EP3291651B1 - Device and method for creating atmospheric plasma - Google Patents
Device and method for creating atmospheric plasma Download PDFInfo
- Publication number
- EP3291651B1 EP3291651B1 EP17001337.9A EP17001337A EP3291651B1 EP 3291651 B1 EP3291651 B1 EP 3291651B1 EP 17001337 A EP17001337 A EP 17001337A EP 3291651 B1 EP3291651 B1 EP 3291651B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- plasma
- medium
- wall
- plasma head
- housing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 35
- 238000001816 cooling Methods 0.000 claims description 14
- 239000007789 gas Substances 0.000 description 26
- 239000002826 coolant Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/28—Cooling arrangements
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/34—Details, e.g. electrodes, nozzles
- H05H1/36—Circuit arrangements
Definitions
- the invention relates to a device for generating an atmospheric plasma according to the features of claim 1.
- the invention also relates to a method for generating an atmospheric plasma according to claim 5.
- a plasma head with a transformer and a plasma nozzle is used to generate an atmospheric plasma.
- a process gas in the plasma nozzle is ionized by a discharge due to the high voltage generated by the transformer.
- the process gas then exits the nozzle as a directed plasma jet or plasma flame.
- the power loss of the transformer which accumulates as heat in the housing of the plasma head, has proven to be particularly disadvantageous in this compact design. This heat generation can be so great that the transformer fails or is damaged. The generation of plasma is thus influenced by this heat development.
- the invention is therefore based on the object of creating a device and a method for generating an atmospheric plasma, with which stable and reliable operation is ensured.
- a device for solving this problem has the features of claim 1.
- a plasma head to which a transformer and at least one plasma nozzle is assigned, the transformer and the plasma nozzle forming a spatial unit, having a supply line for a medium flowing through for active temperature control of the plasma head and being in a wall of a housing of the plasma head at least one channel for guiding the medium is arranged.
- the channel extends at least in regions over the wall of the plasma head, being connected to at least one inlet.
- the medium is the process gas.
- the plasma head can be actively tempered by the flowing medium. Accordingly, depending on the design or the size and the operation of the plasma head, it can be actively temperature-controlled.
- the flowing medium constantly transports heat away from the plasma head.
- the plasma head can be kept at a stable temperature during the entire operating time due to the subsequent flow of the medium.
- a temperature can thus be generated in the plasma head via the medium flowing through, at which a maximum yield of plasma is achieved and at the same time the plasma head works in a particularly stable and reliable manner.
- the invention provides that as a medium for temperature control, in particular for cooling, the plasma head, preferably the transformer, an electrode or a Plasma nozzle the process gas itself can be used.
- the plasma head preferably the transformer, an electrode or a Plasma nozzle the process gas itself can be used.
- the process gas as a cooling medium is particularly advantageous since it has to be fed to the plasma head anyway.
- the process gas first flows through the area around the transformer before it is fed to the plasma nozzle for plasma generation.
- the temperature of the process gas which is increased by absorbing the thermal energy, has no effect whatsoever on the efficiency of the plasma formation.
- the process gas is mixed with another medium which has proven to be particularly good as a cooling medium. In this way, the heat can be dissipated quickly from the plasma head and a plasma flame can be generated at the same time, without having to install an additional line for the cooling medium on the plasma head.
- a particularly advantageous embodiment of the present invention can provide that in a housing, preferably in a wall of the housing, a channel, in particular meandering, for guiding the medium is arranged, which at least partially extends over the wall of the housing and is connected to the at least connected to a supply line.
- a channel in particular meandering, for guiding the medium is arranged, which at least partially extends over the wall of the housing and is connected to the at least connected to a supply line.
- the second end of the channel can either be free, so that the gas is fed into the atmosphere, or it can be connected to the supply line for the plasma nozzle, so that the medium is used directly as a process gas for plasma generation. With this design, the compact design of the plasma head can be maintained.
- the meandering channel for the medium can be realized by parallel, perpendicular, in particular parallel to a longitudinal axis of the housing, bores in the wall of the housing.
- the channels can initially be open to the end faces of the hollow-cylindrical housing.
- These openings can be designed to be closable by a base or cover part of the housing in such a way that alternately two adjacent openings are connected to each other or isolated from each other, so that the meandering channel is formed in the wall.
- the base or cover part of the housing is, for example, screwed or glued to the housing.
- a further exemplary embodiment can provide for the channel to be designed as a screw in the wall of the housing.
- Such a housing with a screw-like channel in the wall can be produced, for example, using an additive process such as a 3D printer.
- the channel is designed as an evaporator for a liquid medium.
- a liquid medium is first fed into the channel in order to then be fed into the plasma nozzle as a gas. Since liquid media generally have a higher heat capacity than gases, the heat transfer between the transformer or the wall and the medium can be increased and at the same time the medium can be used at least partially as a process gas. This also enables layer deposition.
- the present invention can further provide that at least one heat sink, in particular cooling ribs, along which the medium can be guided, is arranged on an outside of the wall or the housing.
- at least one heat sink in particular cooling ribs, along which the medium can be guided, is arranged on an outside of the wall or the housing.
- it can also have cooling bodies on the outside.
- These heat sinks can then in turn be actively cooled by applying a cooling medium, preferably by a fan.
- a method for solving the problem mentioned at the outset has the measures of claim 5 . Accordingly, it is provided that a plasma head, in whose housing a transformer and at least one plasma nozzle is arranged, is actively temperature-controlled by a flowing medium, the medium being guided through a channel in a wall of a housing of the plasma head for the active temperature control of the plasma head , whereby the process gas is used as the medium.
- process heat from the transformer can be actively and efficiently dissipated.
- a different heat development of the transformer is to be expected.
- the heat dissipation from the plasma head can be actively controlled so that the plasma head can be operated at an optimal operating temperature. At the optimum operating temperature, the plasma head is particularly reliable and stable.
