[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP3280947B1 - Method for recovering energy from dry ice at infra-atmospheric pressure - Google Patents

Method for recovering energy from dry ice at infra-atmospheric pressure Download PDF

Info

Publication number
EP3280947B1
EP3280947B1 EP16730444.3A EP16730444A EP3280947B1 EP 3280947 B1 EP3280947 B1 EP 3280947B1 EP 16730444 A EP16730444 A EP 16730444A EP 3280947 B1 EP3280947 B1 EP 3280947B1
Authority
EP
European Patent Office
Prior art keywords
enclosure
pressure
atmospheric pressure
sub
suction piping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16730444.3A
Other languages
German (de)
French (fr)
Other versions
EP3280947A1 (en
Inventor
Denis Clodic
Joseph TOUBASSY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cryo Pur SAS
Original Assignee
Cryo Pur SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cryo Pur SAS filed Critical Cryo Pur SAS
Priority to SI201630569T priority Critical patent/SI3280947T1/en
Publication of EP3280947A1 publication Critical patent/EP3280947A1/en
Application granted granted Critical
Publication of EP3280947B1 publication Critical patent/EP3280947B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • F17C9/04Recovery of thermal energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B5/00Drying solid materials or objects by processes not involving the application of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/013Carbone dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0138Single phase solid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/031Not under pressure, i.e. containing liquids or solids only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • F17C2227/0323Heat exchange with the fluid by heating using another fluid in a closed loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0327Heat exchange with the fluid by heating with recovery of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0369Localisation of heat exchange in or on a vessel
    • F17C2227/0376Localisation of heat exchange in or on a vessel in wall contact
    • F17C2227/0379Localisation of heat exchange in or on a vessel in wall contact inside the vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/03Control means
    • F17C2250/032Control means using computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/043Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0626Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0636Flow or movement of content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/04Reducing risks and environmental impact
    • F17C2260/046Enhancing energy recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the invention relates to a method and a device for recovering cold heat using dry ice at sub-atmospheric pressure.
  • a recovery process is known to US2003 / 014879A1 .
  • sub-atmospheric here refers to pressures below atmospheric pressure.
  • Carbon dioxide (CO 2 ) is used in many different applications ranging from culinary to heavy industry.
  • methane of fossil origin or of biological origin contains CO 2 that must be extracted, especially before the transport of methane. Indeed, before its transport, the methane gas is liquefied at liquefaction temperatures close to -160 ° C at atmospheric pressure. However, under the same pressure conditions, the CO 2 solidifies at temperatures close to -80 ° C. Consequently, the liquefied methane is saturated with dry ice, which is problematic for industrial installations.
  • the CO 2 is logically extracted by various known means, in particular by using cleaning techniques.
  • the CO 2 extracted is then released to the atmosphere or recycled for other applications.
  • the present invention is particularly interested in the recycling of CO 2 in industrial installations.
  • the French patent application published under the number FR 2 820 052 discloses a method and system for extracting (capturing) carbon dioxide by anti-sublimation at atmospheric pressure, also known as solid condensation.
  • CO 2 is captured by anti-sublimation at a temperature of the order of -80 ° C to the pressure of 0.89 bar absolute in an anti-sublimation evaporator.
  • a heat transfer fluid passes into the anti-sublimation evaporator which, once filled with dry ice, goes into defrosting phase.
  • the solid CO 2 liquefies and the coolant recovers the liquefaction energy.
  • the variation in gross enthalpy is 228 kJ / kg.
  • the transfer efficiency of the exchangers is 90%.
  • the energy recovered by the heat transfer fluid is therefore 205 kJ / kg.
  • the CO 2 changes from an initial pressure of 0.89 bar absolute in the solid state to a pressure greater than 5.2 bar in the liquid state.
  • thermodynamic properties of CO 2 are not exploited optimally. More energy could be recycled using a different process to recover higher cold heat from dry ice.
  • This method comprises a step of substantially continuous depression of the chamber, at a sub-atmospheric pressure.
  • the suction pipe is provided with means able to extract the CO 2 and to allow a continuous depression of the chamber at a sub-atmospheric pressure.
  • a device 1 comprising an enclosure 2 crossed by a primary circuit 3 for energy recovery.
  • the primary circuit 3 comprises a primary pump 4 .
  • the primary pump 4 is driven by a variable speed primary motor 5 which is in turn controlled by a primary power variator 6 .
  • a heat transfer fluid circulates in the primary circuit 3 .
  • the coolant can be liquid or gaseous.
  • the primary pump 4 is a compressor.
  • the device 1 comprises a suction pipe 7 provided with a suction pressure sensor 8 .
  • the suction pipe 7 passes through a heat exchanger 9 before emerging at one end 10 .
  • the end 10 is provided with a vacuum pump 11 controlled by a frequency variator 12 which is controlled by a control member 13 .
  • the heat exchanger 9 is further traversed by a secondary circuit 14 for heat recovery.
  • a heat transfer fluid circulates in the secondary circuit 14 .
  • the secondary circuit 14 comprises a secondary pump 15.
  • the secondary pump 15 is driven by a 16 secondary variable speed motor which is controlled in turn by a secondary controller 17 power.
  • the data provided in the table relates to CO 2 .
  • This table gives, starting from the left column, the sublimation temperature, the absolute pressure of saturation, the density and the latent heat of sublimation.
  • CO 2 in the solid state is called dry ice.
  • the chamber 2 comprises a given mass of dry ice.
  • the pressure in the chamber 2 is below atmospheric, that is to say that it is less than atmospheric pressure which is about 1 bar.
  • This sub-atmospheric pressure is kept constant thanks to the vacuum pump 11 .
  • the pressure in the chamber is 0.00055 bar absolute or a sublimation temperature of -140 ° C.
  • the enclosure 2 is coated with an effective insulation to reduce heat exchange with the external environment.
  • the coolant circulating in the primary circuit 3 passes through the chamber 2 and is cooled by heat exchange with the dry ice.
  • Dry ice warms up under the action of heat transfer fluid and instantly sublimates when its temperature exceeds -140 ° C at 0.00055 bar absolute pressure
  • the vacuum pump 11 extracts more CO 2 gas, so that the pressure of 0.00055 bar absolute remains constant so that the sublimation temperature is maintained at -140 ° C. Indeed, as explained above, the exergy value of the latent heat is higher the lower the sublimation temperature.
  • the energy recovery is done until complete sublimation of the dry ice. Once the dry ice has completely disappeared, the chamber 2 is recharged with dry ice.
  • the regulation of the pressure in the chamber 2 is performed by measuring the pressure in the suction pipe 7 by means of the suction pressure sensor 8 .
  • the value of the pressure in the suction pipe 7 is sent continuously to a central unit, not shown in the figure.
  • the central unit controls the pump 11 empty, via the control member 13 and the drive 12 of the frequency, to extract more CO 2 gas so that the target pressure is reached and remains constant in the suction line 7 .
  • the pressures in the chamber 2 and in the suction pipe 7 are substantially identical.
  • the CO 2 gas leaving enclosure 2 passes through the heat exchanger 9 and gives up some of its heat sensitive to the heat transfer fluid flowing in the secondary circuit 14 .
  • the flow rates of the heat transfer fluids in the primary circuit 3 and in the secondary circuit 14 can be adapted so that the Heat exchanges with the dry ice for the primary circuit 3 and with the CO 2 gas for the secondary circuit 14 , are the most efficient possible.
  • the sensible heat as opposed to the latent heat corresponds to the energy transferred without there being a change of state of the CO 2 .
  • the heat transfer fluid in the secondary circuit 14 and the CO 2 in the suction pipe 7 circulate against the current.
  • the heat transfer fluid must not be able to solidify at these cryogenic temperatures close to -140 ° C. Propane can be advantageously used as heat transfer fluid for this reason.
  • the heat transfer in the heat exchanger 9 takes place over large temperature ranges. Typically this difference ranges from -140 ° C to 20 ° C.
  • the sensible heat is about 120 kJ / kg.
  • the latent heat of sublimation is about 594 kJ / kg, with reference to the table.
  • the total recoverable heat is therefore about 714 kJ / kg. With equipment allowing 90% efficient heat exchange, the total heat actually recovered is about 643 kJ / kg.
  • the method and the device, as described, enable a much more efficient carbon dioxide energy recovery, advantageously exploiting the thermodynamic properties of carbon dioxide.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Treating Waste Gases (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

