EP3294167A1 - Humeral nail - Google Patents
Humeral nailInfo
- Publication number
- EP3294167A1 EP3294167A1 EP16720299.3A EP16720299A EP3294167A1 EP 3294167 A1 EP3294167 A1 EP 3294167A1 EP 16720299 A EP16720299 A EP 16720299A EP 3294167 A1 EP3294167 A1 EP 3294167A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- bore
- nail
- proximal
- calcar
- screw
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000001174 ascending effect Effects 0.000 claims description 34
- 210000000988 bone and bone Anatomy 0.000 claims description 10
- 210000004095 humeral head Anatomy 0.000 description 9
- 230000008901 benefit Effects 0.000 description 8
- 210000003484 anatomy Anatomy 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 210000005036 nerve Anatomy 0.000 description 4
- 210000002758 humerus Anatomy 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 210000005166 vasculature Anatomy 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/72—Intramedullary pins, nails or other devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/72—Intramedullary pins, nails or other devices
- A61B17/7233—Intramedullary pins, nails or other devices with special means of locking the nail to the bone
- A61B17/725—Intramedullary pins, nails or other devices with special means of locking the nail to the bone with locking pins or screws of special form
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/72—Intramedullary pins, nails or other devices
- A61B17/7233—Intramedullary pins, nails or other devices with special means of locking the nail to the bone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B2017/681—Alignment, compression, or distraction mechanisms
Definitions
- humeral nail When using a humeral nail to treat fractures of the humerus, it is important to be able to effectively target certain anatomical landmarks in the vicinity of the humeral head while also avoiding vital vasculature and nerves.
- a specific anatomical target may differ in location from patient to patient due to differences in size and shape between each patient's anatomy.
- Some conventional humeral nails cannot effectively target the anatomical landmarks of a patient.
- a humeral nail in Example 1, includes a nail body defining a nail longitudinal axis extending from a proximal portion to a distal portion of the nail body, and a descending through bore formed in the nail body and having a bore entrance positioned anterior and proximal relative to a bore exit and defining an anterior to posterior descending screw trajectory through the nail body.
- Example 2 the humeral nail of Example 1 is optionally configured such that the descending through bore is configured to receive a bone screw to target a patient's lesser tuberosity.
- Example 3 the humeral nail of Example 1 or Example 2 is optionally configured such that the descending through bore extends through the proximal portion of the humeral nail.
- Example 4 the humeral nail of any of Examples 1-3, optionally further includes an ascending through bore defining an ascending screw trajectory through the nail body that intersects the descending screw trajectory.
- Example 5 the humeral nail of Example 4 is optionally configured such that the ascending screw trajectory and the descending screw trajectory define an angle therebetween of at least 40 degrees in a proximal-distal direction.
- a humeral nail includes a nail body defining a nail
- longitudinal axis extending from a proximal portion of the nail body to a distal portion of the nail body, a first proximal through bore formed in the nail body and defining a first screw trajectory extending transverse to the nail longitudinal axis, a second proximal through bore formed in the nail body and defining a second screw trajectory extending transverse to the nail longitudinal axis, a third proximal through bore formed in the nail body and defining a third screw trajectory extending transverse to the nail longitudinal axis, a descending through bore formed in the nail body and defining a descending screw trajectory extending anterior to posterior and proximal to distal, and a calcar through bore formed in the nail body and defining a calcar screw trajectory extending anterior to posterior, lateral to medial, and distal to proximal.
- Example 7 the humeral nail of Example 6 is optionally configured such that the first, second, and third proximal through bores, the descending through bore, and the calcar through bore extend through the proximal portion of the nail body.
- Example 8 the humeral nail of Example 6 or Example 7 is optionally configured such that the first proximal through bore defines the first screw trajectory as extending lateral to medial along a medial-lateral axis.
- Example 9 the humeral nail of any of Examples 6-8 is optionally configured such that the second proximal through bore defines the second screw trajectory as extending lateral to medial and posterior to anterior.
- Example 10 the humeral nail of any of Examples 6-9 is optionally configured such that the third proximal through bore defines the third screw trajectory as extending lateral to medial and anterior to posterior.
- Example 11 the humeral nail of any of Examples 6-10 is optionally configured such that the calcar through bore defines a variable angle calcar screw trajectory.
- Example 12 the humeral nail of any of Examples 6-11, optionally
- an ascending through bore formed in the nail body and defining an ascending screw trajectory extending anterior to posterior and distal to proximal.
- a humeral nail includes a humeral nail body defining a nail longitudinal axis extending from a proximal portion to a distal portion of the humeral nail body, and a calcar through bore extending through the humeral nail body and having a bore entrance positioned anterior and lateral relative to a bore exit, the calcar through bore defining at least two different calcar screw trajectories extending distal to proximal.
- Example 14 the humeral nail of Example 13 is optionally configured such that the bore entrance includes two intersecting ellipses.
- Example 15 the humeral nail of Example 13 or Example 14 is
- the at least two different calcar screw trajectories differ in a proximal-distal direction and a medial- lateral direction.
- Example 16 the humeral nail of any of Examples 13-15 is optionally configured such that the bore entrance includes an opening in the shape of a figure eight.
- Example 17 the humeral nail of any of Examples 13-16 is optionally configured such that the calcar through bore defines at least three different calcar screw trajectories.
- Example 18 the humeral nail of any of Examples 13-17 is optionally configured such that the bore entrance includes three intersecting ellipses.