- a further exemplary embodiment of the present invention can provide that for the active temperature control, preferably cooling, of the plasma head, the medium is guided through the housing, preferably through a wall of the housing, of the plasma head, in particular through a channel in the wall of the plasma head and the passage of the medium is controlled by a valve so that the flow depends on the temperature of the plasma head.
- the present invention can further provide that, for the active temperature control, the medium guided through the wall is preheated and/or is guided through the wall under a predetermined pressure.
- a temperature sensor is arranged in the plasma head, which measures the temperature and transmits it to a control unit, which accordingly pre-cools or heats the medium.
- the pressure can also be varied. For example, when there is a large amount of thermal energy to be dissipated, the pressure of the medium can be increased to control the temperature of the plasma head. By increasing the pressure of the medium, the flow is increased, so that the thermal energy to be absorbed per unit of time is increased. Likewise, the pressure of the medium with which it is guided through the channel can be reduced if only a small amount of thermal energy has to be removed from the plasma head. This pre-temperature control and varying the pressure ensure particularly efficient and therefore reliable and stable operation of the plasma head.
- a further advantageous exemplary embodiment of the present invention can provide that the medium for tempering the plasma head is applied to an outside of the wall. Applying the medium to the outside of the housing or the wall in this way creates a particularly simple way of cooling the plasma head.
- FIG 1 An embodiment of a plasma head 10 according to the invention is shown in FIG 1 shown highly schematized in cross section.
- the plasma head 10 consists of a housing 11, inside which a transformer 12 and a plasma nozzle 13 are arranged.
- the transformer 12 is enclosed by an insulator 14 and connected to a voltage source 15 .
- the high voltage required to ignite the plasma is generated by the transformer 12 and the voltage source 15 .
- a wall 23 of the housing 11 of the plasma head 10 is connected to a ground 29 .
- the plasma nozzle 13 has an electrode 16 which is coupled to the transformer 12 .
- the tip of this needle-shaped electrode 16 points in the direction of a ring electrode 17 serving as an outlet for the plasma.
- Process gas is conducted into the nozzle volume 19 through a process gas inlet 18 .
- the process gas is shown schematically as arrow 20 here. In reality, the nozzle volume 19 is filled almost homogeneously by a permanent flow of the process gas 18 .
- An electrical discharge between the electrode 16 and the ring electrode 17 causes the process gas to be ionized, symbolically represented here as a lightning bolt 21 .
- the ionized gas leaves the plasma nozzle 13 through the ring electrode 17 as a plasma jet 22 or as a plasma flame.
- At least one channel 24 is formed in the wall 23 of the plasma head 10 .
- this channel 24 extends in a meandering manner through the entire wall 23.
- a rolled-up wall 23 of the plasma head 10 is shown schematically, so that the meandering course of the channel 24 in the wall 23 becomes clear.
- the channel 24 has an inlet 25 and an outlet 26 .
- a medium is let into the inlet 25 via a valve (not shown) or from a storage volume, so that the medium flows at a predetermined pressure through the channel 24 in the direction of the outlet 26 (see arrow 27).
- the medium flowing through which is the process gas, dissipates the heat developed by the transformer 12 .
- This process gas After this process gas has flowed through the channel 24 and has absorbed heat energy from the transformer 12 , it is conducted through the process gas inlet 18 into the nozzle volume 19 by a connecting means 28 shown here in broken lines.
- the connecting means 18 can be, for example, a hose or a short piece of pipe. This connecting means 18 can also be integrated in the housing 11 or the plasma head 10 .
- the channel 24 is integrated into the housing 11 or into the wall 23 .
- a control device which determines the temperature in the plasma head 10 via a temperature sensor, also not shown, in the plasma head 10 and controls the inflow of the process gas in the channel 24 accordingly.
- FIG. 1 shows the 3 another embodiment of a channel 30.
- the medium as previously at the in 1 described embodiment described, fed to the channel 30 through an inlet, not shown, and fed to the nozzle volume 19 via a connecting means 28 in the manner described above.
- the channel 30 is arranged in the wall 23 of the plasma head 10 in the manner of a screw. This screw-like arrangement of the channel 30 allows a particularly long contact surface to be produced between the medium and the wall 23, so that the thermal energy is transferred to the medium in a particularly efficient manner.
- the wall 23 may be assigned cooling bodies (not shown), such as cooling fins, on its outer side 31 .
- the thermal energy of the transformer 12 is also effectively dissipated from the plasma head 10 through these cooling ribs, around which a medium for cooling can also flow, for example.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Plasma Technology (AREA)
- Treatment Of Fiber Materials (AREA)
Description
Die Erfindung betrifft eine Vorrichtung zur Erzeugung eines atmosphärischen Plasmas gemĂ¤ĂŸ den Merkmalen des Anspruchs 1. Des Weiteren betrifft die Erfindung ein Verfahren zur Erzeugung eines atmosphärischen Plasmas gemĂ¤ĂŸ Anspruch 5.The invention relates to a device for generating an atmospheric plasma according to the features of claim 1. The invention also relates to a method for generating an atmospheric plasma according to claim 5.
Zur Behandlung von beispielsweise Oberflächen aus Kunststoff, Metall, Keramik usw. zum Zwecke der Reinigung, Oberflächenaktivierung, Polymerisation, Keimreduzierung und dergleichen ist es bekannt, diese mit einem atmosphärischen Plasma zu beaufschlagen. Durch die Reinigung und/oder Aktivierung der Oberfläche mittels eines atmosphärischen Plasmas kann diese beispielsweise mit einer FlĂ¼ssigkeit oder einem Klebstoff besser benetzt werden.For the treatment of, for example, surfaces made of plastic, metal, ceramics, etc. for the purpose of cleaning, surface activation, polymerisation, germ reduction and the like, it is known to apply an atmospheric plasma to them. By cleaning and/or activating the surface by means of an atmospheric plasma, it can be better wetted with a liquid or an adhesive, for example.
