EP3273306A1 - Pièce pour mouvement d'horlogerie - Google Patents
Pièce pour mouvement d'horlogerie Download PDFInfo
- Publication number
- EP3273306A1 EP3273306A1 EP16190278.8A EP16190278A EP3273306A1 EP 3273306 A1 EP3273306 A1 EP 3273306A1 EP 16190278 A EP16190278 A EP 16190278A EP 3273306 A1 EP3273306 A1 EP 3273306A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- layer
- nip
- pivot
- copper
- nickel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 claims abstract description 65
- 230000005291 magnetic effect Effects 0.000 claims abstract description 42
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 27
- 239000000126 substance Substances 0.000 claims abstract description 22
- 239000007769 metal material Substances 0.000 claims abstract description 16
- 230000035945 sensitivity Effects 0.000 claims abstract description 14
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 47
- 229910000831 Steel Inorganic materials 0.000 claims description 16
- 238000000151 deposition Methods 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 16
- 239000010959 steel Substances 0.000 claims description 16
- 230000008021 deposition Effects 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 9
- 229910001220 stainless steel Inorganic materials 0.000 claims description 7
- ACVYVLVWPXVTIT-UHFFFAOYSA-M phosphinate Chemical compound [O-][PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-M 0.000 claims description 6
- 239000010935 stainless steel Substances 0.000 claims description 6
- VRUVRQYVUDCDMT-UHFFFAOYSA-N [Sn].[Ni].[Cu] Chemical compound [Sn].[Ni].[Cu] VRUVRQYVUDCDMT-UHFFFAOYSA-N 0.000 claims description 5
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 229910000906 Bronze Inorganic materials 0.000 claims description 4
- 229910000531 Co alloy Inorganic materials 0.000 claims description 4
- 229910000990 Ni alloy Inorganic materials 0.000 claims description 4
- 229910001069 Ti alloy Inorganic materials 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 239000010974 bronze Substances 0.000 claims description 4
- 229910000952 Be alloy Inorganic materials 0.000 claims description 3
- 229910001369 Brass Inorganic materials 0.000 claims description 3
- 229910000570 Cupronickel Inorganic materials 0.000 claims description 3
- 229910001128 Sn alloy Inorganic materials 0.000 claims description 3
- JUWOETZNAMLKMG-UHFFFAOYSA-N [P].[Ni].[Cu] Chemical compound [P].[Ni].[Cu] JUWOETZNAMLKMG-UHFFFAOYSA-N 0.000 claims description 3
- ZUPBPXNOBDEWQT-UHFFFAOYSA-N [Si].[Ni].[Cu] Chemical compound [Si].[Ni].[Cu] ZUPBPXNOBDEWQT-UHFFFAOYSA-N 0.000 claims description 3
- 239000010951 brass Substances 0.000 claims description 3
- YOCUPQPZWBBYIX-UHFFFAOYSA-N copper nickel Chemical compound [Ni].[Cu] YOCUPQPZWBBYIX-UHFFFAOYSA-N 0.000 claims description 3
- IUYOGGFTLHZHEG-UHFFFAOYSA-N copper titanium Chemical compound [Ti].[Cu] IUYOGGFTLHZHEG-UHFFFAOYSA-N 0.000 claims description 3
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 claims description 3
- MOFOBJHOKRNACT-UHFFFAOYSA-N nickel silver Chemical compound [Ni].[Ag] MOFOBJHOKRNACT-UHFFFAOYSA-N 0.000 claims description 3
- 239000010956 nickel silver Substances 0.000 claims description 3
- JRBRVDCKNXZZGH-UHFFFAOYSA-N alumane;copper Chemical compound [AlH3].[Cu] JRBRVDCKNXZZGH-UHFFFAOYSA-N 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims 3
- 239000002184 metal Substances 0.000 claims 3
- 229910000838 Al alloy Inorganic materials 0.000 claims 1
- DMFGNRRURHSENX-UHFFFAOYSA-N beryllium copper Chemical compound [Be].[Cu] DMFGNRRURHSENX-UHFFFAOYSA-N 0.000 claims 1
- 229910045601 alloy Inorganic materials 0.000 description 21
- 239000000956 alloy Substances 0.000 description 21
- 235000019589 hardness Nutrition 0.000 description 17
- 230000035939 shock Effects 0.000 description 11
- 229910052698 phosphorus Inorganic materials 0.000 description 8
- 239000011574 phosphorus Substances 0.000 description 8
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 7
- 238000003754 machining Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000005137 deposition process Methods 0.000 description 4
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 230000009528 severe injury Effects 0.000 description 3
- 229910017518 Cu Zn Inorganic materials 0.000 description 2
- 229910017752 Cu-Zn Inorganic materials 0.000 description 2
- 229910017943 Cu—Zn Inorganic materials 0.000 description 2
- 241001275902 Parabramis pekinensis Species 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 238000005234 chemical deposition Methods 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 230000005292 diamagnetic effect Effects 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910000734 martensite Inorganic materials 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 230000005298 paramagnetic effect Effects 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910017755 Cu-Sn Inorganic materials 0.000 description 1
- 229910017927 Cu—Sn Inorganic materials 0.000 description 1
- 229910000915 Free machining steel Inorganic materials 0.000 description 1
- 229910000760 Hardened steel Inorganic materials 0.000 description 1
- 229910018648 Mn—N Inorganic materials 0.000 description 1
- 229910018605 Ni—Zn Inorganic materials 0.000 description 1
- 229910001096 P alloy Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000005290 antiferromagnetic effect Effects 0.000 description 1
- 239000002885 antiferromagnetic material Substances 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 239000002889 diamagnetic material Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910001004 magnetic alloy Inorganic materials 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- VCTOKJRTAUILIH-UHFFFAOYSA-N manganese(2+);sulfide Chemical class [S-2].[Mn+2] VCTOKJRTAUILIH-UHFFFAOYSA-N 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000010979 ruby Substances 0.000 description 1
- 229910001750 ruby Inorganic materials 0.000 description 1
- 229910021484 silicon-nickel alloy Inorganic materials 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B13/00—Gearwork
- G04B13/02—Wheels; Pinions; Spindles; Pivots
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B1/00—Driving mechanisms
- G04B1/10—Driving mechanisms with mainspring
- G04B1/16—Barrels; Arbors; Barrel axles
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B13/00—Gearwork
- G04B13/02—Wheels; Pinions; Spindles; Pivots
- G04B13/021—Wheels; Pinions; Spindles; Pivots elastic fitting with a spindle, axis or shaft
- G04B13/022—Wheels; Pinions; Spindles; Pivots elastic fitting with a spindle, axis or shaft with parts made of hard material, e.g. silicon, diamond, sapphire, quartz and the like
-
- G04B13/026—
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B15/00—Escapements
- G04B15/14—Component parts or constructional details, e.g. construction of the lever or the escape wheel
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B17/00—Mechanisms for stabilising frequency
- G04B17/32—Component parts or constructional details, e.g. collet, stud, virole or piton
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B29/00—Frameworks
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B43/00—Protecting clockworks by shields or other means against external influences, e.g. magnetic fields
- G04B43/007—Antimagnetic alloys
Definitions
- the invention relates to a piece for a watch movement and in particular to a non-magnetic pivoting axis for a mechanical clockwork movement and more particularly to a balance shaft, an anchor rod and a magnetic escape pinion. .
- the manufacture of a clock pivot axis consists, from a bar of hardened steel, to perform machining operations to define different active surfaces (scope, shoulder, pivots etc.) and then to subject the axis Vietnameselleté to heat treatment operations comprising at least one quench to improve the hardness of the axis and one or more income to improve toughness.
