EP3134260A1 - Biaxially oriented film having a particle-containing porous layer - Google Patents
Biaxially oriented film having a particle-containing porous layerInfo
- Publication number
- EP3134260A1 EP3134260A1 EP15717808.8A EP15717808A EP3134260A1 EP 3134260 A1 EP3134260 A1 EP 3134260A1 EP 15717808 A EP15717808 A EP 15717808A EP 3134260 A1 EP3134260 A1 EP 3134260A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- film
- particles
- layer
- porous
- film according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000002245 particle Substances 0.000 title claims abstract description 176
- 239000010410 layer Substances 0.000 claims abstract description 136
- 229920001155 polypropylene Polymers 0.000 claims abstract description 61
- 238000002844 melting Methods 0.000 claims abstract description 40
- 239000002667 nucleating agent Substances 0.000 claims abstract description 40
- 230000008018 melting Effects 0.000 claims abstract description 37
- 239000002356 single layer Substances 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims description 74
- -1 polypropylene Polymers 0.000 claims description 57
- 230000008569 process Effects 0.000 claims description 53
- 239000004743 Polypropylene Substances 0.000 claims description 44
- 229920001384 propylene homopolymer Polymers 0.000 claims description 35
- 229920000642 polymer Polymers 0.000 claims description 25
- 229920001400 block copolymer Polymers 0.000 claims description 24
- 238000004519 manufacturing process Methods 0.000 claims description 20
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 claims description 14
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims description 13
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 12
- 229910052744 lithium Inorganic materials 0.000 claims description 12
- 238000001125 extrusion Methods 0.000 claims description 11
- 239000010954 inorganic particle Substances 0.000 claims description 10
- 238000001878 scanning electron micrograph Methods 0.000 claims description 9
- 239000011146 organic particle Substances 0.000 claims description 6
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 5
- 229910001416 lithium ion Inorganic materials 0.000 claims description 5
- WLJVNTCWHIRURA-UHFFFAOYSA-N pimelic acid Chemical compound OC(=O)CCCCCC(O)=O WLJVNTCWHIRURA-UHFFFAOYSA-N 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 159000000007 calcium salts Chemical group 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 150000002739 metals Chemical class 0.000 claims description 2
- 229910052718 tin Inorganic materials 0.000 claims description 2
- 229910052726 zirconium Inorganic materials 0.000 claims description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims 2
- TYFQFVWCELRYAO-UHFFFAOYSA-N suberic acid Chemical compound OC(=O)CCCCCCC(O)=O TYFQFVWCELRYAO-UHFFFAOYSA-N 0.000 claims 2
- 239000002270 dispersing agent Substances 0.000 claims 1
- 239000012797 inorganic spherical particle Substances 0.000 claims 1
- 229910052759 nickel Inorganic materials 0.000 claims 1
- 229910052799 carbon Inorganic materials 0.000 abstract description 3
- 239000000203 mixture Substances 0.000 description 34
- 239000011148 porous material Substances 0.000 description 20
- 238000001816 cooling Methods 0.000 description 16
- 239000000155 melt Substances 0.000 description 16
- 238000010438 heat treatment Methods 0.000 description 15
- 230000035699 permeability Effects 0.000 description 14
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 13
- 238000000576 coating method Methods 0.000 description 12
- 229910010413 TiO 2 Inorganic materials 0.000 description 11
- 239000000654 additive Substances 0.000 description 11
- 239000011248 coating agent Substances 0.000 description 11
- 239000012528 membrane Substances 0.000 description 10
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 9
- 230000003247 decreasing effect Effects 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 238000000113 differential scanning calorimetry Methods 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 7
- 239000011159 matrix material Substances 0.000 description 7
- 230000003472 neutralizing effect Effects 0.000 description 7
- 229920000098 polyolefin Polymers 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 7
- 239000003381 stabilizer Substances 0.000 description 7
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 6
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 6
- 239000005977 Ethylene Substances 0.000 description 6
- 210000004027 cell Anatomy 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 238000013021 overheating Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000011888 foil Substances 0.000 description 5
- 239000004698 Polyethylene Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 238000001938 differential scanning calorimetry curve Methods 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 239000000945 filler Substances 0.000 description 4
- 230000004927 fusion Effects 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 150000004760 silicates Chemical class 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 229910000019 calcium carbonate Inorganic materials 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 238000004880 explosion Methods 0.000 description 3
- 238000009998 heat setting Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 229910052809 inorganic oxide Inorganic materials 0.000 description 3
- 150000002894 organic compounds Chemical class 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 210000003934 vacuole Anatomy 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 229920006378 biaxially oriented polypropylene Polymers 0.000 description 2
- 239000011127 biaxially oriented polypropylene Substances 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 238000005524 ceramic coating Methods 0.000 description 2
- 238000010622 cold drawing Methods 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 150000001991 dicarboxylic acids Chemical class 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000012798 spherical particle Substances 0.000 description 2
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- 238000009827 uniform distribution Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 1
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 1