- Example 19 the humeral nail of any of Examples 13-18 is optionally configured such that each of the different calcar screw trajectories extend at an angle of 40 degrees to 60 degrees from the nail longitudinal axis.
- Example 20 the humeral nail of any of Examples 13-19 is optionally configured such that the bore entrance is positioned about 50 degrees anterior to a medial- lateral axis, and the bore exit is positioned about 50 degrees posterior to the medial- lateral axis.
- Example 21 the apparatus, system, or method of any one or any
- Examples 1-20 can optionally be configured such that all elements or options recited are available to use or select from.
- Fig. 1 A is an anterior to posterior view of a humeral nail, in accordance with at least one example of the present disclosure.
- Fig. IB is a magnified view of a proximal portion of the humeral nail of Fig. 1 A, in accordance with at least one example of the present disclosure.
- Fig. 1 C is a top view of the humeral nail of Figs. 1 A and IB, in accordance with at least one example of the present disclosure.
- Fig. ID is a lateral to medial view of the humeral nail of Figs. 1A-1 C, in accordance with at least one example of the present disclosure.
- Fig. IE is a magnified view of the proximal portion of the humeral nail of
- Fig. ID in accordance with at least one example of the present disclosure.
- Fig. 2A is an anterior to posterior view of a humeral nail, in accordance with at least one example of the present disclosure.
- FIG. 2B is a magnified view of a proximal portion of the humeral nail of
- FIG. 2A in accordance with at least one example of the present disclosure.
- Fig. 2C is a top view of the humeral nail of Figs. 2A and 2B, in accordance with at least one example of the present disclosure.
- Fig. 2D is a lateral to medial view of the humeral nail of Figs. 2A-2C, in accordance with at least one example of the present disclosure.
- Fig. 2E is a magnified view of the proximal portion of the humeral nail of
- Fig. 2D in accordance with at least one example of the present disclosure.
- Fig. 2F is a block diagram of an ascending screw and a descending screw, in accordance with at least one example of the present disclosure.
- FIG. 3 A is a perspective view of a bore entrance of a calcar through bore, in accordance with at least one example of the present disclosure.
- FIG. 3B is a perspective view of a bore exit of the calcar through bore of
- FIG. 3 A in accordance with at least one example of the present disclosure.
- Fig. 4A is a perspective view of a bore entrance of a calcar through bore, in accordance with at least one example of the present disclosure.
- Fig. 4B is a perspective view of a bore exit of the calcar through bore of
- FIG. 4A in accordance with at least one example of the present disclosure.
- a humeral nail can include a nail body defining a nail longitudinal axis extending from a proximal portion to a distal portion.
- the proximal portion of the humeral nail can include a plurality of through bores formed through the nail body; for example, a plurality of proximal through bores, a descending through bore and a calcar through bore.
- the descending through bore can define a descending screw trajectory extending anterior to posterior and proximal to distal.
- the humeral nail can further include an ascending through bore defining an ascending screw trajectory that intersects the descending screw trajectory.
- the calcar through bore can define a variable angle calcar screw trajectory.
- the humeral nail can provide screw trajectories for targeting anatomical landmarks in the vicinity of the humeral head while also avoiding vital vasculature and nerves. Further, providing these screw trajectories through the humeral nail can provide stable locking, which can be especially important if a screw is driven into poor bone stock. In at least one example, the humeral nail can provide screw trajectories that allow patient-specific anatomical landmarks to be targeted.
- the descending screw trajectory can target the lesser tuberosity of a patient. In at least one example, the descending screw trajectory can more effectively target the lesser tuberosity than
- variable angle calcar screw trajectory can target the calcar region of the humeral head. In at least one example, the variable angle calcar screw trajectory can more effectively target a patient-specific calcar region than conventional fixed-trajectory systems.
- 1A-2F include an indication of the orientation of the axes, in which "P” indicates the proximal axis, “D” indicates the distal axis, “M” indicates the medial axis, “L” indicates the lateral axis, “A” indicates the anterior axis, and “B” indicates the posterior axis.
- Fig. 1 A is an anterior to posterior view of a humeral nail 100, in
- the humeral nail 100 can include a humeral nail body 102 having a proximal end 104 and a distal end 106, and defining a nail longitudinal axis 108 extending along the length of the humeral nail body 102 from the proximal end 104 to the distal end 106.
- the humeral nail body 102 is depicted implanted within a patient's humerus 110, which generally includes a humeral head 112 and a calcar region 114.
- the humeral nail body 102 can include one or more distal through bores 116, 118 formed in the humeral nail body 102 and extending through the distal portion 106, each distal through bore 116, 118 defining a distal screw trajectory 120, 122.
- the one or more distal through bores 116, 118 can define distal screw trajectories
- each of the one or more distal through bores 116, 118 can define a distal screw trajectory 120, 122 extending at any angle, in any direction, through the distal portion 106 of the humeral nail body 102. While the illustrated example depicts two distal through bores 116, 118, in other examples the humeral nail body 102 can include no distal through bores, a single distal through bore, or more than two distal through bores.
- Fig. IB is a magnified view of the proximal portion 104 of the humeral nail 100 of Fig. 1A, in accordance with at least one example of the present disclosure.
- the humeral nail body 102 can include a first proximal through bore 124, a second proximal through bore 126, and a third proximal through bore 128, each of the proximal through bores 124, 126, 128 extending through the proximal portion 104, each through bore formed in the humeral nail body 102.
- the first proximal through bore 124 can be the first most proximal through bore of the humeral nail body 102.
