EP3280947B1 - Method for recovering energy from dry ice at infra-atmospheric pressure - Google Patents
Method for recovering energy from dry ice at infra-atmospheric pressure Download PDFInfo
- Publication number
- EP3280947B1 EP3280947B1 EP16730444.3A EP16730444A EP3280947B1 EP 3280947 B1 EP3280947 B1 EP 3280947B1 EP 16730444 A EP16730444 A EP 16730444A EP 3280947 B1 EP3280947 B1 EP 3280947B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- enclosure
- pressure
- atmospheric pressure
- sub
- suction piping
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims description 51
- 238000000034 method Methods 0.000 title claims description 32
- 235000011089 carbon dioxide Nutrition 0.000 title description 21
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 22
- 238000011084 recovery Methods 0.000 claims description 15
- 239000002826 coolant Substances 0.000 claims description 10
- 239000001569 carbon dioxide Substances 0.000 claims description 8
- 238000000605 extraction Methods 0.000 claims description 5
- 238000007711 solidification Methods 0.000 claims description 3
- 230000008023 solidification Effects 0.000 claims description 3
- 230000001105 regulatory effect Effects 0.000 claims description 2
- 238000000859 sublimation Methods 0.000 description 14
- 239000013529 heat transfer fluid Substances 0.000 description 11
- 230000008022 sublimation Effects 0.000 description 10
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 8
- 239000007787 solid Substances 0.000 description 4
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000011089 mechanical engineering Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C9/00—Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
- F17C9/02—Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
- F17C9/04—Recovery of thermal energy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C9/00—Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
- F17C9/02—Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B5/00—Drying solid materials or objects by processes not involving the application of heat
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/01—Pure fluids
- F17C2221/013—Carbone dioxide
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/01—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
- F17C2223/0107—Single phase
- F17C2223/0138—Single phase solid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/03—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
- F17C2223/031—Not under pressure, i.e. containing liquids or solids only
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2225/00—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
- F17C2225/01—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
- F17C2225/0107—Single phase
- F17C2225/0123—Single phase gaseous, e.g. CNG, GNC
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/03—Heat exchange with the fluid
- F17C2227/0302—Heat exchange with the fluid by heating
- F17C2227/0309—Heat exchange with the fluid by heating using another fluid
- F17C2227/0323—Heat exchange with the fluid by heating using another fluid in a closed loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/03—Heat exchange with the fluid
- F17C2227/0302—Heat exchange with the fluid by heating
- F17C2227/0327—Heat exchange with the fluid by heating with recovery of heat
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/03—Heat exchange with the fluid
- F17C2227/0367—Localisation of heat exchange
- F17C2227/0369—Localisation of heat exchange in or on a vessel
- F17C2227/0376—Localisation of heat exchange in or on a vessel in wall contact
- F17C2227/0379—Localisation of heat exchange in or on a vessel in wall contact inside the vessel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2250/00—Accessories; Control means; Indicating, measuring or monitoring of parameters
- F17C2250/03—Control means
- F17C2250/032—Control means using computers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2250/00—Accessories; Control means; Indicating, measuring or monitoring of parameters
- F17C2250/04—Indicating or measuring of parameters as input values
- F17C2250/0404—Parameters indicated or measured
- F17C2250/043—Pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2250/00—Accessories; Control means; Indicating, measuring or monitoring of parameters
- F17C2250/06—Controlling or regulating of parameters as output values
- F17C2250/0605—Parameters
- F17C2250/0626—Pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2250/00—Accessories; Control means; Indicating, measuring or monitoring of parameters
- F17C2250/06—Controlling or regulating of parameters as output values
- F17C2250/0605—Parameters
- F17C2250/0636—Flow or movement of content
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2260/00—Purposes of gas storage and gas handling
- F17C2260/04—Reducing risks and environmental impact
- F17C2260/046—Enhancing energy recovery
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/10—Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working
Definitions
- the invention relates to a method and a device for recovering cold heat using dry ice at sub-atmospheric pressure.
- a recovery process is known to US2003 / 014879A1 .
- sub-atmospheric here refers to pressures below atmospheric pressure.
- Carbon dioxide (CO 2 ) is used in many different applications ranging from culinary to heavy industry.
- methane of fossil origin or of biological origin contains CO 2 that must be extracted, especially before the transport of methane. Indeed, before its transport, the methane gas is liquefied at liquefaction temperatures close to -160 ° C at atmospheric pressure. However, under the same pressure conditions, the CO 2 solidifies at temperatures close to -80 ° C. Consequently, the liquefied methane is saturated with dry ice, which is problematic for industrial installations.
- the CO 2 is logically extracted by various known means, in particular by using cleaning techniques.
- the CO 2 extracted is then released to the atmosphere or recycled for other applications.
- the present invention is particularly interested in the recycling of CO 2 in industrial installations.
- the French patent application published under the number FR 2 820 052 discloses a method and system for extracting (capturing) carbon dioxide by anti-sublimation at atmospheric pressure, also known as solid condensation.
- CO 2 is captured by anti-sublimation at a temperature of the order of -80 ° C to the pressure of 0.89 bar absolute in an anti-sublimation evaporator.
- a heat transfer fluid passes into the anti-sublimation evaporator which, once filled with dry ice, goes into defrosting phase.
