EP3221483B1 - Acier multiphases autotrempant en profondeur à haute résistance mécanique avec excellent aptitude au faconnage et procédé de fabrication d'une bande de cet acier - Google Patents
Acier multiphases autotrempant en profondeur à haute résistance mécanique avec excellent aptitude au faconnage et procédé de fabrication d'une bande de cet acier Download PDFInfo
- Publication number
- EP3221483B1 EP3221483B1 EP15821018.7A EP15821018A EP3221483B1 EP 3221483 B1 EP3221483 B1 EP 3221483B1 EP 15821018 A EP15821018 A EP 15821018A EP 3221483 B1 EP3221483 B1 EP 3221483B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- steel strip
- steel
- hot
- content
- strip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 213
- 239000010959 steel Substances 0.000 title claims description 213
- 238000004519 manufacturing process Methods 0.000 title description 24
- 238000000034 method Methods 0.000 claims description 85
- 238000000137 annealing Methods 0.000 claims description 77
- 238000001816 cooling Methods 0.000 claims description 52
- 230000008569 process Effects 0.000 claims description 52
- 229910052710 silicon Inorganic materials 0.000 claims description 50
- 229910045601 alloy Inorganic materials 0.000 claims description 44
- 239000000956 alloy Substances 0.000 claims description 44
- 229910052799 carbon Inorganic materials 0.000 claims description 40
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 36
- 229910052748 manganese Inorganic materials 0.000 claims description 35
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 30
- 238000003618 dip coating Methods 0.000 claims description 28
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 25
- 229910052760 oxygen Inorganic materials 0.000 claims description 25
- 239000001301 oxygen Substances 0.000 claims description 25
- 229910052804 chromium Inorganic materials 0.000 claims description 24
- 238000005096 rolling process Methods 0.000 claims description 20
- 238000010438 heat treatment Methods 0.000 claims description 19
- 238000005452 bending Methods 0.000 claims description 18
- 229910052796 boron Inorganic materials 0.000 claims description 18
- 229910052742 iron Inorganic materials 0.000 claims description 15
- 230000036961 partial effect Effects 0.000 claims description 12
- 239000007789 gas Substances 0.000 claims description 11
- 230000003647 oxidation Effects 0.000 claims description 11
- 238000007254 oxidation reaction Methods 0.000 claims description 11
- 238000012545 processing Methods 0.000 claims description 8
- 239000000155 melt Substances 0.000 claims description 4
- 238000007654 immersion Methods 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 2
- 238000003723 Smelting Methods 0.000 claims 1
- 239000011572 manganese Substances 0.000 description 57
- 239000011651 chromium Substances 0.000 description 45
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 41
- 239000010703 silicon Substances 0.000 description 40
- 239000000463 material Substances 0.000 description 31
- 229910000734 martensite Inorganic materials 0.000 description 29
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 28
- 239000010955 niobium Substances 0.000 description 26
- 239000010936 titanium Substances 0.000 description 26
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 25
- 230000015572 biosynthetic process Effects 0.000 description 25
- 229910001563 bainite Inorganic materials 0.000 description 23
- 230000000694 effects Effects 0.000 description 22
- 229910000859 α-Fe Inorganic materials 0.000 description 21
- 229910052758 niobium Inorganic materials 0.000 description 19
- 229910052719 titanium Inorganic materials 0.000 description 19
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 17
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 17
- 229910052739 hydrogen Inorganic materials 0.000 description 17
- 239000001257 hydrogen Substances 0.000 description 17
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 17
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 17
- 229910052757 nitrogen Inorganic materials 0.000 description 17
- 238000005496 tempering Methods 0.000 description 17
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 16
- 239000000203 mixture Substances 0.000 description 16
- 229910001566 austenite Inorganic materials 0.000 description 14
- 239000010949 copper Substances 0.000 description 14
- 229910052698 phosphorus Inorganic materials 0.000 description 14
- 238000005275 alloying Methods 0.000 description 13
- 238000005246 galvanizing Methods 0.000 description 13
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 12
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 12
- 239000011574 phosphorus Substances 0.000 description 12
- 229910052782 aluminium Inorganic materials 0.000 description 11
- 238000005097 cold rolling Methods 0.000 description 11
- 238000005098 hot rolling Methods 0.000 description 11
- 150000001247 metal acetylides Chemical class 0.000 description 11
- 229910052750 molybdenum Inorganic materials 0.000 description 11
- 230000002829 reductive effect Effects 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 9
- 239000011733 molybdenum Substances 0.000 description 9
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 8
- 239000011575 calcium Substances 0.000 description 8
- 229910052717 sulfur Inorganic materials 0.000 description 8
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 8
- 239000011701 zinc Substances 0.000 description 8
- 229910052725 zinc Inorganic materials 0.000 description 8
- -1 common steel-related Chemical compound 0.000 description 7
- 230000003111 delayed effect Effects 0.000 description 7
- 238000001953 recrystallisation Methods 0.000 description 7
- 229910052720 vanadium Inorganic materials 0.000 description 7
- 238000003466 welding Methods 0.000 description 7
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 6
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 6
- 238000005554 pickling Methods 0.000 description 6
- 230000001681 protective effect Effects 0.000 description 6
- 239000011593 sulfur Substances 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 230000029142 excretion Effects 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 230000007704 transition Effects 0.000 description 5
- 229910000885 Dual-phase steel Inorganic materials 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 229910052791 calcium Inorganic materials 0.000 description 4
- 238000005336 cracking Methods 0.000 description 4
- 230000009977 dual effect Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 229910001562 pearlite Inorganic materials 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 238000005482 strain hardening Methods 0.000 description 4
- 230000035882 stress Effects 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 241000196324 Embryophyta Species 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 238000005204 segregation Methods 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 241000282342 Martes americana Species 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000010960 cold rolled steel Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000006477 desulfuration reaction Methods 0.000 description 2
- 230000023556 desulfurization Effects 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 230000035784 germination Effects 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- VCTOKJRTAUILIH-UHFFFAOYSA-N manganese(2+);sulfide Chemical class [S-2].[Mn+2] VCTOKJRTAUILIH-UHFFFAOYSA-N 0.000 description 2
- 230000008092 positive effect Effects 0.000 description 2
- 238000004886 process control Methods 0.000 description 2
- 238000003303 reheating Methods 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000011573 trace mineral Substances 0.000 description 2
- 235000013619 trace mineral Nutrition 0.000 description 2
- 238000009489 vacuum treatment Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- 238000009736 wetting Methods 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical class [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 241000219307 Atriplex rosea Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 229910000915 Free machining steel Inorganic materials 0.000 description 1
- 229910000760 Hardened steel Inorganic materials 0.000 description 1
- 229910004283 SiO 4 Inorganic materials 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 229910000756 V alloy Inorganic materials 0.000 description 1
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- PGTXKIZLOWULDJ-UHFFFAOYSA-N [Mg].[Zn] Chemical compound [Mg].[Zn] PGTXKIZLOWULDJ-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000002730 additional effect Effects 0.000 description 1
- 230000003679 aging effect Effects 0.000 description 1
- JZQOJFLIJNRDHK-CMDGGOBGSA-N alpha-irone Chemical compound CC1CC=C(C)C(\C=C\C(C)=O)C1(C)C JZQOJFLIJNRDHK-CMDGGOBGSA-N 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- GPESMPPJGWJWNL-UHFFFAOYSA-N azane;lead Chemical compound N.[Pb] GPESMPPJGWJWNL-UHFFFAOYSA-N 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 1
- ZDVYABSQRRRIOJ-UHFFFAOYSA-N boron;iron Chemical compound [Fe]#B ZDVYABSQRRRIOJ-UHFFFAOYSA-N 0.000 description 1
- OSMSIOKMMFKNIL-UHFFFAOYSA-N calcium;silicon Chemical compound [Ca]=[Si] OSMSIOKMMFKNIL-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000001914 calming effect Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 229910001567 cementite Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- UPHIPHFJVNKLMR-UHFFFAOYSA-N chromium iron Chemical compound [Cr].[Fe] UPHIPHFJVNKLMR-UHFFFAOYSA-N 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000006355 external stress Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- AMWRITDGCCNYAT-UHFFFAOYSA-L manganese oxide Inorganic materials [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 1
- PPNAOCWZXJOHFK-UHFFFAOYSA-N manganese(2+);oxygen(2-) Chemical class [O-2].[Mn+2] PPNAOCWZXJOHFK-UHFFFAOYSA-N 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 239000010451 perlite Substances 0.000 description 1
- 235000019362 perlite Nutrition 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 229910001392 phosphorus oxide Inorganic materials 0.000 description 1
- LFGREXWGYUGZLY-UHFFFAOYSA-N phosphoryl Chemical class [P]=O LFGREXWGYUGZLY-UHFFFAOYSA-N 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000004881 precipitation hardening Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000010731 rolling oil Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical class [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- CADICXFYUNYKGD-UHFFFAOYSA-N sulfanylidenemanganese Chemical compound [Mn]=S CADICXFYUNYKGD-UHFFFAOYSA-N 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/84—Controlled slow cooling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/007—Heat treatment of ferrous alloys containing Co
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0273—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0278—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
- C21D9/48—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
- C21D9/54—Furnaces for treating strips or wire
- C21D9/56—Continuous furnaces for strip or wire
- C21D9/561—Continuous furnaces for strip or wire with a controlled atmosphere or vacuum
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
- C21D9/54—Furnaces for treating strips or wire
- C21D9/56—Continuous furnaces for strip or wire
- C21D9/562—Details
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
- C21D9/54—Furnaces for treating strips or wire
- C21D9/56—Continuous furnaces for strip or wire
- C21D9/58—Continuous furnaces for strip or wire with heating by baths
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/003—Apparatus
- C23C2/0038—Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
- C23C2/0224—Two or more thermal pretreatments
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/024—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
- C23C2/29—Cooling or quenching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
- C21D1/28—Normalising
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/74—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/74—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
- C21D1/76—Adjusting the composition of the atmosphere
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2241/00—Treatments in a special environment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0447—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0447—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
- C21D8/0473—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
Definitions
- the invention relates to a method for producing a cold-rolled or hot-rolled steel strip from an air-hardenable multiphase steel according to claim 1, and advantageous developments according to claims 2 to 20.