L'invention a trait à un procédé et un dispositif de récupération de la chaleur froide utilisant de la glace carbonique à pression infra atmosphérique. Un procédé de récupération est connu de US2003/014879A1 .The invention relates to a method and a device for recovering cold heat using dry ice at sub-atmospheric pressure. A recovery process is known to US2003 / 014879A1 .

L'expression « infra atmosphérique » désigne ici des pressions inférieures à la pression atmosphérique.The term "sub-atmospheric" here refers to pressures below atmospheric pressure.

Le dioxyde de carbone (CO2) est utilisé dans de nombreuses applications variées, allant du domaine culinaire jusqu'à l'industrie lourde.Carbon dioxide (CO 2 ) is used in many different applications ranging from culinary to heavy industry.

Dans l'industrie du gaz, par exemple, le méthane d'origine fossile ou d'origine biologique contient du CO2 qu'il convient d'extraire, notamment avant le transport du méthane. En effet, avant son transport, le gaz méthane est liquéfié à des températures de liquéfaction proche de -160°C à la pression atmosphérique. Or, dans les mêmes conditions de pression, le CO2 se solidifie à des températures proches de -80°C. Par conséquent, le méthane liquéfié est saturé en glace carbonique, ce qui est problématique pour les installations industrielles.In the gas industry, for example, methane of fossil origin or of biological origin contains CO 2 that must be extracted, especially before the transport of methane. Indeed, before its transport, the methane gas is liquefied at liquefaction temperatures close to -160 ° C at atmospheric pressure. However, under the same pressure conditions, the CO 2 solidifies at temperatures close to -80 ° C. Consequently, the liquefied methane is saturated with dry ice, which is problematic for industrial installations.

Le CO2 est donc logiquement extrait par différents moyens connus, notamment en utilisant des techniques de nettoyage. Le CO2 extrait est alors rejeté vers l'atmosphère ou recyclé pour d'autres applications.The CO 2 is logically extracted by various known means, in particular by using cleaning techniques. The CO 2 extracted is then released to the atmosphere or recycled for other applications.

La présente invention s'intéresse tout particulièrement au recyclage du CO2 dans les installations industrielles.The present invention is particularly interested in the recycling of CO 2 in industrial installations.