- the solid CO 2 liquefies and the coolant recovers the liquefaction energy.
- the variation in gross enthalpy is 228 kJ / kg.
- the transfer efficiency of the exchangers is 90%.
- the energy recovered by the heat transfer fluid is therefore 205 kJ / kg.
- the CO 2 changes from an initial pressure of 0.89 bar absolute in the solid state to a pressure greater than 5.2 bar in the liquid state.
- thermodynamic properties of CO 2 are not exploited optimally. More energy could be recycled using a different process to recover higher cold heat from dry ice.
- This method comprises a step of substantially continuous depression of the chamber, at a sub-atmospheric pressure.
- the suction pipe is provided with means able to extract the CO 2 and to allow a continuous depression of the chamber at a sub-atmospheric pressure.
- a device 1 comprising an enclosure 2 crossed by a primary circuit 3 for energy recovery.
- the primary circuit 3 comprises a primary pump 4 .
- the primary pump 4 is driven by a variable speed primary motor 5 which is in turn controlled by a primary power variator 6 .
- a heat transfer fluid circulates in the primary circuit 3 .
- the coolant can be liquid or gaseous.
- the primary pump 4 is a compressor.
- the device 1 comprises a suction pipe 7 provided with a suction pressure sensor 8 .
- the suction pipe 7 passes through a heat exchanger 9 before emerging at one end 10 .
- the end 10 is provided with a vacuum pump 11 controlled by a frequency variator 12 which is controlled by a control member 13 .
- the heat exchanger 9 is further traversed by a secondary circuit 14 for heat recovery.
- a heat transfer fluid circulates in the secondary circuit 14 .
- the secondary circuit 14 comprises a secondary pump 15.
- the secondary pump 15 is driven by a 16 secondary variable speed motor which is controlled in turn by a secondary controller 17 power.
- the data provided in the table relates to CO 2 .
- This table gives, starting from the left column, the sublimation temperature, the absolute pressure of saturation, the density and the latent heat of sublimation.
- CO 2 in the solid state is called dry ice.
- the chamber 2 comprises a given mass of dry ice.
- the pressure in the chamber 2 is below atmospheric, that is to say that it is less than atmospheric pressure which is about 1 bar.
- This sub-atmospheric pressure is kept constant thanks to the vacuum pump 11 .
- the pressure in the chamber is 0.00055 bar absolute or a sublimation temperature of -140 ° C.
- the enclosure 2 is coated with an effective insulation to reduce heat exchange with the external environment.
- the coolant circulating in the primary circuit 3 passes through the chamber 2 and is cooled by heat exchange with the dry ice.
- Dry ice warms up under the action of heat transfer fluid and instantly sublimates when its temperature exceeds -140 ° C at 0.00055 bar absolute pressure
- the vacuum pump 11 extracts more CO 2 gas, so that the pressure of 0.00055 bar absolute remains constant so that the sublimation temperature is maintained at -140 ° C. Indeed, as explained above, the exergy value of the latent heat is higher the lower the sublimation temperature.
- the energy recovery is done until complete sublimation of the dry ice. Once the dry ice has completely disappeared, the chamber 2 is recharged with dry ice.
- the regulation of the pressure in the chamber 2 is performed by measuring the pressure in the suction pipe 7 by means of the suction pressure sensor 8 .
- the value of the pressure in the suction pipe 7 is sent continuously to a central unit, not shown in the figure.
- the central unit controls the pump 11 empty, via the control member 13 and the drive 12 of the frequency, to extract more CO 2 gas so that the target pressure is reached and remains constant in the suction line 7 .
- the pressures in the chamber 2 and in the suction pipe 7 are substantially identical.
- the CO 2 gas leaving enclosure 2 passes through the heat exchanger 9 and gives up some of its heat sensitive to the heat transfer fluid flowing in the secondary circuit 14 .
- the flow rates of the heat transfer fluids in the primary circuit 3 and in the secondary circuit 14 can be adapted so that the Heat exchanges with the dry ice for the primary circuit 3 and with the CO 2 gas for the secondary circuit 14 , are the most efficient possible.
- the sensible heat as opposed to the latent heat corresponds to the energy transferred without there being a change of state of the CO 2 .
- the heat transfer fluid in the secondary circuit 14 and the CO 2 in the suction pipe 7 circulate against the current.
- the heat transfer fluid must not be able to solidify at these cryogenic temperatures close to -140 ° C. Propane can be advantageously used as heat transfer fluid for this reason.
- the heat transfer in the heat exchanger 9 takes place over large temperature ranges. Typically this difference ranges from -140 ° C to 20 ° C.
- the sensible heat is about 120 kJ / kg.
- the latent heat of sublimation is about 594 kJ / kg, with reference to the table.
- the total recoverable heat is therefore about 714 kJ / kg. With equipment allowing 90% efficient heat exchange, the total heat actually recovered is about 643 kJ / kg.