- the invention relates to steels with a tensile strength in the range of at least 950 MPa in the non-tempered state for the production of components which have improved formability (such as increased hole expansion and increased bending angle) and improved welding properties.
- a tempering treatment of these steels according to the invention can increase the yield strength and tensile strength, for example by air hardening with optional subsequent tempering.
- the weight of the vehicles can be reduced with improved forming and component behavior during production and operation.
- High-strength to ultra-high-strength steels must therefore have comparatively high requirements with regard to their strength and ductility, energy absorption and processing, such as punching, hot and cold forming, thermal hardening (e.g. air hardening, press hardening), welding and / or surface treatment, e.g. metallic finishing, organic coating or painting are sufficient.
- energy absorption and processing such as punching, hot and cold forming, thermal hardening (e.g. air hardening, press hardening), welding and / or surface treatment, e.g. metallic finishing, organic coating or painting are sufficient.
- Newly developed steels must therefore face the increasing weight requirements due to reduced sheet thickness, the increasing material requirements for yield strength, tensile strength, strengthening behavior and elongation at break with good processing properties such as formability and weldability.
- high-strength, high-strength steel with a single-phase or multi-phase structure must be used to ensure sufficient strength of the motor vehicle components and to meet the high component requirements with regard to toughness, edge crack resistance, improved bending angle and bending radius, energy absorption as well as strengthening and bake hardening Effect to suffice.
- the hole expansion capacity is a material property that describes the resistance of the material to crack initiation and crack propagation during forming operations in areas close to edges, such as when pulling a collar.
- the hole expansion test is regulated, for example, in ISO 16630. Then prefabricated holes punched into a sheet, for example, are expanded using a mandrel. The measured variable is the change in the hole diameter in relation to the initial diameter at which the first crack through the sheet occurs at the edge of the hole.
- Improved edge crack resistance means an increased formability of the sheet edges and can be described by an increased hole expansion capacity. This situation is known under the synonyms “L ow E dge C rack” (LEC) or under “H igh E H ole xpansion” (HHE) and xpand®.
- the bending angle describes a material property that gives conclusions about the material behavior during forming operations with dominant bending components (e.g. when folding) or also in the event of crash loads. Increased bending angles thus increase passenger compartment safety.
- the determination of the bending angle ( ⁇ ) is e.g. normatively regulated via the plate bending test in VDA 238-100.
- the above-mentioned properties are important for components that e.g. can be formed into very complex components by air hardening with optional tempering.
- High-strength components must be sufficiently resistant to embrittlement of hydrogen.
- Test of resistance of A dvanced H igh S trength S Teels (AHSS) for the automotive industry with respect to hydrogen-induced production-related brittle fractures is regulated in the SEP1970 and tested on the sample and the bracket Lochzugprobe.
- Dual-phase steels are increasingly being used in vehicle construction, which consist of a ferritic basic structure in which a martensitic second phase is embedded. It has been found that, in the case of low-carbon, micro-alloyed steels, portions of further phases such as bainite and residual austenite are advantageous, for example on the hole expansion behavior, the bending behavior and the affect hydrogen-induced brittle fracture behavior.
- the bainite can be present in different forms, such as upper and lower bainite.
- Multi-phase steels include e.g. Complex phase steels, ferritic-bainitic steels, TRIP steels, as well as the previously described dual phase steels, which are characterized by different structural compositions.
- these complex phase steels Compared to dual-phase steels, these complex phase steels have higher yield strengths, a greater yield strength ratio, less strain hardening and a higher hole expansion capacity.
- ferritic-bainitic steels are steels which contain bainite or solidified bainite in a matrix of ferrite and / or solidified ferrite.
- the strength of the matrix is brought about by a high dislocation density, grain refinement and the excretion of microalloying elements.
- dual-phase steels are steels with a ferritic basic structure in which a martensitic second phase is embedded in the form of an island, sometimes also with parts of bainite as the second phase. With high tensile strength, dual-phase steels show a low yield ratio and strong strain hardening.
- TRIP steels are, according to EN 10346, steels with a predominantly ferritic structure, in which bainite and residual austenite is embedded, which can convert to martensite during the forming (TRIP effect). Due to its strong strain hardening, the steel achieves high values of uniform elongation and tensile strength. In connection with the bake hardening effect high component strengths can be achieved. These steels are suitable for both stretch drawing and deep drawing. However, higher sheet metal holder forces and press forces are required for material forming. A comparatively strong springback must be taken into account.
- the high-strength steels with a single-phase structure include e.g. bainitic and martensitic steels.
- Bainitic steels are, according to EN 10346, steels which are characterized by a very high yield strength and tensile strength with sufficient elongation for cold forming processes. Due to the chemical composition, it is easy to weld.
- the structure typically consists of bainite.
- the structure may occasionally contain small amounts of other phases, such as martensite and ferrite.
- martensitic steels are steels that contain small amounts of ferrite and / or bainite in a basic structure of martensite through thermomechanical rolling. This steel grade is characterized by a very high yield strength and tensile strength with sufficient elongation for cold forming processes. Within the group of multi-phase steels, the martensitic steels have the highest tensile strength values. The suitability for deep drawing is limited. The martensitic steels are primarily suitable for bending forming processes, such as roll forming.
- High and high-strength multi-phase steels are used, among others. in structural, chassis and crash-relevant components, as sheet metal blanks, tailored blanks (welded blanks) and as flexible cold-rolled strips, so-called TRB®s or tailored strips.
- T ailor R olled B lank lightweight technology enables a significant weight reduction through a load-adjusted sheet thickness over the component length and / or steel grade.
- a special heat treatment takes place for the defined structure adjustment, where e.g. due to comparatively soft components such as ferrite or bainitic ferrite, the steel has its low yield strength and due to its hard components such as martensite or carbon-rich bainite, its strength.
- cold-rolled high-strength steel strips are usually recrystallized in a continuous annealing process to form sheet metal that is easy to form.
- the process parameters such as throughput speed, annealing temperatures and cooling speed (cooling gradients), are set according to the required mechanical-technological properties with the necessary structure.
- the pickled hot strip in typical thicknesses between 1.50 to 4.00 mm or cold strip in typical thicknesses from 0.50 to 3.00 mm is heated to a temperature in the continuous annealing furnace that during recrystallization and cooling sets the required structure formation.
- a constant temperature is difficult to achieve, especially with different thicknesses in the transition area from one belt to another belt.
- this can lead to e.g. the thinner strip is either passed through the furnace too slowly, which reduces productivity, or the thicker strip is passed through the furnace too quickly and the necessary annealing temperatures and cooling gradients are not achieved to achieve the desired structure.
- the consequences are increased waste and high costs of errors.
- TRB®s with a multi-phase structure is not without additional effort with today's known alloys and available continuous annealing systems for widely varying strip thicknesses, e.g. an additional heat treatment before cold rolling (hot strip soft annealing).
- strip thicknesses e.g. an additional heat treatment before cold rolling (hot strip soft annealing).
- hot strip soft annealing e.g. an additional heat treatment before cold rolling
- a homogeneous multi-phase structure cannot be set in cold as well as hot-rolled steel strips due to a temperature gradient occurring in the usual alloy-specific narrow process windows.
- a method for producing a steel strip with different thickness over the length of the strip is described, for example, in DE 100 37 867 A1 described.
- the annealing treatment is usually carried out in a continuous annealing furnace upstream of the hot-dip bath.
- the required structure is only set during the annealing treatment in the continuous annealing furnace in order to achieve the required mechanical properties.
- Decisive process parameters are therefore the setting of the annealing temperature and the speed, as well as the cooling rate (cooling gradient) in continuous annealing, since the phase change takes place depending on the temperature and time.
- the areas with a smaller strip thickness due to the conversion processes during cooling either have too high strengths due to excessively high martensite contents, or the areas with greater strip thickness achieve insufficient strengths due to insufficiently low martensite contents due to the process window being too small. Homogeneous mechanical-technological properties across the strip length or width can practically not be achieved with the known alloy concepts for continuous annealing.
- the goal of achieving the resulting mechanical-technological properties in a narrow range across the bandwidth and strip length through the controlled adjustment of the volume fractions of the structural components has top priority and is only possible through an enlarged process window.
- the known alloy concepts are characterized by an excessively narrow process window and are therefore unsuitable for solving the present problem, particularly in the case of flexibly rolled strips. With the known alloy concepts, only steels of a strength class with defined cross-sectional areas (strip thickness and bandwidth) can currently be produced, so that different alloy classes are necessary for different strength classes and / or cross-sectional areas.
- the lowering of the carbon equivalent due to lower carbon and manganese contents is to be compensated for by increasing the silicon content.
- the edge crack resistance and the weldability are improved with the same strength.
- a low yield strength ratio (Re / Rm) in a strength range above 950 MPa in the initial state is typical for a dual-phase steel and is primarily used for the formability during stretching and deep-drawing processes. It gives the designer information about the distance between the onset of plastic deformation and failure of the material under quasi-static stress. Accordingly, lower yield strength ratios represent a greater safety margin from component failure.
- a higher yield strength ratio (Re / Rm), as is typical for complex phase steels, is also characterized by a high resistance to edge cracks. This can be attributed to the smaller differences in the strength and hardness of the individual structural components and the finer structure, which has a favorable effect on a homogeneous deformation in the area of the cut edge.
- the analytical landscape for achieving multi-phase steels with a minimum tensile strength of 950 MPa is very diverse and shows very large alloy ranges for the strength-increasing elements carbon, silicon, manganese, phosphorus, nitrogen, aluminum as well as chromium and / or molybdenum as well as in the addition of micro alloys such as Titanium, niobium, vanadium and boron.