La demande de brevet Français publiée sous le numéro FR 2 820 052 (ARMINES), présente un procédé et un système permettant l'extraction (la capture) du dioxyde de carbone par anti-sublimation à pression atmosphérique, également connu sous l'expression condensation solide. Le CO2 est capturé par anti-sublimation à une température de l'ordre de -80°C à la pression de 0,89 bar absolu dans un évaporateur d'anti-sublimation. Un fluide caloporteur passe dans l'évaporateur d'anti-sublimation qui, une fois rempli de glace carbonique, passe en phase de dégivrage. Le CO2 solide se liquéfie et le fluide caloporteur récupère l'énergie de liquéfaction. La variation d'enthalpie brute est de 228 kJ/kg. L'efficacité de transferts des échangeurs est de 90%. L'énergie récupérée par le fluide caloporteur est donc de 205 kJ/kg. En outre, le CO2 passe d'une pression initiale de 0,89 bar absolu à l'état solide à une pression supérieure à 5,2 bar à l'état liquide.The French patent application published under the number FR 2 820 052 (ARMINES), discloses a method and system for extracting (capturing) carbon dioxide by anti-sublimation at atmospheric pressure, also known as solid condensation. CO 2 is captured by anti-sublimation at a temperature of the order of -80 ° C to the pressure of 0.89 bar absolute in an anti-sublimation evaporator. A heat transfer fluid passes into the anti-sublimation evaporator which, once filled with dry ice, goes into defrosting phase. The solid CO 2 liquefies and the coolant recovers the liquefaction energy. The variation in gross enthalpy is 228 kJ / kg. The transfer efficiency of the exchangers is 90%. The energy recovered by the heat transfer fluid is therefore 205 kJ / kg. In addition, the CO 2 changes from an initial pressure of 0.89 bar absolute in the solid state to a pressure greater than 5.2 bar in the liquid state.

Ce procédé antérieur présente des carences majeures. Les propriétés thermodynamiques du CO2 ne sont pas exploitées de manière optimale. Une plus grande quantité d'énergie pourrait être recyclée à l'aide d'un procédé différent, et ce afin de récupérer une chaleur froide supérieure, à partir de la glace carbonique.This prior process has major shortcomings. The thermodynamic properties of CO 2 are not exploited optimally. More energy could be recycled using a different process to recover higher cold heat from dry ice.

A cet effet, il est proposé, en premier lieu, un procédé de récupération d'énergie issue du changement d'état de la glace carbonique. Ce procédé est mis en oeuvre au moyen d'un dispositif comprenant :

  • une enceinte contenant de la glace carbonique à une pression infra-atmosphérique ;
  • un circuit primaire de récupération d'énergie traversant l'enceinte et dans lequel circule un fluide caloporteur.
For this purpose, it is proposed, in the first place, a method of energy recovery from the change of state of the dry ice. This method is implemented by means of a device comprising:
  • an enclosure containing dry ice at sub-atmospheric pressure;
  • a primary energy recovery circuit passing through the enclosure and in which circulates a coolant.

Ce procédé comprend les étapes suivantes :

  • passage du fluide caloporteur dans le circuit primaire, cette étape provoquant le réchauffement de la glace carbonique et son changement d'état en CO2 et le refroidissement du fluide
    caloporteur;
    le procédé comprenant une étape de mise en dépression sensiblement continue de l'enceinte (2) à une pression infra-atmosphérique et une étape de transit du CO2 extrait de l'enceinte (2) dans un échangeur (9) de chaleur dans lequel il est réchauffé par échange de chaleur avec un fluide caloporteur circulant dans un circuit (14) secondaire;
  • extraction du CO2 contenu dans l'enceinte, le CO2 extrait de l'enceinte étant gazeux.
This process comprises the following steps:
  • passage of the heat transfer fluid in the primary circuit, this step causing the heating of the dry ice and its change of state in CO 2 and the cooling of the fluid
    heat transfer;
    the method comprising a step of substantially continuous depression of the chamber (2) at a sub-atmospheric pressure and a CO 2 transit step extracted from the chamber (2) in a heat exchanger (9) in which it is heated by heat exchange with a coolant circulating in a secondary circuit (14);
  • extraction of CO 2 contained in the chamber, the CO2 extracted from the chamber being gaseous.

Ce procédé comprend une étape de mise en dépression sensiblement continue de l'enceinte, à une pression infra-atmosphérique.This method comprises a step of substantially continuous depression of the chamber, at a sub-atmospheric pressure.

Diverses caractéristiques supplémentaires peuvent être prévues, seules ou en combinaison :

  • le procédé comprend une étape de mesure sensiblement continue de la pression dans une canalisation d'aspiration, au moyen d'un capteur de pression ;
  • le procédé comprend une étape de transmission de la pression mesurée par le capteur de pression à une unité centrale ;
  • le procédé comprend une étape de régulation de la pression dans l'enceinte et dans la canalisation d'aspiration au moyen d'une pompe à vide située à une extrémité de la canalisation d'aspiration ;
  • la pression dans l'enceinte est d'environ 0,00055 bar absolu.
Various additional features may be provided, alone or in combination:
  • the method comprises a step of substantially continuous measurement of the pressure in a suction pipe, by means of a pressure sensor;
  • the method comprises a step of transmitting the pressure measured by the pressure sensor to a central unit;
  • the method comprises a step of regulating the pressure in the chamber and in the suction pipe by means of a vacuum pump located at one end of the suction pipe;
  • the pressure in the chamber is about 0.00055 bar absolute.