- the method and the device, as described, enable a much more efficient carbon dioxide energy recovery, advantageously exploiting the thermodynamic properties of carbon dioxide.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- Carbon And Carbon Compounds (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Extraction Or Liquid Replacement (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Treating Waste Gases (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
L'invention a trait à un procédé et un dispositif de récupération de la chaleur froide utilisant de la glace carbonique à pression infra atmosphérique. Un procédé de récupération est connu de
L'expression « infra atmosphérique » désigne ici des pressions inférieures à la pression atmosphérique.The term "sub-atmospheric" here refers to pressures below atmospheric pressure.
Le dioxyde de carbone (CO2) est utilisé dans de nombreuses applications variées, allant du domaine culinaire jusqu'à l'industrie lourde.Carbon dioxide (CO 2 ) is used in many different applications ranging from culinary to heavy industry.
Dans l'industrie du gaz, par exemple, le méthane d'origine fossile ou d'origine biologique contient du CO2 qu'il convient d'extraire, notamment avant le transport du méthane. En effet, avant son transport, le gaz méthane est liquéfié à des températures de liquéfaction proche de -160°C à la pression atmosphérique. Or, dans les mêmes conditions de pression, le CO2 se solidifie à des températures proches de -80°C. Par conséquent, le méthane liquéfié est saturé en glace carbonique, ce qui est problématique pour les installations industrielles.In the gas industry, for example, methane of fossil origin or of biological origin contains CO 2 that must be extracted, especially before the transport of methane. Indeed, before its transport, the methane gas is liquefied at liquefaction temperatures close to -160 ° C at atmospheric pressure. However, under the same pressure conditions, the CO 2 solidifies at temperatures close to -80 ° C. Consequently, the liquefied methane is saturated with dry ice, which is problematic for industrial installations.
Le CO2 est donc logiquement extrait par différents moyens connus, notamment en utilisant des techniques de nettoyage. Le CO2 extrait est alors rejeté vers l'atmosphère ou recyclé pour d'autres applications.The CO 2 is logically extracted by various known means, in particular by using cleaning techniques. The CO 2 extracted is then released to the atmosphere or recycled for other applications.
La présente invention s'intéresse tout particulièrement au recyclage du CO2 dans les installations industrielles.The present invention is particularly interested in the recycling of CO 2 in industrial installations.
La demande de brevet Français publiée sous le numéro
Ce procédé antérieur présente des carences majeures. Les propriétés thermodynamiques du CO2 ne sont pas exploitées de manière optimale. Une plus grande quantité d'énergie pourrait être recyclée à l'aide d'un procédé différent, et ce afin de récupérer une chaleur froide supérieure, à partir de la glace carbonique.This prior process has major shortcomings. The thermodynamic properties of CO 2 are not exploited optimally. More energy could be recycled using a different process to recover higher cold heat from dry ice.
A cet effet, il est proposé, en premier lieu, un procédé de récupération d'énergie issue du changement d'état de la glace carbonique. Ce procédé est mis en oeuvre au moyen d'un dispositif comprenant :
- une enceinte contenant de la glace carbonique à une pression infra-atmosphérique ;
- un circuit primaire de récupération d'énergie traversant l'enceinte et dans lequel circule un fluide caloporteur.
- an enclosure containing dry ice at sub-atmospheric pressure;
- a primary energy recovery circuit passing through the enclosure and in which circulates a coolant.
Ce procédé comprend les étapes suivantes :
- passage du fluide caloporteur dans le circuit primaire, cette étape provoquant le réchauffement de la glace carbonique et son changement d'état en CO2 et le refroidissement du fluide
caloporteur;
le procédé comprenant une étape de mise en dépression sensiblement continue de l'enceinte (2) à une pression infra-atmosphérique et une étape de transit du CO2 extrait de l'enceinte (2) dans un échangeur (9) de chaleur dans lequel il est réchauffé par échange de chaleur avec un fluide caloporteur circulant dans un circuit (14) secondaire; - extraction du CO2 contenu dans l'enceinte, le CO2 extrait de l'enceinte étant gazeux.
- passage of the heat transfer fluid in the primary circuit, this step causing the heating of the dry ice and its change of state in CO 2 and the cooling of the fluid
heat transfer;
the method comprising a step of substantially continuous depression of the chamber (2) at a sub-atmospheric pressure and a CO 2 transit step extracted from the chamber (2) in a heat exchanger (9) in which it is heated by heat exchange with a coolant circulating in a secondary circuit (14); - extraction of CO 2 contained in the chamber, the CO2 extracted from the chamber being gaseous.
Ce procédé comprend une étape de mise en dépression sensiblement continue de l'enceinte, à une pression infra-atmosphérique.This method comprises a step of substantially continuous depression of the chamber, at a sub-atmospheric pressure.
Diverses caractéristiques supplémentaires peuvent être prévues, seules ou en combinaison :
- le procédé comprend une étape de mesure sensiblement continue de la pression dans une canalisation d'aspiration, au moyen d'un capteur de pression ;
- le procédé comprend une étape de transmission de la pression mesurée par le capteur de pression à une unité centrale ;
- le procédé comprend une étape de régulation de la pression dans l'enceinte et dans la canalisation d'aspiration au moyen d'une pompe à vide située à une extrémité de la canalisation d'aspiration ;
- la pression dans l'enceinte est d'environ 0,00055 bar absolu.
