EP3252067B1 - Sugar moiety silyl ether derivative of 5-azacytidine - Google Patents
Sugar moiety silyl ether derivative of 5-azacytidine Download PDFInfo
- Publication number
- EP3252067B1 EP3252067B1 EP16797711.5A EP16797711A EP3252067B1 EP 3252067 B1 EP3252067 B1 EP 3252067B1 EP 16797711 A EP16797711 A EP 16797711A EP 3252067 B1 EP3252067 B1 EP 3252067B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- group
- compound
- azacytidine
- substituent
- silyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229960002756 azacitidine Drugs 0.000 title description 25
- NMUSYJAQQFHJEW-UHFFFAOYSA-N 5-Azacytidine Natural products O=C1N=C(N)N=CN1C1C(O)C(O)C(CO)O1 NMUSYJAQQFHJEW-UHFFFAOYSA-N 0.000 title description 15
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 title 1
- 150000001875 compounds Chemical class 0.000 claims description 86
- -1 silyl halide Chemical class 0.000 claims description 63
- 125000001424 substituent group Chemical group 0.000 claims description 25
- XAUDJQYHKZQPEU-KVQBGUIXSA-N 5-aza-2'-deoxycytidine Chemical compound O=C1N=C(N)N=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 XAUDJQYHKZQPEU-KVQBGUIXSA-N 0.000 claims description 19
- 150000003839 salts Chemical class 0.000 claims description 16
- 125000003118 aryl group Chemical group 0.000 claims description 13
- 239000008194 pharmaceutical composition Substances 0.000 claims description 13
- 125000000217 alkyl group Chemical group 0.000 claims description 12
- 206010028980 Neoplasm Diseases 0.000 claims description 11
- 125000003710 aryl alkyl group Chemical group 0.000 claims description 10
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 10
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 claims description 9
- 230000002159 abnormal effect Effects 0.000 claims description 7
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 7
- 230000002489 hematologic effect Effects 0.000 claims description 6
- 230000005856 abnormality Effects 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 201000010099 disease Diseases 0.000 claims description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 4
- 208000024891 symptom Diseases 0.000 claims description 4
- 125000004209 (C1-C8) alkyl group Chemical group 0.000 claims description 3
- 125000000094 2-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 claims description 3
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 claims description 3
- 125000001624 naphthyl group Chemical group 0.000 claims description 3
- 208000004375 Angiodysplasia Diseases 0.000 claims description 2
- 208000012661 Dyskinesia Diseases 0.000 claims description 2
- 206010016654 Fibrosis Diseases 0.000 claims description 2
- 230000033115 angiogenesis Effects 0.000 claims description 2
- 210000002889 endothelial cell Anatomy 0.000 claims description 2
- 230000004761 fibrosis Effects 0.000 claims description 2
- 125000004923 naphthylmethyl group Chemical group C1(=CC=CC2=CC=CC=C12)C* 0.000 claims description 2
- 210000000056 organ Anatomy 0.000 claims description 2
- 230000003252 repetitive effect Effects 0.000 claims description 2
- 230000004044 response Effects 0.000 claims description 2
- 208000037803 restenosis Diseases 0.000 claims description 2
- 230000000638 stimulation Effects 0.000 claims description 2
- 238000001356 surgical procedure Methods 0.000 claims description 2
- 238000002054 transplantation Methods 0.000 claims description 2
- 230000029663 wound healing Effects 0.000 claims description 2
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 90
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 72
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 45
- NMUSYJAQQFHJEW-KVTDHHQDSA-N 5-azacytidine Chemical compound O=C1N=C(N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 NMUSYJAQQFHJEW-KVTDHHQDSA-N 0.000 description 41
- 239000002904 solvent Substances 0.000 description 32
- 238000000034 method Methods 0.000 description 29
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 description 27
- 230000035484 reaction time Effects 0.000 description 26
- 238000010189 synthetic method Methods 0.000 description 25
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 24
- 238000005160 1H NMR spectroscopy Methods 0.000 description 24
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 24
- 238000000926 separation method Methods 0.000 description 24
- 125000000837 carbohydrate group Chemical group 0.000 description 23
- 238000010828 elution Methods 0.000 description 23
- OKKJLVBELUTLKV-MZCSYVLQSA-N Deuterated methanol Chemical compound [2H]OC([2H])([2H])[2H] OKKJLVBELUTLKV-MZCSYVLQSA-N 0.000 description 22
- 102100026846 Cytidine deaminase Human genes 0.000 description 18
- 108010031325 Cytidine deaminase Proteins 0.000 description 18
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 18
- 239000000243 solution Substances 0.000 description 18
- 238000006243 chemical reaction Methods 0.000 description 16
- 201000003793 Myelodysplastic syndrome Diseases 0.000 description 15
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 15
- 102000004190 Enzymes Human genes 0.000 description 14
- 108090000790 Enzymes Proteins 0.000 description 14
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 14
- 239000000203 mixture Substances 0.000 description 14
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 12
- 206010035226 Plasma cell myeloma Diseases 0.000 description 11
- 239000003814 drug Substances 0.000 description 11
- 238000006266 etherification reaction Methods 0.000 description 11
- 201000000050 myeloid neoplasm Diseases 0.000 description 11
- 239000007858 starting material Substances 0.000 description 11
- 230000003301 hydrolyzing effect Effects 0.000 description 10
- 230000002503 metabolic effect Effects 0.000 description 10
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical class [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 210000004027 cell Anatomy 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 239000000651 prodrug Substances 0.000 description 7
- 229940002612 prodrug Drugs 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 7
- MLJQRPUDLLDQJX-DJSMDIAISA-N 4-amino-1-[(2S,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)-2-silyloxyoxolan-2-yl]-1,3,5-triazin-2-one Chemical class [SiH3]O[C@@]1([C@H](O)[C@H](O)[C@@H](CO)O1)N1C(=O)N=C(N)N=C1 MLJQRPUDLLDQJX-DJSMDIAISA-N 0.000 description 6
- RKLVTBMGCOXMJE-QJPTWQEYSA-N C(C)[Si](OC[C@@H]1[C@H](C[C@@H](O1)N1C(=O)N=C(N)N=C1)O)(CC)CC Chemical compound C(C)[Si](OC[C@@H]1[C@H](C[C@@H](O1)N1C(=O)N=C(N)N=C1)O)(CC)CC RKLVTBMGCOXMJE-QJPTWQEYSA-N 0.000 description 6
- JQLLMEVZAKCXNZ-DDHJBXDOSA-N C(C)[Si](OC[C@@H]1[C@H]([C@H]([C@@H](O1)N1C(=O)N=C(N)N=C1)O)O)(CC)CC Chemical compound C(C)[Si](OC[C@@H]1[C@H]([C@H]([C@@H](O1)N1C(=O)N=C(N)N=C1)O)O)(CC)CC JQLLMEVZAKCXNZ-DDHJBXDOSA-N 0.000 description 6
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 6
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 6
- 238000009472 formulation Methods 0.000 description 6
- FVIZARNDLVOMSU-UHFFFAOYSA-N ginsenoside K Natural products C1CC(C2(CCC3C(C)(C)C(O)CCC3(C)C2CC2O)C)(C)C2C1C(C)(CCC=C(C)C)OC1OC(CO)C(O)C(O)C1O FVIZARNDLVOMSU-UHFFFAOYSA-N 0.000 description 6
- 230000004962 physiological condition Effects 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- 241000124008 Mammalia Species 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 238000004128 high performance liquid chromatography Methods 0.000 description 5
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- 229940124597 therapeutic agent Drugs 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 230000001446 anti-myeloma Effects 0.000 description 4
- 201000011510 cancer Diseases 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- IJOOHPMOJXWVHK-UHFFFAOYSA-N chlorotrimethylsilane Chemical compound C[Si](C)(C)Cl IJOOHPMOJXWVHK-UHFFFAOYSA-N 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 239000002552 dosage form Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 4
- 239000002198 insoluble material Substances 0.000 description 4
- 238000011835 investigation Methods 0.000 description 4
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 230000009257 reactivity Effects 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 239000000741 silica gel Substances 0.000 description 4
- 229910002027 silica gel Inorganic materials 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 description 4
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 3
- NXTUWYIIHCWGHE-GWOFURMSSA-N [Si](C)(C)(C(C)(C)C)OC[C@@H]1[C@H]([C@H]([C@@H](O1)N1C(=O)N=C(N)N=C1)O)O Chemical compound [Si](C)(C)(C(C)(C)C)OC[C@@H]1[C@H]([C@H]([C@@H](O1)N1C(=O)N=C(N)N=C1)O)O NXTUWYIIHCWGHE-GWOFURMSSA-N 0.000 description 3
- 239000002246 antineoplastic agent Substances 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- KOPOQZFJUQMUML-UHFFFAOYSA-N chlorosilane Chemical compound Cl[SiH3] KOPOQZFJUQMUML-UHFFFAOYSA-N 0.000 description 3
- 230000008034 disappearance Effects 0.000 description 3
- 229960003668 docetaxel Drugs 0.000 description 3
- 239000003937 drug carrier Substances 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 125000005843 halogen group Chemical group 0.000 description 3
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 3
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 3
- 208000032839 leukemia Diseases 0.000 description 3
- 210000004185 liver Anatomy 0.000 description 3
- 102000039446 nucleic acids Human genes 0.000 description 3
- 108020004707 nucleic acids Proteins 0.000 description 3
- 150000007523 nucleic acids Chemical class 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 3
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 3
- 208000007056 sickle cell anemia Diseases 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000012453 solvate Substances 0.000 description 3
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 3
- 125000001981 tert-butyldimethylsilyl group Chemical group [H]C([H])([H])[Si]([H])(C([H])([H])[H])[*]C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 3
- 125000006219 1-ethylpentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000004338 2,2,3-trimethylbutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- 125000003562 2,2-dimethylpentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 2
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 2
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 2
- MHABMANUFPZXEB-UHFFFAOYSA-N O-demethyl-aloesaponarin I Natural products O=C1C2=CC=CC(O)=C2C(=O)C2=C1C=C(O)C(C(O)=O)=C2C MHABMANUFPZXEB-UHFFFAOYSA-N 0.000 description 2
- 208000009527 Refractory anemia Diseases 0.000 description 2
- 206010072684 Refractory cytopenia with unilineage dysplasia Diseases 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 102000044209 Tumor Suppressor Genes Human genes 0.000 description 2
- 108700025716 Tumor Suppressor Genes Proteins 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 125000005103 alkyl silyl group Chemical group 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000006696 biosynthetic metabolic pathway Effects 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 125000001309 chloro group Chemical group Cl* 0.000 description 2
- DCFKHNIGBAHNSS-UHFFFAOYSA-N chloro(triethyl)silane Chemical compound CC[Si](Cl)(CC)CC DCFKHNIGBAHNSS-UHFFFAOYSA-N 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- JNGZXGGOCLZBFB-IVCQMTBJSA-N compound E Chemical compound N([C@@H](C)C(=O)N[C@@H]1C(N(C)C2=CC=CC=C2C(C=2C=CC=CC=2)=N1)=O)C(=O)CC1=CC(F)=CC(F)=C1 JNGZXGGOCLZBFB-IVCQMTBJSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical group NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 2
- 230000003013 cytotoxicity Effects 0.000 description 2
- 231100000135 cytotoxicity Toxicity 0.000 description 2
- 229960003603 decitabine Drugs 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 235000003599 food sweetener Nutrition 0.000 description 2
- 229960005277 gemcitabine Drugs 0.000 description 2
- SDUQYLNIPVEERB-QPPQHZFASA-N gemcitabine Chemical compound O=C1N=C(N)C=CN1[C@H]1C(F)(F)[C@H](O)[C@@H](CO)O1 SDUQYLNIPVEERB-QPPQHZFASA-N 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 230000009036 growth inhibition Effects 0.000 description 2
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 150000007529 inorganic bases Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000012669 liquid formulation Substances 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 150000007530 organic bases Chemical class 0.000 description 2
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000006239 protecting group Chemical group 0.000 description 2
- 238000001243 protein synthesis Methods 0.000 description 2
- 239000003765 sweetening agent Substances 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- 239000003826 tablet Substances 0.000 description 2
- NHGXDBSUJJNIRV-UHFFFAOYSA-M tetrabutylammonium chloride Chemical compound [Cl-].CCCC[N+](CCCC)(CCCC)CCCC NHGXDBSUJJNIRV-UHFFFAOYSA-M 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 230000014616 translation Effects 0.000 description 2
- 229940086542 triethylamine Drugs 0.000 description 2
- 125000004343 1-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])(*)C([H])([H])[H] 0.000 description 1
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 1
