[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP3218915A1 - Electromagnetic actuator and circuit breaker including such an actuator - Google Patents

Electromagnetic actuator and circuit breaker including such an actuator

Info

Publication number
EP3218915A1
EP3218915A1 EP15793787.1A EP15793787A EP3218915A1 EP 3218915 A1 EP3218915 A1 EP 3218915A1 EP 15793787 A EP15793787 A EP 15793787A EP 3218915 A1 EP3218915 A1 EP 3218915A1
Authority
EP
European Patent Office
Prior art keywords
actuator
coil
shunt device
shunt
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15793787.1A
Other languages
German (de)
French (fr)
Other versions
EP3218915B1 (en
Inventor
Philippe Schuster
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schneider Electric Industries SAS
Original Assignee
Schneider Electric Industries SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schneider Electric Industries SAS filed Critical Schneider Electric Industries SAS
Publication of EP3218915A1 publication Critical patent/EP3218915A1/en
Application granted granted Critical
Publication of EP3218915B1 publication Critical patent/EP3218915B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/10Operating or release mechanisms
    • H01H71/12Automatic release mechanisms with or without manual release
    • H01H71/40Combined electrothermal and electromagnetic mechanisms
    • H01H71/402Combined electrothermal and electromagnetic mechanisms in which the thermal mechanism influences the magnetic circuit of the electromagnetic mechanism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/02Housings; Casings; Bases; Mountings
    • H01H71/0207Mounting or assembling the different parts of the circuit breaker
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/10Operating or release mechanisms
    • H01H71/12Automatic release mechanisms with or without manual release
    • H01H71/14Electrothermal mechanisms
    • H01H71/142Electrothermal mechanisms actuated due to change of magnetic permeability
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/10Operating or release mechanisms
    • H01H71/12Automatic release mechanisms with or without manual release
    • H01H71/24Electromagnetic mechanisms
    • H01H71/2454Electromagnetic mechanisms characterised by the magnetic circuit or active magnetic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/10Operating or release mechanisms
    • H01H71/12Automatic release mechanisms with or without manual release
    • H01H71/24Electromagnetic mechanisms
    • H01H71/2463Electromagnetic mechanisms with plunger type armatures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/10Operating or release mechanisms
    • H01H71/12Automatic release mechanisms with or without manual release
    • H01H71/40Combined electrothermal and electromagnetic mechanisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/10Operating or release mechanisms
    • H01H71/12Automatic release mechanisms with or without manual release
    • H01H71/40Combined electrothermal and electromagnetic mechanisms
    • H01H2071/407Combined electrothermal and electromagnetic mechanisms the thermal element being heated by the coil of the electromagnetic mechanism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2235/00Springs
    • H01H2235/01Spiral spring