- the method comprises a step of substantially continuous measurement of the pressure in a suction pipe, by means of a pressure sensor;
- the method comprises a step of transmitting the pressure measured by the pressure sensor to a central unit;
- the method comprises a step of regulating the pressure in the chamber and in the suction pipe by means of a vacuum pump located at one end of the suction pipe;
- the pressure in the chamber is about 0.00055 bar absolute.
Il est proposé, en second lieu, un dispositif de récupération d'énergie configuré pour mettre en oeuvre un procédé de récupération d'énergie tel que précédemment décrit, ce dispositif comprenant :
- une enceinte apte à contenir de la glace carbonique à une pression infra-atmosphérique et à une température de solidification correspondant à la pression infra-atmosphérique ;
- un circuit primaire de récupération d'énergie traversant l'enceinte et dans lequel circule un fluide caloporteur ;
- une canalisation d'aspiration permettant d'extraire du CO2 de l'enceinte.
- an enclosure adapted to contain dry ice at a sub-atmospheric pressure and at a solidification temperature corresponding to the sub-atmospheric pressure;
- a primary energy recovery circuit passing through the enclosure and in which circulates a heat transfer fluid;
- a suction pipe for extracting CO 2 from the enclosure.
La canalisation d'aspiration est munie de moyens aptes à extraire le CO2 et à permettre une mise en dépression continue de l'enceinte à une pression infra atmosphérique.The suction pipe is provided with means able to extract the CO 2 and to allow a continuous depression of the chamber at a sub-atmospheric pressure.
Diverses caractéristiques supplémentaires peuvent être prévues, seules ou en combinaison :
- le dispositif comprend un échangeur de chaleur traversé par la canalisation d'aspiration, l'échangeur de chaleur étant également traversé par un circuit secondaire, la canalisation d'aspiration comprenant en outre un capteur de pression et les moyens aptes à extraire le CO2 étant une pompe à vide ;
- le dispositif comprend une unité centrale apte à traiter les informations provenant du capteur de pression et à réguler la puissance d'extraction de la pompe à vide.
- the device comprises a heat exchanger traversed by the suction pipe, the heat exchanger being also traversed by a secondary circuit, the suction pipe further comprising a pressure sensor and the means capable of extracting the CO 2 being a vacuum pump;
- the device comprises a central unit able to process the information coming from the pressure sensor and to regulate the extraction power of the vacuum pump.
D'autres objets et avantages de l'invention apparaîtront à la lumière de la description d'un mode de réalisation, faite ci-après en référence à la figure représentant une vue schématique d'un dispositif de récupération d'énergie, à partir de la glace carbonique.Other objects and advantages of the invention will become apparent in the light of the description of an embodiment, given below with reference to the figure showing a schematic view of an energy recovery device, from dry ice.
Sur la figure est représenté un dispositif 1 comprenant une enceinte 2 traversée par un circuit 3 primaire de récupération d'énergie.In the figure is shown a device 1 comprising an
Le circuit 3 primaire comprend une pompe 4 primaire. La pompe 4 primaire est pilotée par un moteur 5 primaire à vitesse variable lequel est commandé à son tour par un variateur 6 primaire de puissance.The primary circuit 3 comprises a primary pump 4 . The primary pump 4 is driven by a variable speed primary motor 5 which is in turn controlled by a primary power variator 6 .
Un fluide caloporteur circule dans le circuit 3 primaire. Le fluide caloporteur peut être liquide ou gazeux. Dans le cas où celui-ci est gazeux, la pompe 4 primaire est un compresseur.A heat transfer fluid circulates in the primary circuit 3 . The coolant can be liquid or gaseous. In the case where the latter is gaseous, the primary pump 4 is a compressor.
Le dispositif 1 comprend une canalisation 7 d'aspiration munie d'un capteur 8 de pression d'aspiration.The device 1 comprises a suction pipe 7 provided with a suction pressure sensor 8 .
La canalisation 7 d'aspiration traverse un échangeur 9 de chaleur avant de ressortir à une extrémité 10. L'extrémité 10 est munie d'une pompe 11 à vide pilotée par un variateur 12 de fréquence lequel est commandé par un organe 13 de contrôle.The suction pipe 7 passes through a heat exchanger 9 before emerging at one
L'échangeur 9 de chaleur est en outre traversé par un circuit 14 secondaire de récupération de chaleur. Un fluide caloporteur circule dans le circuit 14 secondaire. Le circuit 14 secondaire comprend une pompe 15 secondaire. La pompe 15 secondaire est pilotée par un moteur 16 secondaire à vitesse variable lequel est commandé à son tour par un variateur 17 secondaire de puissance.The heat exchanger 9 is further traversed by a
Le procédé de récupération d'énergie va être, maintenant, décrit en référence au tableau ci-dessous :
Les données fournies dans le tableau ont trait au CO2. Ce tableau donne, en partant de la colonne de gauche, la température de sublimation, la pression absolue de saturation, la masse volumique et la chaleur latente de sublimation.The data provided in the table relates to CO 2 . This table gives, starting from the left column, the sublimation temperature, the absolute pressure of saturation, the density and the latent heat of sublimation.