Zur Erzeugung eines atmosphärischen Plasmas wird ein Plasmakopf mit einem Transformator und einer PlasmadĂ¼se verwendet. Durch die von dem Transformator erzeugte Hochspannung wird ein Prozessgas in der PlasmadĂ¼se durch eine Entladung ionisiert. Das Prozessgas tritt sodann als gerichteter Plasmastahl oder Plasmaflamme aus der DĂ¼se aus.A plasma head with a transformer and a plasma nozzle is used to generate an atmospheric plasma. A process gas in the plasma nozzle is ionized by a discharge due to the high voltage generated by the transformer. The process gas then exits the nozzle as a directed plasma jet or plasma flame.
Um Probleme wie beispielsweise KabelbrĂ¼che, Durchschläge oder Verlustleistungen zu vermeiden, ist es bekannt, den Transformator und die PlasmadĂ¼se in einem gemeinsamen Plasmakopf zu integrieren. Durch diese kompakte Bauweise des Plasmakopfes kann auf lange Kabel sowie Elektronik verzichtet werden, was die Gefahr eines Kabelbruches oder von Durchschlägen reduziert.In order to avoid problems such as cable breaks, breakdowns or power losses, it is known to integrate the transformer and the plasma nozzle in a common plasma head. Due to this compact design of the plasma head, long cables and electronics can be dispensed with, which reduces the risk of cable breaks or breakdowns.
Als besonders nachteilig bei dieser kompakten Bauweise hat sich die Verlustleistung des Transformators erwiesen, welche sich als Wärme in dem Gehäuse des Plasmakopfes staut. Diese Wärmeentwicklung kann derart groĂŸ sein, dass der Transformator ausfällt oder beschädigt wird. Durch diese Wärmeentwicklung wird somit die Plasmaerzeugung beeinflusst.The power loss of the transformer, which accumulates as heat in the housing of the plasma head, has proven to be particularly disadvantageous in this compact design. This heat generation can be so great that the transformer fails or is damaged. The generation of plasma is thus influenced by this heat development.
Bekannte Plasmasysteme, wie beispielsweise in
Der Erfindung liegt daher die Aufgabe zugrunde, eine Vorrichtung sowie ein Verfahren zur Erzeugung eines atmosphärischen Plasmas zu schaffen, mit dem ein stabiler und zuverlässiger Betrieb gewährleistet wird.The invention is therefore based on the object of creating a device and a method for generating an atmospheric plasma, with which stable and reliable operation is ensured.
Eine Vorrichtung zur Lösung dieser Aufgabe weist die Merkmale des Anspruchs 1 auf.A device for solving this problem has the features of claim 1.
Demnach ist es vorgesehen, dass einem Plasmakopf dem ein Transformator und mindestens eine PlasmadĂ¼se zugeordnet ist, wobei der Transformator und die PlasmadĂ¼se eine räumliche Einheit bilden, eine Zuleitung fĂ¼r ein durchströmendes Medium zur aktiven Temperierung des Plasmakopfes aufweist und wobei in einer Wandung eines Gehäuses des Plasmakopfes mindestens ein Kanal zur FĂ¼hrung des Mediums angeordnet ist. Dabei erstreckt sich der Kanal wenigstens bereichsweise Ă¼ber die Wandung des Plasmakopfes, wobei er mit mindestens einem Einlass verbunden ist. Bei dem Medium handelt es sich um das Prozessgas. Durch das strömende Medium lässt sich der Plasmakopf aktiv temperieren. Demnach kann in Abhängigkeit von der Bauform bzw. der GrĂ¶ĂŸe und des Betriebes des Plasmakopfes dieser aktiv temperiert werden. Durch das strömende Medium wird permanent Wärme aus dem Plasmakopf abtransportiert. Durch das Nachströmen des Mediums kann der Plasmakopf während der gesamten Betriebszeit auf einer stabilen Temperatur gehalten werden. Somit lässt sich Ă¼ber das durchströmende Medium eine Temperatur in dem Plasmakopf erzeugen, bei der eine maximale Ausbeute an Plasma erzielt wird und zeitgleich der Plasmakopf besonders stabil und zuverlässig arbeitet.Accordingly, it is provided that a plasma head to which a transformer and at least one plasma nozzle is assigned, the transformer and the plasma nozzle forming a spatial unit, having a supply line for a medium flowing through for active temperature control of the plasma head and being in a wall of a housing of the plasma head at least one channel for guiding the medium is arranged. In this case, the channel extends at least in regions over the wall of the plasma head, being connected to at least one inlet. The medium is the process gas. The plasma head can be actively tempered by the flowing medium. Accordingly, depending on the design or the size and the operation of the plasma head, it can be actively temperature-controlled. The flowing medium constantly transports heat away from the plasma head. The plasma head can be kept at a stable temperature during the entire operating time due to the subsequent flow of the medium. A temperature can thus be generated in the plasma head via the medium flowing through, at which a maximum yield of plasma is achieved and at the same time the plasma head works in a particularly stable and reliable manner.