Definitions

  • the invention relates to an electromagnetic actuator, as well as a circuit breaker comprising such an actuator.
  • a circuit breaker including a thermal actuator for detecting an overload current or including a magnetic actuator in order to recognize a short circuit current.
  • the circuit breaker is equipped with a thermal actuator.
  • the actuator comprises a straight bimetal and a plunger electromagnet
  • the invention intends to remedy more particularly by proposing a new electromagnetic actuator whose triggering thresholds are adjustable, for example depending on the context of use.
  • the invention relates to an electromagnetic actuator comprising a magnetic carcass and a coil integral with the carcass and connectable to an electrical circuit.
  • the actuator also comprises a magnetic core, arranged in the coil and movable, along a central axis defined by the coil, as a function of the intensity of the current flowing in the coil, and a shunt device, arranged in the coil and comprising a magnetocaloric material whose magnetization is a function of the temperature.
  • the shunt device is arranged in the coil for a length, along the central axis, and so as to form an air gap between the shunt device and the magnetic core.
  • the actuator comprises means for fixing the shunt device to the carcass, designed to adjust this length.
  • the actuator combines the advantages of the thermal and magnetic functions with those of an actuator with adjustable thresholds.
  • such an actuator comprises a reduction in the size and number of parts, as well as a reduction in the heat dissipation and the number of variants to be considered.
  • the actuator improves in particular its sensitivity and thermal efficiency, as it increases or decrease its sensitivity to harmonic currents depending on the field of use.
  • such an actuator also has economic advantages, that is to say a decrease in the amount of active materials required and easier realization of the actuator.
  • such an electromagnetic actuator may comprise one or more of the following characteristics, taken in any technically permissible combination:
  • the actuator further comprises a heat-conducting sleeve disposed in the coil and in that the magnetic core and the shunt device are arranged in the sleeve.
  • the shunt device is in contact with the thermo-conductive sleeve.
  • a spring is interposed between the shunt device and the magnetic core.
  • the shunt device is provided with a pole piece arranged between the spring and a portion of the shunt device, constituted by the magnetocaloric material.
  • thermo-conductive sleeve is solid wall.
  • thermo-conductive sleeve includes a slot which extends parallel to its central axis.
  • the fixing means comprise a laser weld or a mechanical locking device.
  • the magnetocaloric material is an alloy of nickel, cobalt, manganese and a fourth element selected from aluminum, indium, antimony and tin.
  • the invention also relates to a circuit breaker comprising a housing housing an actuator as described above, the coil being coupled to a current line.
  • the circuit breaker also comprises a pair of movable contacts relative to each other, a first contact being in mechanical connection with the movable core of the actuator.
  • FIG. 1 is a schematic view of an actuator according to the invention
  • FIG. 2 is a perspective view of a thermo-conductive sleeve of the actuator of FIG. 1;
  • FIG. 3 is a schematic view of a circuit breaker according to the invention, comprising an actuator according to the invention
  • FIG. 4 is a schematic representation of the actuator of FIG. 1 when a nominal current feeds the coil, which is omitted for the sake of clarity;
  • FIG. 5 is a view similar to Figure 4 when an overcurrent feeds the coil
  • FIG. 6 is a view similar to Figure 4 when a short-circuit current feeds the coil
  • FIG. 7 is a view similar to Figure 2 according to an alternative embodiment of the invention.
  • FIG. 8 is a diagram showing the magnetization of a shunt device according to the invention as a function of its temperature and the magnetic field.
  • an electromagnetic actuator 2 comprising a magnetic housing 20 which defines a central axis X2 of the actuator.
  • the central axis X2 is fixed and constitutes a central axis for all the elements of the actuator 2.
  • the magnetic casing 20 is, for example, tubular and has two axially opposed bases 20A and 20B. In each of these bases 20A and 20B, is formed a bore, respectively 21A and 21B.
  • the bores 21A and 21B provide access to a volume 200 internal to the carcass 20.
  • the actuator 2 also comprises a coil 22, arranged in the volume 200 of the casing 20 and integral with the casing 20.
  • the coil 22 is able to be connected, in a manner known per se, to an electrical circuit which is not shown in Figure 1.
  • the actuator 2 further comprises a thermo-conductive sleeve 24.
  • the sleeve 24 has a hollow cylindrical shape with a solid wall.
  • the sleeve 24 is disposed in the coil 22 and in radially contact along the axis X2 with it.
  • the sleeve 24 passes through the bore 21 A. Part end of the sleeve 24 is projecting with respect to the base 20A and outside the carcass 20.
  • the main function of the sheath is to transmit the heat. It is so metal.
  • the actuator 2 also comprises a magnetic core 26 of cylindrical shape, arranged in the sleeve 24 and movable in translation along the central axis X2 as a function of the intensity of the current flowing in the coil 22.
  • the actuator 2 further comprises a shunt device 28 comprising a magnetocaloric material 29, in the form of a corresponding piece, whose magnetization is a function of the temperature.
  • the shunt device 28 is of cylindrical shape and is partially arranged in the sheath 24 for a length L, along the central axis X2, forming along the axis X2 an air gap E between the shunt device 28 and the core 26. Therefore, the shunt device 28 is arranged in part in the bore 21 B of the carcass 20, the remaining portion being positioned outside the carcass 20 projecting from the base 20B.
  • the shunt device 28 is further in contact with the thermo-conductive sleeve 24.
  • the shunt device 28 is movable in translation along the axis X2 relative to the sleeve 24 and the carcass 20.
  • the actuator also comprises means 31 for fixing from the shunt device 28 to the carcass 20, the fixing means 31 being designed to adjust this length L.
  • the fixing means 31 are made by a laser weld or by a mechanical locking device.
  • the magnetocaloric material 29 of the shunt device 28 is an alloy of nickel, cobalt, manganese and a fourth element selected from aluminum, indium, antimony and tin.
  • the shunt material 29 is chosen for its magnetocaloric properties. More precisely, as represented in FIG. 8, the magnetocaloric material 29 is such that its magnetization has a peak as a function of the temperature T. In particular, at low temperature, the material is little, if any, magnetic. When the temperature T increases, beyond a first temperature T0, the magnetization of the magnetocaloric material 29 increases rapidly, reaching a maximum at a second temperature T1, beyond which the magnetization decreases until it cancels out. the curie temperature Te of the material magnetocaloric 29. For further explanation, the reader will refer to WO-A-2014/087073.
  • the shunt device 28 is provided with a pole piece 30 arranged in the sheath 24 and disposed between the piece constituted by the magnetocaloric material 29 of the shunt device 28 and the core 26, the air gap E thus being delimited between this pole piece 30 and the magnetic core 26.
  • the pole piece 30 bears, in the axis X2, against the magnetocaloric material 29 of the shunt device 28.
  • the actuator 2 comprises a spring 32 arranged, along the axis X 2, between the pole piece 30 and the magnetic core 26.
  • a circuit breaker 4 comprises a housing 40 which houses the actuator 2.
  • the coil 22 of the actuator 2 is connected to a current line 41 of an electrical circuit.
  • the current line 41 has two first pellets 42 fixed.
  • the circuit breaker 4 also comprises a bridge 44 secured to the magnetic core 26 of the actuator 2 and equipped with two second pellets 46.
  • the bridge 44 is, consequently, movable in translation along the axis X2 of the actuator 2 with the core 26 and is able to move between a first position, shown in FIG. 3, where the second pellets 46 are in contact with the first pellets 42 and a second position where the second pellets 46 are separated from the first pellets 42.
  • first position corresponds to the closed configuration of the circuit-breaker 4 while the second position corresponds to the open configuration of the circuit-breaker 4.
  • the operation of the electromagnetic actuator 2 and the circuit breaker 4 is as follows. Before the installation of the actuator 2 in the circuit breaker 4, in particular during the manufacture of the actuator, the shunt device 28 is inserted into the thermo-conductive sleeve 24 for the length L and is then fixed to the carcass 20 by the fixing means 31 above.
  • This length L is chosen as a function of the field of use of the circuit breaker 4. Indeed, as is explained below, the length L makes it possible to choose the switching threshold of the actuator 2 and therefore the tripping threshold of the circuit breaker 4 .
  • the spring 32 exerts against the core 26 a force E32, shown in FIG. 1, so as to pull the movable pellets 46 from the bridge 44 to remove them from the pellets fixed 42 and ensure the opening of the electrical circuit.
  • a so-called nominal current flows in the circuit to which the coil 22 is connected.
  • the coil 22 then creates a magnetic flux Fn.
  • the actuator 2 is thus configured to constitute a magnetic circuit.
  • the magnetic circuit is composed of the parts 30, 28, 20, 24, 26 and the air gap E between the core 26 and the pole piece 30 of the shunt device 28.
  • the pole piece 30a the function, on the one hand, to channel the magnetic flux Fn between the movable core 26 and the magnetocaloric material 29 and, on the other hand, to protect the latter from shocks during the closure of the gap E.
  • All the aforementioned parts have a fixed magnetic reluctance excluding the shunt device 28. In the temperature range where the magnetization of the device 28 increases, its reluctance decreases by facilitating the passage of the magnetic flux.
  • the magnetic core 26 traversed along the central axis X2 by the magnetic flux Fn is subject to a magnetic force En, depending on the magnetic flux Fn and, in a manner known per se, in close correlation with the current flowing in the coil 22
  • the magnetic core 26 thus exerts its force against the spring 32.
  • the coil 22 generates heat dissipation, in particular by Joule effect.
  • the sheath 24 is responsible for transmitting this dissipated heat to the other parts of the actuator and in particular to the shunt device 28 whose magnetization depends on its temperature.
  • the sleeve 24 is itself responsible for heat dissipation due to currents flowing in its surfaces and which are induced by the magnetic flux Fn.
  • the overall heat dissipation due to the nominal current induces an increase in temperature T, which however remains lower than the first temperature T0 mentioned above.
  • the magnetization of the shunt device 28 remains zero or very low.
  • the force En is less than or equal to the force E32 of the spring 32, so that the magnetic core 26 does not move and the closed configuration of the circuit breaker 4 is maintained.
  • a magnetic flux Fs surrounds the coil 22, as described above.
  • the current flowing as having a value greater than or equal to 1.5 times the value of the nominal current the magnetic flux Fs generated by such an overload current is strictly greater than the magnetic flux Fn generated by the nominal current.
  • this overload current causes an increase in the heat dissipation by the Joule effect of the coil 22. heat dissipation is transmitted via the thermo-conductive sleeve 24 to the shunt device 28. The shunt device 28 is therefore raised to increase temperature and to acquire a temperature T between the first and second aforementioned temperatures.
  • the magnetic circuit for the overload current has a lower overall magnetic reluctance than in the case of the nominal current.
  • the magnetic flux Fs then exerts on the magnetic core 26 a force Es.
  • the core 26 compresses the spring 32 which opposes its effort E32.
  • the force Es is greater than the force E32 of the spring and the core 26 is translated along the axis X2 and reduces the gap E.
  • the displacement of the core 26 causes the movable bridge 44 and its pellets 46, away from the fixed pellets 42.
  • the circuit breaker 4 is then in its open configuration.
  • Heat transfer depends in particular on the weather.
  • the temperature increase is not instantaneous but occurs gradually.
  • the magnetization of the device 28 increases in time with the temperature.
  • the force Es exerted by the core 26 on the spring 32 also increases progressively in time in parallel with the increase in the temperature of the shunt device 28. It is possible to consider a threshold temperature beyond which the stress E is greater than the force E32 of the spring 32. The displacement of the core 26 and the opening of the pellets 42 and 46 of the circuit breaker 4 will be possible when the temperature T of the device 28 exceeds the threshold temperature.
  • a magnetic flux Fc is generated.
  • the short-circuit current as greater than or equal to five times the nominal current, the magnetic flux Fc is significantly greater than the magnetic flux Fn.
  • the short-circuit current causes a large increase in the magnetization of the shunt device 28 whatever its temperature and the magnetic flux Fc exerts on the core 26 a force Ec which is immediately greater than the force E32 of the spring 32.
  • the magnetic flux Fc is able to move the core 26 without waiting for heat transmission between the coil 22 and the shunt device 28.
  • the short-circuit current causes almost instantaneously a displacement of the core 26 along the axis X2 so as to reduce the gap E and compress the spring 32 and, at the circuit breaker 4, open the pellets 42 and 46.
  • the magnetic force generated by the coil 22 is such that it causes the opening very quickly: this causes a limitation of the short-circuit current.
  • the reluctance of the shunt device 28, and therefore of the entire magnetic circuit, is a function of the length L of the device 28 relative to the sleeve 24.
  • the length L plays an important role in the operation of the circuit breaker 4. This length L defines the part of the shunt device 28 which is part of the magnetic circuit. The length L thus defines the part of the shunt device 28 which is in contact with the sheath 24 and thus directly exposed to the heat transfer.
  • the pole piece 30 is hollow cylindrical shape including a bore in which is partially arranged the spring 32 which bears against the magnetocaloric material 29 of the shunt device 28 and the magnetic core 26;
  • the heat-conducting sleeve 24 includes a slot 240, as shown in FIG. 7, which extends parallel to the central axis X2.
  • the slot 240 makes a cut for the currents generated by electromagnetic induction in the sheath 24. The presence of the slot 240 thus allows to delay the triggering threshold.
  • the choice to use or not a sheath 24 with the slot 240 is therefore depending on the field of use of the circuit breaker 4.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Breakers (AREA)
  • Electromagnets (AREA)

Abstract

The invention relates to an electromagnetic actuator (2) including a magnetic housing (20), a coil (22) that is rigidly connected to the housing and is capable of being connected to an electric circuit, a magnetic core (26) that is arranged in the coil and can move along a central axis (X2) defined by the coil and according to the strength of the current flowing in the coil, and a shunt (28) that is arranged in the coil and includes a magnetocaloric material (29) the magnetisation of which is temperature-dependent. The shunt is arranged in the coil along the central axis along a length (L) so as to create an air gap (E) between the shunt and the magnetic core. The actuator further includes means (31) for attaching the shunt to the housing that are designed to adjust said length.