Ces données sont fournies par le logiciel Refprop 9 avec des calculs complémentaire pour la chaleur latente de sublimation, basés sur les formulations de l'ouvrage intitulé Thermodynamic properties in SI de W. C. Reynolds du department of Mechanical Engineering de l'Université de Stanford.These data are provided by Refprop 9 software with complementary calculations for latent sublimation heat, based on the formulations of Thermodynamic Properties in SI by WC Reynolds of the Department of Mechanical Engineering at Stanford University.
Pour schématiser, l'énergie se décompose en deux parts. L'une des parts est transformable en énergie mécanique, tandis que l'autre ne l'est pas. La part transformable en énergie mécanique est appelée exergie. L'exergie permet donc de mesurer la qualité d'une énergie.To schematize, energy breaks down into two parts. One of the parts is transformable into mechanical energy, while the other is not. The part that can be converted into mechanical energy is called exergy. Exergy thus makes it possible to measure the quality of an energy.
En ce qui concerne le CO2, plus sa température est basse, plus la valeur exergétique de la chaleur latente est élevée.For CO 2 , the lower its temperature, the higher the exergy value of the latent heat.
Le CO2 à l'état solide est appelé glace carbonique. A un instant initial, l'enceinte 2 comprend une masse donnée de glace carbonique. La pression dans l'enceinte 2 est infra atmosphérique, c'est-à-dire qu'elle est inférieure à la pression atmosphérique qui est d'environ 1 bar.CO 2 in the solid state is called dry ice. At an initial moment, the
Cette pression infra atmosphérique est maintenue constante grâce à la pompe 11 à vide. Dans ce mode de réalisation, la pression dans l'enceinte est de 0,00055 bar absolu soit une température de sublimation de -140°C. L'enceinte 2 est revêtue d'une isolation efficace afin de réduire les échanges de chaleur avec le milieu extérieur.This sub-atmospheric pressure is kept constant thanks to the
Le fluide caloporteur circulant dans le circuit 3 primaire traverse l'enceinte 2 et est refroidi par échange de chaleur avec la glace carbonique.The coolant circulating in the primary circuit 3 passes through the
La glace carbonique se réchauffe sous l'action du fluide caloporteur et se sublime instantanément lorsque sa température dépasse -140°C à la pression de 0,00055 bar absoluDry ice warms up under the action of heat transfer fluid and instantly sublimates when its temperature exceeds -140 ° C at 0.00055 bar absolute pressure
La pression et la température tendent alors naturellement à augmenter sous l'effet de la sublimation de la glace carbonique. Pour éviter cela, la pompe 11 à vide extrait plus de CO2 gazeux, afin que la pression de 0,00055 bar absolu reste constante de sorte que la température de sublimation se maintienne à -140°C. En effet, comme expliqué précédemment, la valeur exergétique de la chaleur latente est d'autant plus élevée que la température de sublimation est basse.The pressure and the temperature then naturally tend to increase under the effect of the sublimation of the dry ice. To avoid this, the
La récupération d'énergie se fait jusqu'à sublimation complète de la glace carbonique. Une fois que la glace carbonique a intégralement disparue, l'enceinte 2 est rechargée en glace carbonique.The energy recovery is done until complete sublimation of the dry ice. Once the dry ice has completely disappeared, the
La régulation de la pression dans l'enceinte 2 est effectuée en mesurant la pression dans la canalisation 7 d'aspiration au moyen du capteur 8 de pression d'aspiration.The regulation of the pressure in the
La valeur de la pression dans la canalisation 7 d'aspiration est envoyée en continu à une unité centrale, non représentée sur la figure.The value of the pressure in the suction pipe 7 is sent continuously to a central unit, not shown in the figure.
Lorsque la pression dans la canalisation 7 d'aspiration dépasse la pression cible, en l'occurrence 0,00055 bar absolu, alors l'unité centrale commande à la pompe 11 à vide, via l'organe 13 de contrôle et le variateur 12 de fréquence, d'extraire plus de CO2 gazeux afin que la pression cible soit atteinte et reste constante dans la canalisation 7 d'aspiration. Les pressions dans l'enceinte 2 et dans la canalisation 7 d'aspiration sont sensiblement identiques.When the pressure in the suction pipe 7 exceeds the target pressure, in this case 0.00055 bar absolute, then the central unit controls the
Le CO2 gazeux sortant de l'enceinte 2 traverse l'échangeur 9 de chaleur et cède une partie de sa chaleur sensible au fluide caloporteur circulant dans le circuit 14 secondaire.The CO 2
Les débits des fluides caloporteurs dans le circuit 3 primaire et dans le circuit 14 secondaire peuvent être adaptés, afin que les échanges de chaleur avec la glace carbonique pour le circuit 3 primaire et avec le CO2 gazeux pour le circuit 14 secondaire, soient le plus efficace possible.The flow rates of the heat transfer fluids in the primary circuit 3 and in the
Ainsi, une partie de la chaleur sensible est récupérée par le circuit 14 secondaire. La chaleur sensible par opposition à la chaleur latente correspond à l'énergie cédée sans qu'il n'y ait changement d'état du CO2.Thus, a portion of the sensible heat is recovered by the
Avantageusement, le fluide caloporteur dans le circuit 14 secondaire et le CO2 dans la canalisation 7 d'aspiration circulent à contre courant.Advantageously, the heat transfer fluid in the
Le fluide caloporteur doit pouvoir ne pas se solidifier à ces températures cryogéniques proches de -140°C. Le propane peut être avantageusement utilisé comme fluide caloporteur pour cette raison.The heat transfer fluid must not be able to solidify at these cryogenic temperatures close to -140 ° C. Propane can be advantageously used as heat transfer fluid for this reason.