- the range of dimensions in this strength range is wide and lies in the thickness range from approximately 0.50 to approximately 4.00 mm for strips which are intended for continuous annealing.
- Hot strip, cold-rolled hot strip and cold strip can be used as primary material. Tapes up to about 1600 mm wide are mainly used, but also Slit strip dimensions that result from slitting the strips lengthways. Sheets or sheets are made by cross-cutting the strips.
- the structure of the steel is transferred to the austenitic area by heating, preferably to temperatures above 950 ° C. in a protective gas atmosphere. Subsequent cooling in air or protective gas leads to the formation of a martensitic structure for a high-strength component.
- the subsequent tempering enables the reduction of residual stresses in the hardened component. At the same time, the hardness of the component is reduced so that the required toughness values are achieved.
- the invention is therefore based on the object of creating a new cost-effective alloy concept for a high-strength air-hardenable multiphase steel with excellent processing properties and with a minimum tensile strength of 950 MPa in the non-tempered state, lengthways and crosswise to the rolling direction, preferably with a dual-phase structure, with which the process window for continuous annealing of hot or cold rolled strips has been expanded so that in addition to strips with different cross-sections, steel strips with a thickness and strip width that varies over the strip length and the correspondingly varying degrees of cold rolling with the most homogeneous mechanical and technological properties can be produced.
- the hot-dip coating of the steel is to be guaranteed and a method for producing a strip made from this steel is to be specified.
- the structure consists of the main phases ferrite and martensite and the secondary phase bainite, which determines the improved mechanical properties of the steel.
- the steel is characterized by low carbon equivalents and, with the carbon equivalent CEV (IIW), is dependent on the sheet thickness for the addition of max. 0.66% limited, so that excellent weldability and the further specific properties described below can be achieved.
- the steel Due to its chemical composition, the steel can be manufactured in a wide range of hot rolling parameters, for example with reel temperatures above the bainite start temperature (variant A).
- a microstructure can be set which then allows the steel according to the invention to be cold rolled without prior soft annealing, with cold rolling degrees of between 10 and 40% being used per cold rolling pass.
- the steel is very well suited as a primary material for hot-dip coating and, due to the sum-related amount of Mn, Si and Cr added according to the invention depending on the strip thickness to be produced, has a significantly enlarged process window compared to the known steels.
- load-optimized components can advantageously be produced therefrom.
- the steel strip according to the invention can be produced as cold and hot strip and as cold-rolled hot strip by means of a hot-dip galvanizing line or a pure continuous annealing system in the trained and undressed, in the stretch-bend-oriented and non-stretch-bend-oriented and also in the heat-treated (aged) state.
- steel strips can be produced by an intercritical annealing between A c1 and A c3 or in the case of an austenitizing annealing over A c3 with a final controlled cooling, which leads to a dual or multi-phase structure.
- Annealing temperatures of approximately 700 to 950 ° C. have proven to be advantageous. Depending on the overall process (only continuous annealing or additional hot-dip coating), there are different approaches to heat treatment.
- the strip is cooled from the annealing temperature with a cooling rate of approx. 15 to 100 ° C / s to an intermediate temperature of approx. 160 to 250 ° C.
- the cooling is stopped, as described above, before entering the molten bath and is continued only after the bath has exited until the intermediate temperature of about 200 to 250 ° C. has been reached.
- the holding temperature in the molten bath is approximately 400 up to 470 ° C. Cooling down to room temperature takes place again at a cooling rate of approx. 2 to 30 ° C./s (see also method 2, Figure 6b ).
- the second variant of the temperature control for hot-dip coating includes maintaining the temperature for approx. 1 to 20 s at the intermediate temperature of approx. 200 to 350 ° C and then reheating to the temperature required for hot-dip coating of approx. 400 to 470 ° C. After finishing, the strip is cooled again to approx. 200 to 250 ° C. The cooling to room temperature again takes place at a cooling rate of approx. 2 to 30 ° C./s (see also method 3, Figure 6c ).
- manganese, chromium and silicon are responsible for the conversion of austenite to martensite in addition to carbon.
- the carbon equivalent can be reduced, which improves the weldability and prevents excessive hardening during welding. In the case of resistance spot welding, the electrode service life can also be significantly increased.
- Instruction elements are elements that are already present in the iron ore or, due to the manufacturing process, get into the steel. Because of their predominantly negative influences, they are usually undesirable. An attempt is made to remove them to a tolerable level or to convert them into harmless forms.
- Hydrogen (H) is the only element that can diffuse through the iron lattice without generating lattice strain. This means that the hydrogen in the iron lattice is relatively mobile and can be absorbed relatively easily during the processing of the steel. Hydrogen can only be absorbed into the iron lattice in an atomic (ionic) form.
- Hydrogen has a strong embrittlement effect and diffuses preferentially to energetically favorable places (defects, grain boundaries etc.). Defects act as hydrogen traps and can significantly increase the length of time that hydrogen remains in the material.
- a more uniform structure which among other things in the steel according to the invention. achieved through its widened process window also reduces the susceptibility to hydrogen embrittlement.
- Oxygen (O) In the molten state, the steel has a relatively high absorption capacity for gases. At room temperature, however, oxygen is only soluble in very small amounts. Analogous to hydrogen, oxygen can only diffuse into the material in an atomic form. Due to the strong embrittlement effect and the negative effects on the aging resistance, attempts are made to reduce the oxygen content as much as possible during manufacture.
- the oxygen content in the steel should therefore be as low as possible.
- Phosphorus (P) is a trace element from iron ore and is dissolved in the iron lattice as a substitute atom . Phosphorus increases hardness through solid-solution hardening and improves hardenability. However, attempts are generally made to lower the phosphorus content as much as possible, since, among other things, due to its low solubility in the solidifying medium, it tends to segregate and to a large extent reduces the toughness. Due to the accumulation of phosphorus at the grain boundaries, grain boundary breaks occur. In addition, phosphorus increases the transition temperature from tough to brittle behavior up to 300 ° C. During hot rolling, near-surface phosphorus oxides can cause tearing at the grain boundaries.
- phosphorus is used in small quantities ( ⁇ 0.1% by weight) as a microalloying element due to the low cost and the high increase in strength, for example in high-strength IF steels (interstitial free), bake hardening steels or in some alloy concepts for dual phase steels.
- the steel according to the invention differs from known analysis concepts which use phosphorus as a solid solution, inter alia in that phosphorus is not alloyed but is set as low as possible.
- the phosphorus content in the steel according to the invention is limited to amounts which are unavoidable in the production of steel.
- sulfur is bound as a trace element in iron ore.
- Sulfur is undesirable in steel (with the exception of free-cutting steels) because it tends to segregate and has a strong embrittlement effect. An attempt is therefore made to achieve the lowest possible sulfur content in the melt, for example by means of a vacuum treatment.
- the sulfur present is converted into the relatively harmless compound manganese sulfide (MnS) by adding manganese.
- MnS manganese sulfide
- the manganese sulfides are often rolled out in rows during the rolling process and act as germination points for the conversion. This leads to a stratified structure, especially in the case of diffusion-controlled conversion, and can lead to deteriorated mechanical properties in the case of pronounced stringency (e.g. pronounced marten seat lines instead of distributed martensite islands, anisotropic material behavior, reduced elongation at break).
- the sulfur content in the steel according to the invention is limited to ⁇ 0.0030% by weight, advantageously to ⁇ 0.0025% by weight or optimally to ⁇ 0.0020% by weight or to quantities unavoidable in the production of steel .
- Alloy elements are usually added to the steel in order to influence certain properties.
- An alloy element in different steels can influence different properties. The effect generally depends strongly on the amount and the state of the solution in the material.
- Carbon (C) is the most important alloying element in steel. Due to its targeted introduction of up to 2.06% by weight, iron only becomes steel. The carbon content is often drastically reduced during steel production. In the case of dual-phase steels for continuous hot-dip coating, its proportion according to EN 10346 or VDA 239-100 is a maximum of 0.230% by weight, a minimum value is not specified.
- carbon is dissolved interstitially in the iron lattice.
- the solubility is a maximum of 0.02% in ⁇ -iron and a maximum of 2.06% in ⁇ -iron.
- carbon significantly increases the hardenability of steel and is therefore essential for the formation of a sufficient amount of martensite. Too high a carbon content, however, increases the difference in hardness between ferrite and martensite and limits weldability.
- the steel according to the invention contains carbon contents of less than or equal to 0.115% by weight.
- Silicon (Si) binds oxygen during casting and is therefore used for calming during the deoxidation of the steel. It is important for the later steel properties that the segregation coefficient is significantly lower than, for example, that of manganese (0.16 compared to 0.87). Segregations generally lead to a line arrangement of the structural components, which deteriorate the forming properties, for example the widening of the holes and the ability to bend.
- the latter is due, among other things, to the fact that silicon reduces the solubility of carbon in the ferrite and increases the activity of carbon in the ferrite, thus preventing the formation of carbides, which, as brittle phases, reduce ductility, which in turn improves the formability.
- the low strength-increasing effect of silicon within the range of the steel according to the invention creates the basis for a wide process window.
- silicon in the range according to the invention has led to further surprising effects described below.
- the delay in carbide formation described above could e.g. can also be brought about by aluminum.
- aluminum forms stable nitrides, so that insufficient nitrogen is available for the formation of carbonitrides with microalloying elements.
- This problem does not exist due to the alloying with silicon, since silicon forms neither carbides nor nitrides.
- Silicon thus has an indirect positive effect on the formation of precipitates through microalloys, which in turn have a positive effect on the strength of the material. Since the increase in the transition temperatures due to silicon tends to favor grain coarsening, a microalloy with niobium, titanium and boron is particularly expedient, as is the targeted adjustment of the nitrogen content in the steel according to the invention.
- the atmospheric conditions during the annealing treatment in a continuous hot-dip coating system result in a reduction in iron oxide, which is found, for example, in the Cold rolling or as a result of storage at room temperature on the surface.