- BLEGBZJBAPLQMY-UHFFFAOYSA-N 2-n,2-n-dicyclohexylnaphthalene-2,6-dicarboxamide Chemical class C1=CC2=CC(C(=O)N)=CC=C2C=C1C(=O)N(C1CCCCC1)C1CCCCC1 BLEGBZJBAPLQMY-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 240000000736 Amomum maximum Species 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 239000004594 Masterbatch (MB) Substances 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 102000002508 Peptide Elongation Factors Human genes 0.000 description 1
- 108010068204 Peptide Elongation Factors Proteins 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- YXTPWUNVHCYOSP-UHFFFAOYSA-N bis($l^{2}-silanylidene)molybdenum Chemical compound [Si]=[Mo]=[Si] YXTPWUNVHCYOSP-UHFFFAOYSA-N 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- USYJXNNLQOTDLW-UHFFFAOYSA-L calcium;heptanedioate Chemical compound [Ca+2].[O-]C(=O)CCCCCC([O-])=O USYJXNNLQOTDLW-UHFFFAOYSA-L 0.000 description 1
- JILYTPDQRCHWPA-UHFFFAOYSA-L calcium;octanedioate Chemical compound [Ca+2].[O-]C(=O)CCCCCCC([O-])=O JILYTPDQRCHWPA-UHFFFAOYSA-L 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229920005674 ethylene-propylene random copolymer Polymers 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- XQFCONVZHYBBOH-UHFFFAOYSA-N hippeastidine Chemical compound C1C2=CC(OC)=C(OC)C(O)=C2C23CCC(OC)CC3N1CC2 XQFCONVZHYBBOH-UHFFFAOYSA-N 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229910052909 inorganic silicate Inorganic materials 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 238000002356 laser light scattering Methods 0.000 description 1
- QNZFKUWECYSYPS-UHFFFAOYSA-N lead zirconium Chemical compound [Zr].[Pb] QNZFKUWECYSYPS-UHFFFAOYSA-N 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- ZADYMNAVLSWLEQ-UHFFFAOYSA-N magnesium;oxygen(2-);silicon(4+) Chemical compound [O-2].[O-2].[O-2].[Mg+2].[Si+4] ZADYMNAVLSWLEQ-UHFFFAOYSA-N 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 229910021344 molybdenum silicide Inorganic materials 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical class [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920002959 polymer blend Polymers 0.000 description 1
- 229920005629 polypropylene homopolymer Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 229910001388 sodium aluminate Inorganic materials 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 229910052645 tectosilicate Inorganic materials 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 238000002411 thermogravimetry Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 239000012463 white pigment Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B3/00—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
- B32B3/26—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
- B32B3/266—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/20—Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C44/00—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
- B29C44/34—Auxiliary operations
- B29C44/3469—Cell or pore nucleation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C44/00—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
- B29C44/34—Auxiliary operations
- B29C44/56—After-treatment of articles, e.g. for altering the shape
- B29C44/5627—After-treatment of articles, e.g. for altering the shape by mechanical deformation, e.g. crushing, embossing, stretching
- B29C44/5672—After-treatment of articles, e.g. for altering the shape by mechanical deformation, e.g. crushing, embossing, stretching by stretching the foam, e.g. to open the cells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/001—Combinations of extrusion moulding with other shaping operations
- B29C48/0018—Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/022—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/16—Articles comprising two or more components, e.g. co-extruded layers
- B29C48/18—Articles comprising two or more components, e.g. co-extruded layers the components being layers
- B29C48/21—Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/005—Shaping by stretching, e.g. drawing through a die; Apparatus therefor characterised by the choice of materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/02—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
- B29C55/10—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
- B29C55/12—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
- B29C55/14—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
- B29C55/143—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively firstly parallel to the direction of feed and then transversely thereto
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/20—Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
- B32B27/205—Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents the fillers creating voids or cavities, e.g. by stretching
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/18—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/09—Carboxylic acids; Metal salts thereof; Anhydrides thereof
- C08K5/098—Metal salts of carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/10—Homopolymers or copolymers of propene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/10—Homopolymers or copolymers of propene
- C08L23/12—Polypropene
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/403—Manufacturing processes of separators, membranes or diaphragms
- H01M50/406—Moulding; Embossing; Cutting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/417—Polyolefins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/446—Composite material consisting of a mixture of organic and inorganic materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
- H01M50/451—Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
- H01M50/491—Porosity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/572—Means for preventing undesired use or discharge
- H01M50/574—Devices or arrangements for the interruption of current
- H01M50/581—Devices or arrangements for the interruption of current in response to temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2023/00—Use of polyalkenes or derivatives thereof as moulding material
- B29K2023/10—Polymers of propylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2023/00—Use of polyalkenes or derivatives thereof as moulding material
- B29K2023/10—Polymers of propylene
- B29K2023/12—PP, i.e. polypropylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/0005—Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