Die Erfindung sieht es vor, dass als Medium zur Temperierung, insbesondere zur KĂ¼hlung, des Plasmakopfes, vorzugsweise des Transformators, eine Elektrode oder einer PlasmadĂ¼se das Prozessgas selbst verwendbar ist. DieThe invention provides that as a medium for temperature control, in particular for cooling, the plasma head, preferably the transformer, an electrode or a Plasma nozzle the process gas itself can be used. the
Verwendung des Prozessgases als KĂ¼hlmedium ist besonders vorteilhaft, da dieses sowieso dem Plasmakopf zugefĂ¼hrt werden muss. ErfindungsgemĂ¤ĂŸ durchströmt daher das Prozessgas zunächst den Bereich um den Transformator, bevor es fĂ¼r die Plasmaerzeugung der PlasmadĂ¼se zugefĂ¼hrt wird. Die durch die Aufnahme der thermischen Energie erhöhte Temperatur des Prozessgases hat keinerlei Auswirkungen auf die Effizienz der Plasmabildung. FĂ¼r eine besonders effiziente Arbeitsweise des Plasmakopfes kann es erfindungsgemĂ¤ĂŸ auĂŸerdem vorteilhaft sein, wenn das Prozessgas mit einem weiteren Medium, welches sich besonders gut als KĂ¼hlmedium erwiesen hat, gemischt wird. Auf diese Weise lässt sich die Wärme aus dem Plasmakopf schnell abfĂ¼hren und gleichzeitig eine Plasmaflamme erzeugen, ohne dass eine zusätzliche Leitung fĂ¼r das KĂ¼hlmedium an dem Plasmakopf installiert werden muss.The use of the process gas as a cooling medium is particularly advantageous since it has to be fed to the plasma head anyway. According to the invention, the process gas first flows through the area around the transformer before it is fed to the plasma nozzle for plasma generation. The temperature of the process gas, which is increased by absorbing the thermal energy, has no effect whatsoever on the efficiency of the plasma formation. For a particularly efficient mode of operation of the plasma head, it can also be advantageous according to the invention if the process gas is mixed with another medium which has proven to be particularly good as a cooling medium. In this way, the heat can be dissipated quickly from the plasma head and a plasma flame can be generated at the same time, without having to install an additional line for the cooling medium on the plasma head.
Ein besonders vorteilhaftes AusfĂ¼hrungsbeispiel der vorliegenden Erfindung kann es vorsehen, dass in einem Gehäuse, vorzugsweise in einer Wandung des Gehäuses, ein, insbesondere mäanderförmiger, Kanal zur FĂ¼hrung des Mediums angeordnet ist, der sich wenigstens bereichsweise Ă¼ber die Wandung des Gehäuses erstreckt und mit der mindestens einen Zuleitung verbunden ist. Durch die FĂ¼hrung des Kanals durch die Wandung des Plasmakopfes bleibt das Medium besonders lange mit der Wandung in Kontakt, was dazu fĂ¼hrt, dass das Medium besonders viel Wärmeenergie des Transformators aufnehmen kann. Insbesondere eine mäanderförmige Ausgestaltung des Kanals hat sich als besonders effizient fĂ¼r den Transfer von Wärmeenergie auf das Medium erwiesen. Ein Ende des Kanals stellt eine Zuleitung fĂ¼r das Medium, beispielsweise fĂ¼r das Prozessgas, dar. Das zweite Ende des Kanals kann entweder frei sein, sodass das Gas in die Atmosphäre geleitet wird, oder mit der Zuleitung fĂ¼r die PlasmadĂ¼se verbunden sein, sodass das Medium als Prozessgas direkt fĂ¼r die Plasmaerzeugung verwendet wird. Durch diese Bauart kann die kompakte Bauweise des Plasmakopfes beibehalten werden.A particularly advantageous embodiment of the present invention can provide that in a housing, preferably in a wall of the housing, a channel, in particular meandering, for guiding the medium is arranged, which at least partially extends over the wall of the housing and is connected to the at least connected to a supply line. By guiding the channel through the wall of the plasma head, the medium remains in contact with the wall for a particularly long time, which means that the medium can absorb a particularly large amount of thermal energy from the transformer. In particular, a meandering configuration of the channel has proven to be particularly efficient for the transfer of thermal energy to the medium. One end of the channel represents a supply line for the medium, for example for the process gas. The second end of the channel can either be free, so that the gas is fed into the atmosphere, or it can be connected to the supply line for the plasma nozzle, so that the medium is used directly as a process gas for plasma generation. With this design, the compact design of the plasma head can be maintained.
Der mäanderförmige Kanal fĂ¼r das Medium kann durch parallele, senkrechte, insbesondere parallel zu einer Längsachse des Gehäuses, Bohrungen in der Wandung des Gehäuses realisiert werden. Die Kanäle können zunächst zu den Stirnseiten des hohlzylindrischen Gehäuses offen sein. Diese Ă–ffnungen können durch ein Boden- bzw. Deckelteil des Gehäuses verschlieĂŸbar ausgebildet sein und zwar derart, dass abwechselnd zwei benachbarte Ă–ffnungen miteinander verbunden bzw. voneinander isoliert sind, so dass sich der mäanderförmige Kanal in der Wandung ausbildet. Das Boden- bzw. Deckelteil des Gehäuses wird mit dem Gehäuse beispielsweise verschraubt oder verklebt. Ein weiteres AusfĂ¼hrungsbeispiel kann es vorsehen, dass der Kanal als Schraube in der Wandung des Gehäuses ausgebildet ist. Ein derartiges Gehäuse mit einem schraubenartigen Kanal in der Wandung lässt sich beispielsweise mit einem generativen Verfahren, wie etwa einem 3D-Drucker, herstellen.The meandering channel for the medium can be realized by parallel, perpendicular, in particular parallel to a longitudinal axis of the housing, bores in the wall of the housing. The channels can initially be open to the end faces of the hollow-cylindrical housing. These openings can be designed to be closable by a base or cover part of the housing in such a way that alternately two adjacent openings are connected to each other or isolated from each other, so that the meandering channel is formed in the wall. The base or cover part of the housing is, for example, screwed or glued to the housing. A further exemplary embodiment can provide for the channel to be designed as a screw in the wall of the housing. Such a housing with a screw-like channel in the wall can be produced, for example, using an additive process such as a 3D printer.