- the heat treatment operations are followed by a rolling operation of the pivots of the axes, an operation consisting in polishing the pivots to bring them to the required dimensions. During the rolling operation the hardness as well as the roughness of the pivots are further improved.
- the pivot axes for example the balance shafts, conventionally used in mechanical watch movements are made in grades of free cutting steels which are generally carbon martensitic steels including lead and manganese sulphides to improve their performance. machinability.
- a steel of this type designated 20AP is typically used for these applications.
- This type of material has the advantage of being easily machinable, in particular to be able to bar-turning and has, after treatments of quenching and tempering, high mechanical properties very interesting for the realization of horological pivot axes.
- These steels have in particular after heat treatment a high hardness, to obtain a very good resistance to shocks.
- the hardness of the pivots of an axis made of steel AP may reach a hardness exceeding 700 HV after heat treatment and rolling.
- this type of material has the disadvantage of being magnetic and of being able to disrupt the running of a watch after being subjected to a magnetic field, and in particular when this material is used for producing a balance shaft cooperating with a balance spring of ferromagnetic material. This phenomenon is well known to those skilled in the art. It should also be noted that these martensitic steels are also susceptible to corrosion.
- austenitic stainless steels which have the particularity of being magnetic, that is to say of the paramagnetic or diamagnetic or antiferromagnetic type.
- these austenitic steels have a crystallographic structure that does not allow them to be hardened and to reach hardnesses and therefore impact strengths that are compatible with the requirements required for the realization of clockwise pivot axes.
- the axes obtained then have marks or severe damage in case of shocks which will then have a negative influence on the chronometry of the movement.
- One way to increase the hardness of these steels is work hardening, however this hardening operation does not allow to obtain hardnesses greater than 500 HV. Therefore, in the context of parts having pivots having a high impact resistance, the use of this type of steel remains limited.
- the pivot axes are made of cobalt or nickel alloy of the austenitic type and have an outer surface hardened to a certain depth.
- such alloys can be difficult to machine for the manufacture of pivot axes.
- they are relatively expensive because of the high price of nickel and cobalt.
- the object of the present invention is to overcome the drawbacks mentioned above by proposing a pivot axis that makes it possible at the same time to limit the sensitivity to magnetic fields and to obtain mechanical properties that make it possible to meet the impact resistance requirements in the watchmaking field. .
- the invention also aims to provide a non-magnetic pivot axis that can be manufactured simply and economically.
- the invention relates to a pivot axis for a watch movement comprising at least one pivot in a first non-magnetic metal material at at least one of its ends in order to limit its sensitivity to magnetic fields.
- At least the outer surface of said pivot is covered with a layer of a second material selected from the group comprising Ni and NiP.
- the pivot axis according to the invention can combine the advantages of low sensitivity to magnetic fields, and at least in the main stress zones, excellent resistance to shocks. Therefore, the pivot axis according to the invention does not present, in case of impact, no mark or severe damage likely to affect the chronometry of the movement.
- the invention relates to a clockwork comprising a pivot axis as defined above, and in particular a balance shaft, an anchor rod and / or an exhaust pinion comprising an axis. as defined above.
- non-magnetic material means a paramagnetic or diamagnetic or antiferromagnetic material whose magnetic permeability is less than or equal to 1.01.
- An alloy of an element is an alloy containing at least 50% by weight of said element.
- the invention relates to a piece for a watch movement and in particular to a non-magnetic pivoting axis for a mechanical clockwork movement.
- non-magnetic balance shaft 1 a non-magnetic balance shaft 1.
- other types of clockwise pivot axes can be envisaged, such as, for example, axes of watch mobiles, typically pinions. exhaust, or anchor rods.
- the parts of this type have at the body diameters preferably less than 2 mm, and pivots of smaller diameter preferably 0.2 mm, with an accuracy of a few microns.
- a balance shaft 1 which comprises a plurality of sections 2 of different diameters, preferably formed by machining or any other machining by chip removal technique, and classically defining bearing surfaces 2a and shoulders 2b arranged between two end portions defining two pivots 3. These pivots are intended to each rotate in a bearing, typically in a hole of a stone or ruby.
- the pivot 3 is made of a first nonmagnetic metallic material 4 in order to advantageously limit its sensitivity to magnetic fields.
- the first non-magnetic metal material 4 is chosen from the group comprising a steel of the austenitic, preferably stainless, type, a cobalt alloy of the austenitic type, an alloy of nickel of the austenitic type, a non-magnetic titanium alloy, an alloy of non-magnetic aluminum, brass (Cu-Zn) or special brass (Cu-Zn with Al and / or Si and / or Mn), copper-beryllium, bronze (Cu-Sn), aluminum bronze , a copper-aluminum (optionally comprising Ni and / or Fe), a copper-nickel, a nickel silver (Cu-Ni-Zn), a copper-nickel-tin, a copper-nickel-silicon, a copper-nickel-phosphorus , a copper-titanium, the proportions of the various elements of the alloys being chosen to give them non-magnetic properties and good machinability.
- a steel of the austenitic preferably stainless, type, a co
- the austenitic steel is high grade stainless steel austenitic steel (HIS), such as Cr-Mn-N P2000 steel from Energytechnik Essen GmbH.
- HIS high grade stainless steel austenitic steel
- the cobalt alloy of the austenitic type may comprise at least 39% cobalt, typically an alloy known as "Phynox” or the DIN designation K13C20N16Fe15D7 typically having 39% Co, 19% Cr, 15% Ni and 6% Mo, 1.5% Mn, 18% Fe and additive balances.
- the austenitic nickel alloy may comprise at least 33% nickel typically an alloy known as MP35N® typically having 35% Ni 20% Cr, 10% Mo, 33% Co and the balance of additives.
- the titanium alloy preferably comprises at least 85% titanium.
- the brasses may include CuZn39Pb3, CuZn37Pb2, or CuZn37 alloys.
- Special brasses may include CuZn37Mn3Al2PbSi, CuZn23Al3Co or CuZn23Al6Mn4Fe3Pb alloys.
- Nickel silver can include CuNi25Zn11 Pb1 Mn, CuNi7Zn39Pb3Mn2 or CuNi18Zn19Pb1 alloys.
- Bronzes may include CuSn9 or CuSn6 alloys.
- Aluminum bronzes may include CuAl9 or CuAl9Fe5Ni5 alloys.
- Copper-nickel alloys can include the CuNi30 alloy.
- the copper-nickel-tin alloys can comprise the alloys CuNi15Sn8, CuNi9Sn6 or CuNi7.5Sn5 (sold for example under the name Declafor).
- Copper-titanium alloys can include the CuTi3Fe alloy.
- Copper-nickel-silicon alloys may comprise the CuNi3Si alloy.
- Copper-nickel-phosphorus alloys may comprise the CuNi1P alloy.
- Copper-Beryllium alloys can include CuBe2Pb or CuBe2 alloys.
- composition values are given as a percentage by mass.
- the elements without indication of composition value are either the remainder (majority) or elements for which the percentage in the composition is less than 1% by weight.
- the nonmagnetic copper alloy may also be an alloy having a mass composition of between 14.5% and 15.5% of Ni, between 7.5% and 8.5% of Sn, at most 0.02% of Pb and the remainder of Cu.
- Such an alloy is marketed under the trademark Toughmet® by the company Materion.
- the first non-magnetic metallic material generally has a hardness of less than 600 HV.