- 125000006201 3-phenylpropyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- SQXYQBWONLMAHG-WBOJAVRRSA-N 4-amino-1-[(2S,3R,4S,5R)-2-dimethylsilyl-3,4-dihydroxy-5-(phenylmethoxymethyl)oxolan-2-yl]-1,3,5-triazin-2-one Chemical compound C(C1=CC=CC=C1)OC[C@@H]1[C@H]([C@H]([C@@](O1)(N1C(=O)N=C(N)N=C1)[SiH](C)C)O)O SQXYQBWONLMAHG-WBOJAVRRSA-N 0.000 description 1
- JIZYKOMICMCQMJ-HNBLOZHYSA-N 4-amino-1-[(2S,3R,4S,5R)-2-dimethylsilyl-5-(ethoxymethyl)-3,4-dihydroxyoxolan-2-yl]-1,3,5-triazin-2-one Chemical compound C(C)OC[C@@H]1[C@H]([C@H]([C@@](O1)(N1C(=O)N=C(N)N=C1)[SiH](C)C)O)O JIZYKOMICMCQMJ-HNBLOZHYSA-N 0.000 description 1
- ZPXLERJTHDYASZ-DJLDLDEBSA-N 4-amino-1-[(2r,4s,5r)-4-hydroxy-5-(trimethylsilyloxymethyl)oxolan-2-yl]-1,3,5-triazin-2-one Chemical compound C1[C@H](O)[C@@H](CO[Si](C)(C)C)O[C@H]1N1C(=O)N=C(N)N=C1 ZPXLERJTHDYASZ-DJLDLDEBSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 230000035502 ADME Effects 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 description 1
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 description 1
- 208000031261 Acute myeloid leukaemia Diseases 0.000 description 1
- 208000036762 Acute promyelocytic leukaemia Diseases 0.000 description 1
- 201000001320 Atherosclerosis Diseases 0.000 description 1
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- DWPFTLJJXBGYQD-GWOFURMSSA-N C(C)(C)[Si](OC[C@@H]1[C@H]([C@H]([C@@H](O1)N1C(=O)N=C(N)N=C1)O)O)(C)C Chemical compound C(C)(C)[Si](OC[C@@H]1[C@H]([C@H]([C@@H](O1)N1C(=O)N=C(N)N=C1)O)O)(C)C DWPFTLJJXBGYQD-GWOFURMSSA-N 0.000 description 1
- PEVCFNBRESPUOD-FDYHWXHSSA-N C(C)(C)[Si](OC[C@@H]1[C@H]([C@H]([C@@H](O1)N1C(=O)N=C(N)N=C1)O)O)(CC)CC Chemical compound C(C)(C)[Si](OC[C@@H]1[C@H]([C@H]([C@@H](O1)N1C(=O)N=C(N)N=C1)O)O)(CC)CC PEVCFNBRESPUOD-FDYHWXHSSA-N 0.000 description 1
- UWRGNMKCBGOJJG-ARFHVFGLSA-N C(CCCCCCC)[Si](OC[C@@H]1[C@H](C[C@@H](O1)N1C(=O)N=C(N)N=C1)O)(C)C Chemical compound C(CCCCCCC)[Si](OC[C@@H]1[C@H](C[C@@H](O1)N1C(=O)N=C(N)N=C1)O)(C)C UWRGNMKCBGOJJG-ARFHVFGLSA-N 0.000 description 1
- MEHCIUHCMGBONF-KLHDSHLOSA-N C(CCCCCCC)[Si](OC[C@@H]1[C@H]([C@H]([C@@H](O1)N1C(=O)N=C(N)N=C1)O)O)(C)C Chemical compound C(CCCCCCC)[Si](OC[C@@H]1[C@H]([C@H]([C@@H](O1)N1C(=O)N=C(N)N=C1)O)O)(C)C MEHCIUHCMGBONF-KLHDSHLOSA-N 0.000 description 1
- SQJHKKKFPLAPSK-FNCVBFRFSA-N C[Si](OC[C@@H]1[C@H]([C@H]([C@@H](O1)N1C(=O)N=C(N)N=C1)O)O)(C)C Chemical compound C[Si](OC[C@@H]1[C@H]([C@H]([C@@H](O1)N1C(=O)N=C(N)N=C1)O)O)(C)C SQJHKKKFPLAPSK-FNCVBFRFSA-N 0.000 description 1
- VCNVMGCFHZBMBU-ZGDXACBUSA-N C[Si]([C@@]1([C@@H](O[C@@H]([C@]1(O)[Si](C)(C)C)C(O)[Si](C)(C)C)N1C(=O)N=C(N)N=C1)O)(C)C Chemical compound C[Si]([C@@]1([C@@H](O[C@@H]([C@]1(O)[Si](C)(C)C)C(O)[Si](C)(C)C)N1C(=O)N=C(N)N=C1)O)(C)C VCNVMGCFHZBMBU-ZGDXACBUSA-N 0.000 description 1
- KLWPJMFMVPTNCC-UHFFFAOYSA-N Camptothecin Natural products CCC1(O)C(=O)OCC2=C1C=C3C4Nc5ccccc5C=C4CN3C2=O KLWPJMFMVPTNCC-UHFFFAOYSA-N 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 208000010833 Chronic myeloid leukaemia Diseases 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 102000004405 Collectins Human genes 0.000 description 1
- 108090000909 Collectins Proteins 0.000 description 1
- 229940126062 Compound A Drugs 0.000 description 1
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 description 1
- ZBNZXTGUTAYRHI-UHFFFAOYSA-N Dasatinib Chemical compound C=1C(N2CCN(CCO)CC2)=NC(C)=NC=1NC(S1)=NC=C1C(=O)NC1=C(C)C=CC=C1Cl ZBNZXTGUTAYRHI-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 206010058314 Dysplasia Diseases 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 1
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- 239000002067 L01XE06 - Dasatinib Substances 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 208000033761 Myelogenous Chronic BCR-ABL Positive Leukemia Diseases 0.000 description 1
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 description 1
- 208000007541 Preleukemia Diseases 0.000 description 1
- 208000033826 Promyelocytic Acute Leukemia Diseases 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 102000004357 Transferases Human genes 0.000 description 1
- 108090000992 Transferases Proteins 0.000 description 1
- 108010021119 Trichosanthin Proteins 0.000 description 1
- DTQVDTLACAAQTR-UHFFFAOYSA-M Trifluoroacetate Chemical compound [O-]C(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-M 0.000 description 1
- IWVOLCSGRKMZRF-XRXFAXGQSA-N [Si](C1=CC=CC=C1)(C1=CC=CC=C1)(C(C)(C)C)OC[C@@H]1[C@H]([C@H]([C@@H](O1)N1C(=O)N=C(N)N=C1)O)O Chemical compound [Si](C1=CC=CC=C1)(C1=CC=CC=C1)(C(C)(C)C)OC[C@@H]1[C@H]([C@H]([C@@H](O1)N1C(=O)N=C(N)N=C1)O)O IWVOLCSGRKMZRF-XRXFAXGQSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 208000009956 adenocarcinoma Diseases 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- VZTDIZULWFCMLS-UHFFFAOYSA-N ammonium formate Chemical compound [NH4+].[O-]C=O VZTDIZULWFCMLS-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 210000003969 blast cell Anatomy 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 description 1
- 229910000024 caesium carbonate Inorganic materials 0.000 description 1
- 229940127093 camptothecin Drugs 0.000 description 1
- VSJKWCGYPAHWDS-FQEVSTJZSA-N camptothecin Chemical compound C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 VSJKWCGYPAHWDS-FQEVSTJZSA-N 0.000 description 1
- 210000000692 cap cell Anatomy 0.000 description 1
- 150000001244 carboxylic acid anhydrides Chemical class 0.000 description 1
- 210000001715 carotid artery Anatomy 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 210000001627 cerebral artery Anatomy 0.000 description 1
- 229940112822 chewing gum Drugs 0.000 description 1
- 235000015218 chewing gum Nutrition 0.000 description 1
- MNKYQPOFRKPUAE-UHFFFAOYSA-N chloro(triphenyl)silane Chemical compound C=1C=CC=CC=1[Si](C=1C=CC=CC=1)(Cl)C1=CC=CC=C1 MNKYQPOFRKPUAE-UHFFFAOYSA-N 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 210000004351 coronary vessel Anatomy 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- UHDGCWIWMRVCDJ-ZAKLUEHWSA-N cytidine Chemical class O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-ZAKLUEHWSA-N 0.000 description 1
- 229940127089 cytotoxic agent Drugs 0.000 description 1
- 229940059359 dacogen Drugs 0.000 description 1
- 229960002448 dasatinib Drugs 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000003405 delayed action preparation Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000007884 disintegrant Substances 0.000 description 1
- VSJKWCGYPAHWDS-UHFFFAOYSA-N dl-camptothecin Natural products C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)C5(O)CC)C4=NC2=C1 VSJKWCGYPAHWDS-UHFFFAOYSA-N 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 238000006047 enzymatic hydrolysis reaction Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000003966 growth inhibitor Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 210000003677 hemocyte Anatomy 0.000 description 1
- 229940000351 hemocyte Drugs 0.000 description 1
- 208000034737 hemoglobinopathy Diseases 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical group I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 208000017830 lymphoblastoma Diseases 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- 206010061289 metastatic neoplasm Diseases 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 125000002950 monocyclic group Chemical group 0.000 description 1
- AJFDBNQQDYLMJN-UHFFFAOYSA-N n,n-diethylacetamide Chemical compound CCN(CC)C(C)=O AJFDBNQQDYLMJN-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 238000001050 pharmacotherapy Methods 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 239000011736 potassium bicarbonate Substances 0.000 description 1
- 235000015497 potassium bicarbonate Nutrition 0.000 description 1
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 235000011181 potassium carbonates Nutrition 0.000 description 1
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 1
- 229940086066 potassium hydrogencarbonate Drugs 0.000 description 1
- LPNYRYFBWFDTMA-UHFFFAOYSA-N potassium tert-butoxide Chemical compound [K+].CC(C)(C)[O-] LPNYRYFBWFDTMA-UHFFFAOYSA-N 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- LVTJOONKWUXEFR-FZRMHRINSA-N protoneodioscin Natural products O(C[C@@H](CC[C@]1(O)[C@H](C)[C@@H]2[C@]3(C)[C@H]([C@H]4[C@@H]([C@]5(C)C(=CC4)C[C@@H](O[C@@H]4[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@@H](O)[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@H](CO)O4)CC5)CC3)C[C@@H]2O1)C)[C@H]1[C@H](O)[C@H](O)[C@H](O)[C@@H](CO)O1 LVTJOONKWUXEFR-FZRMHRINSA-N 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 230000007420 reactivation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000006884 silylation reaction Methods 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- 229910000104 sodium hydride Inorganic materials 0.000 description 1
- 239000012312 sodium hydride Substances 0.000 description 1
- 239000007901 soft capsule Substances 0.000 description 1
- 206010041823 squamous cell carcinoma Diseases 0.000 description 1
- 208000017572 squamous cell neoplasm Diseases 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- MHYGQXWCZAYSLJ-UHFFFAOYSA-N tert-butyl-chloro-diphenylsilane Chemical compound C=1C=CC=CC=1[Si](Cl)(C(C)(C)C)C1=CC=CC=C1 MHYGQXWCZAYSLJ-UHFFFAOYSA-N 0.000 description 1
- BCNZYOJHNLTNEZ-UHFFFAOYSA-N tert-butyldimethylsilyl chloride Chemical compound CC(C)(C)[Si](C)(C)Cl BCNZYOJHNLTNEZ-UHFFFAOYSA-N 0.000 description 1
- 125000000037 tert-butyldiphenylsilyl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1[Si]([H])([*]C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 239000005051 trimethylchlorosilane Substances 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 229940065658 vidaza Drugs 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H19/00—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
- C07H19/02—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
- C07H19/04—Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
- C07H19/12—Triazine radicals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/06—Antianaemics
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H23/00—Compounds containing boron, silicon or a metal, e.g. chelates or vitamin B12
Definitions
- the present invention relates to a compound which has remarkable stability against cytidine deaminase, a metabolic hydrolyzing enzyme, and can be used as a prodrug of 2'-deoxy-5-azacytidine which is an anti-myeloma agent.
- 5-Azacytidine also called as azacytidine or by the product name of Vidaza®
- 2'-deoxy-5-azacytidine also called as decitabine or by the product name of Dacogen®
- azacytidines or 5-azacytidines have following chemical structures, respectively. They are collectively referred to as "azacytidines or 5-azacytidines" in this specification. It has been known that these azacytidines inhibit protein synthesis and some enzymes by incorporating into RNA or DNA during nucleic acid bio-synthesis in frequently dividing cells, and show cytotoxicity (patent documents 1-2 and non patent document 1).
- the azacytidines combine irreversibly with transferase of DNA methyl group relating to 5-methylation of the cytosine ring in highly risky myelodysplastic syndrome, in which the formation of a large amount of 5-methylated cytosine moiety has been confirmed, and cause enzyme inhibition.
- they promote the reactivation of anti-oncogenes and accordingly have been clinically used as therapeutic agents (5-azacytidine or 2'-deoxy-5-azacytidine) showing remarkable effects on highly risky myelodysplastic syndrome (non patent documents 2-3).
- each of these azacytidines can be easily inactivated by cytidine deaminase, a metabolic hydrolyzing enzyme in blood and liver (less than 30 minutes of half-life, non patent document 4).
- cytidine deaminase a metabolic hydrolyzing enzyme in blood and liver
- they can hardly be used effectively as therapeutic agents for patients with highly risky myelodysplastic syndrome. Accordingly, countermeasures are highly demanded.
- silyl etherification of hydroxy groups can be expected to decrease boiling points of compounds and is applied in the field of analytical chemistry as a pretreatment method of samples for gas chromatography (particularly in case of trimethyl silyl etherification in hydroxy moiety, for example, non patent document 5 and the like). Besides, it can also be used in organic synthetic chemistry as a simple protective method for hydroxy group, since de-silylation is possible in mild conditions (non patent documents 6-11).
- examples of investigation on silyl etherification of hydroxy group in search for prodrugs of pharmaceuticals can be given as follows.
- Pharmaceuticals can be released under acidic physiological conditions by crosslinkage at dialkyl silyl group between organic polymers having hydroxy groups on surface and pharmaceuticals, such as camptothecin, dasatinib, gemcitabine, and the like which have hydroxy groups in their molecules. It has been shown that they can possibly be used as DDS (drug delivery system) products (non patent document 14).
- docetaxel an antitumor agent
- DDS product in which docetaxel is released under acidic physiological conditions by becoming nanoparticles according to alkyl silyl etherification at 2'-hydroxy group of docetaxel
- Silylated pyrimidine prodrugs and methods of their use have been previously described (patent document 5).
- 2'2'-difluoro-5 -azadeoxycytidine-3',5' ditrimethylsilyl (Example 5, patent document 5)
- 2',3',5' tri(trimethylsilyl)-5-azacytidine (NUC025) (Example 6, patent document 5) have been reported.