Il est proposé, en second lieu, un dispositif de récupération d'énergie configuré pour mettre en oeuvre un procédé de récupération d'énergie tel que précédemment décrit, ce dispositif comprenant :

  • une enceinte apte à contenir de la glace carbonique à une pression infra-atmosphérique et à une température de solidification correspondant à la pression infra-atmosphérique ;
  • un circuit primaire de récupération d'énergie traversant l'enceinte et dans lequel circule un fluide caloporteur ;
  • une canalisation d'aspiration permettant d'extraire du CO2 de l'enceinte.
It is proposed, secondly, an energy recovery device configured to implement a method of energy recovery as previously described, this device comprising:
  • an enclosure adapted to contain dry ice at a sub-atmospheric pressure and at a solidification temperature corresponding to the sub-atmospheric pressure;
  • a primary energy recovery circuit passing through the enclosure and in which circulates a heat transfer fluid;
  • a suction pipe for extracting CO 2 from the enclosure.

La canalisation d'aspiration est munie de moyens aptes à extraire le CO2 et à permettre une mise en dépression continue de l'enceinte à une pression infra atmosphérique.The suction pipe is provided with means able to extract the CO 2 and to allow a continuous depression of the chamber at a sub-atmospheric pressure.

Diverses caractéristiques supplémentaires peuvent être prévues, seules ou en combinaison :

  • le dispositif comprend un échangeur de chaleur traversé par la canalisation d'aspiration, l'échangeur de chaleur étant également traversé par un circuit secondaire, la canalisation d'aspiration comprenant en outre un capteur de pression et les moyens aptes à extraire le CO2 étant une pompe à vide ;
  • le dispositif comprend une unité centrale apte à traiter les informations provenant du capteur de pression et à réguler la puissance d'extraction de la pompe à vide.
Various additional features may be provided, alone or in combination:
  • the device comprises a heat exchanger traversed by the suction pipe, the heat exchanger being also traversed by a secondary circuit, the suction pipe further comprising a pressure sensor and the means capable of extracting the CO 2 being a vacuum pump;
  • the device comprises a central unit able to process the information coming from the pressure sensor and to regulate the extraction power of the vacuum pump.

D'autres objets et avantages de l'invention apparaîtront à la lumière de la description d'un mode de réalisation, faite ci-après en référence à la figure représentant une vue schématique d'un dispositif de récupération d'énergie, à partir de la glace carbonique.Other objects and advantages of the invention will become apparent in the light of the description of an embodiment, given below with reference to the figure showing a schematic view of an energy recovery device, from dry ice.

Sur la figure est représenté un dispositif 1 comprenant une enceinte 2 traversée par un circuit 3 primaire de récupération d'énergie.In the figure is shown a device 1 comprising an enclosure 2 crossed by a primary circuit 3 for energy recovery.

Le circuit 3 primaire comprend une pompe 4 primaire. La pompe 4 primaire est pilotée par un moteur 5 primaire à vitesse variable lequel est commandé à son tour par un variateur 6 primaire de puissance.The primary circuit 3 comprises a primary pump 4 . The primary pump 4 is driven by a variable speed primary motor 5 which is in turn controlled by a primary power variator 6 .

Un fluide caloporteur circule dans le circuit 3 primaire. Le fluide caloporteur peut être liquide ou gazeux. Dans le cas où celui-ci est gazeux, la pompe 4 primaire est un compresseur.A heat transfer fluid circulates in the primary circuit 3 . The coolant can be liquid or gaseous. In the case where the latter is gaseous, the primary pump 4 is a compressor.

Le dispositif 1 comprend une canalisation 7 d'aspiration munie d'un capteur 8 de pression d'aspiration.The device 1 comprises a suction pipe 7 provided with a suction pressure sensor 8 .

La canalisation 7 d'aspiration traverse un échangeur 9 de chaleur avant de ressortir à une extrémité 10. L'extrémité 10 est munie d'une pompe 11 à vide pilotée par un variateur 12 de fréquence lequel est commandé par un organe 13 de contrôle.The suction pipe 7 passes through a heat exchanger 9 before emerging at one end 10 . The end 10 is provided with a vacuum pump 11 controlled by a frequency variator 12 which is controlled by a control member 13 .

L'échangeur 9 de chaleur est en outre traversé par un circuit 14 secondaire de récupération de chaleur. Un fluide caloporteur circule dans le circuit 14 secondaire. Le circuit 14 secondaire comprend une pompe 15 secondaire. La pompe 15 secondaire est pilotée par un moteur 16 secondaire à vitesse variable lequel est commandé à son tour par un variateur 17 secondaire de puissance.The heat exchanger 9 is further traversed by a secondary circuit 14 for heat recovery. A heat transfer fluid circulates in the secondary circuit 14 . The secondary circuit 14 comprises a secondary pump 15. The secondary pump 15 is driven by a 16 secondary variable speed motor which is controlled in turn by a secondary controller 17 power.

Le procédé de récupération d'énergie va être, maintenant, décrit en référence au tableau ci-dessous : Tableau Température de saturation (°C) Pression (bar absolu) Masse volumique (kg/m3) Chaleur latente de sublimation (kJ/kg) -140 0,00055 0,002 593,75 -135 0,00134 0,005 592,0 -130 0,00304 0,011 590,17 -125 0,00646 0,023 588,25 -120 0,01302 0,045 586,24 -115 0,02500 0,083 584,11 -110 0,04598 0,149 581,87 -105 0,08137 0,257 579,50 -100 0,13907 0,427 577,0 -95 0,23033 0,689 574,32 -90 0,37082 1,082 571,49 -85 0,58193 1,660 568,49 -80 0,89239 2,493 565,31 -75 1,3402 3,678 561,92 -70 1,9753 5,341 558,31 -65 2,8626 7,655 554,44 -60 4,0861 10,86 550,25 -57 5,0258 13,35 547,54 The energy recovery process will now be described with reference to the table below: <U> Table </ u> Saturation temperature (° C) Pressure (absolute bar) Density (kg / m 3 ) Latent heat of sublimation (kJ / kg) -140 0.00055 0,002 593.75 -135 0.00134 0.005 592.0 -130 0.00304 0,011 590.17 -125 0.00646 0,023 588.25 -120 0.01302 0,045 586.24 -115 0.02500 0.083 584.11 -110 0.04598 0.149 581.87 -105 0.08137 0.257 579.50 -100 0.13907 0.427 577.0 -95 0.23033 0.689 574.32 -90 0.37082 1,082 571.49 -85 0.58193 1,660 568.49 -80 0.89239 2,493 565.31 -75 1.3402 3,678 561.92 -70 1.9753 5.341 558.31 -65 2.8626 7,655 554.44 -60 4.0861 10.86 550.25 -57 5.0258 13.35 547.54