- At least the outer surface of said pivot 3 is covered with a layer 5 of a second material selected from the group comprising Ni and NiP, in order to advantageously offer mechanical properties at the level of said external surface. to obtain the required shock resistance.
- the phosphorus content may be preferably between 0% (then pure Ni) and 15%.
- the level of phosphorus in the second NiP material may be an average level of between 6% and 9%, or a high level of between 9% and 12%. It is obvious, however, that the second NiP material may comprise a low level of phosphorus.
- the layer of the second NiP material can be cured by heat treatment.
- the layer of the second material has a hardness of preferably greater than 400 HV, more preferably greater than 500 HV.
- the layer of the second uncured Ni or NiP material has a hardness of preferably greater than 500 HV, but less than 600 HV, that is to say preferably between 500 HV and 550 HV .
- the pivot axis according to the invention has excellent impact resistance although the layer of the second material may have a hardness (HV) lower than that of the first material.
- the layer of the second NiP material When cured by heat treatment, the layer of the second NiP material may have a hardness of between 900 HV and 1000 HV.
- the layer of the second material may have a thickness of between 0.5 ⁇ m and 10 ⁇ m, preferably between 1 ⁇ m and 5 ⁇ m, and more preferably between 1 ⁇ m and 2 ⁇ m.
- the layer of the second material is a NiP layer, and more particularly a chemical NiP layer, that is to say deposited chemically.
- At least the outer surface of the pivot is hardened, that is to say that the rest of the axis, can remain little or no change without significant change in the mechanical properties of the balance shaft 1.
- This selective hardening of the pivots 3 of the balance shaft 1 makes it possible to cumulate the advantages such as the low sensitivity to the magnetic fields and the mechanical properties making it possible to obtain a very good resistance to shocks, in the main stress zones.
- the pivot axis may comprise at least one adhesion sub-layer deposited between the first material and the layer of the second material.
- a gold underlayer and / or a galvanic nickel underlayer may be provided under the layer of the second material.
- the layer 5 of the second material is deposited according to step b) to have a thickness of between 0.5 ⁇ m and 10 ⁇ m, preferably between 1 ⁇ m and 5 ⁇ m, and more preferably between 1 ⁇ m and 2 ⁇ m. .
- step b) of deposition of the layer 5 of the second material may be carried out according to a process chosen from the group comprising PVD, CVD, ALD, galvanic and chemical, and preferably chemical, deposits.
- the second material is NiP and the deposition step of the NiP layer 5 is carried out according to a chemical nickel deposition process from hypophosphite.
- the various chemical nickel deposition parameters from hypophosphite to be taken into account such as the phosphorus content in the deposition, the pH, the temperature, or the composition of the nickel plating bath are known to those skilled in the art.
- commercial baths are used at average rates (6-9%) and at high rates (9-12%) of phosphorus. It is obvious, however, that low-phosphorus or pure nickel baths can also be used.
- the process according to the invention may further comprise, after the deposition step b), a step c) of heat treatment of the layer 5 of the second material.
- a step c) of heat treatment makes it possible to obtain a layer 5 of the second material having a hardness of preferably between 900 HV and 1000 HV.
- the chemical nickel deposition process is particularly advantageous in that it makes it possible to obtain a compliant deposit that has no peak effect. It is thus possible to provide the dimension of the pivot axis of the neck to obtain the desired geometry after recovery by the layer of the second material.
- the chemical nickel deposition process also has the advantage of being applied in bulk.
- the method according to the invention may further comprise, before the deposition step b), a step d) of applying at least one sub-layer of adhesion on the first material.
- a step d) of applying at least one sub-layer of adhesion on the first material for example, in the case of an axis of pivoting in stainless steel type material HIS, it is possible to apply a gold underlayer and / or a galvanic nickel underlayer before the nickel deposition by chemical means.
- the pivot axis according to the invention may comprise pivots treated according to the invention by applying step b) only to the pivots or be made entirely of a first non-magnetic metallic material, its outer surface being able to be entirely covered with a layer of the second material by applying step b) on all of the surfaces of the pivot axis.
- the pivots 3 can be rolled or polished before or after the deposition step b), in order to reach the final dimensions and final surface state desired for the pivots 3.
- the pivot axis according to the invention combines the advantages of a low sensitivity to magnetic fields, and at least in the main stress zones, excellent resistance to shocks. Therefore, the pivot axis according to the invention does not present, in case of impact, no mark or severe damage likely to affect the chronometry of the movement.
- HIS steel pivot pins are made in a known manner.
- the bare axles have a hardness of 600HV.
- pivot axes A lot of these pivot axes is treated according to the method of the invention, the pivot axes being covered with a NiP layer of thickness equal to 1.5 microns obtained from a commercial bath of chemical nickel plating from hypophosphite.
- pivot axes according to the invention have a hardness of 500 HV.
- pivot axes are subjected to the same standard shock program for watchmaking.
- the bare axes, without a NiP layer, are marked as shown in figure 3 .
- the pins covered with a NiP layer according to the invention are intact, as shown in FIG. figure 4 .
- the pivot axes according to the invention combine the advantages of low sensitivity to magnetic fields and excellent resistance to shocks.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Manufacturing & Machinery (AREA)
- Electroplating Methods And Accessories (AREA)
- Sliding-Contact Bearings (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Description
- L'invention se rapporte à une pièce pour mouvement d'horlogerie et notamment à un axe de pivotement amagnétique pour un mouvement d'horlogerie mécanique et plus particulièrement à un axe de balancier, une tige d'ancre et un pignon d'échappement a magnétiques.
- La fabrication d'un axe de pivotement horloger consiste, à partir d'une barre en acier trempable, à réaliser des opérations de décolletage pour définir différentes surfaces actives (portée, épaulement, pivots etc.) puis à soumettre l'axe décolleté à des opérations de traitement thermique comprenant au moins une trempe pour améliorer la dureté de l'axe et un ou plusieurs revenus pour en améliorer la ténacité. Les opérations de traitements thermiques sont suivies d'une opération de roulage des pivots des axes, opération consistant à polir les pivots pour les amener aux dimensions requises. Au cours de l'opération de roulage la dureté ainsi que la rugosité des pivots sont encore améliorées.
- Les axes de pivotement, par exemple les axes de balancier, utilisés classiquement dans les mouvements d'horlogerie mécaniques sont réalisés dans des nuances d'aciers de décolletage qui sont généralement des aciers martensitiques au carbone incluant du plomb et des sulfures de manganèse pour améliorer leur usinabilité. Un acier de ce type désigné 20AP est typiquement utilisé pour ces applications.
- Ce type de matériau a l'avantage d'être facilement usinable, en particulier d'être apte au décolletage et présente, après des traitements de trempe et de revenu, des propriétés mécaniques élevées très intéressantes pour la réalisation d'axes de pivotement horlogers. Ces aciers présentent en particulier après traitement thermique une dureté élevée, permettant d'obtenir une très bonne tenue aux chocs. Typiquement la dureté des pivots d'un axe réalisé en acier 20 AP peut atteindre une dureté dépassant les 700 HV après traitement thermique et roulage.
- Bien que fournissant des propriétés mécaniques satisfaisantes pour les applications horlogères décrites ci-dessus, ce type de matériau présente l'inconvénient d'être magnétique et de pouvoir perturber la marche d'une montre après avoir été soumis à un champ magnétique, et ce notamment lorsque ce matériau est utilisé pour la réalisation d'un axe de balancier coopérant avec un balancier spiral en matériau ferromagnétique. Ce phénomène est bien connu de l'homme du métier. On notera également que ces aciers martensitiques sont également sensibles à la corrosion.