- An object of the present invention is to provide derivatives of 2'-deoxy- 5-azacytidine (referring to formula (1)), which have remarkable stability against cytidine deaminase, a metabolic hydrolyzing enzyme, and compounds which can release gradually the corresponding 5-azacytidines under physiological conditions and be used as prodrugs of 2'-deoxy-5-azacytidine which are anti-myeloma agents.
- the present inventors have earnestly undertaken studies on finding novel compounds, which possess both excellent pharmacologic effects to incorporate into nucleic acid bio-synthetic pathway in vivo and excellent physicochemical properties, and have remarkable stability against cytidine deaminase, a metabolic hydrolyzing enzyme.
- the present inventors have therefore synthesized various silyl etherified derivatives of 5-azacytidines in carbohydrate moiety and investigated their chemical reactivity.
- the present inventors found out that a silyl etherified derivative of 5-azacytidines in carbohydrate moiety with specific structure unexpectedly shows excellent properties as a medicine, which shows remarkable stability against cytidine deaminase, a metabolic hydrolyzing enzyme and excellent physicochemical properties, and finally completed the present invention.
- silyl etherification of hydroxy group of 5-azacytidine or 2'-deoxy-5-azacytidine in carbohydrate moiety they become highly hydrophobic and therefore can be used in oral administrations. After being absorbed in intestines, they are inserted into frequently dividing tumor cells without being affected by cytidine deaminase, a metabolic hydrolyzing enzyme in blood or liver before gradually being hydrolyzed non-enzymatically under physiological conditions (for example, 37°C and about pH5-7) and free the corresponding 5-azacytidines effectively at a suitable speed.
- R is OR 3 or a hydrogen atom
- R 1 , R 2 , and R 3 are each independently hydrogen atom or silyl group represented by formula (2): wherein, R 4 , R 5 and R 6 are each independently alkyl group which may have a substituent, aryl group which may have a substituent, or arylalkyl group which may have a substituent, with the provision that R 1 , R 2 , and R 3 are not hydrogen atom simultaneously.
- Alkyl groups refer to, unless otherwise limited, saturated aliphatic hydrocarbon groups, such as C 1 to C 20 straight or branched chains of alkyl groups. Examples include methyl, ethyl, propyl, iso -propyl, butyl, sec -butyl, iso -butyl, tert -butyl, pentyl, hexyl, heptyl, 1-methylhexyl, 5-methylhexyl, 1,1-dimethylpentyl, 2,2-dimethylpentyl, 4,4-dimethylpentyl, 1-ethylpentyl, 2-ethylpentyl, 1,1,3-trimethylbutyl, 1,2,2-trimethylbutyl, 1,3,3-trimethylbutyl, 2,2,3-trimethylbutyl, 2,3,3-trimethylbutyl, 1-propylbutyl, 1,1,2,2-tetramethylpropyl, octyl, 1-methyl,
- C 1 to C 8 alkyl groups are methyl, ethyl, propyl, iso -propyl, butyl, sec -butyl, iso -butyl, tert -butyl, pentyl, hexyl, heptyl, 1-methylhexyl, 5-methylhexyl, 1,1-dimethylpentyl, 2,2-dimethylpentyl, 4,4-dimethylpentyl, 1-ethylpentyl, 2-ethylpentyl, 1,1,3-trimethylbutyl, 1,2,2-trimethylbutyl, 1,3,3-trimethylbutyl, 2,2,3-trimethylbutyl, 2,3,3-trimethylbutyl, 1-propylbutyl, 1,1,2,2-tetramethylpropyl, octyl groups.
- Aryl groups refer to monocyclic or bicyclic aromatic hydrocarbons, preferably C 6 to C 10 aryl groups, such as phenyl and naphthyl groups, and the like, more preferably phenyl group.
- Arylalkyl groups refer to alkyl groups which are substituted by aryl groups, preferably phenyl C 1 to C 6 alkyl groups.
- aryl groups preferably phenyl C 1 to C 6 alkyl groups.
- phenyl C 1 to C 6 alkyl groups include, but are not limited to, benzyl, 1-phenylethyl, 2-phenylethyl, 3-phenylpropyl, 4-phenylbutyl, 5-phenylpentyl, 6-phenylhexyl groups.
- Alkyl group which may have a substituent, aryl group which may have a substituent or arylalkyl group which may have a substituent means that silyl may have substituent or may not have substituent.
- its number may be 1 to 5, preferably 1 to 3 at any viable position of the alkyl, aryl, or arylalkyl groups. When the number of substituents is 2 or more, the substituents may be the same or different.
- substituents include alkyl groups, halogen atoms, cyano group, nitro group, and the like. Preferable examples include alkyl groups or halogen.
- Halogen atoms refer to fluorine, chlorine, bromine, or iodide atoms and the like. Preferable examples are fluorine and chlorine atoms.
- Salts of the compound (1) of the present invention may be any salts as long as they are pharmaceutically acceptable. Their examples include, but are not limited to, acid added salts including inorganic salts (for example, hydrochloride, sulfate, hydrobromide, phosphate, and the like) and organic salts (for example, acetate, trifluoroacetate, succinate, maleate, fumarate, propionate, citrate, tartrate, lactate, oxalate, methane sulfonate, p-toluene sulfonate).
- inorganic salts for example, hydrochloride, sulfate, hydrobromide, phosphate, and the like
- organic salts for example, acetate, trifluoroacetate, succinate, maleate, fumarate, propionate, citrate, tartrate, lactate, oxalate, methane sulfonate, p-toluene sulfonate.
- the compound (1) of the present invention may be crystal. It can be in single crystalline form or a mixture of multiple crystalline forms. Crystals can be prepared by crystallization according to conventional methods.
- the compound (1) of the present invention may be a solvate (for example, hydrate and the like). Both solvates and non-solvates (for example, non-hydrate) are included in the compound (1).
- the compound (1) of the present invention can be prepared according to, for example following methods or other similar ones (For example, the silyl etherification methods disclosed in Corey, E.J. et al., J. Am. Chem. Soc., 94, 6190, 1972 ; Morita, T. et al., Tetrahedron Lett., 21, 835, 1980 ; Y. Kita, et al., Tetrahedron Lett., 4311, 1979 etc., and Lalonde, M., Chan, T. H., Synthesis, 817-845, 1985 etc. as reviews).
- the compound (1), or salt thereof, can be prepared according to conventional methods or their similar ones.
- commercially available 5-azacytidine or 2'-deoxy-5- azacytidine is reacted with a silylhalide compound in an appropriate solvent and presence of a base.
- a silyl etherified derivative of 5-azacytidines in carbohydrate moiety can be obtained.
- silylhalide compounds is not particularly limited. Any silylhalide used in the art can be used for the methods of the present invention. For examples, trialkylsilylhalide, monoalkyldiarylsilylhalide, triarylsilylhalide compounds, and the like can be used. If a silylhalide compound has alkyl groups, for example, methyl, ethyl, n -propyl, iso -propyl, n -butyl, sec-butyl, iso -butyl, or tert -butyl groups and the like can be used as alkyl groups. Among them, methyl or ethyl group are preferable.
- silylhalide compound has aryl groups, phenyl group, and the like can be used.
- halogen atoms which form the silylhalide compounds chlorine, bromine, or iodine atoms, preferably chlorine atom can be used.
- More specific examples of silylhalide compounds include trimethylsilylchloride (which is also called as trimethylchlorosilane. The same applies to the following compounds.), triethylsilylchloride, tert -butyldimethylsilylchloride, tert -butyldiphenylsilylchloride, triphenylsilylchloride.
- the bases used include organic and inorganic bases.
- organic bases include, but are not limited to, triethylamine, N,N-diisopropylethylamine, imidazole, pyridine, 4-dimethylaminopyridine (DMAP), n-butyl lithium, and potassium tert -butoxide, preferably, imidazole and pyridine.
- inorganic bases include, but are not limited to, sodium hydride, sodium carbonate, sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate, or cesium carbonate.
- Amounts of the bases used are preferably more than 1 mol or more of that of the starting material. Furthermore, normally the range of 1.0 to 10.0 mol based on 1 mol of the starting material; preferably the range of 2.0 to 6.0 mol and more preferably the range of 2.0 to 4.0 mol can be mentioned.
- the reactions of the present invention are carried out in a solvent. Any solvent can be used for the reactions of the present invention as long as the reactions proceed.
- solvents for the reactions of the present invention include, but are not limited to, amines (such as N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAC), N,N- diethylacetamide, N-methylpyrrolidone (NMP), and the like, preferably N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAC), and N- methylpyrrolidone (NMP), more preferably N,N-dimethylformamide (DMF)) and sulfoxides (such as dimethyl sulfoxide (DMSO)), and the like.
- the solvents may be used in any amount as long as the reactions proceed. Amounts of the solvents for the reactions of the present invention can be adjusted appropriately by a person skilled in the art.
- Reaction temperature of the present invention is not particularly limited. From the viewpoints of improving yield, by-product control, economic efficiency, and the like, the range of -20 to 50°C (minus 20 to plus 50°C), preferable range of -10 to 30°C (minus 10 to plus 30°C) can be mentioned as examples in an embodiment.
- Reaction time of the present invention is not particularly limited. From the viewpoints of improving yield, by-product control, economic efficiency, and the like, the range of 0.5 to 120 hours, preferable range of 1 to 72 hours, more preferable range of 1 to 48 hours, even more preferable range of 1 to 24 hours can be mentioned as examples in an embodiment. However, reaction time of the present invention can be adjusted appropriately by a person skilled in the art.
- compositions of the present invention are provided.
- the compound (1) of the present invention can be used as a safe medicine for mammals (such as humans, monkeys, cats, pigs, horses, cattle, mice, rats, guinea pigs, dogs, rabbits, and the like) as it is or as a pharmaceutical composition mixed with pharmaceutically acceptable carriers according to conventional methods.
- mammals such as humans, monkeys, cats, pigs, horses, cattle, mice, rats, guinea pigs, dogs, rabbits, and the like
- pharmaceutical composition mixed with pharmaceutically acceptable carriers according to conventional methods.
- formulation materials various conventional organic or inorganic substances can be used as formulation materials.
- examples include solid formulations, such as excipients, lubricants, binding agents and disintegrating agents, liquid formulations, such as solvents, solubilizing agents, suspending agents, tonicity agents and buffers, and the like.
- formulation additives such as preservative agents, antioxidant agents, coloring agents, sweetening agents and the like can also be used when necessary.
- oral preparations such as tablets, capsules (including soft capsules and microcapsules), granules, powders, syrups, emulsions, suspensions, sustained-release preparations, and the like, can be mentioned as examples. These can be administered orally and safely. However, they are not limited to these examples, because liquid formulations are also possible.
- the pharmaceutical compositions can be prepared according to conventional methods in technical field of formulation. For example, methods described in The Japanese Pharmacopeia, et al. can be applied.
- the compound (1) of the present invention can be used in many therapeutic and preventive ways.
- the compound (1) of the present invention is used for treatment of extraordinary various diseases which are sensitive to treatment with cytidine analogues or derivatives (such as decitabine or azacytidine).
- the preferable symptoms which can be treated with the compound (1) of the present invention include those accompanying with undesired or uncontrolled cell division, including hematological abnormality, benign tumors, various types of cancers (such as primary and metastatic tumors), restenosis (such as foci in coronary artery, carotid artery and cerebral artery), abnormal stimulation to endothelial cells (atherosclerosis), damage in body tissue caused by surgery, abnormal wound healing, abnormal angiogenesis, diseases causing tissue fibrosis, repetitive dyskinesia, high level angiodysplasia, and productive response followed by organ transplantation.
- hematological abnormality benign tumors, various types of cancers (such as primary and metastatic tumors), restenosis (such as foci in coronary artery, carotid artery and cerebral artery), abnormal stimulation to endothelial cells (atherosclerosis), damage in body tissue caused by surgery, abnormal wound healing, abnormal angiogenesis, diseases causing tissue fibrosis, repetitive dyskinesia, high level
- hematological abnormality abnormal proliferation of hemocyte which may cause dysplasia of blood cells and hematological malignant diseases (such as various types of leukemia) are included.
- hematological malignant diseases such as various types of leukemia
- acute myeloid leukemia acute promyelocytic leukemia
- acute lymphoblastic leukemia acute lymphoblastic leukemia
- chronic myeloid leukemia myelodysplasia
- sickle cell anemia are included. However, they are not limited to these examples.
- hematological abnormality including genetic ones and /or hemoglobinopathy is treated with the compound (1) of the present invention.
- cancers including leukemia, preleukemia, and other myeloma related cancers such as lung cancer accompanying with myelodysplastic syndrome (MDS), and non-small-cell lung cancer (NSCL) can also be treated with the compound (1) of the present invention.
- NSCL may include epidermoid cancer or squamous cell cancer, adenocarcinoma, and large carcinoma.
- MDS may include refractory anemia, refractory anemia having excessive transforming blast cells and myelomonocytic leukemia.
- compositions used in the present invention comprise active ingredients in such effective amounts so that the purposes of treating and/or preventing the symptoms (for example, hematological abnormality (such as sickle cell anemia), MDS and/or cancer (for example, NSCL)) can be achieved.
- symptoms for example, hematological abnormality (such as sickle cell anemia), MDS and/or cancer (for example, NSCL)
- NSCL cancer
- the pharmaceutical compositions used in the present invention are provided as dosage forms for oral administration.
- the pharmaceutical compositions provided in this specification can be provided in solid, semi-solid, or liquid form for oral administrations, including buccal, lingual, and sublingual ones.
- Suitable dosage forms for oral administrations include, but are not limited to, tablets, capsules, pills, troches, medical candies, aromatized formulations, cachets, pellets, medicated chewing gum, granules, bulk powders, foaming formulations, non-foaming powders or granules, solutions, emulsions, suspension liquids, solutions, wafers, sprinkles, elixirs, and syrups.