- B29K2105/0047—Agents changing thermal characteristics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/04—Condition, form or state of moulded material or of the material to be shaped cellular or porous
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/04—Condition, form or state of moulded material or of the material to be shaped cellular or porous
- B29K2105/041—Microporous
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/06—Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
- B29K2105/16—Fillers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2509/00—Use of inorganic materials not provided for in groups B29K2503/00 - B29K2507/00, as filler
- B29K2509/02—Ceramics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0037—Other properties
- B29K2995/0041—Crystalline
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0037—Other properties
- B29K2995/005—Oriented
- B29K2995/0053—Oriented bi-axially
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/34—Electrical apparatus, e.g. sparking plugs or parts thereof
- B29L2031/3468—Batteries, accumulators or fuel cells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/24—All layers being polymeric
- B32B2250/242—All polymers belonging to those covered by group B32B27/32
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/02—Synthetic macromolecular particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
- B32B2264/102—Oxide or hydroxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
- B32B2264/104—Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/12—Mixture of at least two particles made of different materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2270/00—Resin or rubber layer containing a blend of at least two different polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2305/00—Condition, form or state of the layers or laminate
- B32B2305/02—Cellular or porous
- B32B2305/026—Porous
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/514—Oriented
- B32B2307/518—Oriented bi-axially
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/514—Oriented
- B32B2307/52—Oriented multi-axially
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/704—Crystalline
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/72—Density
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/724—Permeability to gases, adsorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/732—Dimensional properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/10—Batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/10—Homopolymers or copolymers of propene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/10—Homopolymers or copolymers of propene
- C08J2323/12—Polypropene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/10—Homopolymers or copolymers of propene
- C08J2323/14—Copolymers of propene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2423/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2423/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2423/16—Ethene-propene or ethene-propene-diene copolymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/014—Additives containing two or more different additives of the same subgroup in C08K
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a biaxially oriented film having at least one particle-containing porous layer and its use as a separator, and to a process for producing this film.
- Modern devices require an energy source, such as batteries or rechargeable batteries, which enable a spatially independent use. Batteries have the disadvantage that they must be disposed of. Therefore, accumulators (secondary batteries) are increasingly used, which can be recharged with the help of chargers on the power grid again and again. Conventional nickel-cadmium (NiCd) batteries, for example, can achieve a lifetime of approximately 1000 charging cycles when used properly. In high-energy or high-performance systems, lithium, lithium-ion, lithium-polymer, and alkaline-earth batteries are increasingly being used as accumulators.
- NiCd nickel-cadmium
- Batteries and accumulators always consist of two electrodes immersed in an electrolyte solution and a separator separating the anode and cathode.
- the different battery types differ by the electrode material used, the electrolyte and the separator used.
- a battery separator has the task of spatially separating the cathode and anode in batteries, or negative and positive electrodes in accumulators.
- the separator must be a barrier which electrically insulates the two electrodes from each other to avoid internal short circuits. At the same time, however, the separator must be permeable to ions so that the electrochemical reactions in the cell can proceed.
- a battery separator must be thin so that the internal resistance is as low as possible and a high packing density and thus energy density in the battery can be achieved. Only in this way are good performance data and high capacities possible.
- lithium batteries In lithium batteries, the occurrence of short circuits is a problem. Under thermal stress, the lithium ion batteries may cause the battery separator to melt, resulting in a short circuit with devastating consequences. Similar dangers exist if the lithium batteries are mechanically damaged or overloaded by faulty electronics of the chargers.
- shut-off separators To increase the safety of lithium-ion batteries, shut-off separators have been developed in the past (shut-down membranes). These special separators close their pores in a very short time at a certain temperature, which is well below the melting point or the ignition point of lithium. Thus, the catastrophic consequences of a short circuit in the lithium batteries are largely prevented.
- Li batteries of the pouch cell type the individual battery units are separated from each other only by a foil. Due to this fact, higher demands are placed on the separator in these cells since, in the event of an internal short circuit and overheating, the explosive combustion reactions spread to the neighboring cells.
- US2011171523 describes a heat-resistant separator obtained by a solvent method.
- inorganic particles chalk, silicates or aluminum oxide
- UHMW-PE raw material
- oil is then extruded through a die into a prefilm.
- the oil is then dissolved out of the prefilm by means of a solvent in order to create the pores.
- this film is stretched to the separator.
