EP3248877B1 - Mélange d'air de purge et d'air dynamique à une entrée de turbine - Google Patents
Mélange d'air de purge et d'air dynamique à une entrée de turbine Download PDFInfo
- Publication number
- EP3248877B1 EP3248877B1 EP17172822.3A EP17172822A EP3248877B1 EP 3248877 B1 EP3248877 B1 EP 3248877B1 EP 17172822 A EP17172822 A EP 17172822A EP 3248877 B1 EP3248877 B1 EP 3248877B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- air
- environmental control
- control system
- turbine
- medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000011144 upstream manufacturing Methods 0.000 claims description 9
- 238000004378 air conditioning Methods 0.000 claims description 3
- 230000007613 environmental effect Effects 0.000 description 84
- 238000010586 diagram Methods 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 238000000034 method Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 4
- 238000012358 sourcing Methods 0.000 description 4
- 239000000446 fuel Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000001143 conditioned effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000002608 ionic liquid Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D13/00—Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
- B64D13/06—Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D13/00—Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
- B64D13/06—Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
- B64D13/08—Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned the air being heated or cooled
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D13/00—Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
- B64D13/02—Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being pressurised
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D17/00—Regulating or controlling by varying flow
- F01D17/10—Final actuators
- F01D17/105—Final actuators by passing part of the fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/02—Blade-carrying members, e.g. rotors
- F01D5/06—Rotors for more than one axial stage, e.g. of drum or multiple disc type; Details thereof, e.g. shafts, shaft connections
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D25/00—Pumping installations or systems
- F04D25/02—Units comprising pumps and their driving means
- F04D25/04—Units comprising pumps and their driving means the pump being fluid-driven
- F04D25/045—Units comprising pumps and their driving means the pump being fluid-driven the pump wheel carrying the fluid driving means, e.g. turbine blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/58—Cooling; Heating; Diminishing heat transfer
- F04D29/582—Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
- F04D29/5826—Cooling at least part of the working fluid in a heat exchanger
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D13/00—Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
- B64D13/06—Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
- B64D2013/0603—Environmental Control Systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D13/00—Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
- B64D13/06—Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
- B64D2013/0603—Environmental Control Systems
- B64D2013/0618—Environmental Control Systems with arrangements for reducing or managing bleed air, using another air source, e.g. ram air
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D13/00—Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
- B64D13/06—Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
- B64D2013/0603—Environmental Control Systems
- B64D2013/0648—Environmental Control Systems with energy recovery means, e.g. using turbines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/213—Heat transfer, e.g. cooling by the provision of a heat exchanger within the cooling circuit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/60—Fluid transfer
- F05D2260/606—Bypassing the fluid
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/50—On board measures aiming to increase energy efficiency
Definitions
- US 2001/0004837 relates to an airplane with an air conditioning system according to the preamble of claim 1.
- an airplane as defined by claim 1 is provided.
- Embodiments herein provide an environmental control system of an aircraft that mixes mediums from different sources and uses the different energy sources to power the environmental control system and to provide cabin pressurization and cooling at a high fuel burn efficiency.
- the medium can generally be air, while other examples include gases, liquids, fluidized solids, or slurries.
- FIG. 1 a system 100 that receives a medium from an inlet 101 and provides a conditioned form of the medium to a chamber 102 is illustrated.
- the system 100 comprises a compressing device 110.
- the compressing device 110 comprises a compressor 112, a turbine 113, a fan 116, and a shaft 118.
- the system 100 also comprises a primary heat exchanger 120, a secondary heat exchanger 130, a condenser 160, a water extractor 162, and a reheater 164.
- the compressing device 110 is a mechanical device that includes components for performing thermodynamic work on the medium (e.g., extracts work from or works on the medium by raising and/or lowering pressure and by raising and/or lowering temperature).
- Examples of the compressing device 110 include an air cycle machine, a three-wheel air cycle machine, a four-wheel air cycle machine, etc.
- the compressor 112 is a mechanical device that raises the pressure of the medium received from the inlet 101.
- compressor types include centrifugal, diagonal or mixed-flow, axial-flow, reciprocating, ionic liquid piston, rotary screw, rotary vane, scroll, diaphragm, air bubble, etc.
- compressors can be driven by a motor or the medium via the turbine 113.
- the turbine 113 is mechanical device that drives the compressor 112 and the fan 116 via the shaft 118.
- the fan 116 e.g., a ram air fan
- the shell 119 receives and directs a medium (such as ram air) through the system 100.
- ram air is outside air used as a heat sink by the system 100.
- the heat exchangers 120 and 130 are devices built for efficient heat transfer from one medium to another.
- Examples of heat exchangers include double pipe, shell and tube, plate, plate and shell, adiabatic wheel, plate fin, pillow plate, and fluid heat exchangers.
- the condenser 160 and the reheater 164 are particular types of heat exchangers.
- the water extractor 162 is a mechanical device that performs a process of taking water from the medium. Together, the condenser 160, the water extractor 162, and/or the reheater 164 can combine to be a high pressure water separator.
- Valves e.g., flow regulation device or mass flow valve
- Valves are devices that regulate, direct, and/or control a flow of a medium by opening, closing, or partially obstructing various passageways within the tubes, pipes, etc. of the system 100.
- Valves can be operated by actuators, such that flow rates of the medium in any portion of the system 100 can be regulated to a desired value.
- the medium can flow from an inlet 101 through the system 100 to a chamber 102, as indicated by solid-lined arrows.