Description

ACTIONNEUR ELECTROMAGNETIQUE ET DISJONCTEUR COMPRENANT  ELECTROMAGNETIC ACTUATOR AND CIRCUIT BREAKER COMPRISING
UN TEL ACTIONNEUR  AN ACTUATOR
L'invention concerne un actionneur électromagnétique, ainsi qu'un disjoncteur comprenant un tel actionneur. The invention relates to an electromagnetic actuator, as well as a circuit breaker comprising such an actuator.
Dans le domaine de protection des circuits électriques, il est connu d'utiliser un disjoncteur incluant un actionneur thermique pour détecter un courant de surcharge ou incluant un actionneur magnétique afin de reconnaître un courant de court-circuit. A titre d'exemple, on peut citer le document FR-A-2 772 981 où le disjoncteur est équipé d'un actionneur thermique. En particulier, l'actionneur comprend un bilame droit et un électroaimant à noyau plongeur  In the field of protection of electrical circuits, it is known to use a circuit breaker including a thermal actuator for detecting an overload current or including a magnetic actuator in order to recognize a short circuit current. By way of example, mention may be made of document FR-A-2 772 981 in which the circuit breaker is equipped with a thermal actuator. In particular, the actuator comprises a straight bimetal and a plunger electromagnet
Il est également connu de combiner en un seul actionneur les deux fonctions thermiques et magnétiques, de façon à combiner dans un seul disjoncteur la détection des courants de surcharge et de court-circuit. A ce titre, il est connu, par exemple de EP- A-1 001 444, d'équiper un actionneur d'un bilame cloquant. Il est également connu, par exemple de US-A-2 690 528, d'équiper un actionneur avec un système à dashspots qui fonctionne de manière différente lors d'un courant de surcharge ou de court-circuit. Les actionneurs cités ci-dessus ont l'avantage de réduire l'encombrement et le nombre de pièces. Toutefois, la dynamique d'ouverture des contacts de tels actionneurs ne permet pas de percuter les contacts. Il en découle que la vitesse d'ouverture est relativement basse par rapport au pouvoir de coupure nécessaire.  It is also known to combine in a single actuator the two thermal and magnetic functions, so as to combine in a single circuit breaker the detection of overload and short-circuit currents. As such, it is known, for example from EP-A-1 001 444, to equip an actuator with a bimetallic bimetallic strip. It is also known, for example from US-A-2,690,528, to equip an actuator with a dashspots system which operates differently during an overload or short-circuit current. The actuators mentioned above have the advantage of reducing the size and the number of parts. However, the dynamic opening of the contacts of such actuators does not allow to hit the contacts. It follows that the opening speed is relatively low compared to the necessary breaking capacity.
Par ailleurs, il est connu, de DE-A-3 028 900, et WO-A-2014/087073, d'utiliser un actionneur équipé d'un dispositif de shunt qui inclut un matériau magnétocalorique et un noyau plongeur. Un tel actionneur permet d'augmenter la vitesse d'ouverture des contacts par la percussion ou l'extraction de ceux-ci. Par contre, la structure de cet actionneur fixe les seuils de déclenchement pour la protection du circuit. Les seuils ne sont pas adaptables aux différents circuits électriques, ce qui limite les domaines d'utilisation d'un tel dispositif.  Furthermore, it is known, from DE-A-3,028,900, and WO-A-2014/087073, to use an actuator equipped with a shunt device which includes a magnetocaloric material and a plunger core. Such an actuator makes it possible to increase the opening speed of the contacts by percussion or extraction thereof. On the other hand, the structure of this actuator fixes the tripping thresholds for circuit protection. The thresholds are not adaptable to the different electrical circuits, which limits the areas of use of such a device.
C'est à cet inconvénient qu'entend plus particulièrement remédier l'invention en proposant un nouvel actionneur électromagnétique dont les seuils de déclenchement sont réglables, par exemple en fonction du contexte d'utilisation.  It is this disadvantage that the invention intends to remedy more particularly by proposing a new electromagnetic actuator whose triggering thresholds are adjustable, for example depending on the context of use.
Dans cet esprit, l'invention concerne un actionneur électromagnétique, comprenant une carcasse magnétique et une bobine solidaire de la carcasse et susceptible d'être reliée à un circuit électrique. L'actionneur comprend également un noyau magnétique, agencé dans la bobine et mobile, selon un axe central défini par la bobine, en fonction de l'intensité du courant circulant dans la bobine, et un dispositif de shunt, agencé dans la bobine et comprenant un matériau magnétocalorique dont la magnétisation est fonction de la température. Conformément à l'invention, le dispositif de shunt est agencé dans la bobine pour une longueur, selon l'axe central, et de manière à former un entrefer entre le dispositif de shunt et le noyau magnétique. De plus, l'actionneur comprend des moyens de fixation du dispositif de shunt à la carcasse, conçus pour régler cette longueur. In this spirit, the invention relates to an electromagnetic actuator comprising a magnetic carcass and a coil integral with the carcass and connectable to an electrical circuit. The actuator also comprises a magnetic core, arranged in the coil and movable, along a central axis defined by the coil, as a function of the intensity of the current flowing in the coil, and a shunt device, arranged in the coil and comprising a magnetocaloric material whose magnetization is a function of the temperature. According to the invention, the shunt device is arranged in the coil for a length, along the central axis, and so as to form an air gap between the shunt device and the magnetic core. In addition, the actuator comprises means for fixing the shunt device to the carcass, designed to adjust this length.
Grâce à l'invention, l'actionneur cumule les avantages des fonctions thermique et magnétique avec ceux d'un actionneur avec seuils réglables. En d'autres termes, un tel actionneur comporte une réduction de l'encombrement et du nombre de pièces, ainsi qu'une diminution de la dissipation thermique et du nombre de variantes à considérer. De plus, l'actionneur permet d'améliorer notamment sa sensibilité et son rendement thermique, ainsi qu'il permet d'augmenter ou de diminuer sa sensibilité aux courants harmoniques en fonction du domaine d'utilisation. Enfin, un tel actionneur présente aussi des avantages économiques, c'est-à-dire une diminution de la quantité de matériaux actifs nécessaires et une réalisation plus aisée de l'actionneur.  Thanks to the invention, the actuator combines the advantages of the thermal and magnetic functions with those of an actuator with adjustable thresholds. In other words, such an actuator comprises a reduction in the size and number of parts, as well as a reduction in the heat dissipation and the number of variants to be considered. In addition, the actuator improves in particular its sensitivity and thermal efficiency, as it increases or decrease its sensitivity to harmonic currents depending on the field of use. Finally, such an actuator also has economic advantages, that is to say a decrease in the amount of active materials required and easier realization of the actuator.
Selon des aspects avantageux mais non obligatoires de l'invention, un tel actionneur électromagnétique peut comprendre une ou plusieurs des caractéristiques suivantes, prises selon toute combinaison techniquement admissible :  According to advantageous but non-obligatory aspects of the invention, such an electromagnetic actuator may comprise one or more of the following characteristics, taken in any technically permissible combination:
- L'actionneur comprend en outre un fourreau thermo-conducteur disposé dans la bobine et en ce que le noyau magnétique et le dispositif de shunt sont agencés dans le fourreau.  - The actuator further comprises a heat-conducting sleeve disposed in the coil and in that the magnetic core and the shunt device are arranged in the sleeve.
- Le dispositif de shunt est en contact avec le fourreau thermo-conducteur.  - The shunt device is in contact with the thermo-conductive sleeve.
- Un ressort est interposé entre le dispositif de shunt et le noyau magnétique. - Le dispositif de shunt est pourvu d'une pièce polaire agencée entre le ressort et une partie du dispositif de shunt, constituée par le matériau magnétocalorique.  - A spring is interposed between the shunt device and the magnetic core. - The shunt device is provided with a pole piece arranged between the spring and a portion of the shunt device, constituted by the magnetocaloric material.
- Le fourreau thermo-conducteur est à paroi pleine.  - The thermo-conductive sleeve is solid wall.
- Le fourreau thermo-conducteur inclut une fente qui s'étend parallèlement à son axe central.  - The thermo-conductive sleeve includes a slot which extends parallel to its central axis.
- Les moyens de fixation comprennent une soudure laser ou un dispositif de verrouillage mécanique.  - The fixing means comprise a laser weld or a mechanical locking device.
- Le matériau magnétocalorique est un alliage de nickel, cobalt, manganèse et d'un quatrième élément choisi parmi aluminium, indium, antimoine et étain.  - The magnetocaloric material is an alloy of nickel, cobalt, manganese and a fourth element selected from aluminum, indium, antimony and tin.
L'invention concerne également un disjoncteur comprenant un boîtier logeant un actionneur tel que décrit ci-dessus, la bobine étant couplée à une ligne de courant. Le disjoncteur comprend également une paire de contacts mobiles l'un par rapport à l'autre, un premier des contacts étant en liaison mécanique avec le noyau mobile de l'actionneur. The invention also relates to a circuit breaker comprising a housing housing an actuator as described above, the coil being coupled to a current line. The circuit breaker also comprises a pair of movable contacts relative to each other, a first contact being in mechanical connection with the movable core of the actuator.