- the first proximal through bore 124 can be positioned at a distance of between approximately 10 millimeters and approximately 15 millimeters distal of a proximal end 130 of the humeral nail body 102. In at least one example, the first proximal through bore 124 can be positioned at a distance of approximately 12.5 millimeters distal of the proximal end 130 of the humeral nail body 102. In some examples, the first proximal through bore 124 can define a first screw trajectory 132 extending through the proximal portion 104. In at least one example, the first screw trajectory 132 can extend transverse to the nail longitudinal axis 108. In at least one example, the first screw trajectory 132 can extend lateral to medial along the medial- lateral axis.
- the second proximal through bore 126 can be the second most proximal through bore of the humeral nail body 102. In some examples, the second proximal through bore 126 can be positioned at a distance of between approximately 17 millimeters and approximately 21 millimeters distal of the proximal end 130 of the humeral nail body 102. In at least one example, the second proximal through bore 126 can be positioned at a distance of approximately 19 millimeters from the proximal end 130 of the humeral nail body 102. In some examples, the second proximal through bore 126 can define a second screw trajectory 134 extending through the proximal portion 104. In at least one example, the second screw trajectory 134 can extend transverse to the nail longitudinal axis 108. In at least one example, the second screw trajectory 134 can extend lateral to medial and posterior to anterior.
- the third proximal through bore 128 can be the third most proximal through bore of the humeral nail body 102. In some examples, the third proximal through bore 128 can be positioned at a distance of between approximately 23 millimeters and approximately 28 millimeters distal of the proximal end 130 of the humeral nail body 102. In at least one example, the third proximal through bore 128 can be positioned at a distance of approximately 25.5 millimeters from the proximal end 130 of the humeral nail body 102. In some examples, the third proximal through bore 128 can define a third screw trajectory 136 extending through the proximal portion 104. In at least one example the third screw trajectory 136 can extend transverse to the nail longitudinal axis 108. In at least one example, the third screw trajectory 136 can extend lateral to medial and anterior to posterior.
- the humeral nail body 102 can include more proximal through bores, less proximal through bores, and each proximal through bore can be at any position and in any orientation.
- the humeral nail body 102 can include a descending through bore 138 extending through the proximal portion 104.
- the descending through bore 138 can be the fourth most proximal through bore of the humeral nail body 102.
- the descending through bore 138 can be positioned at a distance of between approximately 30 millimeters and approximately 34 millimeters distal of the proximal end 130 of the humeral nail body 102.
- the descending through bore 138 can be positioned at a distance of approximately 32 millimeters distal of the proximal end 130 of the humeral nail body 102.
- the descending through bore 138 can be the fourth most proximal through bore of the humeral nail body 102.
- the descending through bore 138 can be positioned at a distance of between approximately 30 millimeters and approximately 34 millimeters distal of the proximal end 130 of the humeral nail body 102.
- the descending through bore 138 can
- the descending screw trajectory 140 can extend anterior to posterior and proximal to distal.
- the humeral nail body 102 can include a calcar through bore 142 extending through the proximal portion 104.
- the calcar through bore 142 can be the fifth most proximal through bore of the humeral nail body 102.
- the calcar through bore 142 can be positioned at a distance of between approximately 45 millimeters and approximately 50 millimeters distal of the proximal end 130 of the humeral nail body 102.
- the calcar through bore 142 can be positioned at a distance of approximately 47.5 millimeters from the proximal end 130 of the humeral nail body 102.
- the calcar through bore 142 can define one or more calcar screw trajectories 144, 146 extending through the proximal portion 104.
- each of the one or more calcar screw trajectories 144, 146 can comprise a variable angle trajectory.
- the calcar through bore 142 can define at least two calcar screw trajectories 144, 146.
- the calcar through bore 142 can define at least three calcar screw trajectories.
- the calcar screw trajectory 140 can extend anterior to posterior, lateral to medial, and distal to proximal.
- the calcar screw trajectories 140 can vary in angle 180, 182 relative to the nail longitudinal axis 108 or the proximal-distal axis.
- each of the calcar screw trajectories 144, 146 can extend at an angle of 40 degrees to 60 degrees from the nail longitudinal axis 108.
- the angle 180 of one calcar screw trajectory 146 can be 40 degrees from the nail longitudinal axis 108, and the angle 182 of another calcar screw trajectory 144 can be 60 degrees form the nail longitudinal axis 108.
- the calcar through bore 142 can comprise an ellipse or other elongated opening, so as to provide a variable calcar screw trajectory 144, 146 that allows for a plurality of trajectories.
- the calcar through bore 142 can allow for a screw to be placed at any angle between 40 degrees and 60 degrees.
- Fig. 1 C is a top view of the humeral nail 100 of Figs. 1 A and IB, in
- the humeral nail body 102 can form a lumen 148.
- the lumen 148 can extend along the nail longitudinal axis 108 for the length of the humeral nail body 102.
- the first screw trajectory 132 can extend lateral to medial approximately along the medial-lateral axis.
- the second screw trajectory 134 can extend lateral to medial and posterior to anterior.
- the second screw trajectory 134 can extend at an angle 150 posterior to the medial-lateral axis.
- the angle 150 of the second screw trajectory 134 can be approximately 30 degrees posterior to the medial-lateral axis.
- the second screw trajectory 134 can extend at a coronal angle of between approximately 25 and 35 degrees posterior to the medial-lateral plane.