- a valve V1 e.g., a mass flow control valve
- a vale V2 controls whether the flow of the medium from the secondary heat exchanger 130 bypasses the condenser 160 in accordance with a mode of the system 100.
- a combination of components of the system 100 can be referred to as an air conditioning pack or a pack. The pack can begin at a vale V1 and conclude as air exits the condenser 162.
- the medium can be air and the system 100 can be an environmental control system.
- the air supplied to the environmental control system at the inlet 101 can be said to be “bled” from a turbine engine or an auxiliary power unit.
- the air can be referred to as bleed air (e.g., pressurized air that comes from an engine or an auxiliary power unit).
- bleed air e.g., pressurized air that comes from an engine or an auxiliary power unit.
- the temperature, humidity, and pressure of the bleed air vary widely depending upon a compressor stage and a revolutions per minute of the turbine engine.
- FIGS. 2A , 2B , and 2C a schematic of environmental control systems 200A, 200B, and 200C (e.g., examples not according to claim 1 of system 100) are depicted according to examples not according to claim 1, as they can be installed on an aircraft.
- the environmental control systems 200A, 200B, and 200C mix fresh air with bleed air.
- Components of the system 100 that are similar to the environmental control systems 200A, 200B, and 200C have been reused for ease of explanation, by using the same identifiers, and are not re-introduced.
- FIG. 2A illustrates the environmental control system 200A to further include an inlet 201, a compressing device 210A (that comprises a compressor 212, a turbine 213, a fan 216, and a shaft 218), an outflow heat exchanger 230, a water collector 271, a water collector 272, and a valve V3, along with a path for a medium denoted by a dot-dashed line F2 (where the medium can be provided from the chamber 102 into the environmental control system 200A).
- the medium when the medium is being provided from the chamber 102 (e.g., air leaving a pressurized volume, cabin of the aircraft, or cabin and flight deck of the aircraft), the medium can be referred as chamber discharge air (also known as cabin discharge air).
- chamber discharge air also known as cabin discharge air
- an exhaust of the cabin discharge air from the environmental control system 200A can be released through the shell 119 or sent to a cabin pressure control system.
- the cabin discharge air can also be released through an outflow valve (a.k.a. an outflow control valve and a thrust recovery outflow valve).
- the outflow heat exchanger 230 increases the energy in the cabin discharge air, which increases the thrust recovered by the outflow valve.
- the medium when a medium is being provided from the inlet 201, the medium can be referred to as fresh outside air (also known as fresh air or outside air destined to enter the pressurized volume or chamber 102).
- fresh air can be procured by one or more scooping mechanisms, such as an impact scoop or a flush scoop.
- the inlet 201 can be considered a fresh air inlet.
- the primary heat exchanger 120 cools the high-pressure high-temperature air to nearly ambient temperature to produce cool pressurized air.
- the cool pressurized air Upon exiting the condenser 160, the cool pressurized air enters the water extractor 272 so that moisture in the air is removed.
- the cool pressurized air is then mixed with fresh air sourced from inlet 201 to produce mixed air.
- the fresh air prior to being mixed is compressed by the compressor 212 (to approximately the same pressure as the cool high pressure air).
- the act of compressing the fresh air heats the fresh air.
- the compressed fresh air then enters the outflow heat exchanger 230 and is cooled by the cabin discharge air (see the dot-dashed line F2) to produce cooled compressed fresh air.
- the outflow heat exchanger 230 exhausts the cabin discharge through the shell 119, to a cabin pressure control system, or the outflow valve an outflow valve (note that a valve V3 can control the destination of the exhaust of the outflow heat exchanger 230).
- the cooled compressed fresh air then enters the secondary heat exchanger 130 and is further cooled to nearly ambient temperature.
- the air exiting the secondary heat exchanger 130 is directed by the valve V2 to the water extractor 271, where any free moisture is removed, to produce cool pressurized air.
- Two air flows are mixed upstream of the turbine 213 to produce the mixed air.
- the two air flows include the cool pressurized fresh air sourcing from 201, and the cool pressurized bleed air sourcing from inlet 101.
- This upstream location can be considered a first mixing point M1 of the environmental control system 200A.
- the mixed air enters and leaves the turbine 213.
- the mixed air then enters the condenser 160 to cool the bleed air leaving the primary heat exchanger 120.
- the mixed air is then sent to condition the chamber 102.
- bleed air can drive a boot strap air cycle, where the compressing device 210A receives fresh air.
- the two mediums e.g., bleed air and fresh air
- This power is used to drive the compressor 212 that receives the fresh air.
- the mixed air enters the turbine 213 through a nozzle.
- the mixed air is expanded across the turbine 213 and work extracted from the mixed air.
- This extracted work drives the compressor 212 used to compress the fresh air.
- This extracted work also drives the fan 216, which is used to move air (e.g., ram air) through the primary heat exchanger 120 and the secondary heat exchanger 130 (also known as ram air heat exchangers).
- This low altitude operation can be consider a low altitude mode.
- the low altitude mode can be used for ground and low altitude flight conditions, such as ground idle, taxi, take-off, and hold conditions.
- the fresh outside air can be mixed downstream of the turbine 213 (rather than upstream of the turbine 213, at an inlet of the turbine 213, and/or at the first mixing point M1).
- the air exiting the secondary heat exchanger 130 is directed by the valve V2 to downstream of the turbine 213.