Les données fournies dans le tableau ont trait au CO2. Ce tableau donne, en partant de la colonne de gauche, la température de sublimation, la pression absolue de saturation, la masse volumique et la chaleur latente de sublimation.The data provided in the table relates to CO 2 . This table gives, starting from the left column, the sublimation temperature, the absolute pressure of saturation, the density and the latent heat of sublimation.

Ces données sont fournies par le logiciel Refprop 9 avec des calculs complémentaire pour la chaleur latente de sublimation, basés sur les formulations de l'ouvrage intitulé Thermodynamic properties in SI de W. C. Reynolds du department of Mechanical Engineering de l'Université de Stanford.These data are provided by Refprop 9 software with complementary calculations for latent sublimation heat, based on the formulations of Thermodynamic Properties in SI by WC Reynolds of the Department of Mechanical Engineering at Stanford University.

Pour schématiser, l'énergie se décompose en deux parts. L'une des parts est transformable en énergie mécanique, tandis que l'autre ne l'est pas. La part transformable en énergie mécanique est appelée exergie. L'exergie permet donc de mesurer la qualité d'une énergie.To schematize, energy breaks down into two parts. One of the parts is transformable into mechanical energy, while the other is not. The part that can be converted into mechanical energy is called exergy. Exergy thus makes it possible to measure the quality of an energy.

En ce qui concerne le CO2, plus sa température est basse, plus la valeur exergétique de la chaleur latente est élevée.For CO 2 , the lower its temperature, the higher the exergy value of the latent heat.

Le CO2 à l'état solide est appelé glace carbonique. A un instant initial, l'enceinte 2 comprend une masse donnée de glace carbonique. La pression dans l'enceinte 2 est infra atmosphérique, c'est-à-dire qu'elle est inférieure à la pression atmosphérique qui est d'environ 1 bar.CO 2 in the solid state is called dry ice. At an initial moment, the chamber 2 comprises a given mass of dry ice. The pressure in the chamber 2 is below atmospheric, that is to say that it is less than atmospheric pressure which is about 1 bar.

Cette pression infra atmosphérique est maintenue constante grâce à la pompe 11 à vide. Dans ce mode de réalisation, la pression dans l'enceinte est de 0,00055 bar absolu soit une température de sublimation de -140°C. L'enceinte 2 est revêtue d'une isolation efficace afin de réduire les échanges de chaleur avec le milieu extérieur.This sub-atmospheric pressure is kept constant thanks to the vacuum pump 11 . In this embodiment, the pressure in the chamber is 0.00055 bar absolute or a sublimation temperature of -140 ° C. The enclosure 2 is coated with an effective insulation to reduce heat exchange with the external environment.

Le fluide caloporteur circulant dans le circuit 3 primaire traverse l'enceinte 2 et est refroidi par échange de chaleur avec la glace carbonique.The coolant circulating in the primary circuit 3 passes through the chamber 2 and is cooled by heat exchange with the dry ice.

La glace carbonique se réchauffe sous l'action du fluide caloporteur et se sublime instantanément lorsque sa température dépasse -140°C à la pression de 0,00055 bar absoluDry ice warms up under the action of heat transfer fluid and instantly sublimates when its temperature exceeds -140 ° C at 0.00055 bar absolute pressure

La pression et la température tendent alors naturellement à augmenter sous l'effet de la sublimation de la glace carbonique. Pour éviter cela, la pompe 11 à vide extrait plus de CO2 gazeux, afin que la pression de 0,00055 bar absolu reste constante de sorte que la température de sublimation se maintienne à -140°C. En effet, comme expliqué précédemment, la valeur exergétique de la chaleur latente est d'autant plus élevée que la température de sublimation est basse.The pressure and the temperature then naturally tend to increase under the effect of the sublimation of the dry ice. To avoid this, the vacuum pump 11 extracts more CO 2 gas, so that the pressure of 0.00055 bar absolute remains constant so that the sublimation temperature is maintained at -140 ° C. Indeed, as explained above, the exergy value of the latent heat is higher the lower the sublimation temperature.

La récupération d'énergie se fait jusqu'à sublimation complète de la glace carbonique. Une fois que la glace carbonique a intégralement disparue, l'enceinte 2 est rechargée en glace carbonique.The energy recovery is done until complete sublimation of the dry ice. Once the dry ice has completely disappeared, the chamber 2 is recharged with dry ice.

La régulation de la pression dans l'enceinte 2 est effectuée en mesurant la pression dans la canalisation 7 d'aspiration au moyen du capteur 8 de pression d'aspiration.The regulation of the pressure in the chamber 2 is performed by measuring the pressure in the suction pipe 7 by means of the suction pressure sensor 8 .