- the pharmaceutical compositions may contain binders, fillers, diluents, disintegrants, wetting agents, lubricants, glidants, coloring agents, dye-migration inhibitors, sweetening agents, and flavoring agents. Moreover, they can also contain one or more pharmaceutically acceptable carriers or excipients which are not limited to these examples.
- Amounts of the compound (1) in the pharmaceutical compositions or dosage forms of the present invention can be, for example in any one of the ranges of about 1 to 2,000 mg, about 10 to 2,000 mg, about 20 to 2,000 mg, about 50 to 1,000 mg, about 100 to 500 mg, about 150 to 500 mg, or about 150 to 250 mg.
- the compounds of the present invention When using the compounds of the present invention as anticancer agents, their effective dosages can be properly chosen according to character and stage of cancer, therapeutic strategy, extent of metastasis, amount of tumor, body weight, age, sex, background of genetic race of patients, and the like. Pharmaceutically effective dosages are normally determined according to factors such as clinical observation of symptoms, stage of cancer and the like. Regarding the daily dosage, in case of administration to human, the ranges of about 0.01 to 10 mg/kg (about 0.5 to 500 mg for an adult having body weight of 60 kg), preferably about 0.05 to 5 mg/kg, more preferably about 0.1 to 2 mg/kg can be mentioned as examples. In addition, they may be administered at once or multiple times.
- silyl etherified derivatives of 5-azacytidines in carbohydrate moiety obtained above in similar environment with physiological conditions (for example, in PBS solution at 37°C) was investigated.
- those having suitably selected substituents (R 4 , R 5 , and R 6 ) directly with silyl group are hydrolyzed at proper speed to provide the corresponding 5-azacytidines effectively.
- silyl etherified derivatives of 5-azacytidines in carbohydrate moiety which is hydrolyzed at proper speed show inhibitory activity against myeloma (for example, growth inhibition against lymphoblastoma cells).
- silyl etherified derivatives of 5-azacytidines in carbohydrate moiety (referring to formula (1)) of the present invention which have remarkable stability against hydrolytic metabolic enzyme and proper hydrolysis reactivity under physiological conditions can possibly become prodrugs of therapeutic agents for various myeloma including myelodysplastic syndrome.
- silyl etherified derivatives of 5-azacytidines in carbohydrate moiety referring to formula (1)
- their preparation methods experimental details about stability against cytidine deaminase, a metabolic hydrolyzing enzyme, hydrolysis reactivity in PBS solution, and anti myeloma activity are shown as below.
- room temperature refers to about 15 to 30°C.
- 1 H-NMR and 13 C-NMR were conducted with a JNM-ECZ 400R instrument (JEOL), in which CDCl 3 , DMSO-d 6 , or CD 3 OD was used as a solvent, and chemical shifts ( ⁇ ) from tetramethylsilane, an internal standard, are shown in ppm.
- JEOL JNM-ECZ 400R instrument
- ⁇ ⁇
- Other terms used in the specification have the following meanings. s: singlet; d: doublet; t: triplet; m: multiplet; br: broad; br s: broad singlet; J: constant of J-coupling.
- mass determination of each compound was conducted with a Yamazen Smart Flash MS system.
- a suspension of a 5-azacytidines (I) (1 mM) in anhydrous N,N-dimethylformamide (3 mL) was added with imidazole (1.5 mM) and then added dropwise with a corresponding silyl chloride (1.2 mM) in about 10 minutes on an ice bath.
- the mixture was stirred for about 1 to 17 hours while being warmed gradually to room temperature until disappearance of starting material.
- the reaction solution was poured into 50 mL of a mixture of ethyl acetate / saturated saline (2:1) and extracted with ethyl acetate. The extract was washed twice with saturated saline (10 mL) and dried over anhydrous magnesium sulfate.
- a suspension of a 5-azacytidines (I) (1 mM) in anhydrous N, N-dimethylformamide (3 mL) was added with imidazole (2 mM) and then added dropwise with a corresponding silyl chloride (1.5 mM) in about 10 minutes on an ice bath.
- the mixture was stirred for several hours while being warmed gradually to room temperature until disappearance of starting material.
- the reaction solution was poured into 50 mL of a mixture of ethyl acetate / saturated saline (2:1) and extracted with ethyl acetate. The extract was washed twice with saturated saline (10 mL) and dried over anhydrous magnesium sulfate.
- reaction time, separation systems, separation yields and data obtained from instrumental analysis of silyl etherified derivatives of 5-azacytidines in carbohydrate moiety obtained in the investigation are shown as below.
- silyl etherified derivatives of 5-azacytidines in carbohydrate moiety of the present invention are extremely stable against cytidine deaminase.
- 5-azacytidine and 2'-deoxy-5-azacytidine disappeared completely under the above reaction conditions.
- each of the silyl etherified derivatives of 5-azacytidines in carbohydrate moiety (referring to formula (1a)), such as 5'-O-triethylsilyl-5-azacytidine (compound J) was dissolved in 1 mL of acetonitrile. 5 ⁇ L of the solution was added to 100 ⁇ L of 10 mM PBS solution and stirred at 37°C. The reactions were traced by HPLC analysis. As the results, the production of 5-azacytidine was confirmed. Meanwhile, the formation of productions of other catabolites was not confirmed.
- HPLC conditions were same as those in test example 1.
- a prodrug compound as defined in the claims having remarkable stability against cytidine deaminase, a metabolic hydrolyzing enzyme, can be provided to clinical practice potentially in replacement of current injections (5-azacytidine and 2'-deoxy-5-azacytidine) which are clinically used as therapeutic agents for various myeloma including myelodysplastic syndrome.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Diabetes (AREA)
- Hematology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Description
- The present invention relates to a compound which has remarkable stability against cytidine deaminase, a metabolic hydrolyzing enzyme, and can be used as a prodrug of 2'-deoxy-5-azacytidine which is an anti-myeloma agent.
- 5-Azacytidine (also called as azacytidine or by the product name of Vidaza®) and 2'-deoxy-5-azacytidine (also called as decitabine or by the product name of Dacogen®) have following chemical structures, respectively. They are collectively referred to as "azacytidines or 5-azacytidines" in this specification. It has been known that these azacytidines inhibit protein synthesis and some enzymes by incorporating into RNA or DNA during nucleic acid bio-synthesis in frequently dividing cells, and show cytotoxicity (patent documents 1-2 and non patent document 1).
- In the field of anti-oncogene promoter, when incorporating into DNA in cells, the azacytidines combine irreversibly with transferase of DNA methyl group relating to 5-methylation of the cytosine ring in highly risky myelodysplastic syndrome, in which the formation of a large amount of 5-methylated cytosine moiety has been confirmed, and cause enzyme inhibition. As a result, they promote the reactivation of anti-oncogenes and accordingly have been clinically used as therapeutic agents (5-azacytidine or 2'-deoxy-5-azacytidine) showing remarkable effects on highly risky myelodysplastic syndrome (non patent documents 2-3).
- However, each of these azacytidines can be easily inactivated by cytidine deaminase, a metabolic hydrolyzing enzyme in blood and liver (less than 30 minutes of half-life, non patent document 4). As the current clinical situation, they can hardly be used effectively as therapeutic agents for patients with highly risky myelodysplastic syndrome. Accordingly, countermeasures are highly demanded.
- On the other hand, silyl etherification of hydroxy groups can be expected to decrease boiling points of compounds and is applied in the field of analytical chemistry as a pretreatment method of samples for gas chromatography (particularly in case of trimethyl silyl etherification in hydroxy moiety, for example, non patent document 5 and the like). Besides, it can also be used in organic synthetic chemistry as a simple protective method for hydroxy group, since de-silylation is possible in mild conditions (non patent documents 6-11).
- The following examples can be given as application of silyl etherification of hydroxy group. For the purpose of selective introduction of acyl group to 4-amino group of 5-azacytidine, firstly, all of the hydroxy groups in carbohydrate moiety are trimethyl silyl etherified by trimethyl silyl chloride in the presence of triethyl amine or pyridine and the like. Then, 4-amino group is acylated by carboxylic acid anhydride or acid chloride. After that, the protective group of trimethyl silyl in carbohydrate moiety is treated with methanol containing acetic acid or alcohol (non patent documents 12-13).
- In addition, examples of investigation on silyl etherification of hydroxy group in search for prodrugs of pharmaceuticals can be given as follows. Pharmaceuticals can be released under acidic physiological conditions by crosslinkage at dialkyl silyl group between organic polymers having hydroxy groups on surface and pharmaceuticals, such as camptothecin, dasatinib, gemcitabine, and the like which have hydroxy groups in their molecules. It has been shown that they can possibly be used as DDS (drug delivery system) products (non patent document 14). Moreover, it is disclosed that docetaxel, an antitumor agent, can be used as a DDS product, in which docetaxel is released under acidic physiological conditions by becoming nanoparticles according to alkyl silyl etherification at 2'-hydroxy group of docetaxel (non patent document 15).
- However, there are no investigational examples of silyl etherification in carbohydrate moiety in search for prodrugs of 5-azacytidine. Furthermore, there are no examples showing that cytidines become stable against cytidine deaminase, a metabolic hydrolyzing enzyme by silyl etherification of hydroxy group in carbohydrate moiety.
- Regarding silyl etherification of hydroxy group in carbohydrate moiety of cytidines, various alkyl silyl etherifications of hydroxy group in carbohydrate moiety of Ara-C or gemcitabine have been reported. However, the stability and reactivity of these derivatives have not been disclosed and there are no examples of detailed disclosure about their use as chemotherapeutic agents (patent documents 3-4).
- Silylated pyrimidine prodrugs and methods of their use have been previously described (patent document 5). In particular, 2'2'-difluoro-5 -azadeoxycytidine-3',5' ditrimethylsilyl (Example 5, patent document 5) and 2',3',5' tri(trimethylsilyl)-5-azacytidine (NUC025) (Example 6, patent document 5) have been reported.
-
- 1. Specification of
US patent No. 3816619 - 2. Specification of
GE patent No. 1922702 - 3. Specification of
WO 2004/050665 - 4. Specification of
WO 2004/050666 - 5. Specification of
WO 2016/057828 -
- 1. Oncology, 1974, vol. 30, No. 5, p. 405-422.
- 2. Expert Opinion on Pharmacotherapy, 2013, vol. 14, No. 9, p. 1255-1268.
- 3. The Journal of Clinical Investigation, 2014, vol. 124, No. 1, p. 40-46.
- 4. The Journal of Clinical Investigation, 1974, vol. 53, p. 922-931.
- 5. Bunseki, 2008, vol. 7, p. 332-336.
- 6. Journal of American Chemical Society, 1972, vol. 94, p. 6190-6191.
- 7. Tetrahedron Letters, 1981, vol. 22, p. 3455-3458.
- 8. Synthesis, 1996, p. 1031-1069.
- 9. Protective Groups in Organic Synthesis, 1999.
- 10. Tetrahedron, 2004, vol. 60, p. 5833-5871.
- 11. Tetrahedron, 2013, vol. 69, p. 2383-2417.
- 12. Collectin of Czechoslovak Chemical Communication, 1996, vol. 61, S23-S25
- 13. Biochemical and Biophysical Research Communication, 2003, vol. 306, p. 558-563.
- 14. Journal of American Chemical Society, 2012, vol. 134, p. 7978-7982.
- 15. Nano Letters, 2014, vol. 14, No. 3, p. 1472-1476.
- An object of the present invention is to provide derivatives of 2'-deoxy- 5-azacytidine (referring to formula (1)), which have remarkable stability against cytidine deaminase, a metabolic hydrolyzing enzyme, and compounds which can release gradually the corresponding 5-azacytidines under physiological conditions and be used as prodrugs of 2'-deoxy-5-azacytidine which are anti-myeloma agents.
- In order to provide a more useful medicine for treating various myeloma including myelodysplastic syndrome, the present inventors have earnestly undertaken studies on finding novel compounds, which possess both excellent pharmacologic effects to incorporate into nucleic acid bio-synthetic pathway in vivo and excellent physicochemical properties, and have remarkable stability against cytidine deaminase, a metabolic hydrolyzing enzyme. The present inventors have therefore synthesized various silyl etherified derivatives of 5-azacytidines in carbohydrate moiety and investigated their chemical reactivity. As the results, the present inventors found out that a silyl etherified derivative of 5-azacytidines in carbohydrate moiety with specific structure unexpectedly shows excellent properties as a medicine, which shows remarkable stability against cytidine deaminase, a metabolic hydrolyzing enzyme and excellent physicochemical properties, and finally completed the present invention.
- That is, the above problems have been solved by the present invention described in [1] to [14] as below.
- [1] A compound represented by formula (1), or salt thereof,
- [2] The compound according to that described in [1], wherein R4, R5, and R6 are each independently C1 to C8 alkyl group which may have a substituent, C6 to C10 aryl group which may have a substituent or C7 to C14 arylalkyl group which may have a substituent.
- [3] The compound according to that described in [6], wherein C6 to C10 aryl group is phenyl group or naphthyl group.
- [4] The compound according to that described in [6], wherein C7 to C14 arylalkyl group is benzyl group, phenethyl group, or naphthylmethyl group.
- [5] A method for producing the compound, or salt thereof, according that described in [1], which includes reacting 5-azacytidine or 2'-deoxy-5-azacytidine with silyl halide.
- [6] A pharmaceutical composition comprising each of the compounds, or salts thereof, according to those described in [1] to [8].
- [7] The pharmaceutical composition according to that described in [10], which is a growth inhibitor of myeloma cells.
- [8] The pharmaceutical composition according to that described in [10], which is an agent for preventing or treating various myeloma including myelodysplastic syndrome.