L'invention sera mieux comprise et d'autres avantages de celle-ci apparaîtront plus clairement à la lumière de la description qui va suivre, donnée uniquement à titre d'exemple non limitatif et faite en référence aux dessins annexés, dans lesquels :  The invention will be better understood and other advantages thereof will appear more clearly in the light of the description which follows, given solely by way of nonlimiting example and with reference to the appended drawings, in which:
- la figure 1 est une vue schématique d'un actionneur conforme à l'invention ; - Figure 1 is a schematic view of an actuator according to the invention;
- la figure 2 est une vue en perspective d'un fourreau thermo-conducteur de l'actionneur de la figure 1 ; FIG. 2 is a perspective view of a thermo-conductive sleeve of the actuator of FIG. 1;
- la figure 3 est une vue schématique d'un disjoncteur conforme à l'invention, comprenant un actionneur conforme à l'invention ;  - Figure 3 is a schematic view of a circuit breaker according to the invention, comprising an actuator according to the invention;
- la figure 4 est une représentation schématique de l'actionneur de la figure 1 lorsqu'un courant nominal alimente la bobine, laquelle est omise pour la clarté du dessin ;  FIG. 4 is a schematic representation of the actuator of FIG. 1 when a nominal current feeds the coil, which is omitted for the sake of clarity;
- la figure 5 est une vue analogue à la figure 4 lorsqu'un courant de surcharge alimente la bobine ;  - Figure 5 is a view similar to Figure 4 when an overcurrent feeds the coil;
- la figure 6 est une vue analogue à la figure 4 lorsqu'un courant de court-circuit alimente la bobine ;  - Figure 6 is a view similar to Figure 4 when a short-circuit current feeds the coil;
- la figure 7 est une vue analogue à la figure 2 selon une variante de réalisation de l'invention ; et  - Figure 7 is a view similar to Figure 2 according to an alternative embodiment of the invention; and
- la figure 8 est un diagramme représentant la magnétisation d'un dispositif de shunt conforme à l'invention en fonction de sa température et du champ magnétique.  - Figure 8 is a diagram showing the magnetization of a shunt device according to the invention as a function of its temperature and the magnetic field.
Sur la figure 1 est représenté un actionneur électromagnétique 2 comprenant une carcasse magnétique 20 qui définit un axe central X2 de l'actionneur. L'axe central X2 est fixe et constitue un axe central pour tous les éléments de l'actionneur 2. La carcasse magnétique 20 est, par exemple, de forme tubulaire et dispose de deux bases 20A et 20B axialement opposées. Dans chacune de ces bases 20A et 20B, est ménagé un alésage, respectivement 21 A et 21 B. Les alésages 21 A et 21 B permettent d'accéder à un volume 200 interne à la carcasse 20.  In Figure 1 is shown an electromagnetic actuator 2 comprising a magnetic housing 20 which defines a central axis X2 of the actuator. The central axis X2 is fixed and constitutes a central axis for all the elements of the actuator 2. The magnetic casing 20 is, for example, tubular and has two axially opposed bases 20A and 20B. In each of these bases 20A and 20B, is formed a bore, respectively 21A and 21B. The bores 21A and 21B provide access to a volume 200 internal to the carcass 20.
L'actionneur 2 comprend également une bobine 22, agencée dans le volume 200 de la carcasse 20 et solidaire de la carcasse 20. La bobine 22 est apte à être reliée, de façon connue en soi, à un circuit électrique qui n'est pas représenté sur la figure 1 .  The actuator 2 also comprises a coil 22, arranged in the volume 200 of the casing 20 and integral with the casing 20. The coil 22 is able to be connected, in a manner known per se, to an electrical circuit which is not shown in Figure 1.
L'actionneur 2 comprend en outre un fourreau thermo-conducteur 24. Comme montré à la figure 2, le fourreau 24 présente une forme cylindrique creuse à paroi pleine. Le fourreau 24 est disposé dans la bobine 22 et en contact radialement, selon l'axe X2, avec celle-ci. Du côté de la base 20A, le fourreau 24 traverse l'alésage 21 A. Une partie terminale du fourreau 24 est en saillie par rapport à la base 20A et en dehors de la carcasse 20. The actuator 2 further comprises a thermo-conductive sleeve 24. As shown in Figure 2, the sleeve 24 has a hollow cylindrical shape with a solid wall. The sleeve 24 is disposed in the coil 22 and in radially contact along the axis X2 with it. On the side of the base 20A, the sleeve 24 passes through the bore 21 A. Part end of the sleeve 24 is projecting with respect to the base 20A and outside the carcass 20.
La fonction principale du fourreau est de transmettre la chaleur. Il est ainsi en métal.  The main function of the sheath is to transmit the heat. It is so metal.
L'actionneur 2 comprend également un noyau magnétique 26 de forme cylindrique, agencé dans le fourreau 24 et mobile en translation selon l'axe central X2 en fonction de l'intensité du courant circulant dans la bobine 22.  The actuator 2 also comprises a magnetic core 26 of cylindrical shape, arranged in the sleeve 24 and movable in translation along the central axis X2 as a function of the intensity of the current flowing in the coil 22.
L'actionneur 2 comprend en outre un dispositif de shunt 28 comprenant un matériau magnétocalorique 29, sous forme d'une pièce correspondante, dont la magnétisation est fonction de la température. Le dispositif de shunt 28 est de forme cylindrique et est agencé partiellement dans le fourreau 24 pour une longueur L, selon l'axe central X2, en formant selon l'axe X2 un entrefer E entre le dispositif de shunt 28 et le noyau 26. Par conséquent, le dispositif de shunt 28 est agencé en partie dans l'alésage 21 B de la carcasse 20, la portion restante étant positionnée en dehors de la carcasse 20 en saillie par rapport à la base 20B. Le dispositif de shunt 28 est en outre en contact avec le fourreau thermo-conducteur 24.  The actuator 2 further comprises a shunt device 28 comprising a magnetocaloric material 29, in the form of a corresponding piece, whose magnetization is a function of the temperature. The shunt device 28 is of cylindrical shape and is partially arranged in the sheath 24 for a length L, along the central axis X2, forming along the axis X2 an air gap E between the shunt device 28 and the core 26. Therefore, the shunt device 28 is arranged in part in the bore 21 B of the carcass 20, the remaining portion being positioned outside the carcass 20 projecting from the base 20B. The shunt device 28 is further in contact with the thermo-conductive sleeve 24.
En pratique, dans un état préalable à l'utilisation, typiquement lors de la fabrication de l'actionneur 2, le dispositif de shunt 28 est mobile en translation selon l'axe X2 par rapport au fourreau 24 et à la carcasse 20. Ainsi, il est possible de choisir la valeur de la longueur L et, comme décrit ci-dessous, un seuil de commutation de l'actionneur 2 du fait de la variation correspondante de l'entrefer E. L'actionneur comprend également des moyens 31 de fixation du dispositif de shunt 28 à la carcasse 20, les moyens de fixation 31 étant conçus pour régler cette longueur L. En particulier, les moyens de fixation 31 sont réalisés par une soudure laser ou par un dispositif de verrouillage mécanique.  In practice, in a state prior to use, typically during the manufacture of the actuator 2, the shunt device 28 is movable in translation along the axis X2 relative to the sleeve 24 and the carcass 20. Thus, it is possible to choose the value of the length L and, as described below, a switching threshold of the actuator 2 due to the corresponding variation of the gap E. The actuator also comprises means 31 for fixing from the shunt device 28 to the carcass 20, the fixing means 31 being designed to adjust this length L. In particular, the fixing means 31 are made by a laser weld or by a mechanical locking device.
Le matériau magnétocalorique 29 du dispositif de shunt 28 est un alliage de nickel, cobalt, manganèse et d'un quatrième élément choisi parmi l'aluminium, l'indium, l'antimoine et l'étain. Le matériau 29 de shunt est choisi pour ses propriétés magnétocaloriques. Plus précisément, comme représenté à la figure 8, le matériau magnétocalorique 29 est tel que sa magnétisation présente un pic en fonction de la température T. Notamment, à basse température, le matériau est peu, voire pas, magnétique. Lorsque la température T augmente, au-delà d'une première température T0, la magnétisation du matériau magnétocalorique 29 augmente rapidement, pour atteindre un maximum à une seconde température T1 , au-delà de laquelle la magnétisation diminue jusqu'à s'annuler pour la température de Curie Te du matériau magnétocalorique 29. Pour plus d'explications, le lecteur se reportera à WO-A- 2014/087073. The magnetocaloric material 29 of the shunt device 28 is an alloy of nickel, cobalt, manganese and a fourth element selected from aluminum, indium, antimony and tin. The shunt material 29 is chosen for its magnetocaloric properties. More precisely, as represented in FIG. 8, the magnetocaloric material 29 is such that its magnetization has a peak as a function of the temperature T. In particular, at low temperature, the material is little, if any, magnetic. When the temperature T increases, beyond a first temperature T0, the magnetization of the magnetocaloric material 29 increases rapidly, reaching a maximum at a second temperature T1, beyond which the magnetization decreases until it cancels out. the curie temperature Te of the material magnetocaloric 29. For further explanation, the reader will refer to WO-A-2014/087073.