Le transfert de chaleur dans l'échangeur 9 de chaleur s'effectue sur de grands écarts de températures. Typiquement, cet écart s'étend de -140°C à 20°C. La chaleur sensible est d'environ 120 kJ/kg.The heat transfer in the heat exchanger 9 takes place over large temperature ranges. Typically this difference ranges from -140 ° C to 20 ° C. The sensible heat is about 120 kJ / kg.
Dans l'enceinte 2, la chaleur latente de sublimation est d'environ 594 kJ/kg, en référence au tableau.In
La chaleur totale récupérable est donc d'environ 714 kJ/kg. Avec des équipements permettant un échange de chaleur efficace à 90%, la chaleur totale effectivement récupérée est d'environ 643 kJ/kg.The total recoverable heat is therefore about 714 kJ / kg. With equipment allowing 90% efficient heat exchange, the total heat actually recovered is about 643 kJ / kg.
Le procédé et le dispositif, ainsi décrits, permettent une récupération d'énergie de la glace carbonique bien plus efficace, en exploitant avantageusement les propriétés thermodynamiques du dioxyde de carbone.The method and the device, as described, enable a much more efficient carbon dioxide energy recovery, advantageously exploiting the thermodynamic properties of carbon dioxide.
Claims (8)
- A method for recovering energy from the change of phase of carbon dioxide ice, this method being implemented by means of a device (1) comprising:- an enclosure (2), containing carbon dioxide ice at a sub-atmospheric pressure;- an energy recovering primary circuit (3), passing through the enclosure (2) and in which a coolant circulates;the method comprising the following steps of:- passing the coolant into the primary circuit (3), this step causing the carbon dioxide ice to be warmed and its change of phase into CO2 and the coolant to be cooled;- extracting the CO2 content in the enclosure (2);the CO2 extracted from the enclosure (2) being gaseous;
the method comprising a step of substantially continuous depressurising the enclosure (2) at a sub-atmospheric pressure and a step of transiting the CO2 extracted from the enclosure (2) into a heat exchanger (9) in which it is warmed by heat exchange with a coolant circulated in a secondary circuit (14). - The method according to any of the preceding claims, characterised in that the method comprises a step of substantially continuously measuring the pressure in a suction piping (7) by means of a pressure sensor (8).
- The method according to claim 2, characterised in that the method comprises a step of transmitting the pressure measured by the pressure sensor (8) to a central processing unit.
- The method according to claim 3, characterised in that the method comprises a step of regulating the pressure in the enclosure (2) and in the suction piping (7), by means of a vacuum pump (11) located at one end of the suction piping (7).
- The method according to any of the preceding claims, characterised in that the pressure in the enclosure (2) is about 0.00055 absolute bar.
- An energy recovery device (1) configured to implement an energy recovery method according to one of claims 1 or 2, this device (1) comprising:- an enclosure (2), able to contain carbon dioxide ice at a sub-atmospheric pressure and at a solidification temperature corresponding to the sub-atmospheric pressure;- an energy recovery primary circuit (3), passing through the enclosure (2) and in which a coolant circulates;- a suction piping (7), enabling CO2 to be extracted from the enclosure (2),the suction piping (7) being provided with means able to extract CO2 and to enable the enclosure (2) to be continuously depressurised at a sub-atmospheric pressure, and in that the device (1) further comprises a secondary circuit (14) and a heat exchanger (9) through which the suction piping (7) and the secondary circuit (14) pass.
- The device (1) according to claim 6, for implementing the method according to one of claims 3 or 4, characterised in that the suction piping (7) further comprises a pressure sensor (8) and the means able to extract CO2 being a vacuum pump (11).