- the location at which this cool medium pressure air mixes with the bleed air, which is sourced from the inlet 101 and exiting the condenser 160, can be considered a second mixing point M2 of the environmental control system 200.
- the mixing point M2 can be location at any point downstream of the turbine 213, such as downstream of the condenser 160 as shown in FIG. 2 .
- This high altitude operation can be considered a high altitude mode.
- the high altitude mode can be used at high altitude cruise, climb, and descent flight conditions.
- fresh air aviation requirements for passengers are met by mixing the two air flows (e.g., the fresh outside air sourcing from 201 and the bleed air sourcing from inlet 101).
- an amount of bleed air needed can be reduced.
- the environmental control system 200 provides bleed air reduction ranging from 40% to 75% to provide higher efficiencies with respect to engine fuel burn than contemporary airplane air systems.
- FIGS. 2B and 2C illustrate variations of the environmental control system 200A.
- FIG. 2B a schematic of an environmental control system 200B (e.g., an example not according to claim 1 of the environmental control system 200A) is depicted according to an example not according to claim 1.
- Components of the systems 100 and 200A that are similar to the environmental control system 200B have been reused for ease of explanation, by using the same identifiers, and are not re-introduced.
- Alternative components of the environmental control system 200B include a compressing device 210B that comprises a component 279 and a component 280.
- the component 279 comprises the compressor 212, the turbine 213, and the shaft 318.
- the component 280 can be a rotating device (e.g., turbine driven fan), which comprises a turbine 287, a shaft 288, and a fan 289.
- the environmental control system 200B can also comprise a secondary path for the medium sourced from the inlet 101 (e.g., a valve V1.2 can provide the medium from the inlet 101 to an inlet of the turbine 287).
- the environmental control system 300 operates similarly to the environmental control system 200 in that different mixing points M1 and M2 are utilized based on the mode of operation.
- the environmental control system 300 separates the ram air fan (e.g., fan 216) from the air cycle machine (e.g., the compressing device 210A) and provides the ram air fan within the rotating device (e.g., the component 280).
- the turbine 287 of the component 280 is powered by the bleed air sourced from the inlet 101 flowing through the valve V1.2.
- FIG. 2C a schematic of an environmental control system 200C (e.g., an example not according to claim 1 of the environmental control system 200A) is depicted according to an example not according to claim 1.
- Components of the systems 100, 200A, and 200B that are similar to the environmental control system 200C have been reused for ease of explanation, by using the same identifiers, and are not re-introduced.
- Alternative components of the environmental control system 200C include a compressing device 210C that comprises a component 279 and a component 280.
- the component 290 can be a rotating device (e.g., integral rotor or tip turbine), which comprises a turbine 297, a shaft 298, and a motor 289.
- the environmental control system 200C operates similarly to the environmental control system 200A in that different mixing points are utilized based on the mode of operation.
- the environmental control system 200C separates the ram air fan (e.g., fan 216) from the air cycle machine (e.g., the compressing device 210A) and provides the ram air fan within the rotating device (e.g., the component 290).
- the motor 297 of the component 290 is powered by electric power.
- FIG. 3A illustrates a schematic of an environmental control system 300 as a variation of the environmental control systems 200A, 200B, and 200C according to an example not according to claim 1.
- Components of the systems 100 and 200A, 200B, and 200C that are similar to the environmental control system 300 have been reused for ease of explanation, by using the same identifiers, and are not re-introduced.
- Alternative components of the environmental control system 300 include the compressing device 210A comprising a multiple nozzle configuration 390.
- the multiple nozzle configuration 390 enables a varying nozzle area based on conditions surrounding the aircraft without the added complication of variable area turbine.
- the multiple nozzle configuration 390 includes the turbine 313 with one or more nozzles. Further, each of the one or more nozzles can receive a medium according to mechanisms external to the turbine 313.
- FIG. 3B examples of the multiple nozzle configuration 390 are shown as nozzle configurations 391 and 392.
- the nozzle configuration 391 includes the turbine 313 and a valve N1.
- the valve N1 regulates the flow of mixed air (e.g., from the mixing point M1) to the turbine 313.
- the valve N1 operates in a first mode, a second mode, or a third mode.
- the first mode or a limit mode is when all of the mixed air is supplied to a nozzle of the turbine 313 with a smallest area.
- the second mode or intermediate mode is when all of the mixed air is supplied to a nozzle of the turbine 313 with a largest area.
- the third mode or open mode is when all of the mixed air is supplied to both nozzles of the turbine 313, therefor providing a maximum flow of the mixed air.
- the first nozzle can be 0,8 cm (0.3 inches) and the second nozzle can be 2,3 cm (0.9 inches).
- the nozzle area in the first mode is 0,8 cm (0.3 inches)
- the nozzle area in the second mode is 2,3 cm (0.9 inches)
- the nozzle area in the third mode is 3,3 cm (1.3 inches).
- the nozzle configuration 392 includes the turbine 313 and valves N2 and N3.
- the valve N2 regulates the flow of mixed air (e.g., from the mixing point M1) to a first nozzle of the turbine 313.
- the valve N3 regulates the flow of mixed air (e.g., from the mixing point M1) to a second nozzle of the turbine 313.
- the first nozzle of the turbine 313 includes an area that is smaller than that of the second nozzle of the turbine 313.
- the valves N2 and N3 operate in accordance with a first mode, a second mode, or a third mode.