- the third screw trajectory 136 can extend lateral to
- the third screw trajectory 136 can extend at an angle 152 anterior to the medial-lateral axis. In at least one example, the angle 152 of the third screw trajectory 136 can be approximately 25 degrees anterior to the medial-lateral axis. In at least one example, the third screw trajectory 136 can extend at a coronal angle of between approximately 20 and 30 degrees anterior to the medial- lateral plane.
- the descending screw trajectory 140 can extend
- the descending screw trajectory 140 can extend proximal to distal, anterior to posterior, and medial to lateral. In at least one example the descending screw trajectory 140 can extend at an angle 154 anterior to the medial - lateral axis. In at least one example, the angle 154 of the descending screw trajectory 140 can be approximately 95 degrees anterior to the medial- lateral axis. In at least one example, descending screw trajectory 140 can extend in the anterior to posterior direction at an angle of between approximately 60 and 80 degrees from the nail longitudinal axis 108.
- one or more of the calcar screw trajectories 144, 146 can extend anterior to posterior, lateral to medial, and distal to proximal. In at least one example, one or more of the calcar screw trajectories 144, 146 can extend at an angle 156 anterior to the medial-lateral axis. In at least one example, the angle 156 of one or more of the calcar screw trajectories 144, 146 can be approximately 50 degrees anterior to the medial-lateral axis. In at least one example, one or more of the calcar screw trajectories 144, 146 extends in the anterior to posterior direction at an angle of between approximately 45 and 60 degrees from the nail longitudinal axis 108.
- one or more of the calcar screw trajectories 144, 146 extends at a coronal angle of between approximately 45 and 55 degrees from the medial- lateral axis, and at an angle of between approximately 40 and 60 degrees from the nail longitudinal axis 108.
- the variable angle calcar screw trajectory can be located inside the nail body 102 at approximately 40 degrees, at approximately 50 degrees, and at approximately 60 degrees from the nail longitudinal axis 108. In at least one example.
- variable angle calcar screw trajectory can be located inside the nail body 102 at approximately 40 degrees from the nail longitudinal axis 108 and at a coronal angle of approximately 35-40 degrees from the medial-lateral axis, at approximately 50 degrees from the nail longitudinal axis 108 and at a coronal angle of approximately 50 degrees from the medial-lateral axis, and at approximately 60 degrees from the nail longitudinal axis 108 and at a coronal angle of approximately 60-65 degrees from the medial-lateral axis.
- the first proximal through bore 124, the second proximal through bore 126, and the third proximal through bore 128 are configured such that the respective first, second, and third screw trajectories, 132, 134, 136 target the humeral head 112.
- the descending through bore 138 is configured such that the descending screw trajectory 140 targets a lesser tuberosity 158.
- the calcar through bore 142 is configured such that one or more of the variable calcar screw trajectories 144, 146 target the calcar region 114.
- the trajectories can be spread out from a top view (such as the top view of Fig. 1 C) so as to target multiple anatomical landmarks.
- Fig. ID is a lateral to medial view of the humeral nail 100 of Figs. 1A-1 C
- Fig. IE is a magnified view of the proximal portion 104 of the humeral nail 100 of Fig. ID, in accordance with at least one example of the present disclosure.
- one of the calcar screw trajectories 146 can better target the calcar than another calcar screw trajectory 144.
- a practitioner can orient a bone screw to extend through the calcar through bore 142 such that it follows the selected calcar screw trajectory 146 to target the calcar region.
- the practitioner can select a selected calcar screw trajectory of a plurality of calcar screw trajectories to target patient-specific anatomical landmarks.
- the descending screw trajectory 140 can extend
- the descending screw trajectory 140 can extend at an angle 160 proximal to a medial-lateral axis 162. In at least one example, the angle 160 of the descending screw trajectory 140 can be approximately 30 degrees proximal to the medial-lateral axis 162.
- Each of the bore holes 124, 126, 128, 138, 142 can include a bore entrance and a bore exit, which, in the illustrated example are indicated by the direction of the screws showing the screw trajectories, 132, 134, 136, 140, 144, 146. That is, the screw enters through the bore entrance of the through bore and extends through the bore exit of the through bore.
- the head of each screw is on the bore entrance side of each through bore, and the tip of the screw is on the bore exit side of each through bore.
- Fig. 2A-2F are various views of a humeral nail 200 including a humeral nail body 202, in accordance with at least one example of the present disclosure.
- the humeral nail body 202 of the humeral nail 200 can be generally the same as the humeral nail body 102 of the humeral nail 100 described with reference to Figs. 1 A-1E except the humeral nail body 202 can include an ascending through bore 204.
- the ascending through bore 204 can define an ascending screw trajectory 206.
- the ascending through bore 204 can define an ascending screw trajectory 206 extending anterior to posterior and distal to proximal.
- the ascending screw trajectory 206 can extend anterior to posterior, distal to proximal, and medial to lateral.
- the ascending screw trajectory 206 can extend at an angle 254 anterior to the medial- lateral axis.
- the angle 254 of the ascending screw trajectory 206 can be approximately 95 degrees anterior to the medial- lateral axis. In the example illustrated in Fig.
- the angle 254 of the ascending screw trajectory 206 with respect to the medial- lateral axis can be equal to the angle 154 of the descending screw trajectory 140 with respect to the medial-later axis, such that the ascending screw trajectory 206 and the descending screw trajectory 140 align in a top view of the humeral nail 200.
- the trajectories 132, 134, 136, 140, 144, 146, 206 are splayed about the nail longitudinal axis 108 to provide better support in the humeral head 112.
