,7 ist, wobei insbesondere der Umformgrad von 0,7 innerhalb des nutzbaren Volumens nicht unterschritten wird.Method according to one of the preceding claims,
characterized in that
the defined value of the degree of deformation is greater than or equal to 0.7, wherein in particular the degree of deformation of 0.7 within the usable volume is not exceeded.
dadurch gekennzeichnet, dass
der definierte Wert des Umformgrades kleiner oder gleich 2,5, insbesondere kleiner oder gleich 2,0 ist.Method according to one of the preceding claims,
characterized in that
the defined value of the degree of deformation is less than or equal to 2.5, in particular less than or equal to 2.0.
dadurch gekennzeichnet, dass
die Umformgeschwindigkeit im Bereich von 0,01 bis 0,5 1/s, insbesondere 0,025 bis 0,25 1/s liegt.Method according to one of the preceding claims,
characterized in that
the forming speed is in the range of 0.01 to 0.5 1 / s, in particular 0.025 to 0.25 1 / s.
dadurch gekennzeichnet, dass
die Form des Rohlings (5) so gewählt wird, dass entlang der Längsachse des Rohlings der Rohling in drei gleiche Bereiche unterteilt wird, und zwar einen ersten und zweiten Endbereich sowie einen Mittelbereich, wobei gilt MM < ME1 ≤ ME2 und MM die Masse des Rohlings im Mittelbereich, ME1 die Masse des Rohlings im ersten Endbereich und ME2 die Masse des Rohlings im zweiten Endbereich ist.Method according to one of the preceding claims,
characterized in that
the shape of the blank (5) is selected such that along the longitudinal axis of the blank the blank is subdivided into three equal areas, namely first and second end areas and a central area, where M M <M E1 ≦ M E2 and M M the mass of the blank in the middle region, M E1 is the mass of the blank in the first end region and M E2 is the mass of the blank in the second end region.
dadurch gekennzeichnet, dass
MM ≤ ME2 / 1,25 ist.Method according to claim 7,
characterized in that
M M ≤ M E2 / 1.25.
dadurch gekennzeichnet, dass
eine TiAl-Legierung mit Niob und Molybdän, insbesondere eine Legierung mit 27 bis 30 Gew.% Aluminium, 8 bis 10 Gew.% Niob und 1 bis 3 Gew.% Molybdän verwendet wird.Method according to one of the preceding claims,
characterized in that
a TiAl alloy with niobium and molybdenum, in particular an alloy with 27 to 30 wt.% Aluminum, 8 to 10 wt.% Niobium and 1 to 3 wt.% Molybdenum is used.
dadurch gekennzeichnet, dass
eine Legierung mit 0,01 bis 0,04 Gew.% Bor verwendet wird.Method according to claim 9,
characterized in that
an alloy with 0.01 to 0.04 wt.% Boron is used.
dadurch gekennzeichnet, dass
eine Legierung verwendet wird, die neben unvermeidbaren Verunreinigungen mindestens einen weiteren Bestandteil aus der Gruppe aufweist, die Kohlenstoff, Sauerstoff, Stickstoff, Wasserstoff, Chrom, Silizium, Eisen, Kupfer, Nickel und Yttrium umfasst, wobei deren Gehalt ≤ 0,05 Gew.% Chrom, ≤ 0,05 Gew.% Silizium, ≤ 0,08 Gew.% Sauerstoff, ≤ 0,02 Gew.% Kohlenstoff, ≤ 0,015 Gew.% Stickstoff, ≤ 0,005 Gew.% Wasserstoff,
≤ 0,06 Gew.% Eisen, ≤ 0,15 Gew.% Kupfer, ≤ 0,02 Gew.% Nickel und ≤ 0,001 Gew.% Yttrium betragen kann.Method according to claim 9 or 10,
characterized in that
an alloy is used which comprises, in addition to unavoidable impurities, at least one further constituent from the group comprising carbon, oxygen, nitrogen, hydrogen, chromium, silicon, iron, copper, nickel and yttrium, the content of which is ≤ 0.05% by weight. Chromium, ≤ 0.05 wt% silicon, ≤ 0.08 wt% oxygen, ≤ 0.02 wt% carbon, ≤ 0.015 wt% nitrogen, ≤ 0.005 wt% hydrogen,
≤ 0.06% by weight of iron, ≤ 0.15% by weight of copper, ≤ 0.02% by weight of nickel and ≤ 0.001% by weight of yttrium.