- [9] A compound for use in a method of growth inhibition against myeloma cells in mammals, which includes an administration of each of the compounds, or salts thereof, according to those described in [1] to [8] to mammals in an effective amount.
- [10] A compound for use in a method for preventing or treating myeloma including myelodysplastic syndrome in mammals, which includes an administration of each of the compounds, or salts thereof, according to those described in [1] to [4] to mammals in an effective amount.
- According to the present invention, by silyl etherification of hydroxy group of 5-azacytidine or 2'-deoxy-5-azacytidine in carbohydrate moiety, they become highly hydrophobic and therefore can be used in oral administrations. After being absorbed in intestines, they are inserted into frequently dividing tumor cells without being affected by cytidine deaminase, a metabolic hydrolyzing enzyme in blood or liver before gradually being hydrolyzed non-enzymatically under physiological conditions (for example, 37°C and about pH5-7) and free the corresponding 5-azacytidines effectively at a suitable speed. As a result, they inhibit protein synthesis and some enzymes by incorporating into RNA and DNA via nucleic acid bio-synthetic pathway, and show cytotoxicity. On the other hand, they are expected to be used as therapeutic agents for various myelomas including myelodysplastic syndrome.
- The invention is defined in the appended claims. Any disclosure going beyond the scope of said claims in only intended for illustrative purposes.
- Terms used in the specification and claims have following meanings, unless otherwise stated.
- The compound of the present disclosure or salt thereof The compound of the present disclosure is represented by formula (1) as below,
- "Alkyl groups" refer to, unless otherwise limited, saturated aliphatic hydrocarbon groups, such as C1 to C20 straight or branched chains of alkyl groups. Examples include methyl, ethyl, propyl, iso-propyl, butyl, sec-butyl, iso-butyl, tert-butyl, pentyl, hexyl, heptyl, 1-methylhexyl, 5-methylhexyl, 1,1-dimethylpentyl, 2,2-dimethylpentyl, 4,4-dimethylpentyl, 1-ethylpentyl, 2-ethylpentyl, 1,1,3-trimethylbutyl, 1,2,2-trimethylbutyl, 1,3,3-trimethylbutyl, 2,2,3-trimethylbutyl, 2,3,3-trimethylbutyl, 1-propylbutyl, 1,1,2,2-tetramethylpropyl, octyl, 1-methylheptyl, 3-methylheptyl, 6-methylheptyl, 2-ethylhexyl, 5,5-dimethylhexyl, 2,4,4-trimethylpentyl, 1-ethyl-1-methylpentyl, nonyl, 1-methyloctyl, 2-methyloctyl, 3-methyloctyl, 7-methyloctyl, 1-ethylheptyl, 1,1-dimethylheptyl, 6,6-dimethylheptyl, decyl, 1-methylnonyl, 2-methylnonyl, 6-methylnonyl, 1-ethyloctyl, 1-propylheptyl, n-nonyl, n-decyl groups, and the like, preferably, C1 to C6 alkyl groups. Preferable examples of C1 to C8 alkyl groups are methyl, ethyl, propyl, iso-propyl, butyl, sec-butyl, iso-butyl, tert-butyl, pentyl, hexyl, heptyl, 1-methylhexyl, 5-methylhexyl, 1,1-dimethylpentyl, 2,2-dimethylpentyl, 4,4-dimethylpentyl, 1-ethylpentyl, 2-ethylpentyl, 1,1,3-trimethylbutyl, 1,2,2-trimethylbutyl, 1,3,3-trimethylbutyl, 2,2,3-trimethylbutyl, 2,3,3-trimethylbutyl, 1-propylbutyl, 1,1,2,2-tetramethylpropyl, octyl groups.
- "Aryl groups" refer to monocyclic or bicyclic aromatic hydrocarbons, preferably C6 to C10 aryl groups, such as phenyl and naphthyl groups, and the like, more preferably phenyl group.
- "Arylalkyl groups" refer to alkyl groups which are substituted by aryl groups, preferably phenyl C1 to C6 alkyl groups. The examples of phenyl C1 to C6 alkyl groups include, but are not limited to, benzyl, 1-phenylethyl, 2-phenylethyl, 3-phenylpropyl, 4-phenylbutyl, 5-phenylpentyl, 6-phenylhexyl groups.
- "Alkyl group which may have a substituent, aryl group which may have a substituent or arylalkyl group which may have a substituent" means that silyl may have substituent or may not have substituent. In case of having substituent, its number may be 1 to 5, preferably 1 to 3 at any viable position of the alkyl, aryl, or arylalkyl groups. When the number of substituents is 2 or more, the substituents may be the same or different. Examples of the substituents include alkyl groups, halogen atoms, cyano group, nitro group, and the like. Preferable examples include alkyl groups or halogen.
- "Halogen atoms" refer to fluorine, chlorine, bromine, or iodide atoms and the like. Preferable examples are fluorine and chlorine atoms.
- Salts of the compound (1) of the present invention may be any salts as long as they are pharmaceutically acceptable. Their examples include, but are not limited to, acid added salts including inorganic salts (for example, hydrochloride, sulfate, hydrobromide, phosphate, and the like) and organic salts (for example, acetate, trifluoroacetate, succinate, maleate, fumarate, propionate, citrate, tartrate, lactate, oxalate, methane sulfonate, p-toluene sulfonate).
- The compound (1) of the present invention may be crystal. It can be in single crystalline form or a mixture of multiple crystalline forms. Crystals can be prepared by crystallization according to conventional methods.
- In addition, the compound (1) of the present invention may be a solvate (for example, hydrate and the like). Both solvates and non-solvates (for example, non-hydrate) are included in the compound (1).
- The compound (1) of the present invention can be prepared according to, for example following methods or other similar ones (For example, the silyl etherification methods disclosed in Corey, E.J. et al., J. Am. Chem. Soc., 94, 6190, 1972; Morita, T. et al., Tetrahedron Lett., 21, 835, 1980; Y. Kita, et al., Tetrahedron Lett., 4311, 1979 etc., and Lalonde, M., Chan, T. H., Synthesis, 817-845, 1985 etc. as reviews).
- The compound (1), or salt thereof, can be prepared according to conventional methods or their similar ones. For example, commercially available 5-azacytidine or 2'-deoxy-5- azacytidine is reacted with a silylhalide compound in an appropriate solvent and presence of a base. As target compound, a silyl etherified derivative of 5-azacytidines in carbohydrate moiety can be obtained.
- The kind of silylhalide compounds is not particularly limited. Any silylhalide used in the art can be used for the methods of the present invention. For examples, trialkylsilylhalide, monoalkyldiarylsilylhalide, triarylsilylhalide compounds, and the like can be used. If a silylhalide compound has alkyl groups, for example, methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, iso-butyl, or tert-butyl groups and the like can be used as alkyl groups. Among them, methyl or ethyl group are preferable. If a silylhalide compound has aryl groups, phenyl group, and the like can be used. As halogen atoms which form the silylhalide compounds, chlorine, bromine, or iodine atoms, preferably chlorine atom can be used. More specific examples of silylhalide compounds include trimethylsilylchloride (which is also called as trimethylchlorosilane. The same applies to the following compounds.), triethylsilylchloride, tert-butyldimethylsilylchloride, tert-butyldiphenylsilylchloride, triphenylsilylchloride.
- The bases used include organic and inorganic bases. Examples of organic bases include, but are not limited to, triethylamine, N,N-diisopropylethylamine, imidazole, pyridine, 4-dimethylaminopyridine (DMAP), n-butyl lithium, and potassium tert-butoxide, preferably, imidazole and pyridine. Examples of inorganic bases include, but are not limited to, sodium hydride, sodium carbonate, sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate, or cesium carbonate. Amounts of the bases used are preferably more than 1 mol or more of that of the starting material. Furthermore, normally the range of 1.0 to 10.0 mol based on 1 mol of the starting material; preferably the range of 2.0 to 6.0 mol and more preferably the range of 2.0 to 4.0 mol can be mentioned.
- From the viewpoints of smooth progress of reactions and the like, it is preferred that the reactions of the present invention are carried out in a solvent. Any solvent can be used for the reactions of the present invention as long as the reactions proceed.
- Examples of the solvents for the reactions of the present invention include, but are not limited to, amines (such as N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAC), N,N- diethylacetamide, N-methylpyrrolidone (NMP), and the like, preferably N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAC), and N- methylpyrrolidone (NMP), more preferably N,N-dimethylformamide (DMF)) and sulfoxides (such as dimethyl sulfoxide (DMSO)), and the like. The solvents may be used in any amount as long as the reactions proceed. Amounts of the solvents for the reactions of the present invention can be adjusted appropriately by a person skilled in the art.
- Reaction temperature of the present invention is not particularly limited. From the viewpoints of improving yield, by-product control, economic efficiency, and the like, the range of -20 to 50°C (minus 20 to plus 50°C), preferable range of -10 to 30°C (minus 10 to plus 30°C) can be mentioned as examples in an embodiment.
- Reaction time of the present invention is not particularly limited. From the viewpoints of improving yield, by-product control, economic efficiency, and the like, the range of 0.5 to 120 hours, preferable range of 1 to 72 hours, more preferable range of 1 to 48 hours, even more preferable range of 1 to 24 hours can be mentioned as examples in an embodiment. However, reaction time of the present invention can be adjusted appropriately by a person skilled in the art.
- The compound (1) of the present invention can be used as a safe medicine for mammals (such as humans, monkeys, cats, pigs, horses, cattle, mice, rats, guinea pigs, dogs, rabbits, and the like) as it is or as a pharmaceutical composition mixed with pharmaceutically acceptable carriers according to conventional methods.
- Regarding the said pharmaceutically acceptable carriers, various conventional organic or inorganic substances can be used as formulation materials. Examples include solid formulations, such as excipients, lubricants, binding agents and disintegrating agents, liquid formulations, such as solvents, solubilizing agents, suspending agents, tonicity agents and buffers, and the like. Furthermore, formulation additives such as preservative agents, antioxidant agents, coloring agents, sweetening agents and the like can also be used when necessary.
- Regarding dosage forms of the pharmaceutical compositions, oral preparations such as tablets, capsules (including soft capsules and microcapsules), granules, powders, syrups, emulsions, suspensions, sustained-release preparations, and the like, can be mentioned as examples. These can be administered orally and safely. However, they are not limited to these examples, because liquid formulations are also possible.
- The pharmaceutical compositions can be prepared according to conventional methods in technical field of formulation. For example, methods described in The Japanese Pharmacopeia, et al. can be applied.
- The compound (1) of the present invention can be used in many therapeutic and preventive ways. In a preferable embodiment, the compound (1) of the present invention is used for treatment of extraordinary various diseases which are sensitive to treatment with cytidine analogues or derivatives (such as decitabine or azacytidine). The preferable symptoms which can be treated with the compound (1) of the present invention include those accompanying with undesired or uncontrolled cell division, including hematological abnormality, benign tumors, various types of cancers (such as primary and metastatic tumors), restenosis (such as foci in coronary artery, carotid artery and cerebral artery), abnormal stimulation to endothelial cells (atherosclerosis), damage in body tissue caused by surgery, abnormal wound healing, abnormal angiogenesis, diseases causing tissue fibrosis, repetitive dyskinesia, high level angiodysplasia, and productive response followed by organ transplantation.
- Regarding hematological abnormality, abnormal proliferation of hemocyte which may cause dysplasia of blood cells and hematological malignant diseases (such as various types of leukemia) are included. As the examples, acute myeloid leukemia, acute promyelocytic leukemia, acute lymphoblastic leukemia, chronic myeloid leukemia, myelodysplasia, and sickle cell anemia are included. However, they are not limited to these examples.
- In several embodiments, hematological abnormality including genetic ones and /or hemoglobinopathy (such as sickle cell anemia) is treated with the compound (1) of the present invention. In some other embodiments, cancers including leukemia, preleukemia, and other myeloma related cancers, such as lung cancer accompanying with myelodysplastic syndrome (MDS), and non-small-cell lung cancer (NSCL) can also be treated with the compound (1) of the present invention. NSCL may include epidermoid cancer or squamous cell cancer, adenocarcinoma, and large carcinoma. MDS may include refractory anemia, refractory anemia having excessive transforming blast cells and myelomonocytic leukemia.
- The pharmaceutical compositions used in the present invention comprise active ingredients in such effective amounts so that the purposes of treating and/or preventing the symptoms (for example, hematological abnormality (such as sickle cell anemia), MDS and/or cancer (for example, NSCL)) can be achieved.
- The pharmaceutical compositions used in the present invention are provided as dosage forms for oral administration. The pharmaceutical compositions provided in this specification can be provided in solid, semi-solid, or liquid form for oral administrations, including buccal, lingual, and sublingual ones. Suitable dosage forms for oral administrations include, but are not limited to, tablets, capsules, pills, troches, medical candies, aromatized formulations, cachets, pellets, medicated chewing gum, granules, bulk powders, foaming formulations, non-foaming powders or granules, solutions, emulsions, suspension liquids, solutions, wafers, sprinkles, elixirs, and syrups. In addition to the active ingredient(s), the pharmaceutical compositions may contain binders, fillers, diluents, disintegrants, wetting agents, lubricants, glidants, coloring agents, dye-migration inhibitors, sweetening agents, and flavoring agents. Moreover, they can also contain one or more pharmaceutically acceptable carriers or excipients which are not limited to these examples.
- Amounts of the compound (1) in the pharmaceutical compositions or dosage forms of the present invention can be, for example in any one of the ranges of about 1 to 2,000 mg, about 10 to 2,000 mg, about 20 to 2,000 mg, about 50 to 1,000 mg, about 100 to 500 mg, about 150 to 500 mg, or about 150 to 250 mg.