La valeur de la pression dans la canalisation 7 d'aspiration est envoyée en continu à une unité centrale, non représentée sur la figure.The value of the pressure in the suction pipe 7 is sent continuously to a central unit, not shown in the figure.

Lorsque la pression dans la canalisation 7 d'aspiration dépasse la pression cible, en l'occurrence 0,00055 bar absolu, alors l'unité centrale commande à la pompe 11 à vide, via l'organe 13 de contrôle et le variateur 12 de fréquence, d'extraire plus de CO2 gazeux afin que la pression cible soit atteinte et reste constante dans la canalisation 7 d'aspiration. Les pressions dans l'enceinte 2 et dans la canalisation 7 d'aspiration sont sensiblement identiques.When the pressure in the suction pipe 7 exceeds the target pressure, in this case 0.00055 bar absolute, then the central unit controls the pump 11 empty, via the control member 13 and the drive 12 of the frequency, to extract more CO 2 gas so that the target pressure is reached and remains constant in the suction line 7 . The pressures in the chamber 2 and in the suction pipe 7 are substantially identical.

Le CO2 gazeux sortant de l'enceinte 2 traverse l'échangeur 9 de chaleur et cède une partie de sa chaleur sensible au fluide caloporteur circulant dans le circuit 14 secondaire.The CO 2 gas leaving enclosure 2 passes through the heat exchanger 9 and gives up some of its heat sensitive to the heat transfer fluid flowing in the secondary circuit 14 .

Les débits des fluides caloporteurs dans le circuit 3 primaire et dans le circuit 14 secondaire peuvent être adaptés, afin que les échanges de chaleur avec la glace carbonique pour le circuit 3 primaire et avec le CO2 gazeux pour le circuit 14 secondaire, soient le plus efficace possible.The flow rates of the heat transfer fluids in the primary circuit 3 and in the secondary circuit 14 can be adapted so that the Heat exchanges with the dry ice for the primary circuit 3 and with the CO 2 gas for the secondary circuit 14 , are the most efficient possible.

Ainsi, une partie de la chaleur sensible est récupérée par le circuit 14 secondaire. La chaleur sensible par opposition à la chaleur latente correspond à l'énergie cédée sans qu'il n'y ait changement d'état du CO2.Thus, a portion of the sensible heat is recovered by the secondary circuit 14 . The sensible heat as opposed to the latent heat corresponds to the energy transferred without there being a change of state of the CO 2 .

Avantageusement, le fluide caloporteur dans le circuit 14 secondaire et le CO2 dans la canalisation 7 d'aspiration circulent à contre courant.Advantageously, the heat transfer fluid in the secondary circuit 14 and the CO 2 in the suction pipe 7 circulate against the current.

Le fluide caloporteur doit pouvoir ne pas se solidifier à ces températures cryogéniques proches de -140°C. Le propane peut être avantageusement utilisé comme fluide caloporteur pour cette raison.The heat transfer fluid must not be able to solidify at these cryogenic temperatures close to -140 ° C. Propane can be advantageously used as heat transfer fluid for this reason.

Le transfert de chaleur dans l'échangeur 9 de chaleur s'effectue sur de grands écarts de températures. Typiquement, cet écart s'étend de -140°C à 20°C. La chaleur sensible est d'environ 120 kJ/kg.The heat transfer in the heat exchanger 9 takes place over large temperature ranges. Typically this difference ranges from -140 ° C to 20 ° C. The sensible heat is about 120 kJ / kg.

Dans l'enceinte 2, la chaleur latente de sublimation est d'environ 594 kJ/kg, en référence au tableau.In enclosure 2 , the latent heat of sublimation is about 594 kJ / kg, with reference to the table.

La chaleur totale récupérable est donc d'environ 714 kJ/kg. Avec des équipements permettant un échange de chaleur efficace à 90%, la chaleur totale effectivement récupérée est d'environ 643 kJ/kg.The total recoverable heat is therefore about 714 kJ / kg. With equipment allowing 90% efficient heat exchange, the total heat actually recovered is about 643 kJ / kg.

Le procédé et le dispositif, ainsi décrits, permettent une récupération d'énergie de la glace carbonique bien plus efficace, en exploitant avantageusement les propriétés thermodynamiques du dioxyde de carbone.The method and the device, as described, enable a much more efficient carbon dioxide energy recovery, advantageously exploiting the thermodynamic properties of carbon dioxide.

Claims (8)