dadurch gekennzeichnet, dass
eine Legierung verwendet wird, deren chemische Zusammensetzung Titan in einer Menge umfasst, sodass die Legierung mit den übrigen Bestandteilen der Ansprüche 8 bis 10 100 Gew.% umfasst.Method according to one of claims 9 to 11,
characterized in that
an alloy is used whose chemical composition comprises titanium in an amount such that the alloy with the other constituents of the claims comprises 8 to 10 100 wt.%.
dadurch gekennzeichnet, dass
das Umformen durch isothermes Schmieden, insbesondere Gesenkschmieden im Temperaturbereich des α+γ+β - Phasengebiets der TiAl - Legierung erfolgt, insbesondere bei einer Schmiedetemperatur zwischen 1150°C und 1200°C.Method according to one of the preceding claims,
characterized in that
the forming by isothermal forging, in particular drop forging in the temperature range of the α + γ + β - phase region of the TiAl - alloy takes place, in particular at a forging temperature between 1150 ° C and 1200 ° C.
dadurch gekennzeichnet, dass
die TiAl - Legierung nach dem Umformen durch isothermes Schmieden einer zweistufigen Wärmebehandlung unterzogen wird, wobei die erste Stufe der Wärmebehandlung ein Rekristallisationsglühen für 50 bis 100 Minuten bei einer Temperatur unterhalb der γ/α - Umwandlungstemperatur und die zweite Stufe der Wärmebehandlung ein Stabilisierungsglühen im Temperaturbereich von 800°C bis 950°C für 5 bis 7 h umfasst, und wobei die Abkühlgeschwindigkeit bei der ersten Wärmebehandlungsstufe im Temperaturbereich zwischen 1300°C bis 900°C größer oder gleich 3°C/s ist.Method according to one of the preceding claims,
characterized in that
the TiAl alloy after forming by isothermal forging is subjected to a two - stage heat treatment, wherein the first stage of the heat treatment is a recrystallization annealing for 50 to 100 minutes at a temperature below the γ / α transformation temperature and the second stage of the heat treatment is a stabilization annealing in the temperature range of 800 ° C to 950 ° C for 5 to 7 h, and wherein the cooling rate in the first heat treatment step in the temperature range between 1300 ° C to 900 ° C is greater than or equal to 3 ° C / s.
dadurch gekennzeichnet, dass
das Rekristallisationsglühen für 60 bis 90 Minuten, insbesondere 70 bis 80 Minuten und/oder das Stabilisierungsglühen im Temperaturbereich von 825°C bis 925°C, insbesondere 850°C bis 900°C und/oder für 345 bis 375 Minuten durchgeführt wird.Method according to claim 14,
characterized in that
the recrystallization annealing is carried out for 60 to 90 minutes, in particular 70 to 80 minutes and / or the stabilization annealing in the temperature range from 825 ° C to 925 ° C, in particular 850 ° C to 900 ° C and / or for 345 to 375 minutes.
dadurch gekennzeichnet, dass
die Temperatur bei der Wärmebehandlung mit einer Genauigkeit von 5°C bis 10°C Abweichung von der Solltemperatur nach oben und unten eingestellt und gehalten wird.Method according to one of the preceding claims,
characterized in that
the temperature during the heat treatment is adjusted and maintained at an accuracy of 5 ° C to 10 ° C deviation from the target temperature up and down.
dadurch gekennzeichnet, dass
als Vormaterial für das Schmieden Rohlinge (5) verwendet werden, die durch mindestens eines der Verfahren aus der Gruppe hergestellt sind, die Gießen, Metallformspritzen (MIM), pulvermetallurgische Verfahren, additive Verfahren, 3D-Druck, Auftragsschweißen, heiß - isostatisches Pressen und materialabtragende Bearbeitungsverfahren umfasst.Method according to one of the preceding claims,
characterized in that
used as a raw material for forging blanks (5) produced by at least one of the processes in the group, casting, metal injection molding (MIM), powder metallurgy, additive processes, 3D printing, cladding, hot isostatic pressing and material removal Processing method includes.