- the trajectories can be spread out from a top view (such as the top view of Fig. 2C) so as to target multiple anatomical landmarks.
- the ascending screw trajectory 206 can extend at an angle 208 distal to an anterior-posterior axis. In some examples, the ascending screw trajectory 206 can intersect the descending screw trajectory 140 within the humeral nail body 202 at an intersection point 218. In at least one example, the ascending screw trajectory 206 can intersect the descending screw trajectory 140 within the lumen 148 of the humeral nail body 202. In some examples, a screw can only be used in one of the ascending through bore 204 and the descending through bore 138 at any given time. As such, the ascending through bore 204 and the descending through bore 138 allow a practitioner to select a patient- specific screw trajectory 140, 206 based on the specific patient's anatomy. For example, the descending screw trajectory 206 can be selected to target the patient's lesser tuberosity or the ascending screw trajectory 140 can be selected to target the calcar area 114 of the humeral head 112.
- the descending screw trajectory 206 and the ascending screw trajectory 140 can define an angle 220 therebetween along the nail longitudinal axis 108 or in the proximal-distal direction.
- the angle 220 can be the combination of the angle 106 and the angle 208.
- the angle 220 can be at least a minimum angle to maintain the structural integrity of the ascending and descending through bores 204, 138.
- the minimum angle 220 can be approximately 40 degrees.
- each of the ascending screw trajectory 206 and the descending screw trajectory 140 can extend at any angle relative to the distal-proximal axis, as long as the angle 220 therebetween is at least 40 degrees.
- the angle 208 can be approximately 45 degrees.
- the angle 160 can be approximately 10 degrees.
- the angle 208 can be approximately 45 degrees and the angle 160 can be approximately 15 degrees.
- the descending through bore 138 can include a bore entrance 210 and a bore exit 212.
- the bore entrance 210 can be anterior and proximal relative to the bore exit 212.
- the bore entrance 210 can be proximal, medial, and anterior relative to the bore exit 212.
- the bore entrance 210 and the bore exit 212 define the descending screw trajectory 140.
- the ascending through bore 204 can include a bore entrance 214 and a bore exit 216.
- the bore entrance 214 can be anterior and distal relative to the bore exit 216.
- the bore entrance 214 can be distal, medial, and anterior to the bore exit 216.
- the bore entrance 214 and the bore exit 216 define the ascending screw trajectory 206.
- Each of the bore holes 124, 126, 128, 138, 142, 204 can include a bore entrance and a bore exit, which in the illustrated example are indicated by the direction of the screws showing the screw trajectories, 132, 134, 136, 140, 144, 146, 206. That is, the screw enters through the bore entrance of the through bore and extends through the bore exit of the through bore.
- the head of each screw is on the bore entrance side of each through bore, and the tip of the screw is on the bore exit side of each through bore.
- the screw trajectories 132, 134, 136, 140, 144, 146, 206 are generally described directionally as extending from the bore entrance to the bore exit of the respective borehole 124, 126, 128, 138, 142, 204.
- a screw trajectory extending anterior to posterior is generally illustrated with the head of the screw on the anterior side of the humeral nail body 102, 202, and the tip of the screw on the posterior side of the humeral nail body 102, 202.
- FIG. 3 A is a perspective view of a bore entrance 304 of a calcar through bore 342 formed in a humeral nail body 302, in accordance with at least one example of the present disclosure.
- the calcar through bore 342 can define a variable angle screw trajectory.
- the calcar through bore 342 defines two different calcar screw trajectories corresponding to calcar screw trajectories 144, 146 (see Figs. 1 A-2E).
- the bore entrance 304 can include two intersecting ellipses 344, 346. In at least one example, the bore entrance 304 can include an opening approximately in the shape of a figure eight. In some examples, a first curved seat 344 (corresponding to the first calcar screw trajectory 144) can be positioned proximal to a second curved seat 346 (corresponding to the second calcar screw trajectory). In at least one example, the first curved seat 344 and the second curved seat 346 can meet at locking edges 306, 308. In some examples, the locking edges 306, 308 can be configured to retain a screw in either the first calcar screw trajectory 144 or the second calcar screw trajectory 146.
- the curved seats 344, 346 can be sloped or tapered from the outside diameter of the humeral nail body 302 to the lumen 148.
- the slope or taper can provide a seating surface for the desired angle of the calcar screw trajectory.
- Fig. 3B is a perspective view of a bore exit 310 of the calcar through bore 342 of Fig. 3 A, in accordance with at least one example of the present disclosure.
- the bore entrance 304 can be positioned distal to the bore exit 310, such that the calcar screw trajectories 144, 146 extend distal to proximal.
- the bore entrance 304 can be positioned anterior and lateral relative to the bore exit 310.
- the bore entrance 304 can be positioned 50 degrees anterior to the medial-lateral axis, and the bore exit 310 can be positioned about 50 degrees posterior to the medial- lateral axis.
- this calcar screw trajectory establishes a screw in the medial-posterior quadrant of the humeral head and would provide more stability to the user than conventional calcar screw trajectories.
- This location on the anterior part of the nail also avoids major branches of the axillary nerve that conventional calcar screw trajectories would be in danger of hitting. At this location, the screw head avoids this region and the axillary nerve becomes smaller and less susceptible to damage.