- When using the compounds of the present invention as anticancer agents, their effective dosages can be properly chosen according to character and stage of cancer, therapeutic strategy, extent of metastasis, amount of tumor, body weight, age, sex, background of genetic race of patients, and the like. Pharmaceutically effective dosages are normally determined according to factors such as clinical observation of symptoms, stage of cancer and the like. Regarding the daily dosage, in case of administration to human, the ranges of about 0.01 to 10 mg/kg (about 0.5 to 500 mg for an adult having body weight of 60 kg), preferably about 0.05 to 5 mg/kg, more preferably about 0.1 to 2 mg/kg can be mentioned as examples. In addition, they may be administered at once or multiple times.
- The stability of silyl etherified derivatives of 5-azacytidins in carbohydrate moiety obtained above was investigated in the presence of cytidine deaminase. As a result, among the derivatives of the present invention, each of those which have 5'-silyl ether group (R1 is tri substituted silyl group in formula (1)) was fond to be remarkable stable in the presence of cytidine deaminase. It was confirmed that these 5-azacytidine-5'-silyl etherified derivatives hardly hydrolyze by cytidine deaminase, an enzyme existing in blood or liver. On the other hand, 5'-hydroxy forms of 5-azacytidine or 2'-deoxy-5-azacytidine (referring to formula (1)) decompose within 30 minutes under the above conditions.
- In addition, the stability of silyl etherified derivatives of 5-azacytidines in carbohydrate moiety obtained above (referring to formula (1)) in similar environment with physiological conditions (for example, in PBS solution at 37°C) was investigated. As the result, it has been confirmed that among the derivatives of the present invention, those having suitably selected substituents (R4, R5, and R6) directly with silyl group are hydrolyzed at proper speed to provide the corresponding 5-azacytidines effectively. Additionally, it has also been confirmed that silyl etherified derivatives of 5-azacytidines in carbohydrate moiety which is hydrolyzed at proper speed show inhibitory activity against myeloma (for example, growth inhibition against lymphoblastoma cells).
- Therefore, the silyl etherified derivatives of 5-azacytidines in carbohydrate moiety (referring to formula (1)) of the present invention which have remarkable stability against hydrolytic metabolic enzyme and proper hydrolysis reactivity under physiological conditions can possibly become prodrugs of therapeutic agents for various myeloma including myelodysplastic syndrome.
- Regarding the silyl etherified derivatives of 5-azacytidines in carbohydrate moiety (referring to formula (1)), their preparation methods, experimental details about stability against cytidine deaminase, a metabolic hydrolyzing enzyme, hydrolysis reactivity in PBS solution, and anti myeloma activity are shown as below.
- Examples The examples provided below further illustrate the present invention. It is to be understood that the scope of the present invention is not limited in any way by the scope of the following examples.
- In following examples, room temperature refers to about 15 to 30°C. The determinations of 1H-NMR and 13C-NMR were conducted with a JNM-ECZ 400R instrument (JEOL), in which CDCl3, DMSO-d6, or CD3OD was used as a solvent, and chemical shifts (δ) from tetramethylsilane, an internal standard, are shown in ppm. Other terms used in the specification have the following meanings. s: singlet; d: doublet; t: triplet; m: multiplet; br: broad; br s: broad singlet; J: constant of J-coupling. In addition, mass determination of each compound was conducted with a Yamazen Smart Flash MS system.
-
- A suspension of a 5-azacytidines (I) (1 mM) in anhydrous N,N-dimethylformamide (3 mL) was added with imidazole (1.5 mM) and then added dropwise with a corresponding silyl chloride (1.2 mM) in about 10 minutes on an ice bath. The mixture was stirred for about 1 to 17 hours while being warmed gradually to room temperature until disappearance of starting material. The reaction solution was poured into 50 mL of a mixture of ethyl acetate / saturated saline (2:1) and extracted with ethyl acetate. The extract was washed twice with saturated saline (10 mL) and dried over anhydrous magnesium sulfate. After insoluble materials were removed by suction, the extract was concentrated to dryness under reduced pressure. The oily residue obtained was separated and purified with a silica gel column (Yamazen Smart Flash MS system) and as a white powder, a 5'-silyl etherified derivative of 5-azacytidines, (a compound, wherein in formula (1a), R is a hydroxy group or a hydrogen atom, R1 is trisubstituted silyl group.), being a target compound, was obtained. This is referred to as synthetic method A hereafter.
-
- A suspension of a 5-azacytidines (I) (1 mM) in anhydrous N, N-dimethylformamide (3 mL) was added with imidazole (2 mM) and then added dropwise with a corresponding silyl chloride (1.5 mM) in about 10 minutes on an ice bath. The mixture was stirred for several hours while being warmed gradually to room temperature until disappearance of starting material. The reaction solution was poured into 50 mL of a mixture of ethyl acetate / saturated saline (2:1) and extracted with ethyl acetate. The extract was washed twice with saturated saline (10 mL) and dried over anhydrous magnesium sulfate. After insoluble materials were removed by suction, the extract was concentrated to dryness under reduced pressure. The oily residue obtained was separated and purified with a silica gel column (Yamazen Smart Flash MS system) and as a white powder, a 3',5'-di (silyl etherified derivative of 5-azacytidines (a compound, wherein in formula (1b), R is a hydroxy group or a hydrogen atom, R1 and R2 are trisubstituted silyl groups.), being a target compound, was obtained. This is referred to as synthetic method B hereafter.
-
- A suspension of 5-azacytidine (1 mM) in anhydrous N,N-dimethylformamide (2 mL) was added with imidazole (4 mM) and then added dropwise with a corresponding silyl chloride (3.5 mM) in about 10 minutes on an ice bath. The mixture was stirred for several hours while being warmed gradually to room temperature until disappearance of starting material. The reaction solution was poured into 50 mL of a mixture of ethyl acetate / saturated saline (2:1) and extracted with ethyl acetate. The extract was washed twice with saturated saline (10 mL) and dried over anhydrous magnesium sulfate. After insoluble materials were removed, the extract was concentrated to dryness under reduced pressure. The oily residue obtained was separated and purified with a silica gel column (Yamazen Smart Flash MS system) and as a white powder, a 2',3',5'-tri silyl etherified derivative of 5-azacytidines (a compound, wherein formula (1c), R1, R2 and R3 are trisubstituted silyl groups.), being a target compound, was obtained. This is referred to as synthetic method C hereafter.
- The reaction time, separation systems, separation yields and data obtained from instrumental analysis of silyl etherified derivatives of 5-azacytidines in carbohydrate moiety obtained in the investigation are shown as below.
- in the following examples the compounds marked with "*" are not part of the invention.
- 1H-NMR (400MHz, CDCl3) δ: 8.53 (s, 1H), 6.20 (br, 1H), 5.81 (d, J= 3.2Hz, 1H), 5.69 (br, 1H), 5.30 (br, 1H), 4.38 (s, 1H), 4.25 (s, 2H), 3.87 (d, J= 10.8Hz, 1H), 3.72 (d, J= 10.8Hz, 1H), 3.45 (br, 1H), and 0.09 (s, 9H) ppm.
13C-NMR (CDCl3) δ: 166.7, 155.9, 155.5, 93.3, 87.8, 78.1, 72.6, 62.1, and -0.82 ppm.
Mass: 317.2 (M++1) (calcd. for C11H20N4O5Si, MW= 316.39). - 1H-NMR (400MHz, CD3OD) δ: 8.66 (s, 1H), 6.13 (t, J= 6.0Hz, 1H), 4.35-4.42 (m, 1H), 3.67-4.02 (m, 9H), 2.34-2.50 (m, 1H), 2.20-2.32 (m, 1H), and 0.14 (s, 9H) ppm.
13C-NMR (CDCl3) δ: 166.3, 156.0, 154.1, 87.6, 86.8, 71.6, 62.3, 42.6, and 0.1 ppm.
Mass: 301.3 (M++1) (calcd. for C11H20N4O4Si, MW= 300.13.) - 1H-NMR (400MHz, CDCl3) δ: 8.56 (s, 1H), 6.61 (br, 1H), 5.94 (br, 1H), 5.83 (d, J= 4.0Hz, 1H), 4.31-4.34 (m, 1H), 4.23-4.28 (m, 2H), 3.91 (dd, J= 11.6 and 2.4Hz, 1H), 3.74 (dd, J= 11.6 and 2.4Hz, 1H), 0.92 (t, J= 8.0Hz, 3H), 0.56 (t, J= 8.0Hz, 2H), 0.09 (s, 3H), and 0.08 (s, 3H) ppm.
13C-NMR (CDCl3) δ: 166.5, 155.7, 155.6, 92.8, 87.3, 72.0, 62.0, 7.6, 6.6, and -3.03 ppm.
Mass: 331.2 (M++1) (calcd. for C12H22N4O5Si, MW= 330.41). - 1H-NMR (400MHz, CDCl3) δ: 8.56 (s, 1H), 6.81 (br, 1H), 6.08 (br, 1H), 5.85 (d, J= 3.6Hz, 1H), 5.62 (br, 1H), 4.31-4.33 (m, 1H), 4.24-4.28 (m, 2H), 3.92 (dd, J= 11.6 and 2.4Hz, 1H), 3.76 (dd, J= 11.6 and 2.4Hz, 1H), 3.72 (br, 1H), 0.93 (d, J= 6.8Hz, 6H), 0.79-0.88 (m, 1H), 0.07 (s, 3H), and 0.06 (s, 3H) ppm.
13C-NMR (CDCl3) δ: 166.4, 155.6, 155.4, 92.4, 87.0, 71.7, 62.2, 16.8, 16.7, 14.1, -4.7, and -4.8 ppm.
Mass: 345.2 (M++1) (calcd. for C13H24N4O5Si, MW= 344.44). - 1H-NMR (400MHz, CDCl3) δ: 8.50 (s, 1H), 6.32 (br, 1H), 5.81 (d, J= 3.6Hz, 1H), 5.76 (br, 1H), 5.45 (br, 1H), 4.35 (d, J= 2.0Hz, 1H), 4.24-4.29 (m, 2H), 3.93 (dd, J= 12.0 and 2.4Hz, 1H), 3.78 (dd, J= 12.0 and 2.0Hz, 1H), 3.54 (br, 1H), 0.86 (s, 9H), and 0.06 (s, 6H) ppm.
13C-NMR (CDCl3) δ: 167.2, 156.4, 156.0, 93.6, 88.2, 78.1, 72.8, 63.7, 26.5, 18.9, -5.0, and -5.1 ppm.
Mass: 359.2 (M++1) (calcd. for C14H26N4O5Si, MW= 358.47). - 1H-NMR (400MHz, CDCl3) δ: 8.45 (s, 1H), 7.19-7.25 (m, 2H). 7.06-7.10 (m, 1H). 6.98-7.00 (m, 2H). 6.18 (br, 1H), 5.77 (d, J= 4.0Hz, 1H), 5.67 (br, 1H), 5.27 (br, 1H), 4.31-4.32 (m, 1H), 4.10-4.16 (m, 2H), 3.84 (dd, J= 8.0 and 2.4Hz, 1H), 3.68 (dd, J= 11.6 and 1.6Hz, 1H), 3.38 (br, 1H), 2.16 (s, 2H), 0.12 (s, 3H), and 0.11 (s, 3H) ppm.
13C-NMR (CDCl3) δ: 166.6, 155.9, 155.4, 138.1, 128.5, 128.3, 124.7, 93.1, 87.5, 72.3, 62.5, 26.3, -2.53, and -2.58 ppm.
Mass: 393.2 (M++1) (calcd. for C17H24N4O5Si, MW= 392.48). - 1H-NMR (400MHz, CD3OD) δ: 8.78 (s, 1H), 5.79 (d, J= 1.6Hz, 1H), 4.13-4.19 (m, 2H), 4.07 (dt, J= 6.8 and 2.0Hz, 1H), 4.03 (dd, J= 12.0 and 2.4Hz, 1H), 3.82 (dd, J= 12.0 and 2.0Hz, 1H), 1.22-1.42 (m, 8H), 0.86-0.93 (m, 4H), 0.62-0.72 (m, 3H), 0.15 (s, 6H), and 0.14-0.18 (m, 2H) ppm.
13C-NMR (CD3OD) δ: 156.6, 156.0, 155.2, 90.8, 84.1, 75.2, 68.5, 60.5, 33.2, 31.8, 29.1, 29.0, 22.9, 22.4, 15.5, 13.1, -3.6, and -3.7 ppm.
Mass: 415.4 (M++1) (calcd. for C18H34N4O5Si, MW= 414.23). - 1H-NMR (400MHz, CD3OD) δ: 8.65 (s, 1H), 6.12 (t, J= 5.6Hz, 1H), 4.34-4.37 (m, 1H), 4.00-4.02 (m, 1H), 3.91-3.95 (m, 1H), 3.76-3.79 (m, 1H), 2.45 (ddd, J= 13.6, 6.4, and 4.4Hz, 1H), 2.24 (m, 1H), 1.27-1.34 (m, 8H), 0.87-0.89 (m, 4H), 0.61-0.63 (m, 3H), and 0.12 (s, 6H).
13C-NMR (CD3OD) δ: 156.2, 155.8, 155.1, 87.9, 86.7, 70.5, 61.8, 41.6, 33.2, 31.8, 29.1, 22.4, 15.6, 13.1, -1.38, -2.96, -3.73, and -3.83 ppm.
Mass: 399.3 (M++1) (calcd. for C18H34N4O4Si, MW= 398.23). - 1H-NMR (400MHz, CD3OD) δ: 8.63 (s, 1H), 7.69-7.72 (m, 4H), 7.38-7.47 (m, 6H), 5.81 (d, J= 2.4Hz, 1H), 4.32 (dd, J= 7.2 and 5.2Hz, 1H), 4.23 (dd, J= 5.2 and 2.4Hz, 1H), 4.03-4.09 (m, 2H), 3.82 (dd, J= 11.6 and 2.8Hz, 1H), and 1.08 (s, 9H) ppm.