- the gas atmosphere is oxidizing, with the result that segregation and selective oxidation of these elements can occur.
- the selective oxidation can take place both externally, that is to say on the substrate surface, and internally within the metallic matrix.
- the internal oxidation of the alloying elements can be influenced in a targeted manner by adjusting the oxygen partial pressure of the furnace atmosphere (N 2 -H 2 protective gas atmosphere).
- the set oxygen partial pressure must satisfy the following equation, the furnace temperature being between 700 and 950 ° C. - 12th > log pO 2nd ⁇ - 5 * Si - 0.25 - 3rd * Mn - 0.25 - 0.1 Cr - 0.5 - 7 * - ln B 0.5
- Si, Mn, Cr, B denote the corresponding alloy proportions in the steel in% by weight and pO 2 the oxygen partial pressure in mbar.
- the selective oxidation of the alloy elements can also be influenced via the gas atmospheres of the furnace areas.
- the oxygen partial pressure and thus the oxidation potential for iron and the alloying elements can be set via the combustion reaction in the NOF. This must be set so that the oxidation of the alloy elements takes place internally below the steel surface and, if necessary, a thin iron oxide layer forms on the steel surface after the passage through the NOF area. This is achieved e.g. by reducing the CO value below 4% by volume.
- the iron oxide layer that may be formed is reduced under an N2-H2 protective gas atmosphere and, likewise, the alloy elements are further oxidized internally.
- the oxygen partial pressure set in this furnace area must satisfy the following equation, the furnace temperature being between 700 and 950 ° C. - 18th > log pO 2nd ⁇ - 5 * Si - 0.3 - 2.2 * Mn - 0.45 - 0.1 * Cr - 0.4 - 12.5 * - ln B 0.25
- Si, Mn, Cr, B denote the corresponding alloy proportions in the steel in% by weight and pO 2 the oxygen partial pressure in mbar.
- the dew point of the gas atmosphere N 2 -H 2 protective gas atmosphere
- the oxygen partial pressure must be set so that oxidation of the strip before immersion in the molten bath is avoided. Dew points in the range of -30 to -40 ° C have proven to be advantageous.
- hot-dip coating here, for example, hot-dip galvanizing
- the process route is selected via continuous annealing with subsequent electrolytic galvanizing (see process 1 in Figure 6a )
- electrolytic galvanizing pure zinc is deposited directly on the strip surface.
- pure zinc is deposited directly on the strip surface.
- it In order not to hinder the flow of electrons between the steel strip and the zinc ions and thus the galvanizing, it must be ensured that there is no surface-covering oxide layer on the strip surface. This condition is usually guaranteed by a standard reducing atmosphere during annealing and pre-cleaning before electrolysis.
- the minimum silicon content is set at 0.400% by weight and the maximum silicon content at 0.500% by weight.
- Manganese (Mn) is added to almost all steels for desulfurization in order to convert the harmful sulfur into manganese sulfides.
- manganese increases the strength of the ferrite through solidification of the crystal and shifts the ⁇ - / ⁇ -conversion to lower temperatures.
- the addition of manganese increases the hardness ratio between martensite and ferrite.
- the structure of the structure is strengthened. A high difference in hardness between the phases and the formation of marten seat lines result in a lower hole expansion capacity, which is synonymous with increased sensitivity to edge cracking.
- manganese tends to form oxides on the steel surface during the annealing treatment.
- manganese oxides eg MnO
- Mn mixed oxides eg Mn 2 SiO 4
- Si / Mn or Al / Mn ratio manganese is to be regarded as less critical, since globular oxides form rather than oxide films.
- high manganese levels can have a negative impact on the appearance of the zinc layer and the zinc adhesion.
- the above-mentioned measures for setting the furnace areas during continuous hot dip coating reduce the formation of Mn oxides or Mn mixed oxides on the steel surface after annealing.
- the manganese content is set at 1,900 to 2,350% by weight for the reasons mentioned.
- the manganese content is preferably in a range between 1,9 1,900 and 2,2 2,200% by weight, with strip thicknesses of 1.00 to 2.00 mm between 2,0 2,050 and 50 2,250% by weight and for strip thicknesses over 2.00 mm between ⁇ 2,100% by weight and ⁇ 2,350% by weight.
- Another special feature of the invention is that the variation in the manganese content can be compensated for by simultaneously changing the silicon content.
- the coefficients of manganese and silicon are approximately the same for both the yield strength and the tensile strength, which makes it possible to replace manganese with silicon.
- Chromium (Cr) on the one hand, can significantly increase the hardenability of steel in small quantities in dissolved form.
- Cr Cr
- chromium carbides causes particle solidification.
- the associated increase in the number of germ sites with a simultaneously reduced carbon content leads to a reduction in the hardenability.
- chromium In dual-phase steels, the addition of chromium mainly improves hardenability. When dissolved, chromium shifts the pearlite and bainite transformation for longer times and at the same time lowers the martensite start temperature.
- Chromium is also a carbide former. If chromium-iron mixed carbides are present, the austenitizing temperature before hardening must be selected high enough to dissolve the chromium carbides. Otherwise, the increased number of bacteria can lead to a deterioration in the hardenability.
- Chromium also tends to form oxides on the steel surface during the annealing treatment, which can degrade the hot dip quality.
- the above-mentioned measures for setting the furnace areas during continuous hot dip coating reduce the formation of Cr oxides or Cr mixed oxides on the steel surface after annealing.
- the chromium content is therefore set at contents of 0.200 to 0.500% by weight.
- Molybdenum (Mo) The addition of molybdenum leads to an improvement in hardenability, similar to that of chromium and manganese. The pearlite and bainite transformation is shifted to longer times and the martensite start temperature is lowered. At the same time, molybdenum is a strong chalk former, which produces finely divided mixed carbides, including with titanium. Molybdenum also significantly increases the tempering resistance, so that no loss of strength is to be expected in the hot-dip bath. Molybdenum also works through mixed crystal hardening, but is less effective than manganese and silicon.
- the molybdenum content is therefore set between 0.200 to 0.300% by weight. Ranges between 0.200 and 0.250% by weight are advantageous.
- Copper (Cu) The addition of copper can increase tensile strength and hardenability. In combination with nickel, chromium and phosphorus, copper can form a protective oxide layer on the surface, which can significantly reduce the rate of corrosion.
- copper In combination with oxygen, copper can form harmful oxides at the grain boundaries, which can have negative effects especially for hot forming processes.
- the copper content is therefore set at ⁇ 0.050% by weight and is therefore limited to the amounts that are unavoidable in steel production.
- the nickel content is therefore set at ⁇ 0.050% by weight and is therefore limited to the amounts that are unavoidable in steel production.
- Vanadium (V) Since the addition of vanadium is not necessary in the present alloy concept, the vanadium content is limited to inevitable amounts accompanying the steel.
- Aluminum (Al) is usually alloyed to the steel in order to bind the oxygen and nitrogen dissolved in the iron. Oxygen and nitrogen are thus converted into aluminum oxides and aluminum nitrides. These excretions can cause grain refinement by increasing the number of germs and thus increase the toughness properties and strength values.
- Titanium nitrides have a lower enthalpy of formation and are formed at higher temperatures.
- the aluminum content is therefore limited to 0.005 to a maximum of 0.060% by weight and is added to calm the steel.
- Niobium acts in steel in different ways. When hot rolling in the finishing train, it delays recrystallization due to the formation of very finely divided precipitates, which increases the density of germination points and results in a finer grain after conversion. The proportion of dissolved niobium also inhibits recrystallization. The excretions increase strength in the final product. These can be carbides or carbonitrides. Often it is mixed carbides, in which titanium is also incorporated. This effect starts from 0.005% by weight and is most evident from 0.010% by weight of niobium. The precipitates also prevent grain growth during (partial) austenitization in hot-dip galvanizing. No additional effect is to be expected above 0.060% by weight of niobium. Contents of 0.025 to 0.045% by weight have proven to be advantageous.
- Titanium (Ti) Due to its high affinity for nitrogen, titanium is primarily excreted as TiN during solidification. It also occurs together with niobium as a mixed carbide. TiN is of great importance for grain size stability in the pusher furnace. The Excretions have a high temperature stability, so that, in contrast to the mixed carbides at 1200 ° C, they are mostly present as particles that hinder grain growth. Titanium also retards recrystallization during hot rolling, but is less effective than niobium. Titan works through precipitation hardening. The larger TiN particles are less effective than the more finely distributed mixed carbides. The best effectiveness is achieved in the range from 0.005 to 0.060% by weight of titanium, which is why this represents the alloy range according to the invention. For this, contents of 0.025 to 0.045% by weight have been found to be advantageous.
- Boron (B) Boron is an extremely effective alloying agent to increase hardenability, which is effective even in very small amounts (from 5 ppm). The martensite start temperature remains unaffected.
- boron must be in solid solution. Since it has a high affinity for nitrogen, the nitrogen must first be set, preferably by the stoichiometrically necessary amount of titanium. Due to its low solubility in iron, the dissolved boron preferentially attaches to the austenite grain boundaries. There it partially forms Fe-B carbides, which are coherent and reduce the grain boundary energy. Both effects delay the formation of ferrite and pearlite and thus increase the hardenability of the steel.
- the boron content for the alloy concept according to the invention is set at values from 5 to 30 ppm, advantageously at ⁇ 25 or optimally at ⁇ 20 ppm.
- Nitrogen (N) can be an alloying element as well as an accompanying element from steel production. Too high levels of nitrogen lead to an increase in strength combined with a rapid loss of toughness and aging effects.
- fine grain hardening can be achieved using titanium nitride and niobium (carbo) nitride. Coarse grain formation is also suppressed when reheating before hot rolling.
- the N content is therefore set to values of 0,00 0.0020 to ⁇ 0.0120% by weight.