- Des essais pour tenter de remédier à ces inconvénients ont été menés avec des aciers inoxydables austénitiques qui présentent la particularité d'être a magnétiques c'est-à-dire du type paramagnétique ou diamagnétique ou antiferromagnétique. Toutefois, ces aciers austénitiques présentent une structure cristallographique ne permettant pas de les tremper et d'atteindre des duretés et donc des résistances aux chocs compatibles avec les exigences requises pour la réalisation d'axes de pivotement horlogers. Les axes obtenus présentent alors des marques ou des endommagements sévères en cas de chocs qui vont avoir ensuite une influence négative sur la chronométrie du mouvement. Un moyen d'augmenter la dureté de ces aciers est l'écrouissage, toutefois cette opération de durcissement ne permet pas d'obtenir des duretés supérieures à 500 HV. Par conséquent, dans le cadre de pièces devant avoir des pivots présentant une grande résistance aux chocs, l'utilisation de ce type d'aciers reste limitée.
- Une autre approche pour tenter de remédier à ces inconvénients est décrite dans la demande
EP 2 757 423 . Selon cette approche, les axes de pivotements sont réalisés en alliage de cobalt ou de nickel du type austénitique et présentent une surface externe durcie selon une certaine profondeur. Toutefois, de tels alliages peuvent s'avérer difficiles à usiner pour la fabrication d'axes de pivotement. De plus, ils sont relativement coûteux en raison du prix élevé du nickel et du cobalt. - Le but de la présente invention est de pallier les inconvénients cités précédemment en proposant un axe de pivotement permettant à la fois de limiter la sensibilité aux champs magnétiques et d'obtenir des propriétés mécaniques permettant de répondre aux exigences de résistance aux chocs dans le domaine horloger.
- L'invention a encore pour but de fournir un axe de pivotement amagnétique qui puisse être fabriqué de manière simple et économique.
- A cet effet, l'invention se rapporte à un axe de pivotement pour mouvement horloger comportant au moins un pivot en un premier matériau métallique amagnétique à au moins une de ses extrémités afin de limiter sa sensibilité aux champs magnétiques.
- Selon l'invention, au moins la surface externe dudit pivot est recouverte d'une couche d'un second matériau choisi parmi le groupe comprenant Ni et NiP.
- Par conséquent, l'axe de pivotement selon l'invention permet de cumuler les avantages d'une faible sensibilité aux champs magnétiques, et au moins dans les zones de contrainte principales, d'une excellente tenue aux chocs. De ce fait, l'axe de pivotement selon l'invention ne présente, en cas de choc, aucune marque ni aucun endommagement sévère susceptible de nuire à la chronométrie du mouvement.
- Conformément à d'autres caractéristiques avantageuses de l'invention :
- la couche du second matériau présente une épaisseur comprise entre 0.5 µm et 10 µm, de préférence entre 1 µm et 5 µm, et plus préférentiellement entre 1 µm et 2 µm ;
- la couche du second matériau présente une dureté de préférence supérieure à 400 HV, plus préférentiellement supérieure à 500 HV ;
- la couche du second matériau est de préférence une couche de NiP chimique, c'est-à-dire obtenue par dépôt chimique.
- De plus, l'invention se rapporte à un mouvement d'horlogerie comprenant un axe de pivotement tel que défini ci-dessus, et en particulier un axe de balancier, une tige d'ancre et/ou un pignon d'échappement comprenant un axe tel que défini ci-dessus.
- Enfin, l'invention se rapporte à un procédé de fabrication d'un axe de pivotement tel que défini ci-dessus comportant les étapes suivantes :
- a) former une axe de pivotement comportant au moins un pivot en un premier matériau métallique amagnétique à au moins une de ses extrémités pour limiter sa sensibilité aux champs magnétiques;
- b) déposer une couche d'un second matériau au moins sur la surface externe dudit pivot, ledit second matériau étant choisi parmi le groupe comprenant Ni et NiP.
- Conformément à d'autres caractéristiques avantageuses de l'invention :
- la couche du second matériau est déposée selon l'étape b) pour présenter une épaisseur comprise entre 0.5 µm et 10 µm, de préférence entre 1 µm et 5 µm, et plus préférentiellement entre 1 µm et 2 µm;
- le second matériau est le NiP et l'étape b) consiste en un dépôt de NiP selon un procédé de dépôt de nickel chimique à partir d'hypophosphite.
- D'autres particularités et avantages ressortiront clairement de la description qui en est faite ci-après, à titre indicatif et nullement limitatif, en référence aux dessins annexés, dans lesquels :
- la
figure 1 est une représentation d'un axe de pivotement selon l'invention ; - la
figure 2 est une coupe partielle d'un pivot d'axe de balancier selon l'invention, - la
figure 3 est une photographie d'un axe de pivotement en acier HIS nu ayant subi un programme de chocs, et - la
figure 4 est une photographie d'un axe de pivotement en acier HIS recouvert d'une couche de NiP selon l'invention ayant subi le même programme de chocs que l'axe de pivotement de lafigure 3 . - Dans la présente description, le terme matériau « amagnétique » signifie un matériau paramagnétique ou diamagnétique ou antiferromagnétique, dont la perméabilité magnétique est inférieure ou égale à 1.01.
- Un alliage d'un élément est un alliage contenant au moins 50% en poids dudit élément.
- L'invention se rapporte à une pièce pour mouvement d'horlogerie et notamment à un axe de pivotement amagnétique pour un mouvement d'horlogerie mécanique.
- L'invention sera décrite ci-après dans le cadre d'une application à un axe de balancier amagnétique 1. Bien évidemment, d'autres types d'axes de pivotement horlogers sont envisageables comme par exemple des axes de mobiles horlogers, typiquement des pignons d'échappement, ou encore des tiges d'ancre. Les pièces de ce type présentent au niveau du corps des diamètres inférieurs de préférence à 2 mm, et des pivots de diamètre inférieur de préférence à 0.2 mm, avec une précision de quelques microns.
- En se référant à la
figure 1 on peut voir un axe de balancier 1 selon l'invention qui comporte une pluralité de sections 2 de diamètres différents, formées de préférence par décolletage ou toute autre technique d'usinage par enlèvement de copeaux, et définissant classiquement des portées 2a et des épaulements 2b arrangés entre deux portions d'extrémité définissant deux pivots 3. Ces pivots sont destinés à venir chacun pivoter dans un palier, typiquement dans un orifice d'une pierre ou rubis. - Avec le magnétisme induit par les objets rencontrés au quotidien, il est important de limiter la sensibilité de l'axe de balancier 1 sous peine d'influencer la marche de la pièce d'horlogerie dans laquelle il est incorporé.
- Ainsi, le pivot 3 est réalisé en un premier matériau 4 métallique amagnétique afin de limiter de manière avantageuse sa sensibilité aux champs magnétiques.
- De préférence, le premier matériau 4 métallique amagnétique est choisi parmi le groupe comprenant un acier du type austénitique, de préférence inoxydable, un alliage de cobalt du type austénitique, un alliage de nickel du type austénitique, un alliage de titane amagnétique, un alliage d'aluminium amagnétique, un laiton (Cu-Zn) ou un laiton spécial (Cu-Zn avec Al et/ou Si et/ou Mn), un cuivre-béryllium, un bronze (Cu-Sn), un bronze à l'aluminium, un cuivre-aluminium (comprenant optionnellement Ni et/ou Fe), un cuivre-nickel, un Maillechort (Cu-Ni-Zn), un cuivre-nickel-étain, un cuivre-nickel-silicium, un cuivre-nickel-phosphore, un cuivre-titane, les proportions des différents éléments des alliages étant choisies pour leur conférer des propriétés amagnétiques ainsi qu'une bonne usinabilité.