- the first mode or a limit mode is when only the valve N2 supplies the mixed air to the first nozzle of the turbine 313 (e.g., the valve N2 provides the pressurized medium to the first nozzle and the valve N3 blocks the pressurized medium from the second nozzle).
- the second mode or an intermediate mode is when only the valve N3 supplies the mixed air to the second nozzle of the turbine 313 (e.g., the valve N3 provides the pressurized medium to the second nozzle and the valve N2 blocks the pressurized medium from the first nozzle).
- the third mode or open mode is when both valves N2 and N3 supply the mixed air to both nozzles of the turbine 313, therefor providing a maximum flow of the mixed air (e.g., the valve N2 provides the pressurized medium to the first nozzle and the valve N3 provides the pressurized medium from the second nozzle).
- a third mode is utilized.
- the environmental control system 300 can utilize the first mode, the second mode, or the third mode in accordance with a pressure of the bleed air.
- the environmental control system 300 can maximize the use of the bleed pressure without the added complication of variable area turbine.
- FIGS. 4A , 4B , and 4C a schematic of an environmental control systems 400A, 400B, and 400C (e.g., embodiments of systems 100, 200A, 200B, 200C, and 300) are depicted according to embodiments, as they can be installed on an aircraft.
- the environmental control systems 400A, 400B, and 400C mix fresh air with bleed air.
- Components of the systems 100, 200A, 200B, 200C, and 300 that are similar to the environmental control systems 400A, 400B, and 400C have been reused for ease of explanation, by using the same identifiers, and are not re-introduced.
- FIG. 4A illustrates the environmental control system 400A to further include a compressing device 410A (that comprises a compressor 412, a turbine 413, a turbine 414, a fan 416, and a shaft 418), along with a path for a medium denoted by dot-dashed lines F4.1 and F4.2.
- the environmental control system 400A operates similarly to the environmental control system 200A in that different mixing points are utilized based on the mode of operation.
- the medium when the medium is being provided from the chamber 102 (e.g., air leaving a pressurized volume, cabin of the aircraft, or cabin and flight deck of the aircraft), the medium can be referred as chamber discharge air (also known as cabin discharge air).
- chamber discharge air also known as cabin discharge air.
- an exhaust of the cabin discharge air from the environmental control system 400A can be released through the shell 119 (e.g., F4.1), sent to a cabin pressure control system, or provided to the turbine 414 (e.g., F4.2).
- the fresh outside air can be mixed downstream of the turbine 413 rather than upstream and the energy in the cabin discharge air can be used to power the compressor 414 by utilizing the turbine 414. That is, the turbine 414 can be fed hot air via the valve V3 so that the compressor 412 receives power from both the bleed air and the cabin discharge air.
- FIGS. 4B and 4C illustrate variations of the environmental control system 400A.
- a schematic of an environmental control system 400B (e.g., an embodiment of the environmental control system 400A) is depicted according to an embodiment.
- the environmental control system 400B includes a compressing device 410B that comprises a component 479 and the component 280.
- the component 479 comprises the compressor 412, the turbine 413, the turbine 414, and the shaft 418.
- FIG. 4C a schematic of an environmental control system 400C (e.g., an embodiment of the environmental control system 400A) is depicted according to an embodiment.
- the environmental control system 400C includes a compressing device 410C that comprises a component 479 and a component 290.
- the environmental control systems 400B and 400C operate similarly to the environmental control system 400A in that different mixing points are utilized based on the mode of operation.
- FIG. 5 illustrates a schematic of an environmental control system 500 as a variation of the environmental control systems 400A, 400B, and 400C according to an embodiment.
- Components of the systems 100 and 400A, 400B, and 400C that are similar to the environmental control system 400 have been reused for ease of explanation, by using the same identifiers, and are not re-introduced.
- the environmental control system 400 includes the compressing device 410A comprising a multiple nozzle configuration 590.
- the multiple nozzle configurations 590 enables a varying nozzle area based on conditions surrounding the aircraft without the added complication of variable area turbine.
- the operations and arrangements of the multiple nozzle configuration 590 are similar to the multiple nozzle configuration 390 of FIG. 3A and the nozzle configurations 391, 392, 392, 394 of FIG. 3B .
- FIGS. 6 , 7 , 8 , and 9 schematic of environmental control systems 600, 700, 800, and 900 (e.g., examples not according to claim 1 of the above systems) are depicted, as they can be installed on an aircraft.
- the environmental control systems 600, 700, 800, and 900 mix fresh air with bleed air.
- Components of the above systems that are similar to the environmental control systems 600, 700, 800, and 900 have been reused for ease of explanation, by using the same identifiers, and are not re-introduced.
- FIG. 6 is a diagram of a schematic of the environmental control system 600 that includes at least one mixing point M6 according to an example not according to claim 1.
- the environmental control system 600 includes a third heat exchanger 660 (e.g., a condenser) located downstream of the primary heat exchanger 120 in a flow path of the bleed air and located upstream of the mixing point M6.
- a third heat exchanger 660 e.g., a condenser
- FIG. 7 is a diagram of a schematic of the environmental control system 700 that includes at least one mixing point M7 according to an example not according to claim 1.
- the environmental control system 700 includes a third heat exchanger 760 (e.g., a condenser) located downstream of the secondary heat exchanger 130 in a flow path of the fresh air and located upstream of the mixing point M7.