- the nitrogen content should be maintained at values of ⁇ 20 to ⁇ 90 ppm.
- nitrogen contents of ⁇ 40 to ⁇ 120 ppm have proven to be advantageous.
- niobium and titanium contents of ⁇ 0.100% by weight have proven to be advantageous and because of the principle interchangeability of niobium and titanium up to a minimum niobium content of 10 ppm and, for reasons of cost, particularly advantageous of ⁇ 0.090% by weight.
- total contents of 0 0.102% by weight have proven to be advantageous and particularly advantageous ⁇ 0.092% by weight. Higher contents no longer have an improvement in the sense of the invention.
- Calcium (Ca) An addition of calcium in the form of calcium-silicon mixed compounds causes a deoxidation and desulfurization of the molten phase during the production of steel. In this way, reaction products are transferred to the slag and the steel is cleaned. The increased purity leads to better properties according to the invention in the end product.
- the annealing temperatures for the dual-phase structure to be achieved for the steel according to the invention are between approximately 700 and 950 ° C., so that depending on the temperature range, a partially austenitic (two-phase area) or a fully austenitic structure (austenite area) is achieved.
- the continuously annealed and, in some cases, hot-dip coated material can be manufactured both as hot strip and as cold-rolled hot strip or cold strip in the trained (cold-rolled) or undressed state and / or in the stretch-oriented or non-stretch-bent state and also in the heat-treated state (aging). This state is referred to below as the initial state.
- Steel strips in the present case as hot strip, cold-rolled hot strip or cold strip, from the alloy composition according to the invention are also distinguished by a high resistance to edge cracking during further processing.
- the hot strip is produced according to the invention with finish rolling temperatures in the austenitic region above A r3 and at reel temperatures above the bainite start temperature (variant A).
- the hot strip is produced according to the invention with finish rolling temperatures in the austenitic region above A r3 and coiling temperatures below the bainite start temperature (variant B).
- Figure 1 shows schematically the process chain for the production of a strip from the steel according to the invention.
- the different process routes relating to the invention are shown.
- the process route is the same for all steels according to the invention until hot rolling (final rolling temperature), after which process routes differ depending on the desired results.
- the pickled hot strip can be galvanized or cold rolled and galvanized with different degrees of rolling.
- Soft-annealed hot strip or soft-annealed cold strip can also be cold-rolled and galvanized.
- material can also be processed without hot-dip coating, i.e. only in the context of continuous annealing with and without subsequent electrolytic galvanizing.
- a complex component can now be produced from the optionally coated material. This is followed by the hardening process, in which the air is cooled in accordance with the invention.
- a tempering stage can complete the thermal treatment of the component.
- Figure 2 shows schematically the time-temperature profile of the process steps hot rolling and continuous annealing of strips from the alloy composition according to the invention. It shows the time and temperature-dependent conversion for the hot rolling process as well as for heat treatment after cold rolling, component production, tempering and optional tempering.
- Figure 3 shows the chemical composition of the investigated steels in the upper half of the table. Alloys LH®1100 according to the invention were compared with the reference grades LH®800 / LH®900.
- the alloys according to the invention in particular have significantly higher Si contents and lower Cr contents and no V alloy.
- Figure 4 shows the mechanical parameters along the rolling direction of the investigated steels, with target values to be achieved for the air-hardened state ( Figure 4a ), the determined Values in the non-air-hardened initial state ( Figure 4b ) and in air-hardened condition ( Figure 4c ). The specified values to be achieved are safely achieved.
- Figure 5 shows results of hole expansion tests according to ISO 16630 (absolute values).
- the results of the hole expansion tests for variant A are shown for method 2 ( Figure 6b , 1 , 2nd mm) and method 3 ( Figure 6c , 2.0 mm).
- the investigated materials have a sheet thickness of 1.2 or 2.0 mm.
- the results apply to the test according to ISO 16630.
- Method 2 corresponds to annealing, for example on hot-dip galvanizing with a combined direct-fired furnace and radiant tube furnace, as described in Figure 6b is described.
- the method 3 corresponds, for example, to a process control in a continuous annealing system as shown in Figure 6c is described.
- the steel can optionally be reheated directly in front of the zinc bath using an induction furnace.
- the Figure 6 shows schematically three variants of the temperature-time profiles according to the invention in the annealing treatment and cooling and in each case different austenitizing conditions.
- Procedure 1 shows the annealing and cooling of the cold or hot-rolled or cold-rolled steel strip produced in a continuous annealing plant.
- the tape is heated to a temperature in the range of about 700 to 950 ° C (Ac1 to Ac3).
- the annealed steel strip is then cooled from the annealing temperature with a cooling rate between approx. 15 and 100 ° C / s to an intermediate temperature (ZT) of approx. 200 to 250 ° C.
- ZT intermediate temperature
- This schematic representation does not show a second intermediate temperature (approx. 300 to 500 ° C).
- the steel strip is cooled at a cooling rate of between about 2 and 30 ° C / s until reaching the R aum t emperature (RT) in air or cooling at a cooling rate between about 15 and 100 ° C / s up maintain at room temperature.
- RT R aum t emperature
- Procedure 2 shows the process according to method 1, however, the cooling of the steel strip is temporarily interrupted for the purpose of hot-dip coating when it passes through the hot-dip tank, in order to then cool at a cooling rate between approx. 15 and 100 ° C / s up to an intermediate temperature of approx. 200 continue up to 250 ° C.
- the steel strip is then cooled in air at a cooling rate between approx. 2 and 30 ° C / s until room temperature is reached.
- Procedure 3 ( Figure 6c ) also shows the process according to method 1 for hot-dip coating, but the cooling of the steel strip is interrupted by a short pause (approx. 1 to 20 s) at an intermediate temperature in the range of approx. 200 to 400 ° C and up to the temperature ( ST), which is necessary for hot-dip coating (approx. 400 to 470 ° C), reheated.
- the steel strip is then cooled again to an intermediate temperature of approx. 200 to 250 ° C.
- the final cooling of the steel strip takes place at a cooling rate of approx. 2 and 30 ° C / s until the room temperature is reached in air.
- Example 1 (cold strip) (alloy composition in% by weight)
- the material was previously hot-rolled at a final rolling set temperature of 910 ° C and coiled at a reel set temperature of 650 ° C with a thickness of 2.30 mm and after Pickling without additional heat treatment (such as hood annealing) cold rolled twice with an intermediate thickness of 1.49 mm.
- the steel according to the invention After tempering, the steel according to the invention has a structure which consists of martensite, bainite and residual austenite.
- This steel shows the following characteristic values after air hardening (initial values in brackets, unrefined condition): - yield strength (Rp0.2) 921 MPa (768 MPa) - tensile strength (Rm) 1198 MPa (984 MPa) - elongation at break (A80) 5.5% (10.7%) - A5 stretch 9.5% (-) - Bake hardening index (BH2) 52 MPa - Hole expansion ratio according to ISO 16630 - (49%) - Bending angle according to VDA 238-100 (lengthways, crossways) - (122 ° / 112 °) longitudinal to the rolling direction and would correspond to an LH®1100, for example.
- the yield point ratio Re / Rm in the longitudinal direction was 78% in the initial state.
- Example 2 (cold strip) (alloy composition in% by weight)
- This steel shows the following characteristic values after air hardening (initial values in brackets, unrefined condition): - yield strength (Rp0.2) 903 MPa (708 MPa) - tensile strength (Rm) 1186 MPa (983 MPa) - elongation at break (A80) 7.1% (11.7%) - A5 stretch 9.1% (-) - Bake hardening index (BH2) 48 MPa - Hole expansion ratio according to ISO 16630 - (32%) - Bending angle according to VDA 238-100 (lengthways, crossways) - (104 ° / 88 °) longitudinal to the rolling direction and would correspond to an LH®1100, for example. The yield point ratio Re / Rm in the longitudinal direction was 72% in the initial state.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Claims (30)
- Bande d'acier laminée à froid ou à chaud en un acier à plusieurs phases pouvant être trempé à l'air et revenu, présentant une résistance minimale à la traction dans le sens longitudinal et le sens transversal par rapport à la direction du laminage de 950 MPa avant la trempe à l'air et le revenu, présentant d'excellentes propriétés de mise en œuvre, consistant en les éléments suivants (teneurs en % en poids) :C ≥ 0,075 à ≤ 0,115Si ≥ 0,400 à ≤ 0,500Mn ≥ 1,900 à ≤ 2,350Cr ≥ 0,200 à ≤ 0,500Al ≥ 0,005 à ≤ 0,060N ≥ 0,0020 à ≤ 0,0120S ≤ 0,0030Nb ≥ 0,005 à ≤ 0,060Ti ≥ 0,005 à ≤ 0,060B ≥ 0,0005 à ≤ 0,0030Mo ≥ 0,200 à ≤ 0,300Ca ≥ 0,0005 à ≤ 0,0060Cu ≤ 0,050Ni ≤ 0,050le reste étant constitué de fer, y compris les impuretés usuelles d'accompagnement dans l'acier dues à l'élaboration, dans laquelle, eu égard à une fenêtre de procédé aussi large que possible lors du recuit continu de bandes à chaud ou à froid en cet acier, la teneur totale en Mn+Si+Cr est ajustée comme suit en fonction de l'épaisseur de la bande à produire :jusqu'à 1,00 mm : somme de Mn+Si+Cr ≥ 2,800 et ≤ 3,000 % en poids,supérieure à 1,00 et allant jusqu'à 2,00 mm : somme de Mn+Si+Cr ≥ 2,850 et ≤ 3,100 % en poids,supérieure à 2,00 mm : somme de Mn+Si+Cr ≥ 2,900 et ≤ 3,200 % en poids.
- Bande d'acier selon la revendication 1, caractérisée en ce que, pour des épaisseurs de bande allant jusqu'à 1,00 mm, la teneur en C est ≤ 0,100 % et l'équivalent carbone CEV(IIW) est ≤ 0,62 % en poids.