13C-NMR (CD3OD) δ: 166.4, 155.5, 155.0, 135.4, 135.2, 132.5, 132.3, 129.6, 127.5, 90.8, 83.9, 74.7, 68.7, 62.5, and 26.0 ppm.
Mass: 483.4 (M++1) (calcd. for C24H30N4O5Si, MW= 482.60). - 1H-NMR (400MHz, CD3OD) δ: 8.77 (s, 1H), 5.80 (d, J= 2.0Hz, 1H), 4.22 (dd, J= 6.8 and 4.8Hz, 1H), 4.15 (dd, J= 4.8 and 2.0Hz, 1H), 4.03-4.10 (m, 2H), 3.85 (dd, J= 11.6 and 2.0Hz, 1H), 1.00 (t, J= 8.4Hz, 9H), and 0.67-0.74 (m, 6H) ppm.
13C-NMR (CD3OD) δ: 163.0, 152.3, 151.5, 87.1, 80.4, 71.6, 64.7, 57.1, 2.07, and 0.00 ppm.
Mass: 359.2 (M++1) (calcd. for C14H26N4O5Si, MW= 358.47). - 1H-NMR (400MHz, CDCl3) δ: 8.62 (s, 1H), 6.26 (t, J= 6.0Hz, 1H), 6.25 (br, 1H), 5.58 (br, 1H), 4.47-4.51 (m, 1H), 4.09-4.11 (m, 1H), 3.93 (dd, J= 10.8 and 2.4Hz, 1H), 3.82 (dd, J= 11.6 and 2.0Hz, 1H), 2.64-2.70 (m, 1H), 2.66 (br, 1H), 2.23 (dt, J= 12.0 and 6.4Hz, 1H), 0.96 (t, J= 8.0Hz, 9H), and 0.63 (t, J= 8.0Hz, 6H) ppm.
13C-NMR (CDCl3) δ: 166.3, 156.0, 154.1, 87.6, 86.8, 71.6, 62.3, 42.6, 6.7, and 4.1 ppm.
Mass: 343.3 (M++1) (calcd. for C14H26N4O4Si, MW= 342.47). - 1H-NMR (400MHz, CDCl3) δ: 8.56 (s, 1H), 7.04 (br, 1H), 6.21 (br, 1H), 5.85 (d, J= 2.8Hz, 1H), 5.70 (br, 1H), 4.28 (s, 3H), 3.98 (d, J= 11.2Hz, 1H), 3.81 (d, J= 11.2Hz, 1H), 3.79 (br, 1H), 0.93-0.99 (m, 13H), and 0.61-0.65 (m, 4H) ppm.
13C-NMR (CDCl3) δ: 166.4, 155.6, 155.5, 92.2, 87.0, 71.5, 62.5, 17.3, 17.2, 12.5, 7.0, 3.0, and 2.9 ppm.
Mass: 373.3 (M++1) (calcd. for C15H28N4O5Si, MW= 372.49). - 1H-NMR (400MHz, CDCl3) δ: 8.69 (s, 1H), 6.17 (dd, J= 6.4 and 4.4Hz, 1H), 5.89 (br s, 1H), 5.44 (br s, 1H), 4.36 (q, J= 5.6Hz, 1H), 3.94-3.96 (m, 1H), 3.88 (dd, J= 11.6 and 2.8Hz, 1H), 3.71 (dd, J= 12.0 and 2.4Hz), 2.50 (q, J= 6.8Hz, 1H), 2.17-2.23 (m, 1H), 0.16 (s, 9H), and 0.12 (s, 9H) ppm.
13C-NMR (CDCl3) δ: 166.4, 156.2, 154.0, 87.6, 86.6, 69.7, 60.8, 42.2, 0.10, and -0.69ppm.
Mass: 373.3 (M++1) (calcd. for C14H28N4O4Si2, MW= 372.16.) - 1H-NMR (400MHz, CD3OD) δ: 8.61 (s, 1H), 6.10 (t, J= 5.2Hz, 1H), 4.46 (dd, J= 10.0 and 4.8Hz, 1H), 3.97 (dd, J= 6.4 and 2.8Hz, 1H), 3.88 (dd, J= 11.6 and 3.2Hz. 1H), 3.76 (dd, J= 11.2 and 2.4Hz, 1H), 2.41 (dt, J= 13.6 and 6.0Hz, 1H), 2.24 (dt, J= 13.6 and 5.6Hz, 1H), 1.29-1.34 (m, 24H), 0.87-0.91 (m, 6H), 0.61-0.68 (m, 4H), 0.14 (s, 6H), and 0.12 (s, 6H) ppm.
13C-NMR δ: 166.7, 155.8, 155.0, 88.0, 86.5, 70.8, 61.2, 41.6, 33.3, 31.8, 29.16, 29.12, 29.11, 23.0, 22.9, 22.4, 16.0, 15.6, 13.2, -.2.78, -2.89, -3.57, and -3.75 ppm.
Mass: 569.5 (M++1) (calcd. for C28H56N4O4Si2, MW= 568.38). - 1H-NMR (400MHz, CDCl3) δ: 8.58 (s, 1H), 6.43 (br, 1H), 5.92 (d, J= 3.2Hz, 1H), 5.58 (br, 1H), 4.34 (t, J= 5.2Hz, 1H), 4.12 (br, 1H), 4.08 (dt, J= 6.0 and 2.0Hz, 1H), 3.98 (dd, J= 11.6 and 2.4Hz, 1H), 3.75 (dd, J= 11.2 and 2.4Hz, 1H), 3.09 (br, 1H), 0.97 (dt, J= 8.0 and 5.2Hz, 18H), and 0.61-0.70 (m, 12H) ppm.
13C-NMR (CDCl3) δ: 166.2, 156.1, 154.0, 90.3, 84.9, 76.0, 70.2, 61.1, 6.73, 6.64, 4.62, and 4.10 ppm.
Mass: 473.4 (M++1) (calcd. for C20H40N4O5Si2, MW= 472.73). - 1H-NMR (400MHz, CDCl3) δ: 8.67 (s, 1H), 6.19 (dd, J= 6.4 and 4.8Hz, 1H), 5.61 (br, 1H), 5.38 (br, 1H), 4.41 (q, J= 4.8Hz, 1H), 3.96-3.98 (m, 1H), 3.91 (dd, J= 11.6 and 2.8Hz, 1H), 3.76 (dd, J= 11.6 and 2.0Hz, 1H), 2.51 (dt, J= 13.2 and 6.0Hz, 1H), 2.15-2.21 (m, 1H), 0.92-0.99 (m, 18H), and 0.56-0.68 (m, 12H) ppm.
13C-NMR (CDCl3) δ: 166.4, 156.2, 154.0, 88.0, 86.6, 70.2, 61.5, 42.7, 6.8, 4.7, and 4.2 ppm.
Mass: 457.4 (M++1) (calcd. for C20H40N4O4Si2, MW= 456.73). - 1H-NMR (400MHz, CDCl3) δ: 8.82 (s, 1H), 6.23 (br, 1H), 5.70 (s, 1H), 5.49 (br, 1H), 4.09-4.16 (m, 3H), 4.01 (dd, J= 12.0 and 1.2Hz, 1H), 3.70 (dd, J= 11.6 and 1.2Hz, 1H), 0.20 (s, 9H), 0.19 (s, 9H), and 0.13 (s, 9H) ppm.
13C-NMR (CDCl3) δ: 166.5, 156.4, 153.9, 91.2, 82.7, 76.4, 68.3, 59.3, 0.4, 0.2, and -0.7 ppm.
Mass: 461.3 (M++1) (calcd. for C17H36N4O5Si3, MW 460.75). - 1H-NMR (400MHz, CDCl3) δ: 8.80 (s, 1H), 6.27 (br, 1H), 5.71 (d, J= 0.8Hz, 1H), 5.49 (br, 1H), 4.08-4.16 (m, 3H), 4.01 (dd, J= 12.0 and 0.8Hz, 1H), 3.72 (dd, J= 11.6 and 0.8Hz, 1H), 0.90-1.01 (m, 9H), 0.57-0.74 (m, 6H), 0.19 (s, 3H), 0.16 (s, 9H), 0.10 (s, 3H), and 0.09 (s, 3H) ppm.
13C-NMR (CDCl3) δ: 166.5, 156.3, 153.9, 91.1, 82.8, 68.4, 59.6, 8.6, 8.3, 7.7, 6.8, -1.8, -1.9, -2.1, -2.8, and -3.0 ppm.
Mass: 503.4 (M++1) (calcd. for C20H42N4O5Si3, MW= 502.83). - 1H-NMR (400MHz, CDCl3) δ: 8.76 (s, 1H), 6.68 (br, 1H), 5.71 (d, J= 1.2Hz, 1H), 5.55 (br, 1H), 4.09-4.17 (m, 3H), 4.03 (d, J= 12.0Hz, 1H), 3,74 (d, J= 11.6Hz, 1H), 0.92-1.02 (m, 21H), 0.18 (s, 3H), 0.14 (s, 3H), 0.12 (s, 3H), 0.11 (s, 3H), and 0.07 (s, 6H) ppm.
13C-NMR (CDCl3) δ: 166.5, 156.2, 153.9, 90.9, 83.0, 76.4, 68.7, 59.9, 17.0, 16.9, 14.9, 14.6, 14.3, -3.4, -3.5, -3.9, -4.1, -4.5, and -4.8 ppm.
Mass: 545.4 (M++1) (calcd. for C23H48N4O5Si3, MW= 544.91). - 1H-NMR (400MHz, CDCl3) δ: 8.73 (s, 1H), 6.46 (br, 1H), 5.73 (d, J= 2Hz, 1H), 5.45 (br, 1H), 4.17 (dd, J= 3.6 and 1.6Hz, 1H), 4.06-4.13 (m, 3H), 3.80 (d, J= 1.2Hz, 0.5H), 3.77 (d, J= 1.6Hz, 0.5H), 0.96 (s, 9H), 0.91 (s, 9H), 0.89 (s, 9H), 0.21 (s, 3H), 0.15 (s, 3H), 0.13 (s, 3H), 0.11 (s, 3H), and 0.06 (s, 3H) ppm.
13C-NMR (CDCl3) δ: 171.9, 161.7, 159.4, 95.9, 88.7, 81.5, 74.6, 66.3, 31.7, 31.4, 24.2, 23.6, 23.5, 1.45, 1.31, 0.52, 0.44, and 0.22 ppm.
Mass: 587.5 (M++1) (calcd. for C26H54N4O5Si3, MW= 586.99). - 1H-NMR (400MHz, CDCl3) δ: 8.78 (s, 1H), 5.87 (br, 1H), 5.73 (d, J= 1.2Hz, 1H), 4.10-4,17 (m, 3H), 4.04 (dd, J= 11.6 and 1.6Hz, 1H), 3.77 (dd, J= 11.6 and 1.2Hz, 1H), 0.92-1.01 (m, 27H), and 0.57-0.78 (m, 18H) ppm.
13C-NMR (CDCl3) δ: 166.4, 156.3, 153.8, 90.6, 83.0, 76.4, 68.8, 60.2, 6.82, 6.80, 6.74, 4.80, 4.75, and 4.07 ppm.
Mass: 587.5 (M++1) (calcd. for C26H54N4O5Si3, MW= 586.99). - 1H-NMR (400MHz, CDCl3) δ: 8.76 (s, 1H), 6.38 (br, 1H), 5.75 (d, J= 2.0Hz, 1H), 5.47 (br, 1H), 4.07-4.22 (m, 4H), 3.81 (d, J= 10.4Hz, 1H), 0.94-1.05 (m, 36H), and 0.63-0.76 (m, 15H) ppm.
13C-NMR (CDCl3) δ: 166.4, 156.4, 153.9, 90.3, 83.2, 69.3, 60.6, 17.4, 17.3, 13.1, 13.0, 12.4, 7.2, 7.1, 7.0, 3.9, 3.8, 3.7, 3.0, and 2.8 ppm.
Mass: 629.5 (M++1) (calcd. for C29H60N4O5Si3, MW= 629.07). - 200 mg of compound U (0.34 mM) was dissolved in 5 mL of anhydrous tetrahydrofuran. 0.34 mL of tetrabutyl ammonium chloride (1 M of tetrahydrofuran solution, 0.34 mM) was added on an ice bath and stirred for 2.5 hours. The reaction solution was diluted with 30 mL of a mixture of ethyl acetate / saturated saline (2:1) and extracted with ethyl acetate. The extract was washed twice with saturated saline (10 mL) and dried over anhydrous magnesium sulfate. After insoluble materials were removed, the extract was concentrated under reduced pressure. The residue obtained was separated and purified with a silica gel column (eluted with chloroform: methanol = 10:1) and as a white powder, compound X was obtained as a target compound (Separation yield: 37%).
1H-NMR (400MHz, CDCl3) δ: 8.22 (s, 1H), 5.45 (br, 1H), 5.30 (d, J= 5.6Hz, 1H), 4.82 (dd, J= 6.0 and 4.8Hz, 1H), 4.23 (dd, J= 4.4 and 3.2Hz, 1H), 4.11-4.13 (m, 1H), 3.92-3.95 (m, 1H), 3.78-3.80 (m, 1H), 3.66-3.71 (m, 1H), 0.91 (s, 9H), 0.87 (s, 9H), 0.09 (s, 3H), 0.08 (s, 3H), 0.07 (s, 3H), and 0.02 (s, 3H) ppm.