Dans un mode préférentiel de réalisation de l'invention, le dispositif de shunt 28 est pourvu d'une pièce polaire 30 agencée dans le fourreau 24 et disposée entre la pièce constituée par le matériau magnétocalorique 29 du dispositif de shunt 28 et le noyau 26, l'entrefer E étant ainsi délimité entre cette pièce polaire 30 et le noyau magnétique 26. Comme représenté à la figure 1 , la pièce polaire 30 est en appui, selon l'axe X2, contre le matériau magnétocalorique 29 du dispositif de shunt 28.  In a preferred embodiment of the invention, the shunt device 28 is provided with a pole piece 30 arranged in the sheath 24 and disposed between the piece constituted by the magnetocaloric material 29 of the shunt device 28 and the core 26, the air gap E thus being delimited between this pole piece 30 and the magnetic core 26. As shown in FIG. 1, the pole piece 30 bears, in the axis X2, against the magnetocaloric material 29 of the shunt device 28.
Enfin, l'actionneur 2 comprend un ressort 32 disposé, selon l'axe X2, entre la pièce polaire 30 et le noyau magnétique 26.  Finally, the actuator 2 comprises a spring 32 arranged, along the axis X 2, between the pole piece 30 and the magnetic core 26.
A la figure 3, un disjoncteur 4 comprend un boîtier 40 qui loge l'actionneur 2. Dans le disjoncteur 4, la bobine 22 de l'actionneur 2 est reliée à une ligne de courant 41 d'un circuit électrique. La ligne de courant 41 dispose de deux premières pastilles 42 fixes. Le disjoncteur 4 comprend également un pont 44 solidaire du noyau magnétique 26 de l'actionneur 2 et équipé de deux deuxièmes pastilles 46. Le pont 44 est, par voie de conséquence, mobile en translation selon l'axe X2 de l'actionneur 2 avec le noyau 26 et est apte à se déplacer entre une première position, montrée à la figue 3, où les deuxièmes pastilles 46 sont en contact avec les premières pastilles 42 et une deuxième position où les deuxièmes pastilles 46 sont écartées des premières pastilles 42. La première position correspond à la configuration fermée du disjoncteur 4 tandis que la deuxième position correspond à la configuration ouverte du disjoncteur 4.  In Figure 3, a circuit breaker 4 comprises a housing 40 which houses the actuator 2. In the circuit breaker 4, the coil 22 of the actuator 2 is connected to a current line 41 of an electrical circuit. The current line 41 has two first pellets 42 fixed. The circuit breaker 4 also comprises a bridge 44 secured to the magnetic core 26 of the actuator 2 and equipped with two second pellets 46. The bridge 44 is, consequently, movable in translation along the axis X2 of the actuator 2 with the core 26 and is able to move between a first position, shown in FIG. 3, where the second pellets 46 are in contact with the first pellets 42 and a second position where the second pellets 46 are separated from the first pellets 42. first position corresponds to the closed configuration of the circuit-breaker 4 while the second position corresponds to the open configuration of the circuit-breaker 4.
Le fonctionnement de l'actionneur électromagnétique 2 et du disjoncteur 4 est le suivant. Avant l'installation de l'actionneur 2 dans le disjoncteur 4, en particulier lors de la fabrication de l'actionneur, le dispositif de shunt 28 est introduit dans le fourreau thermo- conducteur 24 pour la longueur L puis est fixé à la carcasse 20 par les moyens de fixation 31 précités. Cette longueur L est choisie en fonction du domaine d'utilisation du disjoncteur 4. En effet, comme est expliqué ci-dessous, la longueur L permet de choisir le seuil de commutation de l'actionneur 2 et donc le seuil de déclenchement du disjoncteur 4.  The operation of the electromagnetic actuator 2 and the circuit breaker 4 is as follows. Before the installation of the actuator 2 in the circuit breaker 4, in particular during the manufacture of the actuator, the shunt device 28 is inserted into the thermo-conductive sleeve 24 for the length L and is then fixed to the carcass 20 by the fixing means 31 above. This length L is chosen as a function of the field of use of the circuit breaker 4. Indeed, as is explained below, the length L makes it possible to choose the switching threshold of the actuator 2 and therefore the tripping threshold of the circuit breaker 4 .
En configuration assemblée et fermée du disjoncteur 4, comme représenté à la figure 3, le ressort 32 exerce contre le noyau 26 un effort E32, montré sur la figure 1 , de manière à tirer les pastilles mobiles 46 du pont 44 pour les écarter des pastilles fixes 42 et assurer l'ouverture du circuit électrique. Dans une condition d'utilisation normale, telle que représentée à la figure 4, un courant dit nominal circule dans le circuit auquel est reliée la bobine 22. De façon connue en soi, la bobine 22 crée alors un flux magnétique Fn. In the assembled and closed configuration of the circuit breaker 4, as represented in FIG. 3, the spring 32 exerts against the core 26 a force E32, shown in FIG. 1, so as to pull the movable pellets 46 from the bridge 44 to remove them from the pellets fixed 42 and ensure the opening of the electrical circuit. In a normal use condition, as shown in FIG. 4, a so-called nominal current flows in the circuit to which the coil 22 is connected. In a manner known per se, the coil 22 then creates a magnetic flux Fn.
L'actionneur 2 est ainsi configuré pour constituer un circuit magnétique. En particulier, le circuit magnétique est composé par les pièces 30, 28, 20, 24, 26 et l'entrefer E entre le noyau 26 et la pièce polaire 30 du dispositif de shunt 28. Dans le circuit magnétique, la pièce polaire 30 a la fonction, d'une part, de canaliser le flux magnétique Fn entre le noyau mobile 26 et le matériau magnétocalorique 29 et, d'autre part, de protéger ce dernier des chocs lors de la fermeture de l'entrefer E.  The actuator 2 is thus configured to constitute a magnetic circuit. In particular, the magnetic circuit is composed of the parts 30, 28, 20, 24, 26 and the air gap E between the core 26 and the pole piece 30 of the shunt device 28. In the magnetic circuit, the pole piece 30a the function, on the one hand, to channel the magnetic flux Fn between the movable core 26 and the magnetocaloric material 29 and, on the other hand, to protect the latter from shocks during the closure of the gap E.
Toutes les pièces précitées ont une reluctance magnétique fixe à l'exclusion du dispositif de shunt 28. Dans l'intervalle de température où la magnétisation du dispositif 28 augmente, sa reluctance diminue en facilitant le passage du flux magnétique.  All the aforementioned parts have a fixed magnetic reluctance excluding the shunt device 28. In the temperature range where the magnetization of the device 28 increases, its reluctance decreases by facilitating the passage of the magnetic flux.
Le noyau magnétique 26 traversé le long de l'axe central X2 par le flux magnétique Fn est sujet à un effort magnétique En, dépendant du flux magnétique Fn et, de façon connue en soi, en étroite corrélation avec le courant circulant dans la bobine 22. Le noyau magnétique 26 exerce ainsi son effort En contre le ressort 32.  The magnetic core 26 traversed along the central axis X2 by the magnetic flux Fn is subject to a magnetic force En, depending on the magnetic flux Fn and, in a manner known per se, in close correlation with the current flowing in the coil 22 The magnetic core 26 thus exerts its force against the spring 32.
La bobine 22 génère une dissipation thermique, notamment par effet Joule. Le fourreau 24 se charge de transmettre cette chaleur dissipée aux autres pièces de l'actionneur et en particulier au dispositif de shunt 28 dont la magnétisation dépend de sa température. De plus, le fourreau 24 est responsable lui-même d'une dissipation thermique due à des courants qui circulent dans ses surfaces et qui sont induits par le flux magnétique Fn.  The coil 22 generates heat dissipation, in particular by Joule effect. The sheath 24 is responsible for transmitting this dissipated heat to the other parts of the actuator and in particular to the shunt device 28 whose magnetization depends on its temperature. In addition, the sleeve 24 is itself responsible for heat dissipation due to currents flowing in its surfaces and which are induced by the magnetic flux Fn.
Dans une condition d'utilisation normale, la dissipation thermique globale due au courant nominal induit une augmentation de la température T qui toutefois reste inférieure à la première température T0 précitée. La magnétisation du dispositif de shunt 28 reste nulle ou très basse. Ainsi, lors d'un courant nominal, l'effort En est inférieur ou égal à l'effort E32 du ressort 32, de façon que le noyau magnétique 26 ne se déplace pas et la configuration fermée du disjoncteur 4 est maintenue.  In a normal use condition, the overall heat dissipation due to the nominal current induces an increase in temperature T, which however remains lower than the first temperature T0 mentioned above. The magnetization of the shunt device 28 remains zero or very low. Thus, during a nominal current, the force En is less than or equal to the force E32 of the spring 32, so that the magnetic core 26 does not move and the closed configuration of the circuit breaker 4 is maintained.