  1. A method for recovering energy from the change of phase of carbon dioxide ice, this method being implemented by means of a device (1) comprising:
    - an enclosure (2), containing carbon dioxide ice at a sub-atmospheric pressure;
    - an energy recovering primary circuit (3), passing through the enclosure (2) and in which a coolant circulates;
    the method comprising the following steps of:
    - passing the coolant into the primary circuit (3), this step causing the carbon dioxide ice to be warmed and its change of phase into CO2 and the coolant to be cooled;
    - extracting the CO2 content in the enclosure (2);
    the CO2 extracted from the enclosure (2) being gaseous;
    the method comprising a step of substantially continuous depressurising the enclosure (2) at a sub-atmospheric pressure and a step of transiting the CO2 extracted from the enclosure (2) into a heat exchanger (9) in which it is warmed by heat exchange with a coolant circulated in a secondary circuit (14).
  2. The method according to any of the preceding claims, characterised in that the method comprises a step of substantially continuously measuring the pressure in a suction piping (7) by means of a pressure sensor (8).
  3. The method according to claim 2, characterised in that the method comprises a step of transmitting the pressure measured by the pressure sensor (8) to a central processing unit.
  4. The method according to claim 3, characterised in that the method comprises a step of regulating the pressure in the enclosure (2) and in the suction piping (7), by means of a vacuum pump (11) located at one end of the suction piping (7).
  5. The method according to any of the preceding claims, characterised in that the pressure in the enclosure (2) is about 0.00055 absolute bar.
  6. An energy recovery device (1) configured to implement an energy recovery method according to one of claims 1 or 2, this device (1) comprising:
    - an enclosure (2), able to contain carbon dioxide ice at a sub-atmospheric pressure and at a solidification temperature corresponding to the sub-atmospheric pressure;
    - an energy recovery primary circuit (3), passing through the enclosure (2) and in which a coolant circulates;
    - a suction piping (7), enabling CO2 to be extracted from the enclosure (2),
    the suction piping (7) being provided with means able to extract CO2 and to enable the enclosure (2) to be continuously depressurised at a sub-atmospheric pressure, and in that the device (1) further comprises a secondary circuit (14) and a heat exchanger (9) through which the suction piping (7) and the secondary circuit (14) pass.
  7. The device (1) according to claim 6, for implementing the method according to one of claims 3 or 4, characterised in that the suction piping (7) further comprises a pressure sensor (8) and the means able to extract CO2 being a vacuum pump (11).
  8. The device (1) according to claim 7 for implementing the method according to one of claims 5 to 6, characterised in that the device (1) comprises a central processing unit, able to process information from the pressure sensor (8) and to regulate the extraction power of the vacuum pump (11).
EP16730444.3A 2015-04-08 2016-04-07 Method for recovering energy from dry ice at infra-atmospheric pressure Active EP3280947B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI201630569T SI3280947T1 (en) 2015-04-08 2016-04-07 Method for recovering energy from dry ice at infra-atmospheric pressure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1553020A FR3034854B1 (en) 2015-04-08 2015-04-08 METHOD OF RECOVERING ENERGY FROM CARBONIC ICE WITH INFRA ATMOSPHERIC PRESSURE
PCT/FR2016/050807 WO2016162643A1 (en) 2015-04-08 2016-04-07 Method for recovering energy from dry ice at infra-atmospheric pressure

Publications (2)

Publication Number Publication Date
EP3280947A1 EP3280947A1 (en) 2018-02-14
EP3280947B1 true EP3280947B1 (en) 2019-10-09

Family

ID=53274686

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16730444.3A Active EP3280947B1 (en) 2015-04-08 2016-04-07 Method for recovering energy from dry ice at infra-atmospheric pressure

Country Status (13)

Country Link
US (1) US11028968B2 (en)
EP (1) EP3280947B1 (en)
JP (1) JP6804461B2 (en)
AU (1) AU2016245312B2 (en)
BR (1) BR112017021427B1 (en)
CA (1) CA2982048C (en)
DK (1) DK3280947T3 (en)
ES (1) ES2762930T3 (en)
FR (1) FR3034854B1 (en)
HU (1) HUE047792T2 (en)
PT (1) PT3280947T (en)
SI (1) SI3280947T1 (en)
WO (1) WO2016162643A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12030000B2 (en) * 2017-12-22 2024-07-09 Sustainable Energy Solutions, Llc Vessel and method for solid-liquid separation
FR3147114A1 (en) 2023-03-27 2024-10-04 Cryo Pur Method and device for coupling the refrigerant and heat transfer effects

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2352775A (en) * 1939-12-09 1944-07-04 Nat Lead Co Generation of gaseous co2
US2559095A (en) * 1947-02-24 1951-07-03 C Van King Refrigeration system
GB678995A (en) * 1949-09-06 1952-09-10 Esslingen Maschf Improvements in and relating to the discharging of low pressure storage vessels containing intensely cooled fluids
US4699570A (en) * 1986-03-07 1987-10-13 Itt Industries, Inc Vacuum pump system
JPH08269469A (en) * 1995-03-31 1996-10-15 Chugoku Electric Power Co Inc:The Recycle of natural gas liquefaction energy
US5787716A (en) * 1997-06-13 1998-08-04 Allen, Jr.; Russel G. Dry ice sublimation cooling system utilizing a vacuum
FR2820052B1 (en) 2001-01-30 2003-11-28 Armines Ass Pour La Rech Et Le ANTI-SUBLIMATION CARBON DIOXIDE EXTRACTION PROCESS FOR ITS STORAGE
JP3621072B2 (en) * 2001-03-01 2005-02-16 有限会社つくば食料科学研究所 Lyophilized product, production method and apparatus thereof
US6543155B2 (en) * 2001-03-01 2003-04-08 National Agricultural Research Organization Freeze-dried product and process and apparatus for producing it
JP2007232329A (en) * 2006-03-03 2007-09-13 Kobe Steel Ltd Cold utilization method
IT1393121B1 (en) * 2009-03-05 2012-04-11 Air Liquide Italia S P A METHOD AND PLANT FOR THE REMOVAL OF DISSOLVED OXYGEN AND MAINTENANCE IN CONTROLLED GRAPE ATMOSPHERE, OR OTHER VEGETABLE PRODUCTS, IN MECHANICAL MEANS OF COLLECTION, TRANSPORT AND STORAGE
JP2010267707A (en) * 2009-05-13 2010-11-25 Kobe Steel Ltd Data center system, and cooling power generation using data center system
FR2949072B1 (en) * 2009-08-13 2017-03-31 Ass Pour La Rech Et Le Dev Des Methodes Et Processus Industriels-Armines IMPROVED METHOD AND SYSTEM FOR THE EXTRACTION OF SUBSTANCE BY ANTISUBLIMATION AND FUSION
DE102013014912A1 (en) * 2013-09-03 2015-03-05 Messer Group Gmbh Apparatus and method for subcooling carbon dioxide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
JP2018514713A (en) 2018-06-07
US20180038548A1 (en) 2018-02-08
US11028968B2 (en) 2021-06-08
ES2762930T3 (en) 2020-05-26
HUE047792T2 (en) 2020-05-28
CA2982048C (en) 2023-03-21
WO2016162643A1 (en) 2016-10-13
BR112017021427A2 (en) 2018-07-03
DK3280947T3 (en) 2020-01-27
EP3280947A1 (en) 2018-02-14
CA2982048A1 (en) 2016-10-13
BR112017021427B1 (en) 2023-01-17
FR3034854A1 (en) 2016-10-14
AU2016245312A1 (en) 2017-10-26
NZ735963A (en) 2023-12-22
SI3280947T1 (en) 2020-06-30
AU2016245312B2 (en) 2020-11-05
FR3034854B1 (en) 2019-08-02
JP6804461B2 (en) 2020-12-23
PT3280947T (en) 2020-01-14