- the inorganic particles then ensure the separation of the anode and cathode in the battery even in the event of severe overheating.
- This method has the disadvantage that the particles contribute to the weakening of the mechanical properties of the separator and that agglomerates of the particles can cause errors and uneven pore structure.
- US2007020525 describes a ceramic separator obtained by processing inorganic particles with a polymer-based binder. This separator also ensures that the anode and cathode in the battery remain disconnected in the event of severe overheating. But the manufacturing process is complicated and the mechanical properties of the separator are insufficient.
- WO2013083280 describes a biaxially oriented, monolayer or multilayer porous film which has an inorganic, preferably ceramic, coating. The original porosity of the film is lowered by the ceramic coating only to a small extent. The coated porous film has a Gurley value of ⁇ 1500s. According to this teaching, polypropylene separators with a certain surface structure even without the use of primers over water-based inorganic, preferably ceramic, coatings sufficient adhesion.
- the separator materials with temperature-stable protective layer must be as thin as possible in order to ensure a small footprint, to keep the internal resistance small and have a large porosity. These properties are negatively influenced by the coating, since the coating leads to an increase in the thickness of the membrane and to a reduced porosity and impairs the surface structure of the film.
- Polyolefin separators can today be produced by various processes are: filler method; Cold drawing, extraction method and ⁇ -crystallite method. These methods basically differ by the different mechanisms by which the pores are generated. For example, can be produced by the addition of very high amounts of filler porous films. The pores are formed during stretching due to the incompatibility of the fillers with the polymer matrix. However, the large amounts of filler of up to 40 wt .-%, which are required to achieve high porosity, affect the mechanical strength despite high draw considerably, so that these products can not be used as separators in a high energy cell.
- the pores are in principle produced by dissolving out a component from the polymer matrix by means of suitable solvents.
- suitable solvents a variety of variants have developed, which differ in the nature of the additives and the appropriate solvents.
- Both organic and inorganic additives can be extracted. This extraction can be done as the last step in the production of the film or combined with a subsequent drawing.
- the disadvantage in this case is the ecologically and economically questionable extraction step.
- An older but successful process relies on stretching the polymer matrix at very low temperatures (cold drawing).
- the film is first extruded and then annealed to increase the crystalline content for a few hours.
- the cold stretching is carried out in the longitudinal direction at very low temperatures in order to produce a plurality of defects in the form of the smallest microcracks.
- This pre-stretched film with voids is then stretched in the same direction again at elevated temperatures with higher factors, enlarging the voids to pores forming a network-like structure.
- These slides combine high porosity and good mechanical strength in the direction of their stretching, generally the longitudinal direction. However, the mechanical strength in the transverse direction remains poor, whereby the puncture resistance is poor and a high tendency to splice in the longitudinal direction. Overall, the process is costly.
- Another known process for producing porous films is based on the admixture of ⁇ -nucleating agents to polypropylene.
- the polypropylene forms so-called ⁇ -crystallites in high concentrations during cooling of the melt.
- the ⁇ phase is converted into the alpha modification of the polypropylene. Since these different crystal forms differ in density, here too many microscopic defects, which are torn to pores by stretching, are initially produced.
- the films produced by this process have good porosities and good mechanical strength in the longitudinal and transverse directions and a very good economy. These films are also called hereinafter ⁇ -porous films. To improve the porosity, a higher orientation can be introduced in the longitudinal direction before the transverse extension.
- the object of the present invention was therefore to provide a film which, as a separator, ensures insulation of the electrodes even at very high temperatures or mechanical damage to the battery. This insulating function must be retained even if the temperatures inside the battery are above the melting point of the polymer of the separator. This film should still be efficient and inexpensive to produce.
- a further object of the present invention was therefore a porous film having an improved Gurley value, i. to provide a good permeability.
- a further object of the present invention was to enable a high process speed in the production of low Gurley porous film.
- a biaxially oriented, single or multilayer porous film comprising at least one porous layer, said layer containing at least one propylene polymer, a beta-nucleating agent and particles, wherein the particles have a melting point of over 200 ° C and on an SEM image of a film pattern of 10 mm 2 highest 1 agglomerate or particles with a particle size of> 1 pm is detectable.
- the membranes which are based on the film according to the invention by the addition of high-melting particles provide adequate protection against internal short circuits when used as a separator in highly reactive batteries and rechargeable batteries.
- the particles in the film form even at very high temperatures of over 160 ° C (melting point of propylene polymers), an effective insulation that keeps the electrodes separate.
- the addition of high-melting particles in the porous layer lowers the Gurley value of porous films.
- an increase in the process speed by the addition of the particles is possible.
- the addition of said particles effectively reduces the number of breaks, even at elevated process speeds.