dadurch gekennzeichnet, dass
das isotherme Schmieden und/oder das Umformen in einem einstufigen Umformschritt, insbesondere in einem Schmiedegesenk erfolgt und/oder das isotherme Schmieden als Gesenkschmieden mit beheiztem Gesenk erfolgt.Method according to one of the preceding claims,
characterized in that
isothermal forging and / or forming takes place in a single-stage forming step, in particular in a forging die, and / or isothermal forging is carried out as a die forging with heated die.
dadurch gekennzeichnet, dass
der bereitgestellte Rohling (5) ungeschmiedet ist und mit nur einem Schmiedeschritt zu dem Halbzeug umgeformt wird, wobei der nur eine Schmiedeschritt insbesondere dadurch ausgeführt wird, dass zwei Formen eines Gesenks in jeweils nur eine Richtung und gegeneinander gepresst werden, um dabei den zwischen den Formen liegenden Rohling zu dem Halbzeug (9) umzuformen.Method according to one of the preceding claims,
characterized in that
the blank (5) provided is unmolded and is formed into the semifinished product with only one forging step, the one forging step being carried out in particular by pressing two molds of a die in only one direction and against each other, in order to obtain the one between the molds forming blank to the semi-finished product (9).
dadurch gekennzeichnet, dass
das geschmiedete Halbzeug (9), das insbesondere mit ausschließlich einem Schmiedeschritt umgeformt wurde, mit einem materialabtragenden Bearbeitungsverfahren, insbesondere durch eine spanabhebende Bearbeitung, vorzugsweise Fräsen und/oder eine elektrochemische Bearbeitung, nachbearbeitet wird, um das geschmiedete Bauteil, insbesondere ohne weitere Umformung, zu erzeugen, und/oder dass das geschmiedete Bauteil eine Schaufel einer Strömungsmaschine, insbesondere eine Turbinenschaufel, vorzugsweise einer Niederdruckturbine ist.Method according to one of the preceding claims,
characterized in that
the forged semi-finished product (9), which in particular has been formed exclusively with a forging step, is finished with a material-removing machining process, in particular by machining, preferably milling and / or electrochemical machining, to the forged component, in particular without further forming generate, and / or that the forged component is a blade of a turbomachine, in particular a turbine blade, preferably a low-pressure turbine.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17160397.0A EP3372700B1 (en) | 2017-03-10 | 2017-03-10 | Method for making forged tial components |
ES17160397T ES2753242T3 (en) | 2017-03-10 | 2017-03-10 | Procedure for manufacturing forged TiAl components |
US15/915,290 US10737314B2 (en) | 2017-03-10 | 2018-03-08 | Method for producing forged TiAl components |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17160397.0A EP3372700B1 (en) | 2017-03-10 | 2017-03-10 | Method for making forged tial components |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3372700A1 true EP3372700A1 (en) | 2018-09-12 |
EP3372700B1 EP3372700B1 (en) | 2019-10-09 |
Family
ID=58277184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17160397.0A Active EP3372700B1 (en) | 2017-03-10 | 2017-03-10 | Method for making forged tial components |
Country Status (3)
Country | Link |
---|---|
US (1) | US10737314B2 (en) |
EP (1) | EP3372700B1 (en) |
ES (1) | ES2753242T3 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109365731A (en) * | 2018-12-11 | 2019-02-22 | 陕西宏远航空锻造有限责任公司 | A kind of die forging method of high temperature alloy precision forged blade |
EP3581668A1 (en) * | 2018-06-12 | 2019-12-18 | MTU Aero Engines GmbH | Method for producing a component from gamma tial and correspondingly manufactured component |
EP3584334A1 (en) * | 2018-06-19 | 2019-12-25 | MTU Aero Engines GmbH | Method for producing a forged component from a tial alloy and correspondingly manufactured component |
DE102020214700A1 (en) | 2020-11-23 | 2022-05-25 | MTU Aero Engines AG | METHOD OF MANUFACTURING A COMPONENT FROM A TIAL ALLOY AND COMPONENT MADE ACCORDINGLY |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113043648B (en) * | 2021-03-08 | 2024-01-26 | 洛阳航辉新材料有限公司 | Hot isostatic pressing method of flat plate castings |
CN115679231B (en) * | 2022-09-16 | 2024-03-19 | 中南大学 | A process for improving the high-temperature strong plasticity of titanium-aluminum-based alloys |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2386663A1 (en) | 2010-05-12 | 2011-11-16 | Böhler Schmiedetechnik GmbH & Co KG | Method for producing a component and component from a gamma-titanium-aluminium base alloy |