Lorsqu'un courant de surcharge circule dans le circuit électrique, comme représenté à la figure 5, un flux magnétique Fs entoure la bobine 22, comme décrit ci- dessus. On considère, par exemple, le courant circulant comme ayant une valeur supérieure ou égale à 1 ,5 fois la valeur du courant nominal. Ainsi, le flux magnétique Fs généré par tel courant de surcharge est strictement supérieur au flux magnétique Fn généré par le courant nominal. De plus, ce courant de surcharge provoque une augmentation de la dissipation thermique par effet Joule de la bobine 22. Une telle dissipation thermique est transmise via le fourreau thermo-conducteur 24 au dispositif de shunt 28. Le dispositif de shunt 28 est donc porté à augmenter de température et à acquérir une température T comprise entre les première et seconde températures précitées. Cette température permet ainsi une magnétisation plus importante du dispositif de shunt 28 et donc une diminution de sa reluctance magnétique. En pratique, le circuit magnétique pour le courant de surcharge présente une reluctance magnétique globale inférieure à celle dans le cas du courant nominal. Le flux magnétique Fs exerce alors sur le noyau magnétique 26 un effort Es. Le noyau 26 comprime le ressort 32 lequel oppose son effort E32. Dans ce cas, l'effort Es est supérieur à l'effort E32 du ressort et le noyau 26 est mis en translation selon l'axe X2 et réduit l'entrefer E. Au niveau du disjoncteur 4, le déplacement du noyau 26 entraîne le pont mobile 44 et ses pastilles 46, en les écartant des pastilles fixes 42. Le disjoncteur 4 se trouve alors dans sa configuration ouverte. When an overload current flows in the electric circuit, as shown in FIG. 5, a magnetic flux Fs surrounds the coil 22, as described above. Consider, for example, the current flowing as having a value greater than or equal to 1.5 times the value of the nominal current. Thus, the magnetic flux Fs generated by such an overload current is strictly greater than the magnetic flux Fn generated by the nominal current. In addition, this overload current causes an increase in the heat dissipation by the Joule effect of the coil 22. heat dissipation is transmitted via the thermo-conductive sleeve 24 to the shunt device 28. The shunt device 28 is therefore raised to increase temperature and to acquire a temperature T between the first and second aforementioned temperatures. This temperature thus allows greater magnetization of the shunt device 28 and thus a decrease in its magnetic reluctance. In practice, the magnetic circuit for the overload current has a lower overall magnetic reluctance than in the case of the nominal current. The magnetic flux Fs then exerts on the magnetic core 26 a force Es. The core 26 compresses the spring 32 which opposes its effort E32. In this case, the force Es is greater than the force E32 of the spring and the core 26 is translated along the axis X2 and reduces the gap E. At the circuit breaker 4, the displacement of the core 26 causes the movable bridge 44 and its pellets 46, away from the fixed pellets 42. The circuit breaker 4 is then in its open configuration.
La transmission de chaleur dépend notamment du temps. L'augmentation de température n'est pas instantanée mais survient progressivement. En d'autres termes, la magnétisation du dispositif 28 augmente dans le temps avec la température. L'effort Es exercé par le noyau 26 sur le ressort 32 augmente lui aussi progressivement dans le temps parallèlement à l'augmentation de la température du dispositif de shunt 28. On peut considérer une température de seuil au-delà de laquelle l'effort Es est supérieure à l'effort E32 du ressort 32. Le déplacement du noyau 26 et l'ouverture des pastilles 42 et 46 du disjoncteur 4 sera possible lorsque la température T du dispositif 28 dépasse la température de seuil.  Heat transfer depends in particular on the weather. The temperature increase is not instantaneous but occurs gradually. In other words, the magnetization of the device 28 increases in time with the temperature. The force Es exerted by the core 26 on the spring 32 also increases progressively in time in parallel with the increase in the temperature of the shunt device 28. It is possible to consider a threshold temperature beyond which the stress E is greater than the force E32 of the spring 32. The displacement of the core 26 and the opening of the pellets 42 and 46 of the circuit breaker 4 will be possible when the temperature T of the device 28 exceeds the threshold temperature.
Lorsqu'un courant de court-circuit circule dans le circuit électrique, comme représenté à la figure 6, un flux magnétique Fc est généré. En considérant, par exemple, le courant de court-circuit comme supérieur ou égal à cinq fois le courant nominal, le flux magnétique Fc est notablement supérieur au flux magnétique Fn. En d'autres termes, le courant de court-circuit provoque une forte augmentation de la magnétisation du dispositif de shunt 28 quelle que soit sa température et le flux magnétique Fc exerce sur le noyau 26 un effort Ec qui est immédiatement supérieur à l'effort E32 du ressort 32. Dans ce cas, le flux magnétique Fc est capable de déplacer le noyau 26 sans attendre la transmission de chaleur entre la bobine 22 et le dispositif de shunt 28. Par voie de conséquence, le courant de court-circuit provoque presque instantanément un déplacement du noyau 26 le long de l'axe X2 de façon à réduire l'entrefer E et comprimer le ressort 32 et, au niveau du disjoncteur 4, ouvrir les pastilles 42 et 46.  When a short-circuit current flows in the electric circuit, as shown in Figure 6, a magnetic flux Fc is generated. Considering, for example, the short-circuit current as greater than or equal to five times the nominal current, the magnetic flux Fc is significantly greater than the magnetic flux Fn. In other words, the short-circuit current causes a large increase in the magnetization of the shunt device 28 whatever its temperature and the magnetic flux Fc exerts on the core 26 a force Ec which is immediately greater than the force E32 of the spring 32. In this case, the magnetic flux Fc is able to move the core 26 without waiting for heat transmission between the coil 22 and the shunt device 28. As a result, the short-circuit current causes almost instantaneously a displacement of the core 26 along the axis X2 so as to reduce the gap E and compress the spring 32 and, at the circuit breaker 4, open the pellets 42 and 46.
Dans le cas où l'actionneur 2 intervient pour ouvrir les pastilles 42 et 46 lorsqu'un courant de court-circuit circule dans le circuit électrique, l'effort magnétique généré par la bobine 22 est tel qu'il provoque l'ouverture de manière très rapide : cela entraine une limitation du courant de court-circuit. In the case where the actuator 2 intervenes to open the pellets 42 and 46 when a short-circuit current flows in the electrical circuit, the magnetic force generated by the coil 22 is such that it causes the opening very quickly: this causes a limitation of the short-circuit current.
La reluctance du dispositif de shunt 28, et donc de tout le circuit magnétique, est fonction de la longueur L du dispositif 28 par rapport au fourreau 24. La longueur L joue un rôle important dans le fonctionnement du disjoncteur 4. Cette longueur L définit la partie du dispositif de shunt 28 qui fait partie du circuit magnétique. La longueur L définit ainsi la partie du dispositif de shunt 28 qui est en contact avec le fourreau 24 et donc exposée de manière directe à la transmission de chaleur.  The reluctance of the shunt device 28, and therefore of the entire magnetic circuit, is a function of the length L of the device 28 relative to the sleeve 24. The length L plays an important role in the operation of the circuit breaker 4. This length L defines the part of the shunt device 28 which is part of the magnetic circuit. The length L thus defines the part of the shunt device 28 which is in contact with the sheath 24 and thus directly exposed to the heat transfer.
En considérant comme fixe la position du noyau 26, lorsque la longueur L est réduite, l'entrefer E augmente et par conséquent la reluctance globale du circuit magnétique augmente. Afin que l'effort du noyau 26 soit supérieur à l'effort E32 du ressort 32, il faudra atteindre un degré de magnétisation du dispositif 28 supérieur, c'est-à-dire une température de seuil supérieure. En d'autres termes, en réduisant la longueur L, il est possible de retarder le seuil de déclenchement du disjoncteur 4.  By considering as fixed the position of the core 26, when the length L is reduced, the gap E increases and therefore the overall reluctance of the magnetic circuit increases. So that the force of the core 26 is greater than the force E32 of the spring 32, it will be necessary to achieve a degree of magnetization of the upper device 28, that is to say a higher threshold temperature. In other words, by reducing the length L, it is possible to delay the tripping threshold of the circuit breaker 4.
Au contraire, en augmentant la longueur L, l'entrefer E se réduit, ainsi que la reluctance globale du circuit magnétique. La température de seuil est alors inférieure. En d'autres termes, en augmentant la longueur L, il est possible d'avancer le seuil de déclenchement du disjoncteur 4.  On the contrary, by increasing the length L, the gap E is reduced, as well as the overall reluctance of the magnetic circuit. The threshold temperature is then lower. In other words, by increasing the length L, it is possible to advance the tripping threshold of the circuit breaker 4.
Divers aménagements et variantes de l'actionneur 2 sont par ailleurs envisageables. A titre d'exemples :  Various arrangements and variants of the actuator 2 are also possible. As examples:
- la pièce polaire 30 est de forme cylindrique creuse incluant donc un alésage dans lequel est agencé partiellement le ressort 32 qui donc prend appui contre le matériau magnétocalorique 29 du dispositif de shunt 28 et le noyau magnétique 26 ;  - The pole piece 30 is hollow cylindrical shape including a bore in which is partially arranged the spring 32 which bears against the magnetocaloric material 29 of the shunt device 28 and the magnetic core 26;
- le fourreau thermo-conducteur 24 inclut une fente 240, comme représentée à la figure 7, qui s'étend parallèlement à l'axe central X2. La fente 240 réalise une coupure pour les courants générés par induction électromagnétique dans le fourreau 24. La présence de la fente 240 permet donc de retarder le seuil de déclenchement. Le choix d'utiliser ou non un fourreau 24 avec la fente 240 est donc en fonction du domaine d'utilisation du disjoncteur 4.  the heat-conducting sleeve 24 includes a slot 240, as shown in FIG. 7, which extends parallel to the central axis X2. The slot 240 makes a cut for the currents generated by electromagnetic induction in the sheath 24. The presence of the slot 240 thus allows to delay the triggering threshold. The choice to use or not a sheath 24 with the slot 240 is therefore depending on the field of use of the circuit breaker 4.
Le mode de réalisation et les variantes envisagés ci-dessus peuvent être combinés entre eux pour générer de nouveaux modes de réalisation.  The embodiment and variants envisaged above can be combined with one another to generate new embodiments.