Es kann auĂŸerdem vorgesehen sein, dass der Kanal als Verdampfer fĂ¼r ein flĂ¼ssiges Medium ausgebildet ist. Bei diesem AusfĂ¼hrungsbeispiel wird zunächst ein flĂ¼ssiges Medium in den Kanal geleitet, um sodann als Gas in die PlasmadĂ¼se geleitet zu werden. Da flĂ¼ssige Medien in der Regel eine höhere Wärmekapazität haben als Gase kann dadurch der WärmeĂ¼bertrag zwischen dem Transformator bzw. der Wandung und dem Medium erhöht werden und gleichzeitig das Medium zumindest teilweise als Prozessgas verwendet werden. Dadurch wird zudem eine Schichtabscheidung ermöglicht.It can also be provided that the channel is designed as an evaporator for a liquid medium. In this exemplary embodiment, a liquid medium is first fed into the channel in order to then be fed into the plasma nozzle as a gas. Since liquid media generally have a higher heat capacity than gases, the heat transfer between the transformer or the wall and the medium can be increased and at the same time the medium can be used at least partially as a process gas. This also enables layer deposition.
Vorzugsweise kann es die vorliegende Erfindung weiter vorsehen, dass an einer AuĂŸenseite der Wandung bzw. des Gehäuses mindestens ein KĂ¼hlkörper, insbesondere KĂ¼hlrippen, angeordnet sind, entlang denen das Medium fĂ¼hrbar ist. Alternativ zur Ausbildung von Kanälen in der Wandung kann diese auch KĂ¼hlkörper an der AuĂŸenseite aufweisen. Diese KĂ¼hlkörper lassen sich sodann wiederum aktiv durch die Beaufschlagung eines KĂ¼hlmediums kĂ¼hlen, vorzugsweise durch einen LĂ¼fter.Preferably, the present invention can further provide that at least one heat sink, in particular cooling ribs, along which the medium can be guided, is arranged on an outside of the wall or the housing. As an alternative to the formation of channels in the wall, it can also have cooling bodies on the outside. These heat sinks can then in turn be actively cooled by applying a cooling medium, preferably by a fan.
Ein Verfahren zur Lösung der eingangs genannten Aufgabe weist die MaĂŸnahmen des Anspruchs 5 auf. Demnach ist es vorgesehen, dass ein Plasmakopf, in dessen Gehäuse ein Transformator und mindestens eine PlasmadĂ¼se angeordnet ist, durch ein strömendes Medium aktiv temperiert wird, wobei fĂ¼r die aktive Temperierung des Plasmakopfes das Medium durch einen Kanal in einer Wandung eines Gehäuses des Plasmakopfes geleitet wird, wobei als Medium das Prozessgas verwendet wird. Durch diese aktive Temperierung des Plasmakopfes lässt sich Prozesswärme des Transformators aktiv und effizient abfĂ¼hren. Je nach GrĂ¶ĂŸe und Bauform des Plasmakopfes ist mit einer anderen Wärmeentwicklung des Transformators zu rechnen. Durch Regelung des Flusses des Mediums kann die Wärmeabfuhr aus dem Plasmakopf aktiv gesteuert werden, sodass der Plasmakopf bei einer optimalen Betriebstemperatur betrieben werden kann. Bei der optimalen Betriebstemperatur verhält sich der Plasmakopf besonders zuverlässig und stabil.A method for solving the problem mentioned at the outset has the measures of claim 5 . Accordingly, it is provided that a plasma head, in whose housing a transformer and at least one plasma nozzle is arranged, is actively temperature-controlled by a flowing medium, the medium being guided through a channel in a wall of a housing of the plasma head for the active temperature control of the plasma head , whereby the process gas is used as the medium. With this active temperature control of the plasma head, process heat from the transformer can be actively and efficiently dissipated. Depending on the size and design of the plasma head, a different heat development of the transformer is to be expected. By regulating the flow of the medium, the heat dissipation from the plasma head can be actively controlled so that the plasma head can be operated at an optimal operating temperature. At the optimum operating temperature, the plasma head is particularly reliable and stable.
Ein weiteres AusfĂ¼hrungsbeispiel der vorliegenden Erfindung kann es vorsehen, dass fĂ¼r die aktive Temperierung, vorzugsweise KĂ¼hlung, des Plasmakopfes das Medium durch das Gehäuse, vorzugsweise durch eine Wandung des Gehäuses, des Plasmakopfes, insbesondere durch einen Kanal in der Wandung, des Plasmakopfes geleitet wird und das Durchleiten des Mediums durch ein Ventil geregelt wird, sodass der Durchfluss in Abhängigkeit von der Temperatur des Plasmakopfes erfolgt.A further exemplary embodiment of the present invention can provide that for the active temperature control, preferably cooling, of the plasma head, the medium is guided through the housing, preferably through a wall of the housing, of the plasma head, in particular through a channel in the wall of the plasma head and the passage of the medium is controlled by a valve so that the flow depends on the temperature of the plasma head.
Bevorzugt kann es die vorliegende Erfindung weiter vorsehen, dass fĂ¼r die aktive Temperierung das durch die Wandung gefĂ¼hrte Medium vortemperiert und/oder unter einem vorbestimmten Druck durch die Wandung gefĂ¼hrt wird. Dazu kann es vorgesehen sein, dass in dem Plasmakopf ein Temperatursensor angeordnet ist, welcher die Temperatur misst und an eine Steuereinheit Ă¼berträgt, welche das Medium dementsprechend vorkĂ¼hlt oder erhitzt. Neben der Temperatur des Mediums lässt sich auch der Druck variieren. So kann beispielsweise bei einer groĂŸen Menge abzufĂ¼hrender thermischer Energie der Druck des Mediums zum Temperieren des Plasmakopfes erhöht werden. Durch Erhöhung des Druckes des Mediums wird der Durchfluss erhöht, sodass die aufzunehmende thermische Energie pro Zeiteinheit vergrĂ¶ĂŸert wird. GleichermaĂŸen kann der Druck des Mediums, mit dem dieses durch den Kanal gefĂ¼hrt wird, reduziert werden, wenn nur eine geringe Menge thermische Energie aus dem Plasmakopf abgefĂ¼hrt werden muss. Durch dieses Vortemperieren sowie Variieren des Druckes lässt sich ein besonders effizienter und somit zuverlässiger wie auch stabiler Betrieb des Plasmakopfes gewährleisten.Preferably, the present invention can further provide that, for the active temperature control, the medium guided through the wall is preheated and/or is guided through the wall under a predetermined pressure. For this purpose, it can be provided that a temperature sensor is arranged in the plasma head, which measures the temperature and transmits it to a control unit, which accordingly pre-cools or heats the medium. In addition to the temperature of the medium, the pressure can also be varied. For example, when there is a large amount of thermal energy to be dissipated, the pressure of the medium can be increased to control the temperature of the plasma head. By increasing the pressure of the medium, the flow is increased, so that the thermal energy to be absorbed per unit of time is increased. Likewise, the pressure of the medium with which it is guided through the channel can be reduced if only a small amount of thermal energy has to be removed from the plasma head. This pre-temperature control and varying the pressure ensure particularly efficient and therefore reliable and stable operation of the plasma head.