DE102015103422B3 (en) | 2015-03-09 | 2016-07-14 | LEISTRITZ Turbinentechnik GmbH | Process for producing a heavy-duty component of an alpha + gamma titanium aluminide alloy for piston engines and gas turbines, in particular aircraft engines |
DE102011110740B4 (en) | 2011-08-11 | 2017-01-19 | MTU Aero Engines AG | Process for producing forged TiAl components |
-
2017
- 2017-03-10 EP EP17160397.0A patent/EP3372700B1/en active Active
- 2017-03-10 ES ES17160397T patent/ES2753242T3/en active Active
-
2018
- 2018-03-08 US US15/915,290 patent/US10737314B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2386663A1 (en) | 2010-05-12 | 2011-11-16 | Böhler Schmiedetechnik GmbH & Co KG | Method for producing a component and component from a gamma-titanium-aluminium base alloy |
DE102011110740B4 (en) | 2011-08-11 | 2017-01-19 | MTU Aero Engines AG | Process for producing forged TiAl components |
DE102015103422B3 (en) | 2015-03-09 | 2016-07-14 | LEISTRITZ Turbinentechnik GmbH | Process for producing a heavy-duty component of an alpha + gamma titanium aluminide alloy for piston engines and gas turbines, in particular aircraft engines |
Non-Patent Citations (3)
Title |
---|
BROOKS ET AL: "Three-dimensional finite element modelling of a titanium aluminide aerofoil forging", JOURNAL OF MATERIALS PROCESSING TECHNO, ELSEVIER, NL, vol. 80-81, 1 August 1998 (1998-08-01), pages 149 - 155, XP005310781, ISSN: 0924-0136, DOI: 10.1016/S0924-0136(98)00103-4 * |
KIM ET AL: "Microstructural evolution and mechanical properties of a forged gamma titanium aluminide alloy", ACTA METALLURGICA & MATERIALIEN, PERGAMON / ELSEVIER SCIENCE LTD, GB, vol. 40, no. 6, 1 June 1992 (1992-06-01), pages 1121 - 1134, XP024183449, ISSN: 0956-7151, [retrieved on 19920601], DOI: 10.1016/0956-7151(92)90411-7 * |
SRINIVASAN R ET AL: "Temperature changes and loads during hot-die forging of a gamma titanium-aluminide alloy", JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, ELSEVIER, NL, vol. 160, no. 3, 30 March 2005 (2005-03-30), pages 321 - 334, XP027805712, ISSN: 0924-0136, [retrieved on 20050330] * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3581668A1 (en) * | 2018-06-12 | 2019-12-18 | MTU Aero Engines GmbH | Method for producing a component from gamma tial and correspondingly manufactured component |
US11542582B2 (en) | 2018-06-12 | 2023-01-03 | MTU Aero Engines AG | Method for producing a component of gamma—TiAl and component produced therefrom |
EP3584334A1 (en) * | 2018-06-19 | 2019-12-25 | MTU Aero Engines GmbH | Method for producing a forged component from a tial alloy and correspondingly manufactured component |
CN109365731A (en) * | 2018-12-11 | 2019-02-22 | 陕西宏远航空锻造有限责任公司 | A kind of die forging method of high temperature alloy precision forged blade |
CN109365731B (en) * | 2018-12-11 | 2020-10-20 | 陕西宏远航空锻造有限责任公司 | Die forging method for high-temperature alloy precision-forged blade |
DE102020214700A1 (en) | 2020-11-23 | 2022-05-25 | MTU Aero Engines AG | METHOD OF MANUFACTURING A COMPONENT FROM A TIAL ALLOY AND COMPONENT MADE ACCORDINGLY |
WO2022105967A1 (en) | 2020-11-23 | 2022-05-27 | MTU Aero Engines AG | Method for producing a component from an alloy, and correspondingly produced component |
Also Published As
Publication number | Publication date |
---|---|
US20180257127A1 (en) | 2018-09-13 |
ES2753242T3 (en) | 2020-04-07 |
EP3372700B1 (en) | 2019-10-09 |
US10737314B2 (en) | 2020-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3372700B1 (en) | Method for making forged tial components | |
EP0513407B1 (en) | Method of manufacture of a turbine blade | |
DE69707027T2 (en) | Regulation of the grain size of nickel-based superalloys | |
EP2386663B1 (en) | Method for producing a component and component from a gamma-titanium-aluminium base alloy | |
EP0464366B1 (en) | Process for producing a work piece from an alloy based on titanium aluminide containing a doping material | |
AT393842B (en) | METHOD FOR FORGING NICKEL-BASED SUPER ALLOYS AND AN OBJECT FROM A NICKEL-BASED SUPER ALLOY WITH IMPROVED LUBRICABILITY | |
EP3069802B1 (en) | Method for producing a component made of a compound material with a metal matrix and incorporated intermetallic phases | |