- Par exemple, l'acier austénitique est un acier austénitique inox HIS (High Interstitial Steels), tel que l'acier Cr-Mn-N P2000 de Energietechnik Essen GmbH.
- L'alliage de cobalt du type austénitique peut comprendre au moins 39% de cobalt, typiquement un alliage connu sous le nom « Phynox » ou la désignation DIN K13C20N16Fe15D7 ayant typiquement 39% de Co, 19% de Cr, 15% de Ni et 6% de Mo, 1.5% de Mn, 18% de Fe et le soldes d'additifs.
- L'alliage de nickel de type austénitique peut comprendre au moins 33% de nickel typiquement un alliage connu sous la désignation MP35N® ayant typiquement 35% de Ni 20% de Cr, 10% de Mo, 33% de Co et le solde d'additifs.
- L'alliage de titane comprend de préférence au moins 85% de titane.
- Les laitons peuvent comprendre les alliages CuZn39Pb3, CuZn37Pb2, ou CuZn37.
- Les laitons spéciaux peuvent comprendre les alliages CuZn37Mn3Al2PbSi, CuZn23Al3Co ou CuZn23Al6Mn4Fe3Pb.
- Les Maillechort peuvent comprendre les alliages CuNi25Zn11 Pb1 Mn, CuNi7Zn39Pb3Mn2 ou CuNi18Zn19Pb1.
- Les bronzes peuvent comprendre les alliages CuSn9 ou CuSn6.
- Les bronzes à l'aluminium peuvent comprendre les alliages CuAl9 ou CuAl9Fe5Ni5.
- Les alliages cuivre-nickel peuvent comprendre l'alliage CuNi30.
- Les alliages cuivre-nickel-étain peuvent comprendre les alliages CuNi15Sn8, CuNi9Sn6 ou CuNi7.5Sn5 (commercialisé par exemple sous la dénomination Declafor).
- Les alliages cuivre-titane peuvent comprendre l'alliage CuTi3Fe.
- Les alliages cuivre-nickel-silicium peuvent comprendre l'alliage CuNi3Si.
- Les alliages cuivre-nickel-phosphore peuvent comprendre l'alliage CuNi1P.
- Les alliages cuivre-béryllium peuvent comprendre les alliages CuBe2Pb ou CuBe2.
- Les valeurs de composition sont indiquées en pourcentage massique. Les éléments sans indication de valeur de composition sont soit le reste (majoritaire) soit des éléments pour lesquels le pourcentage dans la composition est inférieur à 1% en poids.
- L'alliage de cuivre amagnétique peut être également un alliage ayant pour composition massique entre 14.5% et 15.5% de Ni, entre 7.5% et 8.5% de Sn, au maximum 0.02% de Pb et le reste de Cu. Un tel alliage est commercialisé sous la marque Toughmet® par la société Materion.
- Bien évidemment, d'autres alliages amagnétiques sont envisageables dès lors que la proportion de leurs constituants leur confère des propriétés amagnétiques ainsi qu'une bonne usinabilité.
- Le premier matériau métallique amagnétique présente généralement une dureté inférieure à 600 HV.
- Selon l'invention, au moins la surface externe dudit pivot 3 est recouverte d'une couche 5 d'un second matériau choisi parmi le groupe comprenant Ni et NiP, afin d'offrir, avantageusement, des propriétés mécaniques au niveau de ladite surface externe permettant d'obtenir la tenue aux chocs recherchée.
- Dans le second matériau, le taux de phosphore peut être compris de préférence entre 0% (on a alors du Ni pur) et 15%. De préférence, le taux de phosphore dans le second matériau NiP peut être un taux moyen compris entre 6% et 9%, ou un taux élevé compris entre 9% et 12%. Il est bien évident toutefois que le second matériau NiP peut comprendre un taux bas de phosphore.
- En outre, lorsque le second matériau est du NiP à taux moyen ou élevé de phosphore, la couche du second matériau NiP peut être durcie par traitement thermique.
- La couche du second matériau présente une dureté de préférence supérieure à 400 HV, plus préférentiellement supérieure à 500 HV.
- D'une manière particulièrement avantageuse, la couche du second matériau en Ni ou NiP non durcie présente une dureté de préférence supérieure à 500 HV, mais inférieure à 600 HV, c'est-à-dire de préférence comprise entre 500 HV et 550 HV. D'une manière surprenante et inattendue, l'axe de pivotement selon l'invention présente une excellente tenue aux chocs bien que la couche du second matériau puisse présenter une dureté (HV) inférieure à celle du premier matériau.
- Lorsqu'elle est durcie par traitement thermique, la couche du second matériau en NiP peut présenter une dureté comprise entre 900 HV et 1000 HV.
- D'une manière avantageuse, la couche du second matériau peut présenter une épaisseur comprise entre 0.5 µm et 10 µm, de préférence entre 1 µm et 5 µm, et plus préférentiellement entre 1 µm et 2 µm.
- De préférence, la couche du second matériau est une couche de NiP, et plus particulièrement une couche de NiP chimique, c'est-à-dire déposée par voie chimique.
- Sont particulièrement préférées les combinaisons associant :
- un alliage cuivre-béryllium, et plus particulièrement CuBe2Pb, comme premier matériau métallique amagnétique et une couche de NiP chimique comme couche 5 du second matériau
- un alliage cuivre-nickel-étain, et plus particulièrement le Declafor ou le Toughmet®, comme premier matériau métallique amagnétique et une couche de NiP chimique comme couche 5 du second matériau
- un acier inoxydable, et plus particulièrement, un acier Inox HIS, comme premier matériau métallique amagnétique et une couche de NiP chimique comme couche 5 du second matériau.
- Par conséquent, au moins la surface externe du pivot est durcie c'est-à-dire que le reste de l'axe, peut rester peu ou pas modifié sans modification notable des propriétés mécaniques de l'axe de balancier 1. Ce durcissement sélectif des pivots 3 de l'axe de balancier 1 permet de cumuler les avantages comme la faible sensibilité aux champs magnétiques et des propriétés mécaniques permettant d'obtenir une très bonne tenue aux chocs, dans les zones de contrainte principales.
- Afin d'améliorer la tenue de la couche du second matériau, l'axe de pivotement peut comprendre au moins une sous-couche d'adhésion déposée entre le premier matériau et la couche du second matériau. Par exemple, dans le cas notamment d'un axe de pivotement en matériau de type acier inox HIS, une sous-couche d'or et/ou une sous-couche de nickel galvanique peu(ven)t être prévue(s) sous la couche du second matériau.
- L'invention se rapporte également au procédé de fabrication d'un axe de balancier comme expliqué ci-dessus. Le procédé comporte avantageusement selon l'invention les étapes suivantes :
- a) former, de préférence par décolletage ou toute autre technique d'usinage par enlèvement de copeaux, un axe de balancier 1 comportant au moins un pivot 3 en en premier matériau métallique amagnétique à chacune de ses extrémités, pour limiter sa sensibilité aux champs magnétiques et;
- b) déposer une couche 5 d'un second matériau au moins sur la surface externe dudit pivot 3, ledit second matériau étant choisi parmi le groupe comprenant Ni et NiP afin d'améliorer les propriétés mécaniques des pivots pour obtenir une résistance aux chocs appropriée au moins au niveau des zones de contraintes principales.