AuĂŸerdem kann es ein weiteres vorteilhaftes AusfĂ¼hrungsbeispiel der vorliegenden Erfindung vorsehen, dass eine AuĂŸenseite der Wandung mit dem Medium zum Temperieren des Plasmakopfes beaufschlagt wird. Durch diese Beaufschlagung der AuĂŸenseite des Gehäuses bzw. der Wandung mit dem Medium wird eine besonders einfach Art und Weise geschaffen, den Plasmakopf zu kĂ¼hlen.In addition, a further advantageous exemplary embodiment of the present invention can provide that the medium for tempering the plasma head is applied to an outside of the wall. Applying the medium to the outside of the housing or the wall in this way creates a particularly simple way of cooling the plasma head.
Ein bevorzugtes AusfĂ¼hrungsbeispiel der vorliegenden Erfindung wird nachfolgend anhand der Zeichnungen näher erläutert. In dieser zeigen:
- Fig. 1
- einen Querschnitt durch einen schematisch dargestellten Plasmakopf,
- Fig. 2
- einen Querschnitt durch eine schematische Darstellung einer Wandung des Plasmakopfes, und
- Fig. 3
- einen Querschnitt durch ein weiteres AusfĂ¼hrungsbeispiel eines Plasmakopfes.
- 1
- a cross section through a plasma head shown schematically,
- 2
- a cross section through a schematic representation of a wall of the plasma head, and
- 3
- a cross section through another embodiment of a plasma head.
Ein AusfĂ¼hrungsbeispiel eines erfindungsgemĂ¤ĂŸen Plasmakopfes 10 ist in der
Die PlasmadĂ¼se 13 weist eine Elektrode 16 auf, welche mit dem Transformator 12 gekoppelt ist. Diese nadelförmige Elektrode 16 weist mit ihrer Spitze in Richtung einer als Ausgang fĂ¼r das Plasma dienenden Ringelektrode 17. Durch einen Prozessgaseinlass 18 wird Prozessgas in das DĂ¼senvolumen 19 geleitet. Das Prozessgas ist hier schematisch als Pfeil 20 dargestellt. In der Realität wird das DĂ¼senvolumen 19 nahezu homogen von einem permanenten Fluss des Prozessgases 18 gefĂ¼llt.The
Durch eine elektrische Entladung zwischen der Elektrode 16 und der Ringelektrode 17 kommt es zu einer hier symbolisch als Blitz 21 dargestellten Ionisierung des Prozessgases. Das ionisierte Gas verlässt die PlasmadĂ¼se 13 durch die Ringelektrode 17 als Plasmastrahl 22 bzw. als Plasmaflamme.An electrical discharge between the electrode 16 and the
In der Wandung 23 des Plasmakopfes 10 ist mindestens ein Kanal 24 ausgebildet. Dieser Kanal 24 erstreckt sich bei dem hier dargestellten AusfĂ¼hrungsbeispiel mäanderförmig durch die gesamte Wandung 23. In
Das durchströmende Medium, bei dem es sich um das Prozessgas handelt, fĂ¼hrt die durch den Transformator 12 entwickelte Wärme ab. Dieses Prozessgas wird nachdem es den Kanal 24 durchströmt und Wärmeenergie des Transformators 12 aufgenommen hat, durch ein hier gestrichelt dargestelltes Verbindungsmittel 28 durch den Prozessgaseinlass 18 in das DĂ¼senvolumen 19 geleitet. Bei dem Verbindungsmittel 18 kann es sich beispielsweise um einen Schlauch oder ein kurzes RohrstĂ¼ck handeln. Dieses Verbindungsmittel 18 kann auch in dem Gehäuse 11 oder dem Plasmakopf 10 integriert sein. Der Kanal 24 ist in das Gehäuse 11 bzw. in die Wandung 23 integriert.The medium flowing through, which is the process gas, dissipates the heat developed by the
In Abhängigkeit von der GrĂ¶ĂŸe bzw. Bauform oder der von dem Transformator 12 entwickelten thermischen Energie können unterschiedliche Medien als KĂ¼hlmittel benutzt werden. DarĂ¼ber hinaus, ist es denkbar, dass in Abhängigkeit von der entwickelten thermischen Energie das Prozessgas vorgekĂ¼hlt wird oder mit einem erhöhten Druck in den Kanal 24 eingelassen wird. Dazu dient erfindungsgemĂ¤ĂŸ eine nicht dargestellte Steuereinrichtung, die Ă¼ber einen ebenfalls nicht dargestellten Temperatursensor in dem Plasmakopf 10 die Temperatur im Plasmakopf 10 ermittelt und den Zufluss des Prozessgases im Kanal 24 entsprechend steuert.Depending on the size or design or the thermal energy developed by the
Neben der in den
Neben den hier dargestellten AusfĂ¼hrungsbeispielen ist es auĂŸerdem denkbar, dass die Wandung 23 auf seiner AuĂŸenseite 31 nicht dargestellte KĂ¼hlkörper wie beispielsweise KĂ¼hlrippen zugeordnet sind. Durch diese KĂ¼hlrippen, die beispielsweise ebenfalls mit einem Medium zum KĂ¼hlung umströmt werden können, wird ebenfalls die thermische Energie des Transformators 12 effektiv aus dem Plasmakopf 10 abgeleitet.In addition to the exemplary embodiments shown here, it is also conceivable for the
Claims (7)
- Apparatus for generating an atmospheric plasma with a plasma head (10) which has a transformer (12) for generating a high voltage and at least one plasma nozzle (13) which can be supplied with a process gas for plasma generation, wherein the transformer (12) and at least one plasma nozzle (13) form a spatial unit and wherein the plasma head (10) has at least one supply line for a medium that is flowing through, the medium being the process gas, for active temperature control of the plasma head (10), characterized in that in a wall (23) of a housing (11) of the plasma head (10) there is arranged at least one channel (24, 30) for guiding the medium, which extends at least in regions over the wall (23) of the plasma head (10) and which is connected to at least one inlet (25).