13C-NMR (CDCl3) δ: 170.9, 163.3, 158.6, 100.1, 92.1, 77.4, 76.8, 66.7, 30.7, 23.0, 22.8, 4.90, 0.43, 0.24, 0.10, and 0.00 ppm. - About 1 mg each of the silyl etherified derivatives of 5-azacytidines in carbohydrate moiety (referring to formula (1a)) was dissolved in 1 mL of acetonitrile. 10 µL of the solution was diluted with 1 mL of PBS. 10 µL of PBS solution of cytidine deaminase was added to the solution and stirred at 37°C for about 1 hour. 1 mL of acetonitrile was added to the reaction solution and separated by centrifugation. The supernatant was analyzed with HPLC. As examples, the analytical results in cases of 5'-O-(tert-butyldimethylsilyl)-5-azacytidine (compound E), 5'-O-(triethylsilyl)-5-azacytidine (compound J), and 5'-O-triethylsilyl-2'-deoxy-5-azacytidine (compound K) are shown in Table 1.
- Cytidine deaminase: CDA (1-146aa), Human, His-tagged, Recombinant cytidine deaminase (ATGen)
- HPLC conditions:
- Column: CAPCELL PAK ADME (4.6 mm × 150 mm, particle size: 3 µm)
- Elution:
- eluate A= Purified water containing 10 mM ammonium formate
- eluate B= Acetonitrile
- Gradient mode: A : B = 99 : 1 → 5 : 95 / 30 minutes Flow rate: 1.0 mL/min
- Oven temperature: 40°C
- Detection: UV240 nm
- Accordingly, the silyl etherified derivatives of 5-azacytidines in carbohydrate moiety of the present invention are extremely stable against cytidine deaminase. On the other hand, 5-azacytidine and 2'-deoxy-5-azacytidine disappeared completely under the above reaction conditions.
- About 1 mg each of the silyl etherified derivatives of 5-azacytidines in carbohydrate moiety (referring to formula (1a)), such as 5'-O-triethylsilyl-5-azacytidine (compound J) was dissolved in 1 mL of acetonitrile. 5 µL of the solution was added to 100 µL of 10 mM PBS solution and stirred at 37°C. The reactions were traced by HPLC analysis. As the results, the production of 5-azacytidine was confirmed. Meanwhile, the formation of productions of other catabolites was not confirmed. In addition, the same result was obtained in case of 5'-O-triethylsilyl-2'-deoxy-5-azacytidine (compound K) and the production of corresponding deskill form (2'-deoxy-5-azacytidine) was confirmed.
- HPLC conditions were same as those in test example 1.
[Table 2] 5-Azacytidine or 2'-deoxy-5-azacytidine (%) After 4 hours After 8 hours After 24 hours 5'-O-triethylsilyl-5-azacytidine (compound J) 16 22 62 5'-O-triethylsilyl-2'-deoxy-5-azacytidine (compound K) 10 12 48 - To the solutions containing RPMI-8226 myeloma cells (about 4000), solutions of silyl etherified derivatives of 5-azacytidines in carbohydrate moiety at concentrations of 0.0033 µM, 0.01 µM, 0.033 µM, 0.1 µM, 0.33 µM, 1 µM, 3.3 µM, 10 µM, 33 µM, or 100 µM were added. After incubation in RPMI-1640 (containing 10% FBS and 1% Penn-strep) for 72 hours, cell count was determined and IC50 values were calculated as inhibitory effect against cell proliferation (referring to Journal of Clinical Pathology, 2006, 59, 947-951.).
[Table 3] Compound IC50 (µM) 5'-O-triethylsilyl-5-azacytidine (compound J) 0.656 5'-O-triethylsilyl-2'-deoxy-5-azacytidine (compound K) 0.27 2'-Deoxy-5-azacytidine 0.03 - According to the present invention, a prodrug compound as defined in the claims having remarkable stability against cytidine deaminase, a metabolic hydrolyzing enzyme, can be provided to clinical practice potentially in replacement of current injections (5-azacytidine and 2'-deoxy-5-azacytidine) which are clinically used as therapeutic agents for various myeloma including myelodysplastic syndrome.
Starting material | Change in HPLC pattern |
5-Azacytidine | The peak of the starting material disappeared completely after 30 minutes. |
2'-Deoxy-5-azacytidine | The peak of the starting material disappeared completely after 30 minutes. |
5'-O-(t-butyldimethylsilyl)-5-azacytidine (compound E) | Almost no change in the peak of the starting material was confirmed even after 1 hour. |
5'-O-(triethylsilyl)-5-azacytidine (compound J) | Almost no change in the peak of the starting material was confirmed even after 1 hour. |
5'-O-triethylsilyl-2'-deoxy-5-azacytidine (compound K) | Almost no change in the peak of the starting material was confirmed even after 1 hour. |
Claims (7)
- A compound represented by formula (1), or salt thereof,while R2 is hydrogen atom;wherein R4, R5, and R6 are each independently alkyl group which may have a substituent, aryl group which may have a substituent, or arylalkyl group which may have a substituent
- The compound according to claim 1, wherein R4, R5, and R6 are each independently C1 to C8 alkyl group which may have a substituent, C6 to C10 aryl group which may have a substituent or C7 to C14 arylalkyl group which may have a substituent.
- The compound according to claim 2, wherein the C6 to C10 aryl group is phenyl group or naphthyl group.
- The compound according to claim 2, wherein the C7 to C14 arylalkyl group is benzyl group, phenethyl group or naphthylmethyl group.
- A method for producing the compound or salt thereof, according to claim 1, which includes reacting 2'-deoxy-5-azacytidine with silyl halide.
- A pharmaceutical composition, which comprises the compound, or salt thereof, according to claims 1 to 4.
- A compound or salt thereof according to claims 1 to 4, for use in the treatment of symptoms, which are hematological abnormality, benign tumors, various types of cancers, restenosis, abnormal stimulation to endothelial cells, damage in body tissue caused by surgery, abnormal wound healing, abnormal angiogenesis, diseases causing tissue fibrosis, repetitive dyskinesia, high level angiodysplasia, and productive response followed by organ transplantation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19160835.5A EP3543249A1 (en) | 2016-04-21 | 2016-07-27 | Sugar moiety silyl ether derivative of 5-azacytidine |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016085145 | 2016-04-21 | ||
PCT/JP2016/065660 WO2017183215A1 (en) | 2016-04-21 | 2016-05-27 | Sugar moiety silyl ether derivative of 5-azacytidine |
PCT/JP2016/072010 WO2017183217A1 (en) | 2016-04-21 | 2016-07-27 | Sugar moiety silyl ether derivative of 5-azacytidine |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19160835.5A Division EP3543249A1 (en) | 2016-04-21 | 2016-07-27 | Sugar moiety silyl ether derivative of 5-azacytidine |
EP19160835.5A Division-Into EP3543249A1 (en) | 2016-04-21 | 2016-07-27 | Sugar moiety silyl ether derivative of 5-azacytidine |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3252067A4 EP3252067A4 (en) | 2017-12-06 |
EP3252067A1 EP3252067A1 (en) | 2017-12-06 |
EP3252067B1 true EP3252067B1 (en) | 2019-05-29 |
Family
ID=60115962
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19160835.5A Withdrawn EP3543249A1 (en) | 2016-04-21 | 2016-07-27 | Sugar moiety silyl ether derivative of 5-azacytidine |
EP16797711.5A Active EP3252067B1 (en) | 2016-04-21 | 2016-07-27 | Sugar moiety silyl ether derivative of 5-azacytidine |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19160835.5A Withdrawn EP3543249A1 (en) | 2016-04-21 | 2016-07-27 | Sugar moiety silyl ether derivative of 5-azacytidine |
Country Status (5)
Country | Link |
---|---|
EP (2) | EP3543249A1 (en) |
JP (1) | JP2017197539A (en) |
KR (1) | KR102579485B1 (en) |
CN (1) | CN108368148B (en) |
WO (2) | WO2017183215A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6956937B2 (en) * | 2018-02-19 | 2021-11-02 | 大原薬品工業株式会社 | Uses of DNMT inhibitors |
JP7228169B2 (en) * | 2018-10-30 | 2023-02-24 | 大原薬品工業株式会社 | Pharmaceutical composition |
JPWO2021060341A1 (en) * | 2019-09-26 | 2021-04-01 | ||
WO2022031759A1 (en) * | 2020-08-04 | 2022-02-10 | Herophilus, Inc. | Decitabine induced mecp2 expression and uses thereof |
JP7519657B2 (en) * | 2021-02-23 | 2024-07-22 | 大原薬品工業株式会社 | Chronic Myeloid Leukemia Stem Cell Inhibitors |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3816619A (en) | 1965-08-25 | 1974-06-11 | Upjohn Co | Ladakamycin and process for preparing same |
CH527207A (en) | 1968-05-08 | 1972-08-31 | Ceskoslovenska Akademie Ved | Process for the preparation of 1-glycosyl-5-azacytosines |
GB0227906D0 (en) * | 2002-11-29 | 2003-01-08 | Amedis Pharm Ltd | Compounds and their use |
AU2003302624A1 (en) * | 2002-11-29 | 2004-06-23 | Amedis Pharmaceuticals Ltd. | Silicon compounds |
KR100897924B1 (en) | 2002-12-10 | 2009-05-18 | 엘지엔시스(주) | A paper guide apparatus of printer portion for banking terminal |
KR100866399B1 (en) | 2002-12-10 | 2008-11-03 | 엘지엔시스(주) | A module portion stopper apparatus for media dispenser |
US7700567B2 (en) * | 2005-09-29 | 2010-04-20 | Supergen, Inc. | Oligonucleotide analogues incorporating 5-aza-cytosine therein |
CN102010455B (en) * | 2009-09-05 | 2012-07-11 | 山东新时代药业有限公司 | Method for preparing decitabine |
CN103619864A (en) * | 2011-03-31 | 2014-03-05 | 细胞基因国际有限公司 | Systhesis of 5-azacytidine |
WO2013036846A2 (en) * | 2011-09-09 | 2013-03-14 | Koronis Pharmaceuticals, Incorporated | N4 derivatives of deoxycytidine prodrugs |
ES2746105T3 (en) * | 2014-10-08 | 2020-03-04 | Epigenetics Pharma Llc | Silylated 5-aza-pyrimidine prodrugs useful for treating cancer |
KR101922702B1 (en) | 2016-05-10 | 2018-11-29 | 주식회사 씨엔제이 | Method and apparatus for manufacturing chip for recycling of flexible circuit board film |
-
2016
- 2016-05-27 WO PCT/JP2016/065660 patent/WO2017183215A1/en active Application Filing
- 2016-07-27 EP EP19160835.5A patent/EP3543249A1/en not_active Withdrawn
- 2016-07-27 EP EP16797711.5A patent/EP3252067B1/en active Active
- 2016-07-27 KR KR1020187018429A patent/KR102579485B1/en active IP Right Grant
- 2016-07-27 WO PCT/JP2016/072010 patent/WO2017183217A1/en active Application Filing
- 2016-07-27 CN CN201680072731.4A patent/CN108368148B/en active Active
-
2017
- 2017-05-08 JP JP2017092160A patent/JP2017197539A/en active Pending
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
CN108368148A (en) | 2018-08-03 |
EP3543249A1 (en) | 2019-09-25 |
WO2017183215A1 (en) | 2017-10-26 |
KR20180134835A (en) | 2018-12-19 |
EP3252067A4 (en) | 2017-12-06 |
JP2017197539A (en) | 2017-11-02 |
EP3252067A1 (en) | 2017-12-06 |
CN108368148B (en) | 2021-11-05 |
WO2017183217A1 (en) | 2017-10-26 |
KR102579485B1 (en) | 2023-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3252067B1 (en) | Sugar moiety silyl ether derivative of 5-azacytidine | |
KR0177372B1 (en) | 3'-substituted nucleoside derivatives | |
BG61485B1 (en) | N-oxycarbonylsubstituted 5'-deoxy-5-fluorocytidines | |
BR112020025132B1 (en) | ECTONUCLEOTIDASE INHIBITORS AND METHODS OF USE THEREOF | |
KR20070103012A (en) | Novel pyrimidine nucleoside compound or its salt | |
US9670238B1 (en) | 5′-dibenzyl phosphates of 5-azacytidine or 2′-deoxy-5-azacytidine | |
CA2926909A1 (en) | Mutual prodrug comprising short chain fatty acids and zebularine or 1'-cyano-cytarabine for cancer treatment | |
WO2018199048A1 (en) | 5'-position dibenzyl monophosphate derivative of nucleoside-based anticancer agent or antivirus agent | |
US9901641B2 (en) | Silyl etherified derivatives of 5-azacytidines in carbohydrate moiety | |
JP6956937B2 (en) | Uses of DNMT inhibitors | |
US10227374B2 (en) | Silyl etherified derivatives of 5-azacytidines in carbohydrate moiety | |
KR20090033875A (en) | 3'-ethynylcytidine derivative | |
WO2018230479A1 (en) | 5'-position silyl ether derivative for nucleoside anti-cancer agent or anti-virus agent | |
EP3820879B1 (en) | Phosphorus-containing prodrugs of gemcitabine | |
US11173174B2 (en) | DNMT inhibitor as solid tumor therapeutic drug | |
EP2045256A1 (en) | 2'-cyanopyrimidine nucleoside compound | |
EP4059938A1 (en) | Imidazoquinoline substituted phosphoric ester agonist, and preparation therefor and application thereof | |
CN114423438A (en) | Use of DNMT inhibitors | |
EP4365175A1 (en) | Novel benzopyran derivative and use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17P | Request for examination filed |
Effective date: 20161128 |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20170726 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17Q | First examination report despatched |
Effective date: 20171127 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190103 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: SUGIYAMA, SHINPEI Inventor name: SAKO, MAGOICHI |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1138191 Country of ref document: AT Kind code of ref document: T Effective date: 20190615 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602016014632 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190529 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190930 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190829 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190829 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190830 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1138191 Country of ref document: AT Kind code of ref document: T Effective date: 20190529 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602016014632 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 |
|
26N | No opposition filed |
Effective date: 20200303 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190731 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190727 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190727 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190929 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20160727 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240528 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240705 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240708 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240801 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240726 Year of fee payment: 9 |