- The device (1) according to claim 7 for implementing the method according to one of claims 5 to 6, characterised in that the device (1) comprises a central processing unit, able to process information from the pressure sensor (8) and to regulate the extraction power of the vacuum pump (11).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI201630569T SI3280947T1 (en) | 2015-04-08 | 2016-04-07 | Method for recovering energy from dry ice at infra-atmospheric pressure |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1553020A FR3034854B1 (en) | 2015-04-08 | 2015-04-08 | METHOD OF RECOVERING ENERGY FROM CARBONIC ICE WITH INFRA ATMOSPHERIC PRESSURE |
PCT/FR2016/050807 WO2016162643A1 (en) | 2015-04-08 | 2016-04-07 | Method for recovering energy from dry ice at infra-atmospheric pressure |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3280947A1 EP3280947A1 (en) | 2018-02-14 |
EP3280947B1 true EP3280947B1 (en) | 2019-10-09 |
Family
ID=53274686
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16730444.3A Active EP3280947B1 (en) | 2015-04-08 | 2016-04-07 | Method for recovering energy from dry ice at infra-atmospheric pressure |
Country Status (13)
Country | Link |
---|---|
US (1) | US11028968B2 (en) |
EP (1) | EP3280947B1 (en) |
JP (1) | JP6804461B2 (en) |
AU (1) | AU2016245312B2 (en) |
BR (1) | BR112017021427B1 (en) |
CA (1) | CA2982048C (en) |
DK (1) | DK3280947T3 (en) |
ES (1) | ES2762930T3 (en) |
FR (1) | FR3034854B1 (en) |
HU (1) | HUE047792T2 (en) |
PT (1) | PT3280947T (en) |
SI (1) | SI3280947T1 (en) |
WO (1) | WO2016162643A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12030000B2 (en) * | 2017-12-22 | 2024-07-09 | Sustainable Energy Solutions, Llc | Vessel and method for solid-liquid separation |
FR3147114A1 (en) | 2023-03-27 | 2024-10-04 | Cryo Pur | Method and device for coupling the refrigerant and heat transfer effects |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2352775A (en) * | 1939-12-09 | 1944-07-04 | Nat Lead Co | Generation of gaseous co2 |
US2559095A (en) * | 1947-02-24 | 1951-07-03 | C Van King | Refrigeration system |
GB678995A (en) * | 1949-09-06 | 1952-09-10 | Esslingen Maschf | Improvements in and relating to the discharging of low pressure storage vessels containing intensely cooled fluids |
US4699570A (en) * | 1986-03-07 | 1987-10-13 | Itt Industries, Inc | Vacuum pump system |
JPH08269469A (en) * | 1995-03-31 | 1996-10-15 | Chugoku Electric Power Co Inc:The | Recycle of natural gas liquefaction energy |
US5787716A (en) * | 1997-06-13 | 1998-08-04 | Allen, Jr.; Russel G. | Dry ice sublimation cooling system utilizing a vacuum |
FR2820052B1 (en) | 2001-01-30 | 2003-11-28 | Armines Ass Pour La Rech Et Le | ANTI-SUBLIMATION CARBON DIOXIDE EXTRACTION PROCESS FOR ITS STORAGE |
JP3621072B2 (en) * | 2001-03-01 | 2005-02-16 | 有限会社つくば食料科学研究所 | Lyophilized product, production method and apparatus thereof |
US6543155B2 (en) * | 2001-03-01 | 2003-04-08 | National Agricultural Research Organization | Freeze-dried product and process and apparatus for producing it |
JP2007232329A (en) * | 2006-03-03 | 2007-09-13 | Kobe Steel Ltd | Cold utilization method |
IT1393121B1 (en) * | 2009-03-05 | 2012-04-11 | Air Liquide Italia S P A | METHOD AND PLANT FOR THE REMOVAL OF DISSOLVED OXYGEN AND MAINTENANCE IN CONTROLLED GRAPE ATMOSPHERE, OR OTHER VEGETABLE PRODUCTS, IN MECHANICAL MEANS OF COLLECTION, TRANSPORT AND STORAGE |
JP2010267707A (en) * | 2009-05-13 | 2010-11-25 | Kobe Steel Ltd | Data center system, and cooling power generation using data center system |
FR2949072B1 (en) * | 2009-08-13 | 2017-03-31 | Ass Pour La Rech Et Le Dev Des Methodes Et Processus Industriels-Armines | IMPROVED METHOD AND SYSTEM FOR THE EXTRACTION OF SUBSTANCE BY ANTISUBLIMATION AND FUSION |
DE102013014912A1 (en) * | 2013-09-03 | 2015-03-05 | Messer Group Gmbh | Apparatus and method for subcooling carbon dioxide |
-
2015
- 2015-04-08 FR FR1553020A patent/FR3034854B1/en active Active
-
2016
- 2016-04-07 SI SI201630569T patent/SI3280947T1/en unknown
- 2016-04-07 ES ES16730444T patent/ES2762930T3/en active Active
- 2016-04-07 CA CA2982048A patent/CA2982048C/en active Active
- 2016-04-07 US US15/563,644 patent/US11028968B2/en active Active
- 2016-04-07 AU AU2016245312A patent/AU2016245312B2/en active Active
- 2016-04-07 BR BR112017021427-0A patent/BR112017021427B1/en active IP Right Grant
- 2016-04-07 WO PCT/FR2016/050807 patent/WO2016162643A1/en active Application Filing
- 2016-04-07 EP EP16730444.3A patent/EP3280947B1/en active Active
- 2016-04-07 DK DK16730444.3T patent/DK3280947T3/en active
- 2016-04-07 HU HUE16730444A patent/HUE047792T2/en unknown
- 2016-04-07 JP JP2017548468A patent/JP6804461B2/en active Active
- 2016-04-07 PT PT167304443T patent/PT3280947T/en unknown
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
JP2018514713A (en) | 2018-06-07 |
US20180038548A1 (en) | 2018-02-08 |
US11028968B2 (en) | 2021-06-08 |
ES2762930T3 (en) | 2020-05-26 |
HUE047792T2 (en) | 2020-05-28 |
CA2982048C (en) | 2023-03-21 |
WO2016162643A1 (en) | 2016-10-13 |
BR112017021427A2 (en) | 2018-07-03 |
DK3280947T3 (en) | 2020-01-27 |
EP3280947A1 (en) | 2018-02-14 |
CA2982048A1 (en) | 2016-10-13 |
BR112017021427B1 (en) | 2023-01-17 |
FR3034854A1 (en) | 2016-10-14 |
AU2016245312A1 (en) | 2017-10-26 |
NZ735963A (en) | 2023-12-22 |
SI3280947T1 (en) | 2020-06-30 |
AU2016245312B2 (en) | 2020-11-05 |
FR3034854B1 (en) | 2019-08-02 |
JP6804461B2 (en) | 2020-12-23 |