- particles are particles which have a melting point above 200 ° C.
- the ⁇ -porous films according to the invention may have one or more layers and comprise at least one porous layer which is composed of propylene polymers, preferably propylene homopolymers and / or propylene block copolymers, and generally contains at least one ⁇ -nucleating agent and high-melting particles according to the invention.
- other polyolefins may additionally be included in minor amounts, provided they do not adversely affect porosity and other essential properties.
- the porous layer additionally contains customary additives, for example stabilizers and / or neutralizing agents, in respective effective amounts.
- Suitable propylene homopolymers for the porous layer contain 98 to 100% by weight, preferably 99 to 100% by weight of propylene units and have a melting point (DSC) of 150 ° C or higher, preferably 155 to 170 ° C, and generally a melt flow index from 0.5 to 10 g / 10 min, preferably 2 to 8 g / 10 min, at 230 ° C and a force of 2.16 kg (DIN 53735).
- isotactic propylene homopolymers having a high chain isotacticity of at least 96%, preferably 97-99% ( 13 C-NMR, triad method) can be used.
- These raw materials are known in the art as HIPP polymers (high isotactic polypropylenes) or HCPP (high crystalline polypropylenes) and are characterized by a high stereoregularity of the polymer chains, higher crystallinity and a higher melting point (compared to 13 C propylene polymers -NMR isotacticity of 90 to ⁇ 96%, which can also be used).
- Propylene block copolymers have a melting point of about 140 to 170 ° C, preferably from 145 to 165 ° C, in particular 150 to 160 ° C and a melt range of over 120 ° C, preferably in a range of 125 - 160 ° C begins.
- the comonomer, preferably ethylene content is for example between 1 and 20 wt .-%, preferably 1 and 10 wt .-%.
- the melt flow index of the propylene block copolymers is generally in a range of 1 to 20 g / 10 min, preferably 1 to 10 g / 10 min.
- the porous layer may additionally contain other polyolefins, provided that they do not adversely affect the properties, in particular the porosity and the mechanical strengths.
- Other polyolefins include, for example, random copolymers of ethylene and propylene having an ethylene content of 20% by weight or less, random copolymers of propylene with C 4 -C 8 olefins having an olefin content of 20% by weight or less, terpolymers of propylene, ethylene and butylene having an ethylene content of 10% by weight or less and having a butylene content of 15% by weight or less.
- the porous layer is composed only of propylene homopolymer and / or Propylenblockcopolmyer and ß-nucleating agents and particles, and optionally stabilizer and neutralizing agent.
- the porous layer is composed only of propylene homopolymer and / or Propylenblockcopolmyer and particles, and optionally stabilizer and neutralizing agent.
- These embodiments do not contain a ⁇ -nucleating agent.
- all known additives which promote the formation of ⁇ crystals of the polypropylene during cooling of a polypropylene melt are suitable as ⁇ -nucleating agents for the porous layer.
- Such ⁇ -nucleating agents, as well as their mode of action in a polypropylene matrix are per se known in the art and will be described in detail below.
- Phthalic acid for the purposes of the present invention, highly active ⁇ -nucleating agents are preferably used which, on cooling a propylene homopolymer melt, produce a ⁇ content of 40-95%, preferably of 50-85% (DSC).
- the ⁇ content is determined from the DSC of the cooled propylene homopolymer melt.
- preference is given to a two-component ⁇ -nucleation system composed of calcium carbonate and organic dicarboxylic acids, which is described in DE 3610644, to which reference is hereby expressly made.
- Particularly advantageous are calcium salts of dicarboxylic acids, such as Caiciumpimelat or Caiciumsuberat as described in DE 4420989, which is also incorporated by reference.
- the dicarboxamides described in EP-0557721, in particular N, N-dicyclohexyl-2,6-naphthalenedicarboxamides, are also suitable ⁇ -nucleating agents.
- ⁇ -nucleating agents maintaining a certain temperature range and residence times at these temperatures when cooling the unstretched melt film is important for obtaining a high level of ⁇ -crystalline polypropylene.
- the cooling of the melt film is preferably carried out at a temperature of 60 to 140 ° C, in particular 80 to 130 ° C, for example 85 to 128 ° C.
- the take-off speed ie, the rate at which the melt film passes over the first chill roll
- the take-off speeds can in principle also vary in a range which is relatively broad for porous films.
- the take-off speed is generally 1 to 100 m / min, preferably 1.2 to 60 m / min, in particular 1.3 to 40 m / min and particularly preferably 1.5 to 25 m / min or 1 to 20 m / min.
- the residence time could be extended or shortened accordingly and are for example 10 to 300s; preferably 20 to 200s.