- a third heat exchanger 760 e.g., a condenser
- FIG. 8 is a diagram of a schematic of the environmental control system 800 that includes at least one mixing point M8 according to an example not according to claim 1.
- the environmental control system 800 includes a third heat exchanger 860 (e.g., a condenser) downstream of the mixing point M8.
- a third heat exchanger 860 e.g., a condenser
- FIG. 9 is a diagram of a schematic of the environmental control system 800 that includes at least one mixing point M9 according to an example not according to claim 1.
- the environmental control system 900 includes first, second, and third heat exchangers 920, 930, and 960.
- the first heat exchanger 920 can be similar to a ram air heat exchanger 920 (e.g., in an embodiment this can be a single ram air heat exchanger).
- the second heat exchanger 930 can be similar to an outflow heat exchanger 230.
- the third heat exchanger 960 can be similar to a condenser 160. Note that the first heat exchanger 920 is located downstream of the mixing point M9.
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Pulmonology (AREA)
- Aviation & Aerospace Engineering (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Claims (1)
- Avion comprenant :un premier milieu ;un deuxième milieu ;un troisième milieu ; etun système de climatisation comprenant :une première turbine (413),une seconde turbine (414),un premier échangeur de chaleur (130) configuré pour rejeter la chaleur du premier milieu vers le troisième milieu, un deuxième échangeur de chaleur (120) configuré pour rejeter la chaleur du deuxième milieu vers le troisième milieu, un troisième échangeur de chaleur (160) et un quatrième échangeur de chaleur (230),un compresseur (412) situé en amont de la première turbine (413) dans un trajet d'écoulement du premier milieu, etun point de mélange (M1) au niveau duquel le premier milieu se mélange avec le deuxième milieu,dans lequel le point de mélange (M1) est en aval du compresseur (412) et en amont de la première turbine (413), et le point de mélange (M1) est situé en aval du premier échangeur de chaleur (130) et du deuxième échangeur de chaleur (120) ;dans lequel le troisième échangeur de chaleur (160) est en aval du point de mélange, caractérisé en ce que la deuxième turbine (414) est configurée pour recevoir un flux d'air de refoulement de cabine d'une cabine de l'aéronef ou d'une cabine et d'un poste de pilotage de l'aéronef et pour alimenter le compresseur (412) la deuxième turbine (414) est en aval du quatrième échangeur de chaleur (230) dans le flux d'air de refoulement de cabine.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662341922P | 2016-05-26 | 2016-05-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3248877A1 EP3248877A1 (fr) | 2017-11-29 |
EP3248877B1 true EP3248877B1 (fr) | 2023-05-10 |
Family
ID=58778927
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17172822.3A Active EP3248877B1 (fr) | 2016-05-26 | 2017-05-24 | Mélange d'air de purge et d'air dynamique à une entrée de turbine |
Country Status (5)
Country | Link |
---|---|
US (1) | US10597162B2 (fr) |
EP (1) | EP3248877B1 (fr) |
CN (1) | CN107434048A (fr) |
BR (1) | BR102017011090B1 (fr) |
CA (1) | CA2968733A1 (fr) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11459110B2 (en) * | 2016-04-22 | 2022-10-04 | Hamilton Sunstrand Corporation | Environmental control system utilizing two pass secondary heat exchanger and cabin pressure assist |
US10731501B2 (en) * | 2016-04-22 | 2020-08-04 | Hamilton Sundstrand Corporation | Environmental control system utilizing a motor assist and an enhanced compressor |
US11047237B2 (en) | 2016-05-26 | 2021-06-29 | Hamilton Sunstrand Corporation | Mixing ram and bleed air in a dual entry turbine system |
EP3248878B1 (fr) | 2016-05-26 | 2020-05-06 | Hamilton Sundstrand Corporation | Mélange d'air dynamique et d'air de purge à l'aide d'un système de turbine à double utilisation |
EP3249195B1 (fr) | 2016-05-26 | 2023-07-05 | Hamilton Sundstrand Corporation | Flux d'énergie d'un système de commande environnemental avancé |
EP3249196B1 (fr) | 2016-05-26 | 2020-12-02 | Hamilton Sundstrand Corporation | Flux d'énergie d'un système de commande environnemental avancé |
EP4019403B1 (fr) | 2016-05-26 | 2024-07-03 | Hamilton Sundstrand Corporation | Mélange d'air dynamique et d'air de purge dans un système de turbine à entrée double |
US11506121B2 (en) | 2016-05-26 | 2022-11-22 | Hamilton Sundstrand Corporation | Multiple nozzle configurations for a turbine of an environmental control system |
EP3248879B1 (fr) | 2016-05-26 | 2021-06-30 | Hamilton Sundstrand Corporation | Mélange d'air dynamique et d'air de purge à l'aide d'une machine à cycle d'air comportant deux turbines |
US11136130B2 (en) * | 2017-11-06 | 2021-10-05 | Hamilton Sundstrand Corporation | Aircraft enviromental control system with series bleed air turbines |
US10670346B2 (en) * | 2018-01-04 | 2020-06-02 | Hamilton Sundstrand Corporation | Curved heat exchanger |
US11084592B2 (en) | 2018-06-26 | 2021-08-10 | Hamilton Sundstrand Corporation | Aircraft environmental control system |
US20220348335A1 (en) * | 2021-04-29 | 2022-11-03 | Hamilton Sundstrand Corporation | All electric ecs with cabin outflow cooled motor drives |