- Bande d'acier selon la revendication 1, caractérisée en ce que, pour des épaisseurs de bande supérieures à 1,00 et allant jusqu'à 2,00 mm, la teneur en C est ≤ 0,105 % et l'équivalent carbone CEV(IIW) est ≤ 0,64 %.
- Bande d'acier selon la revendication 1, caractérisée en ce que, pour des épaisseurs de bande supérieures à 2,00 mm, la teneur en C est ≤ 0,115 % et l'équivalent carbone CEV(IIW) est ≤ 0,66 %.
- Bande d'acier selon les revendications 1 et 2, caractérisée en ce que, pour des épaisseurs de bande allant jusqu'à 1,00 mm, la teneur en Mn est ≥ 1,900 jusqu'à ≤ 2,200 %.
- Bande d'acier selon les revendications 1 et 3, caractérisée en ce que, pour des épaisseurs de bande supérieures à 1,00 et allant jusqu'à 2,00 mm, la teneur en Mn est ≥ 2,050 jusqu'à ≤ 2,250 %.
- Bande d'acier selon les revendications 1 et 4, caractérisée en ce que, pour des épaisseurs de bande supérieures à 2,00 mm, la teneur en Mn est ≥ 2,100 jusqu'à ≤ 2,350 %.
- Bande d'acier selon l'une des revendications 1 à 7, caractérisée en ce que, pour une somme de Ti+Nb+B ≥ 0,010 jusqu'à ≤ 0,070 %, la teneur en N est ≥ 0,0020 jusqu'à ≤ 0,0090 %.
- Bande d'acier selon la revendication 8, caractérisée en ce que, pour la somme de Ti+Nb+B > 0,070 %, la teneur en N est ≥ 0,0040 jusqu'à ≤ 0,0120 %.
- Bande d'acier selon l'une des revendications 1 à 9, caractérisée en ce que la teneur en S est ≤ 0,0025 %.
- Bande d'acier selon la revendication 10, caractérisée en ce que la teneur en S est ≤ 0,0020 %.
- Bande d'acier selon l'une des revendications 1 à 11, caractérisée en ce que la teneur en Mo est ≤ 0,250 %.
- Bande d'acier selon l'une des revendications 1 à 12, caractérisée en ce que la teneur en Ti est ≥ 0,025 ≤ 0,045 %.
- Bande d'acier selon l'une des revendications 1 à 13, caractérisée en ce que la teneur en Nb est ≥ 0,025 jusqu'à ≤ 0,045 %.
- Bande d'acier selon l'une des revendications 1 à 14, caractérisée en ce que la somme Nb+Ti ≤ 0,100 %.
- Bande d'acier selon la revendication 15, caractérisée en ce que la somme Nb+Ti est ≤ 0,090 %.
- Bande d'acier selon l'une des revendications 1 à 16, caractérisée en ce que la somme Cr+Mo est ≤ 0,725 %.
- Bande d'acier selon l'une des revendications 1 à 17, caractérisée en ce que la somme Ti+Nb+B est ≤ 0,102 %.
- Bande d'acier selon la revendication 18, caractérisée en ce que la somme Ti+Nb+B est ≤ 0,092 %.
- Bande d'acier selon l'une des revendications 1 à 19, caractérisée en ce que la teneur en Ca est ≤ 0,0030 %.
- Traitement thermique d'une bande d'acier laminée à froid ou à chaud en un acier à plusieurs phases pouvant subir une trempe à l'air et un recuit selon l'une des revendications 1 à 20, caractérisé en ce que la bande d'acier laminée à chaud ou à froid est, pendant le recuit continu, chauffée à une température comprise dans la plage d'environ 700 à 950 °C, et que la bande d'acier recuite est ensuite refroidie, à partir de la température de recuit, à une vitesse de refroidissement comprise entre environ 15 et 100 °C/s jusqu'à une première température intermédiaire d'environ 300 à 500 °C, puis à une vitesse de refroidissement comprise entre environ 15 et 100 °C/s jusqu'à une seconde température intermédiaire d'environ 160 à 250 °C, puis la bande d'acier est refroidie à l'air à une température de refroidissement d'environ 2 à 30 °C/s jusqu'à atteindre la température ambiante, ou le refroidissement est maintenu à une vitesse de refroidissement comprise entre environ 15 et 100 °C/s, de la première température intermédiaire à la température ambiante.
- Traitement thermique selon la revendication 21, caractérisé en ce que, lors d'un revêtement par immersion à chaud, après le chauffage, suivi d'un refroidissement, le refroidissement est interrompu avant pénétration dans le bain de fusion et, après le revêtement par immersion à chaud, on poursuit le refroidissement à une vitesse de refroidissement comprise entre environ 15 et 100 °C/s jusqu'à une température intermédiaire d'environ 200 à 250 °C, puis la bande d'acier est refroidie à l'air à une vitesse de refroidissement d'environ 2 à 30 °C/s jusqu'à atteindre la température ambiante.
- Traitement thermique selon la revendication 1, caractérisé en ce que, lors d'un revêtement par immersion à chaud, après le chauffage, puis le refroidissement à la température intermédiaire d'environ 200 à 250 °C, on maintient la température pendant environ 1 à 20 s avant pénétration dans le bain de fusion, puis on chauffe de nouveau la bande d'acier à une température d'environ 400 à 470 °C et, après achèvement du revêtement par immersion à chaud, on procède à un refroidissement à une température de refroidissement comprise entre environ 15 et 100 °C/s jusqu'à une température intermédiaire d'environ 200 à 250 °C, puis on refroidit à l'air jusqu'à la température ambiante à une vitesse de refroidissement d'environ 2 à 30 °C/s.
- Traitement thermique selon l'une des revendications 22 à 23, caractérisé en ce que, lors du recuit continu, on élève le potentiel d'oxydation lors d'un recuit avec une configuration d'installation consistant en une zone de four à flamme directe (NOF) et un four à tubes radiants (RTF) grâce à une teneur en CO dans le NOF d'environ 4 % en volume, la pression partielle d'oxygène de l'atmosphère du four réductrice pour le fer étant, dans le RTF, ajustée selon l'équation suivante :
- Traitement thermique selon l'une des revendications 22 à 23, caractérisé en ce que, lors d'un recuit, seulement dans un four à tubes radiants, la pression partielle d'oxygène de l'atmosphère du four satisfait à l'équation suivante :
- Procédé selon l'une des revendications 21 à 25, caractérisé en ce que la bande d'acier est dressée après le traitement thermique ou le revêtement par immersion à chaud.
- Procédé selon au moins l'une des revendications 21 à 26, caractérisé en ce que la bande d'acier est dressée par traction et flexion après le traitement thermique ou le revêtement par immersion à chaud.
- Bande d'acier fabriquée par le procédé selon au moins l'une des revendications 21 à 27, présentant un rapport minimal d'expansion de trou selon ISO 16630 de 25 %.
- Bande d'acier fabriquée par le procédé selon au moins l'une des revendications 21 à 27, présentant un angle minimal de pliage selon VDA 238-100 de 65° dans la direction longitudinale ou dans la direction transversale.