- the bore exit 310 can include two intersecting ellipses 344, 346. In at least one example, the bore exit 310 can include an opening approximately in the shape of a figure eight. In some examples, a first curved seat 344 (corresponding to the first calcar screw trajectory 144) can be positioned distal to a second curved seat 346 (corresponding to the second calcar screw trajectory). In at least one example, the first curved seat 344 and the second curved seat 346 can meet at locking edges 306,
- the locking edges 306, 308 can be configured to retain a screw in either the first calcar screw trajectory 144 or the second calcar screw trajectory 146. In some examples, it is important that bone screws go through the humeral nail and are locked in position, especially if the screws are driven into poor bone stock.
- the calcar through bore 342 can define two calcar screw trajectories 144, 146 that vary relative to the proximal-distal axis.
- the curved seats 344, 346 and the locking edges 306, 308 can differ in size, orientation and dimension from the bore entrance 304 to the bore exit 310.
- the curved seats 344, 346 can be sloped or tapered from the outside diameter of the humeral nail body 302 to the lumen 148.
- the slope or taper can provide a seating surface for the desired angle of the calcar screw trajectory.
- the first calcar screw trajectory 144 and the second calcar screw trajectory 146 intersect, such that the practitioner can only place one screw through the calcar through bore 342 at any given time.
- the practitioner can select a patient-specific trajectory of the first and second calcar screw trajectories 144, 146 based on the patient's specific anatomy.
- FIG. 4 A is a perspective view of a bore entrance 404 of a calcar through bore 442 formed in a humeral nail body 402, in accordance with at least one example of the present disclosure.
- the calcar through bore 442 can define a variable angle screw trajectory.
- the calcar through bore 442 defines three different calcar screw trajectories.
- the bore entrance 404 can include four curved seats 406, 408, 410, 412, each curved seat configured to receive a screw along one of the three screw trajectories.
- the bore entrance 404 can include three intersecting ellipses 406, 412 (curve seats 408, 410 combine to form one of the three intersecting ellipses).
- the first curved seat 406 can be positioned distal and lateral relative to the second curved seat 408, 410 and the third curved seat 412.
- the third curved seat 412 can be positioned proximal and medial relative to the first curved seat 406 and the second curved seat 408, 410.
- the curved seats 406, 408, 410, 412 can meet at locking edges 414, 416, 418, 420.
- the locking edges 414, 416, 418, 420 can be configured to retain a screw in each of the first, second, and third calcar screw trajectories. In some examples, it is important that bone screws go through the humeral nail and are locked in position, especially if the screws are driven into poor bone stock.
- the curved seats 406, 408, 410, 412 can be sloped or tapered from the outside diameter of the humeral nail body 402 to the lumen 148.
- the slope or taper can provide a seating surface for the desired angle of the calcar screw trajectory.
- the calcar through bore 442 can include more than four curved surfaces 406, 408, 410, 412 and more than four locking edges 414, 416, 418, 420, such that the calcar through bore 442 can define more than three different calcar screw trajectories.
- Fig. 4B is a perspective view of a bore exit 422 of the calcar through bore 402 of Fig. 4A, in accordance with at least one example of the present disclosure.
- the bore entrance 404 can be positioned distal to the bore exit 422, such that the each of the calcar screw trajectories extend distal to proximal.
- the bore entrance 404 can be positioned anterior and lateral relative to the bore exit 422.
- the bore entrance 404 can be positioned 50 degrees anterior to the medial-lateral axis, and the bore exit 422 can be positioned about 50 degrees posterior to the medial- lateral axis.
- the bore exit 422 can include four curved seats 406,
- the bore exit 422 can include three intersecting ellipses 406, 412 (curve seats 408, 410 combine to form one of the three intersecting ellipses).
- the first curved seat 406 can be positioned proximal and medial relative to the second curved seat 408, 410 and the third curved seat 412.
- the third curved seat 412 can be positioned distal and lateral relative to the first curved seat 406 and the second curved seat 408, 410.
- the curved seats 406, 408, 410, 412 can meet at locking edges 414, 416, 418, 420. In some examples, the locking edges
- 414, 416, 418, 420 can be configured to retain a screw in each of the first, second, and third calcar screw trajectories. In some examples, it is important that bone screws go through the humeral nail and are locked in position, especially if the screws are driven into poor bone stock.
- the curved seats 406, 408, 410, 412 can be sloped or tapered from the outside diameter of the humeral nail body 402 to the lumen 148.
- the slope or taper can provide a seating surface for the desired angle of the calcar screw trajectory.
- the calcar through bore 442 can include more than four curved surfaces 406, 408, 410, 412 and more than four locking edges 414, 416,
- the calcar through bore 442 can define more than three different calcar screw trajectories.
- the first, second, and third calcar screw trajectories intersect, such that the practitioner can only place one screw through the calcar through bore 442 at any given time.
- the practitioner can select a patient- specific trajectory of the first, second, and third calcar screw trajectories based on the patient's specific anatomy.
- the calcar through bore 442 can define at least three calcar screw trajectories that vary relative to the proximal-distal axis and the medial-lateral axis.