US20240182174A1 (en) * | 2022-12-05 | 2024-06-06 | Hamilton Sundstrand Corporation | Environmental control system including mixed-flow turbine |
Family Cites Families (79)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2800002A (en) | 1954-02-02 | 1957-07-23 | Garrett Corp | Cabin refrigeration system |
US3428242A (en) | 1967-06-02 | 1969-02-18 | United Aircraft Corp | Unitary simple/bootstrap air cycle system |
US4021215A (en) | 1976-05-03 | 1977-05-03 | United Technologies Corporation | Dual combined cycle air-conditioning system |
US4261416A (en) | 1979-02-23 | 1981-04-14 | The Boeing Company | Multimode cabin air conditioning system |
US4374469A (en) | 1980-12-24 | 1983-02-22 | United Technologies Corporation | Variable capacity air cycle refrigeration system |
US4604028A (en) | 1985-05-08 | 1986-08-05 | General Electric Company | Independently actuated control valves for steam turbine |
US5299763A (en) | 1991-12-23 | 1994-04-05 | Allied-Signal Inc. | Aircraft cabin air conditioning system with improved fresh air supply |
US5257003A (en) | 1992-01-14 | 1993-10-26 | Mahoney John J | Thermistor and its method of manufacture |
US5473899A (en) | 1993-06-10 | 1995-12-12 | Viteri; Fermin | Turbomachinery for Modified Ericsson engines and other power/refrigeration applications |
US5461882A (en) | 1994-07-22 | 1995-10-31 | United Technologies Corporation | Regenerative condensing cycle |
US5911388A (en) | 1997-01-15 | 1999-06-15 | Sundstrand Corporation | Environmental control system with energy recovery and bleed air assist |
US5967461A (en) | 1997-07-02 | 1999-10-19 | Mcdonnell Douglas Corp. | High efficiency environmental control systems and methods |
US5899085A (en) | 1997-08-01 | 1999-05-04 | Mcdonnell Douglas Corporation | Integrated air conditioning and power unit |
US6199387B1 (en) | 1999-07-30 | 2001-03-13 | Liebherr-Aerospace Lindenberg Gmbh | Air-conditioning system for airplane cabin |
DE19963280C1 (de) | 1999-12-27 | 2001-08-23 | Liebherr Aerospace Gmbh | Klimatisierungssystem für Flugzeugkabinen |
US6427471B1 (en) | 2000-02-29 | 2002-08-06 | Shimadzu Corporation | Air cycle machine and air conditioning system using the same |
US6257003B1 (en) | 2000-08-04 | 2001-07-10 | Hamilton Sundstrand Corporation | Environmental control system utilizing two air cycle machines |
DE10047623C1 (de) | 2000-09-26 | 2002-05-23 | Liebherr Aerospace Gmbh | Klimatisierungssystem für Flugzeuge |
US6845630B2 (en) | 2001-02-16 | 2005-01-25 | Hamilton Sundstrand Corporation | Electric power and cooling system for an aircraft |
US6681592B1 (en) | 2001-02-16 | 2004-01-27 | Hamilton Sundstrand Corporation | Electrically driven aircraft cabin ventilation and environmental control system |
US6526775B1 (en) * | 2001-09-14 | 2003-03-04 | The Boeing Company | Electric air conditioning system for an aircraft |
US6681591B2 (en) | 2001-10-19 | 2004-01-27 | Hamilton Sundstrand | Cabin air temperature control with cooling of recirculated air |
US6615606B2 (en) | 2002-01-10 | 2003-09-09 | Hamilton Sundstrand | Dual turbine bootstrap cycle environmental control system |
US6758742B2 (en) | 2002-07-16 | 2004-07-06 | Delphi Technologies, Inc. | Air partitioning device for air conditioning system |
DE10234968A1 (de) | 2002-07-31 | 2004-02-12 | Liebherr-Aerospace Lindenberg Gmbh | Flugzeugklimaanlage |
US6804964B2 (en) | 2002-09-19 | 2004-10-19 | Siemens Westinghouse Power Corporation | Water recovery from combustion turbine exhaust |
US7210653B2 (en) | 2002-10-22 | 2007-05-01 | The Boeing Company | Electric-based secondary power system architectures for aircraft |
US6848261B2 (en) | 2003-04-03 | 2005-02-01 | Honeywell International Inc. | Condensing cycle with energy recovery augmentation |
US6776002B1 (en) | 2003-04-25 | 2004-08-17 | Northrop Grumman Corporation | Magnetically coupled integrated power and cooling unit |
GB0414341D0 (en) | 2004-06-26 | 2004-07-28 | Honeywell Normalair Garrett | Closed loop air conditioning system |
US7334423B2 (en) | 2004-09-22 | 2008-02-26 | Hamilton Sundstrand Corporation | Dual mode condensing cycle |
US7322202B2 (en) | 2004-09-22 | 2008-01-29 | Hamilton Sundstrand Corporation | Electric motor driven supercharger with air cycle air conditioning system |
DE102005037285A1 (de) | 2005-08-08 | 2007-02-15 | Liebherr-Aerospace Lindenberg Gmbh | Verfahren zum Betreiben einer Flugzeugklimaanlage |
US7861536B2 (en) | 2006-03-27 | 2011-01-04 | Pratt & Whitney Canada Corp. | Ejector controlled twin air source gas turbine pressurizing air system |
US7624592B2 (en) | 2006-05-17 | 2009-12-01 | Northrop Grumman Corporation | Flexible power and thermal architectures using a common machine |
US7607318B2 (en) | 2006-05-25 | 2009-10-27 | Honeywell International Inc. | Integrated environmental control and auxiliary power system for an aircraft |
DE102006042584B4 (de) | 2006-09-11 | 2008-11-20 | Airbus Deutschland Gmbh | Luftzufuhrsystem eines Flugzeuges sowie Verfahren zum Vermischen zweier Luftströme in einem Luftzufuhrsystem |
WO2008065709A1 (fr) | 2006-11-28 | 2008-06-05 | Shimadzu Corporation | Procédé et système permettant de fournir de l'air conditionné dans un avion |