- D'une manière préférée, la couche 5 du second matériau est déposée selon l'étape b) pour présenter une épaisseur comprise entre 0.5 µm et 10 µm, de préférence entre 1 µm et 5 µm, et plus préférentiellement entre 1 µm et 2 µm.
- Avantageusement, l'étape b) de dépôt de la couche 5 du second matériau peut être réalisée selon un procédé choisi parmi le groupe comprenant les dépôts PVD, CVD, ALD, galvanique et chimique, et de préférence chimique.
- Selon un mode de réalisation particulièrement préféré, le second matériau est du NiP et l'étape de dépôt de la couche 5 de NiP est réalisée selon un procédé de dépôt de nickel chimique à partir d'hypophosphite.
- Les différents paramètres de dépôt de nickel chimique à partir d'hypophosphite à prendre en compte, tels que la teneur en phosphore dans le dépôt, le pH, la température, ou la composition du bain de nickelage sont connus de l'homme du métier. On se référera par exemple à la publication de Y. Ben Amor et al., Dépôt chimique de nickel, synthèse bibliographique, Matériaux & Techniques 102, 101 (2014). Toutefois, on précisera que l'on utilise de préférence des bains commerciaux à taux moyens (6-9%) et à taux élevés (9-12%) de phosphore. Il est bien évident toutefois que des bains à taux bas de phosphore ou de nickel pur peuvent aussi être utilisés.
- Lorsque le second matériau est du NiP, de préférence à taux moyen ou élevé de phosphore, le procédé selon l'invention peut en outre comprendre, après l'étape de dépôt b), une étape c) de traitement thermique de la couche 5 du second matériau. Un tel traitement thermique permet d'obtenir une couche 5 du second matériau présentant une dureté comprise de préférence entre 900 HV et 1000 HV.
- Le procédé de dépôt de nickel chimique est particulièrement avantageux en ce qu'il permet d'obtenir un dépôt conforme et ne présentant pas d'effet de pointe. Il est ainsi possible de prévoir la dimension de l'axe de pivotement décolleté pour obtenir la géométrie voulue après recouvrement par la couche du second matériau.
- Le procédé de dépôt de nickel chimique présente également l'avantage de pouvoir être appliqué en vrac.
- Afin d'améliorer la tenue de la couche du second matériau, le procédé selon l'invention peut en outre comprendre, avant l'étape de dépôt b), une étape d) d'application d'au moins une sous-couche d'adhésion sur le premier matériau. Par exemple, dans le cas notamment d'un axe de pivotement en matériau de type acier inox HIS, il est possible d'appliquer une sous-couche d'or et/ou une sous-couche de nickel galvanique avant le dépôt de nickel par voie chimique.
- L'axe de pivotement selon l'invention peut comprendre des pivots traités selon l'invention en appliquant l'étape b) aux seuls pivots ou être réalisé entièrement en un premier matériau métallique amagnétique, sa surface externe pouvant être recouverte entièrement d'une couche du second matériau en appliquant l'étape b) sur la totalité des surfaces de l'axe de pivotement.
- D'une manière connue, les pivots 3 peuvent être roulés ou polis avant ou après l'étape de dépôt b), afin d'atteindre les dimensions et l'état de surface finaux désirés pour les pivots 3.
- L'axe de pivotement selon l'invention cumule les avantages d'une faible sensibilité aux champs magnétiques, et au moins dans les zones de contrainte principales, d'une excellente tenue aux chocs. De ce fait, l'axe de pivotement selon l'invention ne présente, en cas de choc, aucune marque ni aucun endommagement sévère susceptible de nuire à la chronométrie du mouvement.
- Les exemples suivants illustrent la présente invention sans toutefois en limiter la portée.
- Des axes de pivotement en acier HIS sont réalisés d'une manière connue. Les axes nus présentent une dureté de 600HV.
- Un lot de ces axes de pivotement est traité selon le procédé de l'invention, les axes de pivotement étant recouverts d'une couche de NiP d'épaisseur égale à 1.5 µm obtenue à partir d'un bain commercial de nickelage chimique à partir d'hypophosphite.
- Ces axes de pivotement selon l'invention présentent une dureté de 500 HV.
- Tous les axes de pivotement sont soumis à un même programme de chocs standard pour l'horlogerie. Les axes nus, sans couche de NiP, sont marqués comme le montre la
figure 3 . Les axes recouverts d'une couche de NiP selon l'invention sont intacts, comme le montre lafigure 4 . Les axes de pivotement selon l'invention cumulent les avantages d'une faible sensibilité aux champs magnétiques et d'une excellente tenue aux chocs.
Claims (16)
- Axe de pivotement (1) pour mouvement horloger comportant au moins un pivot (3) en un premier matériau (4) métallique amagnétique à au moins une de ses extrémités afin de limiter sa sensibilité aux champs magnétiques, caractérisé en ce qu'au moins la surface externe dudit pivot (3) est recouverte d'une couche (5) d'un second matériau choisi parmi le groupe comprenant Ni et NiP, et de préférence NiP chimique.
- Axe de pivotement (1) selon la revendication 1, caractérisé en ce qu'il est réalisé en un premier matériau métallique amagnétique afin de limiter sa sensibilité aux champs magnétiques, et en ce que sa surface externe est recouverte d'une couche d'un second matériau choisi parmi le groupe comprenant Ni et NiP, et de préférence NiP chimique.
- Axe de pivotement (1) selon l'une des revendications précédentes, caractérisé en ce que le premier matériau (4) métallique amagnétique est choisi parmi le groupe comprenant un acier du type austénitique, un alliage de cobalt du type austénitique, un alliage de nickel du type austénitique, un alliage de titane, un alliage d'aluminium, un laiton à base de cuivre et de zinc, un cuivre-béryllium, un Maillechort, un bronze, un bronze à l'aluminium, un cuivre-aluminium, un cuivre-nickel, un cuivre-nickel-étain, un cuivre-nickel-silicium, un cuivre-nickel-phosphore, un cuivre-titane.
- Axe de pivotement (1) selon l'une des revendications précédentes, caractérisé en ce que le premier matériau (4) métallique amagnétique présente une dureté inférieure à 600 HV.
- Axe de pivotement (1) selon l'une des revendications précédentes, caractérisé en ce que la couche (5) du second matériau présente une épaisseur comprise entre 0.5 µm et 10 µm, de préférence entre 1µm et 5 µm, et plus préférentiellement entre 1 et 2 µm.
- Axe de pivotement (1) selon l'une des revendications précédentes, caractérisé en ce que ladite couche (5) du second matériau présente une dureté supérieure à 400 HV, de préférence supérieure à 500 HV.
- Axe de pivotement (1) selon l'une des revendications précédentes, caractérisé en ce que le premier matériau (4) métallique amagnétique est un alliage cuivre-béryllium et en ce que ladite couche (5) du second matériau est une couche de NiP chimique.
- Axe de pivotement (1) selon l'une des revendications 1 à 6, caractérisé en ce que le premier matériau (4) métallique amagnétique est un alliage cuivre-nickel-étain et en ce que ladite couche (5) du second matériau est une couche de NiP chimique.
- Axe de pivotement (1) selon l'une des revendications 1 à 6, caractérisé en ce que le premier matériau (4) métallique amagnétique est un acier inoxydable et en ce que ladite couche (5) du second matériau est une couche de NiP chimique.
- Mouvement pour pièce d'horlogerie, caractérisé en ce qu'il comprend un axe de pivotement (1) selon l'une des revendications précédentes.
- Mouvement pour pièce d'horlogerie caractérisé en ce qu'il comprend un axe de balancier (1), une tige d'ancre et/ou un pignon d'échappement comprenant un axe selon l'une des revendications 1 à 9.