Claims

REVENDICATIONS
1 .- Actionneur électromagnétique (2), comprenant une carcasse magnétique (20), une bobine (22) solidaire de la carcasse et susceptible d'être reliée à un circuit électrique, un noyau magnétique (26) agencé dans la bobine et mobile, selon un axe central (X2) défini par la bobine, en fonction de l'intensité du courant circulant dans la bobine, et un dispositif de shunt (28), agencé dans la bobine et comprenant un matériau magnétocalorique (29) dont la magnétisation est fonction de la température, l'actionneur étant caractérisé en ce que le dispositif de shunt (28) est agencé dans la bobine (22) pour une longueur (L), selon l'axe central (X2), de manière à former un entrefer (E) entre le dispositif de shunt et le noyau magnétique (26), l'actionneur comprenant en outre des moyens (31 ) de fixation du dispositif de shunt à la carcasse (20), conçus pour régler cette longueur (L). 1 .- Electromagnetic actuator (2), comprising a magnetic carcass (20), a coil (22) integral with the carcass and connectable to an electrical circuit, a magnetic core (26) arranged in the coil and movable, along a central axis (X2) defined by the coil, as a function of the intensity of the current flowing in the coil, and a shunt device (28), arranged in the coil and comprising a magnetocaloric material (29) whose magnetization is a function of the temperature, the actuator being characterized in that the shunt device (28) is arranged in the coil (22) for a length (L), along the central axis (X2), so as to form a gap (E) between the shunt device and the magnetic core (26), the actuator further comprising means (31) for attaching the shunt device to the carcass (20), adapted to adjust that length (L).
2.- Actionneur selon la revendication 1 , caractérisé en ce que l'actionneur (2) comprend en outre un fourreau thermo-conducteur (24) disposé dans la bobine (22) et en ce que le noyau magnétique (26) et le dispositif de shunt (28) sont agencés dans le fourreau. 2. An actuator according to claim 1, characterized in that the actuator (2) further comprises a heat-conducting sleeve (24) disposed in the coil (22) and in that the magnetic core (26) and the device shunt (28) are arranged in the sheath.
3.- Actionneur selon la revendication 2, caractérisé en ce que le dispositif de shunt3. Actuator according to claim 2, characterized in that the shunt device
(28) est en contact avec le fourreau thermo-conducteur (24). (28) is in contact with the heat-conducting sleeve (24).
4. - Actionneur selon l'une des revendications précédentes, caractérisé en ce qu'un ressort (32) est interposé entre le dispositif de shunt (28) et le noyau magnétique (26). 4. - actuator according to one of the preceding claims, characterized in that a spring (32) is interposed between the shunt device (28) and the magnetic core (26).
5. - Actionneur selon la revendication 4, caractérisé en ce que le dispositif de shunt (28) est pourvu d'une pièce polaire (30) agencée entre le ressort (32) et une partie (29) du dispositif de shunt, constituée par le matériau magnétocalorique. 5. - actuator according to claim 4, characterized in that the shunt device (28) is provided with a pole piece (30) arranged between the spring (32) and a portion (29) of the shunt device, constituted by the magnetocaloric material.
6.- Actionneur selon l'une des revendications 2 à 5, caractérisé en ce que le fourreau thermo-conducteur (24) est à paroi pleine. 6. Actuator according to one of claims 2 to 5, characterized in that the thermo-conductive sleeve (24) is solid wall.
7.- Actionneur selon l'une des revendications 2 à 5, caractérisé en ce que le fourreau thermo-conducteur (24) inclut une fente (240) qui s'étend parallèlement à son axe central (X2). 7. Actuator according to one of claims 2 to 5, characterized in that the heat-conducting sleeve (24) includes a slot (240) which extends parallel to its central axis (X2).
8. - Actionneur selon l'une des revendications précédentes, caractérisé en ce que les moyens de fixation (31 ) comprennent une soudure laser ou un dispositif de verrouillage mécanique. 8. - actuator according to one of the preceding claims, characterized in that the fastening means (31) comprise a laser weld or a mechanical locking device.
9. - Actionneur selon l'une des revendications précédentes, caractérisé en ce que le matériau magnétocalorique est un alliage de nickel, cobalt, manganèse et d'un quatrième élément choisi parmi aluminium, indium, antimoine et étain. 9. - Actuator according to one of the preceding claims, characterized in that the magnetocaloric material is an alloy of nickel, cobalt, manganese and a fourth element selected from aluminum, indium, antimony and tin.
10. - Disjoncteur (4), comprenant un boîtier (40) logeant un actionneur (2) selon l'une des revendications précédentes, la bobine (22) de l'actionneur étant reliée à une ligne (41 ) de courant, et une paire de contacts (42, 46) mobiles l'un par rapport à l'autre, un premier (46) des contacts étant en liaison mécanique avec le noyau magnétique (26) de l'actionneur. 10. - Circuit breaker (4), comprising a housing (40) housing an actuator (2) according to one of the preceding claims, the coil (22) of the actuator being connected to a line (41) of current, and a pair of contacts (42, 46) movable relative to each other, a first (46) of the contacts being in mechanical connection with the magnetic core (26) of the actuator.
EP15793787.1A 2014-11-12 2015-11-10 Electromagnetic actuator and circuit breaker including such an actuator Active EP3218915B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1460896A FR3028349B1 (en) 2014-11-12 2014-11-12 ELECTROMAGNETIC ACTUATOR AND CIRCUIT BREAKER COMPRISING SUCH ACTUATOR
PCT/EP2015/076163 WO2016075118A1 (en) 2014-11-12 2015-11-10 Electromagnetic actuator and circuit breaker including such an actuator