GB2447677B (en) | 2007-03-21 | 2011-11-16 | Honeywell Normalair Garrett | Jet pump apparatus |
DE102007032306A1 (de) * | 2007-07-11 | 2009-01-22 | Airbus Deutschland Gmbh | Klimatisierungssystem für Flugzeugkabinen |
US8042354B1 (en) | 2007-09-28 | 2011-10-25 | Fairchild Controls Corporation | Air conditioning apparatus |
DE602007008583D1 (de) | 2007-11-26 | 2010-09-30 | Honeywell Aerospace Bv | Flugzeugklimaanlage |
JP5233436B2 (ja) | 2008-06-23 | 2013-07-10 | 株式会社日立プラントテクノロジー | 羽根無しディフューザを備えた遠心圧縮機および羽根無しディフューザ |
JP4714779B2 (ja) | 2009-04-10 | 2011-06-29 | 東光株式会社 | 表面実装インダクタの製造方法とその表面実装インダクタ |
DE102009031880A1 (de) | 2009-07-06 | 2011-01-20 | Airbus Operations Gmbh | Kühlkonzept für ein Brennstoffzellen-Notstromsystem |
US8851835B2 (en) | 2010-12-21 | 2014-10-07 | Hamilton Sundstrand Corporation | Air cycle machine compressor diffuser |
JP5449219B2 (ja) | 2011-01-27 | 2014-03-19 | 三菱重工業株式会社 | ラジアルタービン |
US9169024B2 (en) | 2011-05-09 | 2015-10-27 | Honeywell International Inc. | Environmental control system with closed loop pressure cycle |
US9481468B1 (en) | 2011-07-22 | 2016-11-01 | Peter Schiff | Aircraft environmental control system |
WO2013077924A2 (fr) | 2011-09-08 | 2013-05-30 | Rolls-Royce North American Technologies Inc. | Système de moteur à turbine à gaz et tuyère d'éjection supersonique |
US9205925B2 (en) | 2011-11-11 | 2015-12-08 | Hamilton Sundstrand Corporation | Turbo air compressor |
US9555893B2 (en) | 2011-11-28 | 2017-01-31 | Hamilton Sundstrand Corporation | Blended flow air cycle system for environmental control |
EP2602191B1 (fr) | 2011-12-05 | 2016-05-11 | Hamilton Sundstrand Corporation | Compresseur motorisé d'air de cabine doté d'un diffuseur variable |
US20140109603A1 (en) | 2011-12-29 | 2014-04-24 | Embraer S.A. | Integrated environmental control systems and methods for controlling environmental temperature of an enclosed space |
US9109514B2 (en) | 2012-01-10 | 2015-08-18 | Hamilton Sundstrand Corporation | Air recovery system for precooler heat-exchanger |
JP5909163B2 (ja) | 2012-08-27 | 2016-04-26 | 三菱重工業株式会社 | 二圧式ラジアルタービンの運用方法 |
US9033297B2 (en) | 2013-06-04 | 2015-05-19 | Hamilton Sundstrand Corporation | Cabin air compressor support bracket |
EP2821346B1 (fr) | 2013-07-04 | 2015-12-23 | Airbus Operations GmbH | Système de conditionnement d'air pour aéronef et procédé de fonctionnement d'un système de conditionnement d'air pour aéronef |
US10745136B2 (en) | 2013-08-29 | 2020-08-18 | Hamilton Sunstrand Corporation | Environmental control system including a compressing device |
US9580180B2 (en) | 2014-03-07 | 2017-02-28 | Honeywell International Inc. | Low-pressure bleed air aircraft environmental control system |
US9656756B2 (en) | 2014-03-10 | 2017-05-23 | The Boeing Company | Turbo-compressor system and method for extracting energy from an aircraft engine |
WO2015148853A2 (fr) | 2014-03-26 | 2015-10-01 | Energy Recovery, Inc. | Système de turbine hydraulique doté d'ajutages auxiliaires |
DE102014206081A1 (de) | 2014-03-31 | 2015-10-01 | Lufthansa Technik Ag | Filter |
US9849990B2 (en) | 2014-04-24 | 2017-12-26 | Hamilton Sundstrand Corporation | Environmental control system utilizing shoestring cycle to maximize efficiency |
EP2947012B1 (fr) | 2014-05-19 | 2017-07-05 | Airbus Operations GmbH | Système de conditionnement d'air pour aéronef et procédé de son opération |
EP3164576B1 (fr) | 2014-07-03 | 2020-07-29 | General Electric Company | Système de refroidissement à air froid pour moteur à réaction et procédé correspondant |
EP3444189B1 (fr) | 2014-09-19 | 2020-06-17 | Airbus Operations GmbH | Système de conditionnement d'air pour aéronef et procédé de fonctionnement d'un système de conditionnement d'air pour aéronef |
WO2016170141A1 (fr) | 2015-04-23 | 2016-10-27 | Airbus Operations Gmbh | Système de climatisation d'aéronef entraîné par l'électricité et procédé pour faire fonctionner ledit système de climatisation d'aéronef |
DE102015222193A1 (de) | 2015-11-11 | 2017-05-11 | Airbus Operations Gmbh | Flugzeugklimaanlage mit einer Kabinenabluftturbine |
EP3269645A3 (fr) | 2016-05-26 | 2018-03-07 | Hamilton Sundstrand Corporation | Mélange d'air de purge et d'air dynamique à l'aide d'une architecture à deux turbines comportant un échangeur de chaleur d'écoulement |
EP3248878B1 (fr) | 2016-05-26 | 2020-05-06 | Hamilton Sundstrand Corporation | Mélange d'air dynamique et d'air de purge à l'aide d'un système de turbine à double utilisation |
EP3254970B1 (fr) | 2016-05-26 | 2020-04-29 | Hamilton Sundstrand Corporation | Système de commande environnemental ayant un échangeur de chaleur d'écoulement |
EP3249195B1 (fr) | 2016-05-26 | 2023-07-05 | Hamilton Sundstrand Corporation | Flux d'énergie d'un système de commande environnemental avancé |
EP3249196B1 (fr) | 2016-05-26 | 2020-12-02 | Hamilton Sundstrand Corporation | Flux d'énergie d'un système de commande environnemental avancé |
US11047237B2 (en) | 2016-05-26 | 2021-06-29 | Hamilton Sunstrand Corporation | Mixing ram and bleed air in a dual entry turbine system |
EP3248879B1 (fr) | 2016-05-26 | 2021-06-30 | Hamilton Sundstrand Corporation | Mélange d'air dynamique et d'air de purge à l'aide d'une machine à cycle d'air comportant deux turbines |