PT3280947T (en) | 2020-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3280947B1 (en) | Method for recovering energy from dry ice at infra-atmospheric pressure | |
FR3016876A1 (en) | INSTALLATION AND METHOD FOR TREATING EVAPORATION / CONDENSATION OF WATER PUMPED IN A NATURAL ENVIRONMENT | |
CA2966584A1 (en) | Method for recuperation of thermal energy from a motorized heat pump | |
FR2624200A1 (en) | SYSTEM FOR THE CRYOGENIC TREATMENT AND STORAGE OF COMBUSTION PRODUCTS OF A THERMAL ENGINE | |
EP0038769B1 (en) | Method and devices for letting a transfer fluid circulate in a closed circuit comprising a heat source and a cold source | |
EP3724458A1 (en) | Method for storing and producing energy by means of compressed air with additional energy recovery | |
FR2945327A1 (en) | METHOD AND EQUIPMENT FOR MECHANICAL ENERGY TRANSMISSION BY COMPRESSION AND / OR QUASI-ISOTHERMAL DETENTION OF A GAS | |
EP0192496B1 (en) | Cold and/or heat production process using a non-azeotropic mixture of fluids in an ejector cycle | |
FR2583988A1 (en) | DISTILLATION PROCESS WITH ENERGY RECOVERY BY VAPOR RECOMPRESSION USING AN EJECTOR | |
EP2354710A1 (en) | Device and method for recovering heat from the fumes of a thermal power station | |
CA3069841A1 (en) | Refrigeration plant | |
EP2893276B1 (en) | Method and device for condensing a carbon dioxide-rich gas stream | |
WO2014096736A1 (en) | Device and method for evaporating a liquid, and applications of said device and method | |
EP3721152A1 (en) | Thermochemical heat pump and method for redistributing heat energy with variable power | |
EP3045698B1 (en) | Device and method for recovering heat contained in combustion gases | |
FR3071913A1 (en) | HEAT PUMP AND METHOD OF OPERATION | |
FR2994254A1 (en) | HEAT PUMP FOR CARRYING HEATING WITH HIGH TEMPERATURE TEMPERATURES OF AN EXTERNAL FLUID, AND INSTALLATION COMPRISING SUCH A HEAT PUMP | |
FR3029208A1 (en) | COOLING AND HEATING SYSTEM FOR THERMOVINIFICATION | |
FR2981144A1 (en) | TURBO HEAT PUMP. | |
EP4336124A1 (en) | System and method for transferring thermal energy | |
EP3194874A1 (en) | Heat pipe and method for making a heat pipe | |
FR3136273A1 (en) | AUTONOMOUS DEVICE FOR COOLING AN INDUSTRIAL PROCESS, IN PARTICULAR A DATA PROCESSING CENTER, AND DATA PROCESSING CENTER USING SAID DEVICE | |
FR2500601A1 (en) | Water to water heat pump - has vacuum pump to maintain thermal cycle under vacuum | |
BE390427A (en) | ||
BE489304A (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170919 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190717 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602016022110 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1189246 Country of ref document: AT Kind code of ref document: T Effective date: 20191115 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Ref document number: 3280947 Country of ref document: PT Date of ref document: 20200114 Kind code of ref document: T Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20191226 Ref country code: FI Ref legal event code: FGE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: CRYO PUR |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20200120 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20191009 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: T3 Ref document number: E 33315 Country of ref document: SK |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200110 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200109 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2762930 Country of ref document: ES Kind code of ref document: T3 Effective date: 20200526 |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E047792 Country of ref document: HU |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200224 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602016022110 Country of ref document: DE |
|
PG2D | Information on lapse in contracting state deleted |
Ref country code: IS |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200209 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 |
|
26N | No opposition filed |
Effective date: 20200710 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20240322 Year of fee payment: 9 Ref country code: NL Payment date: 20240320 Year of fee payment: 9 Ref country code: LU Payment date: 20240320 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FI Payment date: 20240320 Year of fee payment: 9 Ref country code: CZ Payment date: 20240326 Year of fee payment: 9 Ref country code: GB Payment date: 20240320 Year of fee payment: 9 Ref country code: PT Payment date: 20240321 Year of fee payment: 9 Ref country code: SK Payment date: 20240326 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20240326 Year of fee payment: 9 Ref country code: SE Payment date: 20240320 Year of fee payment: 9 Ref country code: NO Payment date: 20240322 Year of fee payment: 9 Ref country code: IT Payment date: 20240320 Year of fee payment: 9 Ref country code: DK Payment date: 20240320 Year of fee payment: 9 Ref country code: BE Payment date: 20240320 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240320 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240501 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240502 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240322 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240410 Year of fee payment: 9 Ref country code: SI Payment date: 20240328 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: HU Payment date: 20240327 Year of fee payment: 9 |