- the porous layer generally contains 40 to ⁇ 98% by weight, preferably 40 to 90% by weight, of propylene homopolymer and / or propylene block copolymer and generally 0.001 to 5% by weight, preferably 50 to 10,000 ppm of at least one ⁇ -nucleating agent and 2 to ⁇ 70% by weight of particles based on the weight of the porous layer.
- the proportion of propylene homopolymers and / or propylene block copolymers is increased accordingly.
- the proportion of the propylene homopolymer or the block copolymer is reduced accordingly.
- the amount of the additional polymers in the porous layer will be 0 to ⁇ 10% by weight, preferably 0 to 5% by weight, in particular 0.5 to 2% by weight, if these are additionally present.
- said propylene homopolymer or propylene block copolymer portion will be reduced if higher levels of up to 5 weight percent nucleating agent are employed.
- the layer conventional stabilizers and neutralizing agents, and optionally further additives, in the usual small amounts of less than 2 wt .-%.
- the porous layer contains as polymers a mixture of propylene homopolymer and propylene block copolymer.
- the porous layer in these embodiments generally contains 10 to 93% by weight, preferably 20 to 90% by weight, of propylene homopolymers and 5 to 88% by weight, preferably 10 to 60% by weight of propylene block copolymers and 0.001 to 5% by weight. %, preferably 50 to 10,000 ppm of at least one ⁇ -nucleating agent and 2 to 60 wt .-% of particles, based on the weight of the porous layer, and optionally the aforementioned additives such as stabilizers and neutralizing agents.
- porous film according to the invention contain from 50 to 10,000 ppm, preferably from 50 to 5000 ppm, in particular from 50 to 2000 ppm of calcium pimelate or calcium suberate as ⁇ -nucleating agent in the porous layer.
- the porous film may be single or multi-layered.
- the thickness of the film is generally in a range of 10 to 100 .mu.m, preferably 15 to 60 ⁇ , for example 15 to 40pm.
- the porous film may be provided on its surface with a corona, flame or plasma treatment, for example, to improve the filling with electrolytes and / or to improve the adhesive properties.
- the addition of the particles according to the invention also makes it possible to produce porous films having a thickness of less than 25 ⁇ m with an increased process speed and / or few tears.
- the film is single-layered and then consists only of the above-described particle-containing porous layer.
- the proportion of particles is preferably 5 to 50% by weight, in particular 10 to 40% by weight, based on the weight of the film.
- the film is multi-layered and comprises at least two of the above-described particle-containing porous layers, these differing in terms of particle content and / or polymers.
- the particle-containing porous layer is a one-sided outer cover layer I on a further porous layer II.
- the proportion of particles in the cover layer I is preferably from 10 to 70% by weight, in particular from 15 to 60% by weight, based on the weight of the cover layer I.
- These films then comprise at least the particle-containing porous cover layer I and a further porous layer II.
- particle-containing porous layers are applied to both sides as outer cover layers on a porous layer II.
- the proportion of particles in the two cover layers is in each case independently of one another preferably from 10 to 70% by weight, in particular from 15 to 60% by weight, based on the weight of the respective cover layer.
- the other porous layer (s) II are basically constructed like the particle-containing porous layer described above, but no particles are included.
- the proportion of propylene polymers is correspondingly increased in these porous layers II.
- the further porous layer (s) is / are thus composed as follows.
- the further porous layer II generally contains 45 to ⁇ 100 wt .-%, preferably 50 to 95 wt .-%, propylene homopolymer and / or propylene block copolymer and 0.001 to 5 wt .-%, preferably 50 - 10,000 ppm of at least one ß-nucleating agent , based on the weight of the porous layer.
- the proportion of propylene homopolymer or of the block copolymer is reduced accordingly.
- the amount of additional polymers in the Layer II 0 to ⁇ 10 wt .-%, preferably 0 to 5 wt .-%, in particular 0.5 to 2 wt .-% amount, if they are additionally included.
- said propylene homopolymer or propylene block copolymer portion is reduced when higher levels of up to 5 weight percent nucleating agent are employed.
- the layer II conventional stabilizers and neutralizing agents, and optionally further additives, in the usual small amounts of less than 2 wt .-%.
- the porous layer can also be combined with additional non-porous layers, if, for example, the special pore structure is to be used for other purposes.
- These films then have no gas permeability and comprise at least one porous particle-containing layer I as cover layer (s), inner intermediate layer (s) or as base layer of a multilayered embodiment of the film.
- the density of the porous film or the porous layer is generally in a range of 0.1 to 0.6 g / cm 3 , preferably 0.2 to 0.5 g / cm 3 .
- the density of the film for embodiments with other non-porous layers can vary within a very wide range.