- Apparatus for generating an atmospheric plasma according to Claim 1, wherein in the wall (23) of the plasma head (10) there is arranged at least one meandering channel (24, 30) for guiding the medium, which extends at least in regions over the wall (23) of the plasma head (10) and which is connected to at least one inlet (25).
- Apparatus for generating an atmospheric plasma according to Claim 1 or 2, wherein the channel (24, 30) is in the form of parallel bores, in particular bores arranged parallel to a longitudinal axis of the housing (11), in the wall (23) of the housing (11), wherein the open bores at the face sides of the, in particular hollowcylindrical, housing (11) are connectable or isolatable from one another by way of a base or cover part, so that the meandering channel (24) is formed in the wall (23).
- Apparatus for generating an atmospheric plasma according to any of the preceding claims, wherein on an outer side (31) of housing (11) there are arranged at least one cooling body, particular cooling fins, along which the medium can be guided.
- Method for generating an atmospheric plasma with a transformer (12) for generating a high voltage and with at least one plasma nozzle (13) which is supplied with a process gas for generation of the plasma, wherein the transformer (12) and the at least one plasma nozzle (13) form a plasma head (10) and the plasma head (10) is actively temperature-controlled by a flowing medium, wherein the medium used is the process gas, characterized in that for the active temperature control of the plasma head (10) the medium is conducted through a channel (24, 30) in a wall (23) of a housing (11) of the plasma head (10) .
- Method for generating an atmospheric plasma according to Claim 5, wherein, for the active temperature control, the medium guided through the wall (23) is preadjusted to a temperature and/or guided through the channel (24, 30) under a predetermined pressure.
- Method for generating an atmospheric plasma according to Claim 5 or 6, wherein an outer side (31) of the housing (11) is exposed to the medium for temperature control of the plasma head (10).
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RS20230008A RS63874B1 (en) | 2016-09-05 | 2017-08-04 | Device and method for creating atmospheric plasma |
SI201731291T SI3291651T1 (en) | 2016-09-05 | 2017-08-04 | Device and method for creating atmospheric plasma |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102016010619.0A DE102016010619A1 (en) | 2016-09-05 | 2016-09-05 | Apparatus and method for generating an atmospheric plasma |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3291651A1 EP3291651A1 (en) | 2018-03-07 |
EP3291651B1 true EP3291651B1 (en) | 2022-10-12 |
Family
ID=59558156
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17001337.9A Active EP3291651B1 (en) | 2016-09-05 | 2017-08-04 | Device and method for creating atmospheric plasma |
Country Status (10)
Country | Link |
---|---|
EP (1) | EP3291651B1 (en) |
DE (1) | DE102016010619A1 (en) |
DK (1) | DK3291651T3 (en) |
ES (1) | ES2935577T3 (en) |
FI (1) | FI3291651T3 (en) |
HU (1) | HUE061142T2 (en) |
PL (1) | PL3291651T3 (en) |
PT (1) | PT3291651T (en) |
RS (1) | RS63874B1 (en) |
SI (1) | SI3291651T1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19900128B4 (en) * | 1998-12-21 | 2012-01-26 | Sulzer Metco Ag | Nozzle and nozzle arrangement for a burner head of a plasma spray gun |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DD83890A1 (en) | 1970-05-27 | 1971-08-12 | Cooling medium guide for burner | |
US5247152A (en) | 1991-02-25 | 1993-09-21 | Blankenship George D | Plasma torch with improved cooling |
EP1281296B1 (en) | 2000-04-10 | 2004-09-29 | Tetronics Limited | Twin plasma torch apparatus |
AT503646B1 (en) | 2006-09-15 | 2007-12-15 | Fronius Int Gmbh | Water vapor plasma burner for cutting a workpiece, comprises a feed line for a liquid, a heating device, an evaporator for forming a gas from the liquid, a cathode detachably connected to a movably mounted piston rod, and a nozzle |
DE102009028190A1 (en) | 2009-08-03 | 2011-02-10 | Leibniz-Institut fĂ¼r Plasmaforschung und Technologie e.V. | Cold plasma beam producing device i.e. plasma hand-held device, for microplasma treatment of materials for e.g. cosmetic purpose, has high frequency-generator, coil, body and high voltage-electrode integrally arranged in metal housing |
DE102012103938A1 (en) | 2012-05-04 | 2013-11-07 | Reinhausen Plasma Gmbh | Plasma module for a plasma generating device and plasma generating device |
DE102013100617B4 (en) | 2013-01-22 | 2016-08-25 | Epcos Ag | Device for generating a plasma and handheld device with the device |
DE202015001278U1 (en) | 2015-02-16 | 2016-05-19 | Abc-Coron Gmbh | coater |
-
2016
- 2016-09-05 DE DE102016010619.0A patent/DE102016010619A1/en active Pending
-
2017
- 2017-08-04 HU HUE17001337A patent/HUE061142T2/en unknown
- 2017-08-04 PT PT170013379T patent/PT3291651T/en unknown
- 2017-08-04 SI SI201731291T patent/SI3291651T1/en unknown
- 2017-08-04 DK DK17001337.9T patent/DK3291651T3/en active
- 2017-08-04 EP EP17001337.9A patent/EP3291651B1/en active Active
- 2017-08-04 PL PL17001337.9T patent/PL3291651T3/en unknown
- 2017-08-04 RS RS20230008A patent/RS63874B1/en unknown
- 2017-08-04 ES ES17001337T patent/ES2935577T3/en active Active
- 2017-08-04 FI FIEP17001337.9T patent/FI3291651T3/en active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19900128B4 (en) * | 1998-12-21 | 2012-01-26 | Sulzer Metco Ag | Nozzle and nozzle arrangement for a burner head of a plasma spray gun |
Also Published As
Publication number | Publication date |
---|---|
SI3291651T1 (en) | 2023-07-31 |
DK3291651T3 (en) | 2023-01-16 |
ES2935577T3 (en) | 2023-03-08 |
FI3291651T3 (en) | 2023-01-31 |
HUE061142T2 (en) | 2023-05-28 |
EP3291651A1 (en) | 2018-03-07 |
PL3291651T3 (en) | 2023-07-03 |
RS63874B1 (en) | 2023-02-28 |
DE102016010619A1 (en) | 2018-03-08 |
PT3291651T (en) | 2023-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69507434T2 (en) | Pumped laser device and method of cooling its laser rod | |