Landscapes
- Health & Medical Sciences (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Neurology (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
- Prostheses (AREA)
Abstract
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21174513.8A EP3884892B1 (en) | 2015-04-24 | 2016-04-22 | Humeral nail |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562152339P | 2015-04-24 | 2015-04-24 | |
PCT/US2016/028998 WO2016172594A1 (en) | 2015-04-24 | 2016-04-22 | Humeral nail |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21174513.8A Division EP3884892B1 (en) | 2015-04-24 | 2016-04-22 | Humeral nail |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3294167A1 true EP3294167A1 (en) | 2018-03-21 |
EP3294167B1 EP3294167B1 (en) | 2021-05-19 |
Family
ID=55910418
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16720299.3A Active EP3294167B1 (en) | 2015-04-24 | 2016-04-22 | Humeral nail |
EP21174513.8A Active EP3884892B1 (en) | 2015-04-24 | 2016-04-22 | Humeral nail |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21174513.8A Active EP3884892B1 (en) | 2015-04-24 | 2016-04-22 | Humeral nail |
Country Status (7)
Country | Link |
---|---|
US (1) | US12011198B2 (en) |
EP (2) | EP3294167B1 (en) |
JP (2) | JP7488024B2 (en) |
CN (1) | CN108124424B (en) |
AU (1) | AU2016252884B2 (en) |
CA (1) | CA2983664C (en) |
WO (1) | WO2016172594A1 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2604226A1 (en) | 2011-10-31 | 2013-06-19 | Tornier Orthopedics Ireland Ltd. | Modular reverse shoulder prosthesis |
CA2969883C (en) | 2012-10-29 | 2021-01-26 | Tornier Orthopedics Ireland Ltd. | System and methods for reverse shoulder implants |
FR3029769A1 (en) | 2014-12-10 | 2016-06-17 | Tornier Sa | KIT FOR A PROSTHESIS OF SHOULDER |
US12011198B2 (en) | 2015-04-24 | 2024-06-18 | Biomet Manufacturing, Llc | Humeral nail |
CA3059036A1 (en) | 2016-04-19 | 2017-10-26 | Imascap Sas | Pre-operatively planned humeral implant and planning method |
AU2016426047B2 (en) * | 2016-10-10 | 2022-12-15 | Francisco FERRERO MANZANAL | Intramedullary nailing system of variable angle to treat femur fractures |
US10610270B2 (en) | 2018-01-15 | 2020-04-07 | Glw, Inc. | Hybrid intramedullary rods |
EP3520738B1 (en) | 2018-01-31 | 2021-01-06 | Tornier | Prosthesis for a fractured long bone |
USD938590S1 (en) | 2019-10-01 | 2021-12-14 | Howmedica Osteonics Corp. | Humeral implant |
US11857228B2 (en) | 2020-03-06 | 2024-01-02 | Stryker European Operations Limited | Set screw for femoral nail |
WO2021223755A1 (en) * | 2020-05-08 | 2021-11-11 | Lifespans Limited | Bone fixation system and elements thereof |
WO2021240242A1 (en) | 2020-05-29 | 2021-12-02 | Stryker European Operations Limited | Funnel hole for intramedullary nail |
CN117295474A (en) * | 2021-03-17 | 2023-12-26 | 赫迈迪卡奥斯特尼克斯公司 | Humeral implant and systems and methods for implanting the humeral implant |
WO2022251501A1 (en) * | 2021-05-28 | 2022-12-01 | Acumed Llc | Bone fixation systems and nail having compressive threading |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5480402A (en) * | 1993-08-05 | 1996-01-02 | Kim; Andrew C. | Shoulder compression interlocking system |
US5472444A (en) * | 1994-05-13 | 1995-12-05 | Acumed, Inc. | Humeral nail for fixation of proximal humeral fractures |
US5549610A (en) * | 1994-10-31 | 1996-08-27 | Smith & Nephew Richards Inc. | Femoral intramedullary nail |
US6296645B1 (en) * | 1999-04-09 | 2001-10-02 | Depuy Orthopaedics, Inc. | Intramedullary nail with non-metal spacers |
US7018380B2 (en) * | 1999-06-10 | 2006-03-28 | Cole J Dean | Femoral intramedullary rod system |
JP4418122B2 (en) * | 2001-03-01 | 2010-02-17 | 瑞穂医科工業株式会社 | Intramedullary nail |
DE20213166U1 (en) * | 2002-08-28 | 2004-01-08 | Stryker Trauma Gmbh | humeral |
JP4823917B2 (en) | 2003-12-01 | 2011-11-24 | スミス アンド ネフュー インコーポレーテッド | Humeral nail with insert for fixing screw |
FR2881340B1 (en) | 2005-02-01 | 2008-01-11 | Tornier Sas | HUMERAL NUTS |
US7232442B2 (en) | 2005-02-22 | 2007-06-19 | Advanced Orthopaedic Solutions | Humeral nail |
US8961516B2 (en) * | 2005-05-18 | 2015-02-24 | Sonoma Orthopedic Products, Inc. | Straight intramedullary fracture fixation devices and methods |
AU2006304847B2 (en) | 2005-10-21 | 2011-09-15 | Acumed Llc | Orthopedic rod with locking aperture |
US20070123874A1 (en) | 2005-10-31 | 2007-05-31 | Czartoski Timothy J | Multiple purpose nail with oblique openings |
US20070123873A1 (en) * | 2005-10-31 | 2007-05-31 | Czartoski Timothy J | Intramedullary nail with oblique openings |
US20070233102A1 (en) | 2006-03-31 | 2007-10-04 | Metzinger Anthony J | Variable angle fixture, kit and method of presetting a nail assembly |
US9308031B2 (en) * | 2007-01-26 | 2016-04-12 | Biomet Manufacturing, Llc | Lockable intramedullary fixation device |
CA2700388A1 (en) | 2007-09-27 | 2009-04-02 | Synthes Usa, Llc | Nail-plate combination |
US20090157078A1 (en) * | 2007-12-17 | 2009-06-18 | Mikol Edward J | Apparatus and Methods of Repairing Bone Defects |
WO2009136386A2 (en) * | 2008-05-07 | 2009-11-12 | Tornier | Surgical technique and apparatus for proximal humeral fracture repair |
EP2448505B1 (en) * | 2009-06-30 | 2019-06-26 | Smith & Nephew, Inc. | Orthopaedic implant and fastener assembly |
EP2675381B1 (en) | 2011-02-14 | 2016-08-17 | Synthes GmbH | Intramedullary nail having self-retaining compression slot |
CA2847608C (en) | 2011-09-16 | 2016-07-05 | Stryker Trauma Gmbh | Polyaxial locking hole arrangement |
US8876822B2 (en) | 2012-04-13 | 2014-11-04 | Orthopedic Designs North American, Inc. | Intramedullary nail system with tang fixation after lock screw placement |
CN204033457U (en) | 2014-05-12 | 2014-12-24 | 万承兴 | A kind of modified form femoral intertrochanteric fixture |
CN204072294U (en) | 2014-08-07 | 2015-01-07 | 上海市第一人民医院 | A kind of intramedullary pin for implanting humerus medullary cavity |