- porous films according to the invention are distinguished by the following further properties:
- the maximum pore size measured (by bubble point) of the porous film according to the invention is generally ⁇ 350 nm and is preferably in the range from 20 to 350 nm, in particular from 40 to 300 nm, particularly preferably from 40 to 200 nm.
- the mean pore diameter should generally be in the range from 20 to 150 nm, preferably in the range from 30 to 100 nm, in particular in the range from 30 to 80 nm.
- the porosity of the porous film is generally in a range of 30 to 80%, preferably 50 to 70%.
- the film of the invention is preferably characterized by a Gurley value of less than 500s / 100cm 3 , in particular of less than 200s / 100cm 3 , in particular from 10 to 150s / 100cm 3 from.
- the addition of the particles in the porous layer leads to surprising effects, which can be used advantageously in different ways. It has been found that the particles ensure separation of the electrodes, even if the temperature inside the battery exceeds the melting temperature of the polymers. This protective effect works both in separators whose pores close when the temperature increases, and in separators without this so-called shut-off function (increasing the Gurley value of the porous film at high temperatures). Thus, separators of the porous film of the present invention provide better protection against battery fires or even explosions due to short circuits, mechanical damage or overheating. Surprisingly, the particle additives have an advantageous effect on the gas permeability of the films.
- the addition of the particles reduces the Gurley value compared to a film with an analog composition without particles. This is surprising against the background that the particles themselves usually do not develop a ⁇ -nucleating effect. In addition, it is known in the art that particles having a particle size of less than 1 pm in a polypropylene matrix also have no vacuolene or pore-forming action. It is therefore not understood how or why these particles contribute to a lower Gurley value. Furthermore, it is completely unexpected that the addition of the particles, not as originally expected, causes more frequent breaks in the production of the film. This is surprising, since it is known in the art that, for example, agglomerates of nucleating agents cause the frequency of tearing to increase significantly.
- Recent patent applications describe how to achieve a uniform distribution of nucleating agents having a particle size from 5 to 50 nm achieved without agglomeration in polypropylene, in order to increase the process safety in the production of ß-porous films (WO201 1047797A1).
- the inventively added particles having a melting point of about 200 ° C include inorganic and organic particles.
- particles are not substances which lead to a higher proportion of ⁇ -crystalline polypropylene. They are thus not ß-nucleating agents.
- particles are non-vacuole-initiating particles.
- the particles used according to the invention are preferably approximately spherical particles or spherical particles.
- Vacuum-initiating particles are known in the art and produce vacuoles in a polypropylene film when stretched. Vacuoles are closed cavities and also lower the density of the film compared to the theoretical density of the starting materials. In contrast, porous films or layers have a network of interconnected pores. Pores are thus no closed cavities. Both porous films and vacuole-containing films have a density of less than 0.9 g / cm 3 . The density of vacuolated biaxially oriented polypropylene films is generally 0.5 to ⁇ 0.85 / cm 3 . In general, a particle size greater than 1 ⁇ m is required for particles to act as a vacuole-initiating particle in a polypropylene matrix. It can be tested by means of a reference film of propylene homopolymer whether particles are vacuole-initiating particles or are non-vacuole-initiating particles.
- a biaxially stretched film of propylene homopolymer and 8 wt .-% of the particles to be tested is prepared by a common boPP process.
- Conventional stretching conditions are used (elongation factor 5 at a stretching temperature of 110 ° C. and a transverse stretching factor of 9 at a transverse stretching temperature of 140 ° C).
- the density of the film is determined. If the density of the film is ⁇ 0.85 g / cm 3 , the particles are vacuole-initiating particles.
- the density of the film is above 0.85 g / cm 3 , preferably above 0.88 g / cm 3 , in particular above> 0.9 g / cm 3, these are non-vacuole-initiating particles in the sense of the present invention.
- Inorganic particles in the context of the present invention are all natural or synthetic minerals, provided they have the above-mentioned melting point above 200 ° C.
- Inorganic particles for the purposes of the present invention comprise materials based on silicate compounds, oxidic raw materials, for example metal oxides and non-oxidic and non-metallic raw materials.
- Inorganic particles are, for example, alumina, aluminum sulfate, barium sulfate, calcium carbonate, magnesium carbonate, silicates such as aluminum silicate (kaolin clay) and magnesium silicate (talc) and silica, among which titanium dioxide, calcium carbonate and silica are preferably used.
- silicates such as aluminum silicate (kaolin clay) and magnesium silicate (talc) and silica, among which titanium dioxide, calcium carbonate and silica are preferably used.
- Suitable silicates include materials having a SiO4 tetrahedron, for example, layer or framework silicates.
- Suitable oxidic raw materials in particular metal oxides, are, for example, aluminum oxides, zirconium oxides, barium titanate, lead zirconium titanates, ferrites and zinc oxide.