Publications (2)

Publication Number Publication Date
EP3218915A1 true EP3218915A1 (en) 2017-09-20
EP3218915B1 EP3218915B1 (en) 2018-08-22

Family

ID=52450379

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15793787.1A Active EP3218915B1 (en) 2014-11-12 2015-11-10 Electromagnetic actuator and circuit breaker including such an actuator

Country Status (4)

Country Link
US (1) US10283301B2 (en)
EP (1) EP3218915B1 (en)
FR (1) FR3028349B1 (en)
WO (1) WO2016075118A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113198594B (en) * 2021-03-24 2023-05-02 金玲玲 Circuit protection mechanism for paper jam of office paper shredder

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2690528A (en) * 1950-12-07 1954-09-28 Heinemann Electric Co Delayed action magnetic circuit breaker
US3806850A (en) * 1971-12-29 1974-04-23 Stearns Electric Corp High wattage contactor
DE2847748A1 (en) * 1978-11-03 1980-05-22 Bosch Gmbh Robert WATER CONTROL VALVE FOR A MOTOR VEHICLE AIR CONDITIONING, IN PARTICULAR HEATING SYSTEM, AND METHOD FOR THE PRODUCTION THEREOF, IN PARTICULAR ADJUSTMENT
DE3028900A1 (en) * 1980-07-30 1982-02-25 Brown, Boveri & Cie Ag, 6800 Mannheim Conductor rail mounted overload cut=out switch - has magnet with thermomagnetic and heat conductive discs for quicker release at higher temp.
EP0301381B1 (en) * 1987-07-21 1991-09-11 Nippondenso Co., Ltd. Method for adjusting fuel injection quantity of electromagnetic fuel injector
FR2772981B1 (en) 1997-12-24 2000-01-21 Schneider Electric Sa SELECTIVE TRIGGERING DEVICE FOR CIRCUIT BREAKER
DE19847155A1 (en) 1998-10-13 2000-04-20 Kopp Heinrich Ag Overcurrent trip device for circuit breakers, has heat conducting tubular body wound with coil, and with stop end and opposite expanded end for mounting and radial support of bimetallic spring plate
WO2000074097A1 (en) * 1999-06-01 2000-12-07 Siemens Aktiengesellschaft Switching device with thermally controlled electromagnetic trip element, and trip element
JP5521852B2 (en) * 2010-03-30 2014-06-18 アンデン株式会社 Electromagnetic relay
JP5488238B2 (en) * 2010-06-17 2014-05-14 日産自動車株式会社 Electromagnetic relay
JP5664432B2 (en) * 2010-06-21 2015-02-04 日産自動車株式会社 Electromagnetic relay
TWI455266B (en) * 2010-12-17 2014-10-01 矽品精密工業股份有限公司 Package structure having micro-electro-mechanical elements and manufacturing method thereof
FR2972076B1 (en) 2011-02-25 2013-04-05 Hager Electro Sas MAGNETOTHERMIC ACTUATOR.
FR2999014B1 (en) * 2012-12-03 2016-01-15 Schneider Electric Ind Sas MAGNETOTHERMIC SHUNT ACTUATOR, ESPECIALLY FOR CIRCUIT BREAKER TRIPPING
FR3037988A1 (en) * 2015-06-24 2016-12-30 Simu METHOD FOR CONTROLLING THE OPERATION OF A MOTORIZED DRIVE DEVICE OF A DOMOTIC INSTALLATION, MOTORIZED DRIVE DEVICE AND INSTALLATION THEREFOR

Also Published As

Publication number Publication date
US10283301B2 (en) 2019-05-07
US20170263404A1 (en) 2017-09-14
WO2016075118A1 (en) 2016-05-19
FR3028349A1 (en) 2016-05-13
EP3218915B1 (en) 2018-08-22
FR3028349B1 (en) 2016-12-30

Similar Documents

Publication Publication Date Title
EP0620580B1 (en) Auxiliary trip device for circuit breaker
EP2232518B1 (en) Protection device against overvoltage including a disconnection accessory
FR2606929A1 (en) SWITCH DEVICE FOR PROTECTIVE APPARATUS
EP1743346B1 (en) Surge voltage protection device with arc-breaking means
FR2848353A1 (en) Protection against overvoltages for protection of electrical transmission or machines against lightning, uses bimetallic strip adjacent to overvoltage varistor device to release contactor when temperature is to high
EP1953787B1 (en) Device for protecting against voltage surges with mobile contact comprising selective disconnection means
EP2333805B1 (en) Remotely controlled switchgear and power distribution device provided with such a switchgear
EP0147278B1 (en) Thermal-magnetic tripping mechanism of a circuit breaker made of shape memory effect material
EP3218915B1 (en) Electromagnetic actuator and circuit breaker including such an actuator
EP2804189B1 (en) Arc extinguising chamber for an electric protection apparatus and electric protection apparatus comprising same
EP2926355B1 (en) Actuator with a thermomagnetic shunt, especially for triggering a circuit breaker
EP2330611B1 (en) Selective circuit-breaker
EP1953788B1 (en) Device for protecting against voltage surges with a mobile electrode with system for unlocking the disconnection device
EP1815569B1 (en) Overvoltage-protection device with improved disconnection
EP3699943B1 (en) Magnetic tripping device for electrical switchgear
EP2973635A1 (en) Magnetothermal actuator
EP3161850B1 (en) Thermal-magnetic tripping mechanism
EP1267368B1 (en) Distribution transformer self-protected by a circuit breaker triggering on secondary short-cut
EP0926694B1 (en) Magnetothermal control device and a circuit breaker equiped with such a device
FR2982705A1 (en) DEVICE FOR PROTECTING AN ELECTRICAL CIRCUIT POWERED BY AN INTEGRABLE ALTERNATING CURRENT IN A CONTACTOR.
FR3080946A1 (en) BREAKER WITH VACUUM SWITCH
EP3185275A1 (en) Device for joining a bimetal strip and a component forming a support for said bimetal strip, and electrical protection unit comprising same
WO2011121216A1 (en) Fuse and sectioning switch comprising such a fuse
FR2844915A1 (en) Multi-polar circuit breaker includes trigger actuated by gas pressure, releasing all poles of circuit breaker on detection of fault
FR3063174A1 (en) APPARATUS FOR CUTTING AN ELECTRICAL CURRENT WITH SEPARABLE ELECTRICAL CONTACTS AND CUTTING IN THE AIR

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20170427

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180326

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1033422

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015015236

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180822

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181123

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181122

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181222

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181122

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1033422

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015015236

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181110

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180822

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20151110

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231121

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231123

Year of fee payment: 9

Ref country code: DE

Payment date: 20231127

Year of fee payment: 9