- Procédé de fabrication d'un axe de pivotement (1) pour mouvement horloger comportant les étapes suivantes :a) former un axe de pivotement (1) comportant au moins un pivot (3) en un premier matériau (4) métallique amagnétique à au moins une de ses extrémités pour limiter sa sensibilité aux champs magnétiques;b) déposer une couche (5) d'un second matériau au moins sur la surface externe dudit pivot (3), ledit second matériau étant choisi parmi le groupe comprenant Ni et NiP.
- Procédé selon la revendication 12, caractérisé en ce que la couche (5) du second matériau est déposée pour présenter une épaisseur comprise entre 0.5 µm et 10 µm, de préférence entre 1 µm et 5 µm, et plus préférentiellement entre 1 µm et 2 µm.
- Procédé selon l'une des revendications 12 et 13, caractérisé en ce que l'étape b) de dépôt de la couche (5) du second matériau est réalisée selon un procédé choisi parmi le groupe comprenant les dépôts PVD, CVD, ALD, galvanique et chimique.
- Procédé selon la revendication 14, caractérisé en ce que le second matériau est du NiP et en ce que l'étape de dépôt de la couche (5) de NiP est réalisée selon un procédé de dépôt de nickel chimique à partir d'hypophosphite.
- Procédé selon l'une des revendications 12 à 15, caractérisé en en ce que le second matériau est du NiP et en ce que ledit procédé comprend en outre, après l'étape b), une étape c) de traitement thermique de la couche (5) du second matériau.
Priority Applications (19)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16190278.8A EP3273306A1 (fr) | 2016-07-19 | 2016-09-23 | Pièce pour mouvement d'horlogerie |
EP17157065.8A EP3273307A1 (fr) | 2016-07-19 | 2017-02-21 | Pièce pour mouvement d'horlogerie |
US15/652,287 US11092932B2 (en) | 2016-07-19 | 2017-07-18 | Component for a timepiece movement |
JP2017138778A JP6591498B2 (ja) | 2016-07-19 | 2017-07-18 | 時計ムーブメント用コンポーネント |
CN201710584243.8A CN107632507B (zh) | 2016-07-19 | 2017-07-18 | 用于钟表机芯的构件 |
RU2017125734A RU2767960C2 (ru) | 2016-07-19 | 2017-07-18 | Компонент для часового механизма |
CN201710584919.3A CN107632508B (zh) | 2016-07-19 | 2017-07-18 | 用于钟表机芯的构件 |
JP2017138777A JP6591497B2 (ja) | 2016-07-19 | 2017-07-18 | 時計ムーブメント用コンポーネント |
US15/652,288 US10761482B2 (en) | 2016-07-19 | 2017-07-18 | Component for a timepiece movement |
RU2017125759A RU2752467C2 (ru) | 2016-07-19 | 2017-07-18 | Компонент для часового механизма |
CN201710584247.6A CN107632510B (zh) | 2016-07-19 | 2017-07-18 | 用于钟表机芯的构件 |
JP2017138776A JP6762275B2 (ja) | 2016-07-19 | 2017-07-18 | 時計ムーブメント用コンポーネント |
US15/652,283 US11237520B2 (en) | 2016-07-19 | 2017-07-18 | Component for a timepiece movement |
CN202110652156.8A CN113296382A (zh) | 2016-07-19 | 2017-07-18 | 用于钟表机芯的构件 |
HK18107788.1A HK1248327A1 (zh) | 2016-07-19 | 2018-06-15 | 用於鐘錶機芯的構件 |
HK18108135.9A HK1248836A1 (zh) | 2016-07-19 | 2018-06-25 | 用於鐘錶機芯的構件 |
HK18108785.2A HK1249200A1 (zh) | 2016-07-19 | 2018-07-06 | 用於鐘錶機芯的構件 |
JP2019118340A JP2019197061A (ja) | 2016-07-19 | 2019-06-26 | 時計ムーブメント用コンポーネント |
JP2019118335A JP2019203899A (ja) | 2016-07-19 | 2019-06-26 | 時計ムーブメント用コンポーネント |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16180226.9A EP3273304B1 (fr) | 2016-07-19 | 2016-07-19 | Pièce pour mouvement d'horlogerie |
EP16190278.8A EP3273306A1 (fr) | 2016-07-19 | 2016-09-23 | Pièce pour mouvement d'horlogerie |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3273306A1 true EP3273306A1 (fr) | 2018-01-24 |
Family
ID=81766669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16190278.8A Pending EP3273306A1 (fr) | 2016-07-19 | 2016-09-23 | Pièce pour mouvement d'horlogerie |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3273306A1 (fr) |
CN (3) | CN107632507B (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3432079A1 (fr) * | 2017-07-12 | 2019-01-23 | Société anonyme de la Manufacture d'Horlogerie Audemars Piguet & Cie | Composant horloger en alliage binaire cuni amagnétique |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH715163A2 (fr) | 2018-07-10 | 2020-01-15 | Blancpain Sa | Composant d'horlogerie avec partie arbrée en alliage amagnétique. |
EP3800511B1 (fr) * | 2019-10-02 | 2022-05-18 | Nivarox-FAR S.A. | Axe de pivotement d'un organe réglant |
EP3885842B1 (fr) * | 2020-03-26 | 2024-03-20 | Nivarox-FAR S.A. | Composant horloger amagnétique avec résistance à l'usure améliorée |
EP3968095A1 (fr) * | 2020-09-15 | 2022-03-16 | ETA SA Manufacture Horlogère Suisse | Procédé de fabrication d'un composant de micromécanique, notamment d'un mobile d'horlogerie, avec surface de contact optimisee |
EP4033307A1 (fr) * | 2021-01-22 | 2022-07-27 | ETA SA Manufacture Horlogère Suisse | Ensemble comprenant un mobile tournant en matériau amagnétique et un coussinet muni d'un cône |
EP4075205A1 (fr) * | 2021-04-16 | 2022-10-19 | ETA SA Manufacture Horlogère Suisse | Procédé de fabrication d'un mobile d'horlogerie et mobile d'horlogerie obtenu par sa mise en oeuvre |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2015873A1 (fr) | 1968-08-19 | 1970-04-30 | Inst Reinhard Straumann | |
CH514873A (fr) * | 1969-07-11 | 1971-07-15 | Far Fab Assortiments Reunies | Procédé de fabrication d'une ancre d'horlogerie |
US3620005A (en) * | 1967-10-04 | 1971-11-16 | Messrs Gebruder Junghans Gmbh | Ratchet wheel device for a balance wheel clock |
CH572374B5 (fr) * | 1972-01-26 | 1976-02-13 | Far Fab Assortiments Reunies | |
CH681370A5 (en) * | 1992-02-25 | 1993-03-15 | Estoppey Reber S A | Solid lubricant coating prodn. for reducing friction between soft parts - by applying nickel@-phosphorus@ layer and gold@ layer and then heat treating |
EP0686706A1 (fr) * | 1993-12-28 | 1995-12-13 | Citizen Watch Co. Ltd. | Piece decorative blanche et procede pour sa fabrication |
EP1237058A1 (fr) * | 2001-02-28 | 2002-09-04 | Eta SA Fabriques d'Ebauches | Utilisation d'un revêtement amagnétique pour recouvrir des pièces dans un mouvement d'horlogerie |
EP1927681A1 (fr) * | 2006-11-28 | 2008-06-04 | Seiko Epson Corporation | Composant d'horloge et horloge dotée du composant d'horloge |