Similar Documents

Publication Publication Date Title
EP3280947B1 (en) Method for recovering energy from dry ice at infra-atmospheric pressure
FR3016876A1 (en) INSTALLATION AND METHOD FOR TREATING EVAPORATION / CONDENSATION OF WATER PUMPED IN A NATURAL ENVIRONMENT
CA2966584A1 (en) Method for recuperation of thermal energy from a motorized heat pump
FR2624200A1 (en) SYSTEM FOR THE CRYOGENIC TREATMENT AND STORAGE OF COMBUSTION PRODUCTS OF A THERMAL ENGINE
EP0038769B1 (en) Method and devices for letting a transfer fluid circulate in a closed circuit comprising a heat source and a cold source
EP3724458A1 (en) Method for storing and producing energy by means of compressed air with additional energy recovery
FR2945327A1 (en) METHOD AND EQUIPMENT FOR MECHANICAL ENERGY TRANSMISSION BY COMPRESSION AND / OR QUASI-ISOTHERMAL DETENTION OF A GAS
EP0192496B1 (en) Cold and/or heat production process using a non-azeotropic mixture of fluids in an ejector cycle
FR2583988A1 (en) DISTILLATION PROCESS WITH ENERGY RECOVERY BY VAPOR RECOMPRESSION USING AN EJECTOR
EP2354710A1 (en) Device and method for recovering heat from the fumes of a thermal power station
CA3069841A1 (en) Refrigeration plant
EP2893276B1 (en) Method and device for condensing a carbon dioxide-rich gas stream
WO2014096736A1 (en) Device and method for evaporating a liquid, and applications of said device and method
EP3721152A1 (en) Thermochemical heat pump and method for redistributing heat energy with variable power
EP3045698B1 (en) Device and method for recovering heat contained in combustion gases
FR3071913A1 (en) HEAT PUMP AND METHOD OF OPERATION
FR2994254A1 (en) HEAT PUMP FOR CARRYING HEATING WITH HIGH TEMPERATURE TEMPERATURES OF AN EXTERNAL FLUID, AND INSTALLATION COMPRISING SUCH A HEAT PUMP
FR3029208A1 (en) COOLING AND HEATING SYSTEM FOR THERMOVINIFICATION
FR2981144A1 (en) TURBO HEAT PUMP.
EP4336124A1 (en) System and method for transferring thermal energy
EP3194874A1 (en) Heat pipe and method for making a heat pipe
FR3136273A1 (en) AUTONOMOUS DEVICE FOR COOLING AN INDUSTRIAL PROCESS, IN PARTICULAR A DATA PROCESSING CENTER, AND DATA PROCESSING CENTER USING SAID DEVICE
FR2500601A1 (en) Water to water heat pump - has vacuum pump to maintain thermal cycle under vacuum
BE390427A (en)
BE489304A (en)

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170919

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190717

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016022110

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1189246

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191115

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3280947

Country of ref document: PT

Date of ref document: 20200114

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20191226

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: CRYO PUR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20200120

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20191009

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 33315

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200110

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200109

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2762930

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200526

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E047792

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016022110

Country of ref document: DE

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200209

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

26N No opposition filed

Effective date: 20200710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20240322

Year of fee payment: 9

Ref country code: NL

Payment date: 20240320

Year of fee payment: 9

Ref country code: LU

Payment date: 20240320

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20240320

Year of fee payment: 9

Ref country code: CZ

Payment date: 20240326

Year of fee payment: 9

Ref country code: GB

Payment date: 20240320

Year of fee payment: 9

Ref country code: PT

Payment date: 20240321

Year of fee payment: 9

Ref country code: SK

Payment date: 20240326

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240326

Year of fee payment: 9

Ref country code: SE

Payment date: 20240320

Year of fee payment: 9

Ref country code: NO

Payment date: 20240322

Year of fee payment: 9

Ref country code: IT

Payment date: 20240320

Year of fee payment: 9

Ref country code: DK

Payment date: 20240320

Year of fee payment: 9

Ref country code: BE

Payment date: 20240320

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240320

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240501

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240502

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240322

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240410

Year of fee payment: 9

Ref country code: SI

Payment date: 20240328

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20240327

Year of fee payment: 9