EP3248876B1 (fr) | 2016-05-26 | 2023-04-26 | Hamilton Sundstrand Corporation | Mélange d'air de purge et d'air dynamique à une entrée de turbine d'un dispositif de compression |
US11506121B2 (en) | 2016-05-26 | 2022-11-22 | Hamilton Sundstrand Corporation | Multiple nozzle configurations for a turbine of an environmental control system |
US10295284B2 (en) | 2016-08-18 | 2019-05-21 | The Boeing Company | Model-based method and system to detect heat exchanger fouling |
-
2017
- 2017-05-24 US US15/604,510 patent/US10597162B2/en active Active
- 2017-05-24 EP EP17172822.3A patent/EP3248877B1/fr active Active
- 2017-05-25 BR BR102017011090-7A patent/BR102017011090B1/pt active IP Right Grant
- 2017-05-26 CA CA2968733A patent/CA2968733A1/fr active Pending
- 2017-05-26 CN CN201710387603.5A patent/CN107434048A/zh active Pending
Also Published As
Publication number | Publication date |
---|---|
EP3248877A1 (fr) | 2017-11-29 |
BR102017011090B1 (pt) | 2023-12-05 |
US10597162B2 (en) | 2020-03-24 |
CN107434048A (zh) | 2017-12-05 |
BR102017011090A2 (pt) | 2017-12-12 |
CA2968733A1 (fr) | 2017-11-26 |
US20170341767A1 (en) | 2017-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10953992B2 (en) | Mixing bleed and ram air using an air cycle machine with two turbines | |
US11981440B2 (en) | Energy flow of an advanced environmental control system | |
EP3248876B1 (fr) | Mélange d'air de purge et d'air dynamique à une entrée de turbine d'un dispositif de compression | |
US10144517B2 (en) | Mixing bleed and ram air using a two turbine architecture with an outflow heat exchanger | |
EP3248877B1 (fr) | Mélange d'air de purge et d'air dynamique à une entrée de turbine | |
EP3248878B1 (fr) | Mélange d'air dynamique et d'air de purge à l'aide d'un système de turbine à double utilisation | |
US10486817B2 (en) | Environmental control system with an outflow heat exchanger | |
EP3249195B1 (fr) | Flux d'énergie d'un système de commande environnemental avancé | |
EP3248881B1 (fr) | Plusieurs configurations de buse pour une turbine d'un système de contrôle environnemental | |
US11999491B2 (en) | Aircraft environmental control system | |
EP3492381A1 (fr) | Mélange d'air de prelevement et d'air dynamique au moyen d'une architecture a deux turbines dotee d'un echangeur thermique de flux sortant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180529 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20191114 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20221215 |
|
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: HAMILTON SUNDSTRAND CORPORATION |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1566460 Country of ref document: AT Kind code of ref document: T Effective date: 20230515 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602017068523 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20230510 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1566460 Country of ref document: AT Kind code of ref document: T Effective date: 20230510 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230510 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230911 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230810 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230510 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230510 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230510 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230510 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230510 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230510 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230510 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230910 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230510 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230811 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230510 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230510 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20230531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230510 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230510 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230510 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230524 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230531 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230510 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230510 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230510 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230531 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602017068523 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230510 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230510 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230524 |
|
26N | No opposition filed |
Effective date: 20240213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230524 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230510 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230510 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230510 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230531 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240418 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240418 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240418 Year of fee payment: 8 |