EP0645946B1 (en) | Burner head for plasma spray guns | |
EP2907527B1 (en) | Operating method for an irradiation device | |
DE102014213526A1 (en) | Device for heating a functional layer | |
EP1671779A2 (en) | Cooling of a plastics processing machine | |
DE102013010907A1 (en) | An electric heater and a method of manufacturing an electric heater | |
EP2168409B1 (en) | Apparatus for generating a plasma jet | |
EP3291651B1 (en) | Device and method for creating atmospheric plasma | |
EP1819208B1 (en) | Device and method for creating activated and/or ionised particles in a plasma | |
DE10115937A1 (en) | Evaporator for generating feed gas for an arc chamber | |
EP2536268A1 (en) | Shaping and cooling device for a flowable, melted food mass | |
EP1920826A2 (en) | Cooling assembly and method for cooling autoclaves | |
EP2985116B1 (en) | Purification device and method of cleaning transport rollers in a roller cooling oven of a facility for producing float glass | |
EP3113904B1 (en) | Processing head and processing device | |
DE102010051047A1 (en) | Method for tempering a mold | |
EP3046686B1 (en) | Gas stream device for system for the radiation treatment of substrates | |
EP2052830A2 (en) | Method for heating an extruded plastic profile by means of infrared radiation | |
CH714959B1 (en) | Method of heating a medium. | |
EP1630509B1 (en) | Method for heating or cooling a fluid medium | |
DE102015104036A1 (en) | Cooking appliance, in particular oven | |
EP3168031B1 (en) | Heating device, in particular for an edge strip application device or for a cutting device for cutting films or workpieces made of plastic or rigid foam or for a device for welding workpieces | |
DE10136501C1 (en) | Substrate heating device using electromagnetic radiation has cooling medium feed with integrated flow channel directing cooling medium onto substrate outside heated area | |
EP2893982B1 (en) | Painting apparatus | |
DE2808210A1 (en) | Air flow heating appts. - has sloping heating elements spaced apart on vertical supports with spacings in direction of flow | |
WO2019002052A1 (en) | DEVICE FOR PASTEURIZING A PASTRY ICE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180904 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20211001 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H05H 1/36 20060101ALI20220331BHEP Ipc: H05H 1/28 20060101AFI20220331BHEP |
|
INTG | Intention to grant announced |
Effective date: 20220503 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: VEDANTHA, SUDARSAN Inventor name: HELLINGER, ANDRE Inventor name: KUNZ, MANUEL |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502017013920 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1524965 Country of ref document: AT Kind code of ref document: T Effective date: 20221115 |
|
REG | Reference to a national code |
Ref country code: RO Ref legal event code: EPE |
|
REG | Reference to a national code |
Ref country code: FI Ref legal event code: FGE |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Ref document number: 3291651 Country of ref document: PT Date of ref document: 20230116 Kind code of ref document: T Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20230110 Ref country code: DK Ref legal event code: T3 Effective date: 20230112 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: T3 Ref document number: E 40985 Country of ref document: SK |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20221012 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2935577 Country of ref document: ES Kind code of ref document: T3 Effective date: 20230308 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221012 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230112 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221012 |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E061142 Country of ref document: HU |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221012 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230212 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221012 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230113 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230509 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502017013920 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221012 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221012 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221012 |
|
26N | No opposition filed |
Effective date: 20230713 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221012 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221012 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230804 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230804 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230831 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BG Payment date: 20240815 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240828 Year of fee payment: 8 Ref country code: FI Payment date: 20240820 Year of fee payment: 8 Ref country code: IE Payment date: 20240816 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20240822 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240822 Year of fee payment: 8 Ref country code: PT Payment date: 20240829 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20240820 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240823 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240918 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20240823 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240819 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20240823 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SK Payment date: 20240828 Year of fee payment: 8 Ref country code: HU Payment date: 20240829 Year of fee payment: 8 Ref country code: SI Payment date: 20240822 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: RO Payment date: 20240827 Year of fee payment: 8 Ref country code: RS Payment date: 20240828 Year of fee payment: 8 Ref country code: IT Payment date: 20240830 Year of fee payment: 8 Ref country code: SE Payment date: 20240821 Year of fee payment: 8 |