US12011198B2 (en) | 2015-04-24 | 2024-06-18 | Biomet Manufacturing, Llc | Humeral nail |
-
2016
- 2016-04-22 US US15/136,700 patent/US12011198B2/en active Active
- 2016-04-22 CN CN201680032929.XA patent/CN108124424B/en active Active
- 2016-04-22 EP EP16720299.3A patent/EP3294167B1/en active Active
- 2016-04-22 JP JP2018506806A patent/JP7488024B2/en active Active
- 2016-04-22 EP EP21174513.8A patent/EP3884892B1/en active Active
- 2016-04-22 CA CA2983664A patent/CA2983664C/en active Active
- 2016-04-22 AU AU2016252884A patent/AU2016252884B2/en active Active
- 2016-04-22 WO PCT/US2016/028998 patent/WO2016172594A1/en active Application Filing
-
2022
- 2022-02-07 JP JP2022017290A patent/JP2022080896A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
EP3294167B1 (en) | 2021-05-19 |
EP3884892A2 (en) | 2021-09-29 |
CN108124424B (en) | 2021-06-22 |
EP3884892A3 (en) | 2021-12-08 |
WO2016172594A1 (en) | 2016-10-27 |
JP2022080896A (en) | 2022-05-30 |
EP3884892B1 (en) | 2023-09-27 |
US20160310176A1 (en) | 2016-10-27 |
JP2018514359A (en) | 2018-06-07 |
JP7488024B2 (en) | 2024-05-21 |
CN108124424A (en) | 2018-06-05 |
CA2983664A1 (en) | 2016-10-27 |
CA2983664C (en) | 2023-09-19 |
US12011198B2 (en) | 2024-06-18 |
AU2016252884B2 (en) | 2021-05-06 |
AU2016252884A1 (en) | 2017-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2016252884B2 (en) | Humeral nail | |
KR101711003B1 (en) | plating concept for distal radial fractures | |
US9974533B2 (en) | Dilation system and method of using the same | |
JP5770211B2 (en) | Ulna osteotomy system | |
US10258395B2 (en) | Bone plate locking mechanism | |
US7951179B2 (en) | Bone attachment screw | |
JP6485754B2 (en) | Bone-supporting device with improved rotational stability | |
CN104244853B (en) | Lug otch on bore edges | |
EP2755583B1 (en) | Polyaxial locking hole arrangement | |
US8998962B2 (en) | Osteosynthesis plate for lumbosacral joint | |
CN104736079A (en) | Intramedullary nail and implant system comprising the nail | |
CN102596060A (en) | Improved hip fracture nail system | |
AU2015284584A1 (en) | Locking first metacarpal plate | |
ES2335121T3 (en) | ARTICULAR ENDOPROTESIS. | |
US20140214035A1 (en) | Bone nail with smooth trailing end | |
EP3160371B1 (en) | Phalangeal head plate | |
CN104771221A (en) | Intramedullary nail used for inserting into target bone and special guiding system for intramedullary nail used for inserting into target bone | |
US10258381B2 (en) | Conical end cap for intramedullary nail | |
CA2839599C (en) | Bone nail with smooth trailing end | |
EP2762096B1 (en) | Bone nail with smooth trailing end |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20171123 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: BIOMET MANUFACTURING, LLC |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: INOUE, HISAYOSHI Inventor name: MULLIS, BRIAN Inventor name: HAIDUKEWYCH, GEORGE J. Inventor name: VAN DYKE, SCOTT Inventor name: LIPORACE, FRANK A. Inventor name: KINUGASA, KIYOTO Inventor name: KANAKARIS, NIKOLAOS |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20191128 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20201120 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602016058027 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1393240 Country of ref document: AT Kind code of ref document: T Effective date: 20210615 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1393240 Country of ref document: AT Kind code of ref document: T Effective date: 20210519 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210519 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210519 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210519 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210519 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210519 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210819 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210819 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210920 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210519 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210519 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210519 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210919 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210820 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210519 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210519 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210519 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210519 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210519 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210519 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210519 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210519 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210519 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602016058027 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20220222 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210919 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210519 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210519 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210519 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220422 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220422 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230619 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20160422 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210519 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210519 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210519 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240408 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240322 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240501 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240405 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210519 |