EP2757423A1 (fr) | 2013-01-17 | 2014-07-23 | Omega SA | Pièce pour mouvement d'horlogerie |
WO2017141222A1 (fr) | 2016-02-19 | 2017-08-24 | Creaditive Ag | Arbre de pignon, mouvement d'horlogerie, montre ou dispositif de mesure sans signature magnétique |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6021229B2 (ja) * | 1977-12-20 | 1985-05-25 | セイコーエプソン株式会社 | 電子腕時計 |
WO2003027355A1 (fr) * | 2001-09-19 | 2003-04-03 | Citizen Watch Co., Ltd. | Metal mou et procede pour sa preparation, et piece exterieure de montre et procede pour sa realisation |
MXPA06011498A (es) * | 2004-04-05 | 2007-03-21 | Swissmetal Ums Usines Metallur | Aleacion basada en cobre maquinable y metodo de produccion. |
JP2008157912A (ja) * | 2006-11-28 | 2008-07-10 | Seiko Epson Corp | 時計部品、及び当該時計部品を備えた時計 |
US9298162B2 (en) * | 2010-10-01 | 2016-03-29 | Rolex Sa | Timepiece barrel with thin disks |
CH705464B1 (fr) * | 2011-09-05 | 2016-09-15 | Nivarox Far Sa | Virole de fixation d'un spiral d'horlogerie. |
EP2607969B1 (fr) * | 2011-12-19 | 2014-09-17 | Nivarox-FAR S.A. | Mouvement horloger à faible sensibilité magnétique |
CH707503A2 (fr) * | 2013-01-17 | 2014-07-31 | Omega Sa | Axe de pivotement pour mouvement horloger. |
CN110423968B (zh) * | 2013-03-14 | 2022-04-26 | 美题隆公司 | 锻造的铜-镍-锡合金及其制品 |
EP2860591A1 (fr) * | 2013-10-09 | 2015-04-15 | Nivarox-FAR S.A. | Système d'assemblage utilisant un élément de blocage élastique conique |
-
2016
- 2016-09-23 EP EP16190278.8A patent/EP3273306A1/fr active Pending
-
2017
- 2017-07-18 CN CN201710584243.8A patent/CN107632507B/zh active Active
- 2017-07-18 CN CN201710584247.6A patent/CN107632510B/zh active Active
- 2017-07-18 CN CN201710584919.3A patent/CN107632508B/zh active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3620005A (en) * | 1967-10-04 | 1971-11-16 | Messrs Gebruder Junghans Gmbh | Ratchet wheel device for a balance wheel clock |
FR2015873A1 (fr) | 1968-08-19 | 1970-04-30 | Inst Reinhard Straumann | |
US3683616A (en) * | 1968-08-19 | 1972-08-15 | Straumann Inst Ag | Anti-magnetic timekeeping mechanisms |
CH514873A (fr) * | 1969-07-11 | 1971-07-15 | Far Fab Assortiments Reunies | Procédé de fabrication d'une ancre d'horlogerie |
CH572374B5 (fr) * | 1972-01-26 | 1976-02-13 | Far Fab Assortiments Reunies | |
CH681370A5 (en) * | 1992-02-25 | 1993-03-15 | Estoppey Reber S A | Solid lubricant coating prodn. for reducing friction between soft parts - by applying nickel@-phosphorus@ layer and gold@ layer and then heat treating |
EP0686706A1 (fr) * | 1993-12-28 | 1995-12-13 | Citizen Watch Co. Ltd. | Piece decorative blanche et procede pour sa fabrication |
EP1237058A1 (fr) * | 2001-02-28 | 2002-09-04 | Eta SA Fabriques d'Ebauches | Utilisation d'un revêtement amagnétique pour recouvrir des pièces dans un mouvement d'horlogerie |
EP1927681A1 (fr) * | 2006-11-28 | 2008-06-04 | Seiko Epson Corporation | Composant d'horloge et horloge dotée du composant d'horloge |
EP2757423A1 (fr) | 2013-01-17 | 2014-07-23 | Omega SA | Pièce pour mouvement d'horlogerie |
WO2017141222A1 (fr) | 2016-02-19 | 2017-08-24 | Creaditive Ag | Arbre de pignon, mouvement d'horlogerie, montre ou dispositif de mesure sans signature magnétique |
EP3417347B1 (fr) * | 2016-02-19 | 2020-06-24 | Creaditive AG | Arbre de pignon, rouage, horloge ou appareil de mesure sans signature magnétique |
Non-Patent Citations (1)
Title |
---|
Y. BEN AMOR ET AL.: "Dépôt chimique de nickel, synthèse bibliographique", MATÉRIAUX & TECHNIQUES, vol. 102, 2014, pages 101 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3432079A1 (fr) * | 2017-07-12 | 2019-01-23 | Société anonyme de la Manufacture d'Horlogerie Audemars Piguet & Cie | Composant horloger en alliage binaire cuni amagnétique |
Also Published As
Publication number | Publication date |
---|---|
CN107632510A (zh) | 2018-01-26 |
CN107632507B (zh) | 2021-01-08 |
CN107632510B (zh) | 2021-01-08 |
CN107632507A (zh) | 2018-01-26 |
CN107632508B (zh) | 2022-05-24 |
CN107632508A (zh) | 2018-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3273306A1 (fr) | Pièce pour mouvement d'horlogerie | |
EP3273307A1 (fr) | Pièce pour mouvement d'horlogerie | |
EP2757423B1 (fr) | Pièce pour mouvement d'horlogerie | |
EP3273303A1 (fr) | Pièce pour mouvement d'horlogerie | |
EP2757424A1 (fr) | Pièce pour mouvement d'horlogerie | |
EP3743538B1 (fr) | Axe de pivotement d'un organe reglant et son procédé de fabrication | |
CH707504A2 (fr) | Axe de pivotement en métal pour mouvement horloger et procédé de fabrication d'un tel axe. | |
CH712760A2 (fr) | Axe de pivotement pour mouvement d'horlogerie. | |
EP3273304B1 (fr) | Pièce pour mouvement d'horlogerie | |
CH712718B1 (fr) | Axe de pivotement pour mouvement d'horlogerie. | |
EP3800511B1 (fr) | Axe de pivotement d'un organe réglant | |
EP3273305B1 (fr) | Pièce pour mouvement d'horlogerie | |
EP3339968A1 (fr) | Pièce pour mouvement d'horlogerie | |
CH707505A2 (fr) | Axe de pivotement en métal pour mouvement horloger et procédé de fabrication d'un tel axe. | |
CH716664A2 (fr) | Composant horloger amagnétique et dur, notamment axe de pivotement d'un organe réglant. | |
WO2023194522A1 (fr) | Axe de pivotement amagnetique | |
CH719580A2 (fr) | Axe de pivotement amagnétique horloger. | |
EP3885842B1 (fr) | Composant horloger amagnétique avec résistance à l'usure améliorée | |
CH712720B1 (fr) | Axe de pivotement pour mouvement d'horlogerie. | |
CH718550A2 (fr) | Axe de pivotement horloger et procédé de fabrication d'un tel axe de pivotement horloger. | |
CH713264A2 (fr) | Axe de pivotement pour mouvement d'horlogerie. | |
CH718549A2 (fr) | Composant horloger et procédé de fabrication d'un tel composant horloger. | |
CH718939A1 (fr) | Axe de pivotement d'un composant pivotant d'un mouvement horloger. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180724 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20210616 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
TPAC | Observations filed by third parties |
Free format text: ORIGINAL CODE: EPIDOSNTIPA |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230611 |