- Bande d'acier fabriquée par le procédé selon au moins l'une des revendications 21 à 27, présentant un produit minimal Rm x α (résistance à la traction x angle de pliage selon VDA 238-100) de 100 000 MPa.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102014017274.0A DE102014017274A1 (de) | 2014-11-18 | 2014-11-18 | Höchstfester lufthärtender Mehrphasenstahl mit hervorragenden Verarbeitungseigenschaften und Verfahren zur Herstellung eines Bandes aus diesem Stahl |
PCT/DE2015/100474 WO2016078644A1 (fr) | 2014-11-18 | 2015-11-06 | Acier polyphasé, trempé à l'air et à haute résistance, ayant d'excellentes propriétés de mise en oeuvre et procédé de production d'une bande avec cet acier |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3221483A1 EP3221483A1 (fr) | 2017-09-27 |
EP3221483B1 true EP3221483B1 (fr) | 2020-05-06 |
Family
ID=55077320
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15821018.7A Active EP3221483B1 (fr) | 2014-11-18 | 2015-11-06 | Acier multiphases autotrempant en profondeur à haute résistance mécanique avec excellent aptitude au faconnage et procédé de fabrication d'une bande de cet acier |
Country Status (8)
Country | Link |
---|---|
US (1) | US10626478B2 (fr) |
EP (1) | EP3221483B1 (fr) |
KR (1) | KR20170084210A (fr) |
CN (1) | CN107208232B (fr) |
DE (1) | DE102014017274A1 (fr) |
MX (1) | MX2017006374A (fr) |
RU (1) | RU2721767C2 (fr) |
WO (1) | WO2016078644A1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3825433B1 (fr) * | 2018-08-22 | 2023-02-15 | JFE Steel Corporation | Tôle d'acier de haute résistance et méthode de production pour celle-ci |
EP3950994B1 (fr) * | 2019-03-28 | 2024-01-24 | Nippon Steel Corporation | Tôle d'acier à haute résistance |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015111177A1 (de) * | 2015-07-10 | 2017-01-12 | Salzgitter Flachstahl Gmbh | Höchstfester Mehrphasenstahl und Verfahren zur Herstellung eines kaltgewalzten Stahlbandes hieraus |
EP3571324B1 (fr) * | 2017-01-20 | 2021-11-03 | thyssenkrupp Hohenlimburg GmbH | Produit plat en acier laminé à chaud constitué d'un acier à phase complexe ayant une structure essentiellement bainitique et procédé pour fabriquer un tel produit plat en acier |
DE102017123236A1 (de) | 2017-10-06 | 2019-04-11 | Salzgitter Flachstahl Gmbh | Höchstfester Mehrphasenstahl und Verfahren zur Herstellung eines Stahlbandes aus diesem Mehrphasenstahl |
DE102017131253A1 (de) * | 2017-12-22 | 2019-06-27 | Voestalpine Stahl Gmbh | Verfahren zum Erzeugen metallischer Bauteile mit angepassten Bauteileigenschaften |
KR102507715B1 (ko) | 2018-08-22 | 2023-03-07 | 제이에프이 스틸 가부시키가이샤 | 고강도 강판 및 그의 제조 방법 |
US11795518B2 (en) * | 2018-10-24 | 2023-10-24 | Nippon Steel Corporation | Non-oriented electrical steel sheet and method of manufacturing stacked core using same |
DE102020110319A1 (de) | 2020-04-15 | 2021-10-21 | Salzgitter Flachstahl Gmbh | Verfahren zur Herstellung eines Stahlbandes mit einem Mehrphasengefüge und Stahlband hinzu |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012013113A1 (de) * | 2012-06-22 | 2013-12-24 | Salzgitter Flachstahl Gmbh | Hochfester Mehrphasenstahl und Verfahren zur Herstellung eines Bandes aus diesem Stahl mit einer Mindestzugfestigkleit von 580MPa |
Family Cites Families (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4578124A (en) * | 1984-01-20 | 1986-03-25 | Kabushiki Kaisha Kobe Seiko Sho | High strength low carbon steels, steel articles thereof and method for manufacturing the steels |
JP3347151B2 (ja) * | 1991-11-18 | 2002-11-20 | 日新製鋼株式会社 | 耐食性に優れた低降伏比冷延高張力鋼板の製造方法 |
EP0565066B1 (fr) * | 1992-04-06 | 1997-07-02 | Kawasaki Steel Corporation | TÔle noire ou fer blanc pour la production de boîtes et procédé de fabrication |
DE19610675C1 (de) | 1996-03-19 | 1997-02-13 | Thyssen Stahl Ag | Mehrphasenstahl und Verfahren zu seiner Herstellung |
DE10037867A1 (de) | 1999-08-06 | 2001-06-07 | Muhr & Bender Kg | Verfahren zum flexiblen Walzen eines Metallbandes |
WO2001064967A1 (fr) * | 2000-02-29 | 2001-09-07 | Kawasaki Steel Corporation | Tole d'acier laminee a froid a haute resistance presentant d'excellentes proprietes de durcissement par vieillissement par l'ecrouissage |
CA2422753C (fr) * | 2000-09-21 | 2007-11-27 | Nippon Steel Corporation | Tole d'acier presentant de bonnes caracteristiques de gel de forme et procede permettant de produire cette tole |
JP2002173742A (ja) * | 2000-12-04 | 2002-06-21 | Nisshin Steel Co Ltd | 形状平坦度に優れた高強度オーステナイト系ステンレス鋼帯およびその製造方法 |
FR2847273B1 (fr) * | 2002-11-19 | 2005-08-19 | Usinor | Piece d'acier de construction soudable et procede de fabrication |
JP4005517B2 (ja) * | 2003-02-06 | 2007-11-07 | 株式会社神戸製鋼所 | 伸び、及び伸びフランジ性に優れた高強度複合組織鋼板 |
CN100371487C (zh) * | 2003-04-28 | 2008-02-27 | 杰富意钢铁株式会社 | 盘式制动器用马氏体类不锈钢 |
AU2003235443A1 (en) * | 2003-05-27 | 2005-01-21 | Nippon Steel Corporation | High strength thin steel sheet excellent in resistance to delayed fracture after forming and method for preparation thereof, and automobile parts requiring strength manufactured from high strength thin steel sheet |
JP4443910B2 (ja) * | 2003-12-12 | 2010-03-31 | Jfeスチール株式会社 | 自動車構造部材用鋼材およびその製造方法 |
DE102004053620A1 (de) | 2004-11-03 | 2006-05-04 | Salzgitter Flachstahl Gmbh | Hochfester, lufthärtender Stahl mit ausgezeichneten Umformeigenschaften |
US7442268B2 (en) * | 2004-11-24 | 2008-10-28 | Nucor Corporation | Method of manufacturing cold rolled dual-phase steel sheet |
EP1867748A1 (fr) * | 2006-06-16 | 2007-12-19 | Industeel Creusot | Acier inoxydable duplex |
CN101426942A (zh) * | 2006-10-05 | 2009-05-06 | 杰富意钢铁株式会社 | 抗回火软化性和韧性优良的制动盘 |
KR100851189B1 (ko) * | 2006-11-02 | 2008-08-08 | 주식회사 포스코 | 저온인성이 우수한 초고강도 라인파이프용 강판 및 그제조방법 |
EP1990431A1 (fr) * | 2007-05-11 | 2008-11-12 | ArcelorMittal France | Procédé de fabrication de tôles d'acier laminées à froid et recuites à très haute résistance, et tôles ainsi produites |
PL2031081T3 (pl) | 2007-08-15 | 2011-11-30 | Thyssenkrupp Steel Europe Ag | Stal dwufazowa, produkt płaski z takiej stali dwufazowej i sposób wytwarzania produktu płaskiego |
EP2028282B1 (fr) | 2007-08-15 | 2012-06-13 | ThyssenKrupp Steel Europe AG | Acier en phase double, produit plat à partir d'un tel acier en phase double et son procédé de fabrication |
DE102007058222A1 (de) | 2007-12-03 | 2009-06-04 | Salzgitter Flachstahl Gmbh | Stahl für hochfeste Bauteile aus Bändern, Blechen oder Rohren mit ausgezeichneter Umformbarkeit und besonderer Eignung für Hochtemperatur-Beschichtungsverfahren |
JP4894863B2 (ja) * | 2008-02-08 | 2012-03-14 | Jfeスチール株式会社 | 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
EP2309014B1 (fr) * | 2008-07-31 | 2013-12-25 | JFE Steel Corporation | Tôles d'acier épaisses laminées à chaud présentant une résistance élevée à la traction et une excellente résistance à basse température, et procédé de production de celles-ci |
EP2163659B1 (fr) * | 2008-09-11 | 2016-06-08 | Outokumpu Nirosta GmbH | Acier inoxidable, bande froide fabriquée à partir de cet acier et procédé de fabrication d'un produit plat en acier à partir de cet acier |
JP5438302B2 (ja) * | 2008-10-30 | 2014-03-12 | 株式会社神戸製鋼所 | 加工性に優れた高降伏比高強度の溶融亜鉛めっき鋼板または合金化溶融亜鉛めっき鋼板とその製造方法 |
CA2809171C (fr) * | 2009-01-30 | 2017-12-19 | Jfe Steel Corporation | Tole forte d'acier laminee a chaud a resistance elevee a la traction presentant une excellente resistance aux fissurations induites par l'hydrogene |
JP4924730B2 (ja) * | 2009-04-28 | 2012-04-25 | Jfeスチール株式会社 | 加工性、溶接性および疲労特性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法 |
DE102009030489A1 (de) * | 2009-06-24 | 2010-12-30 | Thyssenkrupp Nirosta Gmbh | Verfahren zum Herstellen eines warmpressgehärteten Bauteils, Verwendung eines Stahlprodukts für die Herstellung eines warmpressgehärteten Bauteils und warmpressgehärtetes Bauteil |
DE102010024664A1 (de) | 2009-06-29 | 2011-02-17 | Salzgitter Flachstahl Gmbh | Verfahren zum Herstellen eines Bauteils aus einem lufthärtbaren Stahl und ein damit hergestelltes Bauteil |
CN102712171B (zh) * | 2009-12-21 | 2015-03-25 | 塔塔钢铁艾默伊登有限责任公司 | 高强度的热浸镀锌钢带材 |
EP2524972B9 (fr) * | 2010-01-13 | 2017-08-30 | Nippon Steel & Sumitomo Metal Corporation | Procede de production d'une tole d'acier a haute resistance presentant une excellente formabilite. |
JP5434960B2 (ja) * | 2010-05-31 | 2014-03-05 | Jfeスチール株式会社 | 曲げ性および溶接性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法 |
ES2455222T5 (es) * | 2010-07-02 | 2018-03-05 | Thyssenkrupp Steel Europe Ag | Acero de resistencia superior, conformable en frío y producto plano de acero compuesto de un acero de este tipo |
JP5306418B2 (ja) * | 2010-07-09 | 2013-10-02 | 日新製鋼株式会社 | 銅被覆鋼箔、負極用電極及び電池 |
US9512499B2 (en) * | 2010-10-22 | 2016-12-06 | Nippon Steel & Sumitomo Metal Corporation | Method for manufacturing hot stamped body having vertical wall and hot stamped body having vertical wall |
KR101533164B1 (ko) * | 2010-10-22 | 2015-07-01 | 신닛테츠스미킨 카부시키카이샤 | 핫스탬프 성형체의 제조 방법 및 핫스탬프 성형체 |
US9896736B2 (en) * | 2010-10-22 | 2018-02-20 | Nippon Steel & Sumitomo Metal Corporation | Method for manufacturing hot stamped body having vertical wall and hot stamped body having vertical wall |
DE102011000089A1 (de) * | 2011-01-11 | 2012-07-12 | Thyssenkrupp Steel Europe Ag | Verfahren zum Herstellen eines warmgewalzten Stahlflachprodukts |
DE102011117572A1 (de) * | 2011-01-26 | 2012-08-16 | Salzgitter Flachstahl Gmbh | Höherfester Mehrphasenstahl mit ausgezeichneten Umformeigenschaften |
US9670569B2 (en) * | 2011-03-28 | 2017-06-06 | Nippon Steel & Sumitomo Metal Corporation | Cold-rolled steel sheet and production method thereof |
EP2524970A1 (fr) * | 2011-05-18 | 2012-11-21 | ThyssenKrupp Steel Europe AG | Produit plat en acier hautement résistant et son procédé de fabrication |
MX2014002922A (es) * | 2011-09-13 | 2014-05-21 | Tata Steel Ijmuiden Bv | Tira de acero galvanizada por inmersion en caliente de alta resistencia. |
CN103987868B (zh) * | 2011-09-30 | 2016-03-09 | 新日铁住金株式会社 | 具有980MPa以上的最大拉伸强度、材质各向异性少且成形性优异的高强度热浸镀锌钢板、高强度合金化热浸镀锌钢板及它们的制造方法 |
EP2799562B1 (fr) * | 2011-12-27 | 2015-10-14 | JFE Steel Corporation | Feuille d'acier laminée à chaud et son procédé de fabrication |
DE102012002079B4 (de) | 2012-01-30 | 2015-05-13 | Salzgitter Flachstahl Gmbh | Verfahren zur Herstellung eines kalt- oder warmgewalzten Stahlbandes aus einem höchstfesten Mehrphasenstahl |