DE102015103422B3 (en) | Process for producing a heavy-duty component of an alpha + gamma titanium aluminide alloy for piston engines and gas turbines, in particular aircraft engines | |
DE69701268T2 (en) | Nickel alloy for turbine engine component | |
DE2445462B2 (en) | Use of a nickel alloy | |
EP3144402A1 (en) | Process for the production of a alpha+gamma titanium-aluminide alloy preform for the manufacture of a high load capacity component for piston engines and turbines, in particular aircraft turbines | |
DE2542094A1 (en) | METAL POWDER, METAL POWDER TREATMENT METHOD, AND METAL POWDER MANUFACTURING METHOD | |
EP2742162A1 (en) | Forged tial components, and method for producing same | |
EP3682988A1 (en) | Method for producing rotor blades from ni base alloys and rotor blade produced according to said method | |
EP3581668A1 (en) | Method for producing a component from gamma tial and correspondingly manufactured component | |
EP3269838A1 (en) | High temperature resistant tial alloy and method for production thereof, and component from a corresponding tial alloy | |
DE112014003143T5 (en) | Process for the preparation of a starting material for the separation treatment | |
EP0396185B1 (en) | Process for preparing semi-finished creep resistant products from high melting metal | |
EP1407056A2 (en) | Moulded piece made from an intermetallic gamma-ti-al material | |
EP3427858A1 (en) | Forging at high temperatures, in particular of titanium aluminides | |
DE69417003T2 (en) | Titanium-free, nickel-containing, martensitic-hardenable steel for stamping blocks and a method for the production thereof | |
CH710105B1 (en) | Nickel-based superalloy article and method of making the superalloy article. | |
EP3655559B1 (en) | Powder made of an alloy containing molybdenum, silicon and boron, use of said powder and additive production method for a workpiece made of said powder | |
WO2012071600A1 (en) | Method for producing an object from a metal or an alloy by means of large plastic deformation, object produced therefrom, and pressing tool therefor | |
EP3077557B1 (en) | Method for producing titanium-aluminum components |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170310 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20181002 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190517 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502017002480 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1188889 Country of ref document: AT Kind code of ref document: T Effective date: 20191115 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20191009 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2753242 Country of ref document: ES Kind code of ref document: T3 Effective date: 20200407 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200110 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200210 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200109 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200109 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200224 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502017002480 Country of ref document: DE |
|
PG2D | Information on lapse in contracting state deleted |
Ref country code: IS |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200209 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 |
|
26N | No opposition filed |
Effective date: 20200710 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200310 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200310 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20230320 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1188889 Country of ref document: AT Kind code of ref document: T Effective date: 20220310 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20230323 Year of fee payment: 7 Ref country code: DE Payment date: 20230320 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220310 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20230414 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502017002480 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20240310 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20241001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240310 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240310 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240331 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20241001 |