DE102012006017A1 (de) | 2012-03-20 | 2013-09-26 | Salzgitter Flachstahl Gmbh | Hochfester Mehrphasenstahl und Verfahren zur Herstellung eines Bandes aus diesem Stahl |
DE102013004905A1 (de) | 2012-03-23 | 2013-09-26 | Salzgitter Flachstahl Gmbh | Zunderarmer Vergütungsstahl und Verfahren zur Herstellung eines zunderarmen Bauteils aus diesem Stahl |
WO2013144377A1 (fr) * | 2012-03-30 | 2013-10-03 | Voestalpine Stahl Gmbh | Tôle d'acier laminée à froid à haute résistance et procédé de production d'une tôle d'acier de ce type |
ES2746285T5 (es) * | 2012-03-30 | 2022-12-19 | Voestalpine Stahl Gmbh | Lámina de acero de alta resistencia laminada en frío y procedimiento para producir dicha lámina de acero |
ES2648415T5 (es) * | 2012-03-30 | 2021-02-15 | Voestalpine Stahl Gmbh | Chapa de acero de alta resistencia laminada en frío y procedimiento de fabricación de dicha chapa de acero |
MX366776B (es) * | 2012-04-06 | 2019-07-23 | Nippon Steel Corp | Lamina de acero, laminada en caliente, recocida y galvanizada por inmersion en caliente, y proceso para producir la misma. |
CA2869700C (fr) * | 2012-04-12 | 2017-12-19 | Jfe Steel Corporation | Tole d'acier laminee a chaud pour tube d'acier carre destine a etre utilise comme element structural de construction et procede pour sa production |
WO2013182622A1 (fr) * | 2012-06-05 | 2013-12-12 | Thyssenkrupp Steel Europe Ag | Acier, produit en acier plat et procédé de fabrication d'un produit en acier plat |
US10053757B2 (en) * | 2012-08-03 | 2018-08-21 | Tata Steel Ijmuiden Bv | Process for producing hot-rolled steel strip |
RU2507297C1 (ru) * | 2012-10-05 | 2014-02-20 | Леонид Михайлович Клейнер | Стали со структурой пакетного мартенсита |
EP2767601B1 (fr) * | 2013-02-14 | 2018-10-10 | ThyssenKrupp Steel Europe AG | Produit plat en acier laminé à froid pour applications d'emboutissage profond et son procédé de fabrication |
WO2014139625A1 (fr) * | 2013-03-11 | 2014-09-18 | Tata Steel Ijmuiden Bv | Bande d'acier haute résistance, à phase complexe et galvanisée à chaud |
-
2014
- 2014-11-18 DE DE102014017274.0A patent/DE102014017274A1/de not_active Withdrawn
-
2015
- 2015-11-06 MX MX2017006374A patent/MX2017006374A/es unknown
- 2015-11-06 RU RU2017120860A patent/RU2721767C2/ru active
- 2015-11-06 EP EP15821018.7A patent/EP3221483B1/fr active Active
- 2015-11-06 CN CN201580073755.7A patent/CN107208232B/zh active Active
- 2015-11-06 KR KR1020177015846A patent/KR20170084210A/ko not_active Application Discontinuation
- 2015-11-06 WO PCT/DE2015/100474 patent/WO2016078644A1/fr active Application Filing
- 2015-11-06 US US15/528,021 patent/US10626478B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012013113A1 (de) * | 2012-06-22 | 2013-12-24 | Salzgitter Flachstahl Gmbh | Hochfester Mehrphasenstahl und Verfahren zur Herstellung eines Bandes aus diesem Stahl mit einer Mindestzugfestigkleit von 580MPa |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3825433B1 (fr) * | 2018-08-22 | 2023-02-15 | JFE Steel Corporation | Tôle d'acier de haute résistance et méthode de production pour celle-ci |
EP3950994B1 (fr) * | 2019-03-28 | 2024-01-24 | Nippon Steel Corporation | Tôle d'acier à haute résistance |
Also Published As
Publication number | Publication date |
---|---|
MX2017006374A (es) | 2018-02-16 |
US20190316222A1 (en) | 2019-10-17 |
US10626478B2 (en) | 2020-04-21 |
EP3221483A1 (fr) | 2017-09-27 |
RU2017120860A (ru) | 2018-12-19 |
RU2721767C2 (ru) | 2020-05-22 |
DE102014017274A1 (de) | 2016-05-19 |
CN107208232B (zh) | 2019-02-26 |
WO2016078644A1 (fr) | 2016-05-26 |
KR20170084210A (ko) | 2017-07-19 |
RU2017120860A3 (fr) | 2019-07-26 |
CN107208232A (zh) | 2017-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2864517B1 (fr) | Acier multiphase à haute résistance et procédé pour la fabrication d'une bande faite de cet acier présentant une résistance à la traction minimale de 580 mpa | |
EP3027784B1 (fr) | Acier multiphase à haute résistance, micro-allié et contenant du silicium, présentant une résistance minimale à la traction de 750 mpa et des propriétés améliorées et procédé de fabrication d'une bande à partir de cet acier | |
DE102012002079B4 (de) | Verfahren zur Herstellung eines kalt- oder warmgewalzten Stahlbandes aus einem höchstfesten Mehrphasenstahl | |
EP3221483B1 (fr) | Acier multiphases autotrempant en profondeur à haute résistance mécanique avec excellent aptitude au faconnage et procédé de fabrication d'une bande de cet acier | |
EP3221484B1 (fr) | Procédé de production d'une bande en acier polyphasé, durcissant à l'air, ayant une haute résistance et ayant d'excellentes propriétés de mise en oeuvre | |
EP3221478B1 (fr) | Bande à chaud ou à froid d'un acier multiphasé à haute résistance durcissant à l'air qui présente d'excellentes propriétés de traitement et procédé de fabrication d'une bande à chaud ou à froid à partir de cet acier multiphasé à haute résistance durcissant à l'air | |
EP2836614B1 (fr) | Acier polyphasé à haute résistance et procédé de fabrication d'une bande à partir dudit acier | |
EP2855717B1 (fr) | Tôle d'acier et méthode pour son obtention | |
EP2668302B1 (fr) | Procédé de fabrication d'une bande d'acier à partir d'un acier multiphasé à haute résistance mécanique présentant d'excellentes propriétés de déformation | |
WO2017009192A1 (fr) | Acier multiphase à haute résistance et procédé de fabrication d'une bande d'acier laminée à froid composée dudit acier | |
EP3692178B1 (fr) | Procede de fabrication d'une bande d'acier a partir d'un acier multiphase a tres haute resistance | |
EP3964591A1 (fr) | Produit en acier plat laminé à chaud et procédé de fabrication d'un produit en acier plat laminé à chaud | |
WO2022184811A1 (fr) | Produit plat en acier, son procédé de production, et utilisation d'un tel produit plat en acier | |
EP3749469B1 (fr) | Procédé de fabrication d'un élément structural par formage à chaud d'un produit primaire en acier manganésifère et élément structural formé à chaud | |
WO2024068957A1 (fr) | Procédé de fabrication d'une bande d'acier à partir d'un acier multiphase à haute résistance et bande d'acier correspondante | |
EP4174207A1 (fr) | Produit plat en acier ayant des propriétés de traitement améliorées |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170607 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20180709 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 502015012551 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: C22C0038020000 Ipc: C21D0001840000 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C21D 9/58 20060101ALI20190924BHEP Ipc: C22C 38/22 20060101ALI20190924BHEP Ipc: C22C 38/32 20060101ALI20190924BHEP Ipc: C21D 9/56 20060101ALI20190924BHEP Ipc: C21D 1/26 20060101ALI20190924BHEP Ipc: C22C 38/06 20060101ALI20190924BHEP Ipc: C21D 9/48 20060101ALI20190924BHEP Ipc: C21D 8/04 20060101ALI20190924BHEP Ipc: C23C 2/00 20060101ALI20190924BHEP Ipc: C22C 38/28 20060101ALI20190924BHEP Ipc: C21D 1/74 20060101ALI20190924BHEP Ipc: C22C 38/02 20060101ALI20190924BHEP Ipc: C21D 1/84 20060101AFI20190924BHEP Ipc: C22C 38/04 20060101ALI20190924BHEP Ipc: C22C 38/26 20060101ALI20190924BHEP Ipc: C21D 1/28 20060101ALI20190924BHEP Ipc: C22C 38/38 20060101ALI20190924BHEP Ipc: C21D 1/76 20060101ALI20190924BHEP Ipc: C21D 9/46 20060101ALI20190924BHEP Ipc: C21D 8/02 20060101ALI20190924BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20191121 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1266803 Country of ref document: AT Kind code of ref document: T Effective date: 20200515 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502015012551 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20200506 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200506 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200506 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200806 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200807 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200907 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200906 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200506 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200506 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200506 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200506 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200806 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200506 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200506 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200506 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200506 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200506 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200506 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200506 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200506 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200506 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502015012551 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200506 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200506 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20210209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200506 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200506 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20201106 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201106 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20201130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201130 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201106 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201106 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1266803 Country of ref document: AT Kind code of ref document: T Effective date: 20201106 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201106 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200506 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200506 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200506 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200506 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201130 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231120 Year of fee payment: 9 Ref country code: DE Payment date: 20231121 Year of fee payment: 9 |