- Suitable non-oxidic and non-metallic raw materials are, for example, silicon carbide, silicon nitride, aluminum nitride, boron nitride, titanium boride and molybdenum silicide.
- Oxides of the metals Al, Zr, Si, Sn, Ti and / or Y are preferred.
- the preparation of such particles is described in detail, for example, in DE-A-10208277.
- the preferred titanium dioxide particles are generally at least 95% by weight rutile and are preferably used with a coating of inorganic oxides commonly used as a coating for TiO 2 white pigment in papers or paints to improve light fastness.
- TiO 2 particles with a coating are z. In EP-A-0 078 633 and EP-A-0 044 515.
- the coating also contains organic compounds having polar and nonpolar groups.
- Preferred organic compounds are alkanols and anionic and cationic surfactants having 8 to 30 carbon atoms in the alkyl group, in particular fatty acids and primary n-alkanols having 12 to 24 carbon atoms, and polydiorganosiloxanes and / or polyorganohydrogensiloxanes such as polydimethylsiloxane and polymethylhydrogensiloxane.
- the coating on the TiO 2 particles usually consists of 1 to 12 g, in particular 2 to 6 g, of inorganic oxides, optionally in addition 0.5 to 3 g, in particular 0.7 to 1, 5 g, organic compounds, respectively to 100 g of TiO 2 particles. It has proved to be particularly advantageous if the TiO 2 particles are coated with Al 2 O 3 or with Al 2 O 3 and polydimethylsiloxane.
- suitable inorganic oxides are the oxides of aluminum, silicon, zinc or magnesium or mixtures of two or more of these compounds. They are made of water-soluble compounds, for. For example, alkali metal, in particular sodium aluminate, aluminum hydroxide, aluminum sulfate, aluminum nitrate, sodium silicate or silica precipitated in the aqueous suspension.
- Organic particles are based on polymers which are incompatible with the propylene polymers of the porous particle-containing layer.
- Organic particles are preferably based on copolymers of cyclic olefins (COC) as described in EP-A-0 623 463, polyesters, polystyrenes, polyamides, halogenated organic polymers, with polyesters such as polybutylene terephthalates and cycloolefin copolymers being preferred.
- the organic particles should be incompatible with the polypropylenes. Incompatible in the sense of the present invention means that the material or the polymer is present in the film as a separate particle.
- the particles have a melting temperature of at least 200 ° C., in particular at least 250 ° C., very particularly preferably at least 300 ° C.
- the said particles generally do not undergo decomposition at the temperatures mentioned.
- the aforementioned information can be determined by known methods, e.g. DSC (differential scanning calorimetry) or TG (thermogravimetry) can be determined.
- the preferred inorganic particles generally have melting points in the range of 500 to 4000 ° C, preferably 700 to 3000 ° C, especially 800 to 2500 ° C.
- the melting point of TiO 2 is, for example, about 1850 ° C.
- Organic particles that are used also have a melting point of over 200 ° C and should not be decomposed, especially at the temperatures mentioned.
- the particles have an average particle size of at most 1 pm, since larger particles lead to increased breaks in the production of the film.
- the particles should be in as agglomerate-free fine distribution in the porous layer, otherwise few Agglomerates from a certain critical size of, for example,> 1 ⁇ , insbesondre of 1 to 3 ⁇ also in small numbers increase the frequency of tearing.
- the average particle size thus contributes to the fact that the film contains no or less than 1 agglomerate with a particle size of> 1 ⁇ , wherein this is detected on a film sample of 10mm 2 by means of SEM images.
- individual non-agglomerated particles also have a size (absolute) of less than 1 m. Accordingly, the said film sample of 10 mm 2 also shows less than one or no non-agglomerated particles with a particle size of more than 1 ⁇ m.
- the batches or premixes contain propylene polymers and particles, and optionally additionally conventional additives.
- a two-screw extruder is preferably used for better dispersion of the particles in the polymer and / or mixed with a high Scheerrate.
- the addition of surface-active substances also contributes to the uniform distribution of the particles in the polymer. It is also favorable to provide the particles themselves with a coating in an upstream step. These measures are particularly recommended when using inorganic particles. By means of these and other measures known in the prior art it can be ensured that agglomerate-free batches or premixes are used.
- the present invention further relates to a process for the preparation of particle-containing porous film of the invention.
- the process speed can vary within a wide range.
- the invention enables higher process speeds, which are not accompanied by a poorer gas permeability or a higher number of tears.
- the speed of the process according to the invention is generally between 3 to 400 m / min, preferably between 5 to 250 m / min, in particular between 6 and 150 m / min or between 6.5 and 100 m / min.
- the porous film is produced by the known flat film extrusion or coextrusion process.
- the procedure is such that the mixture of polymers (propylene homopolymer and / or propylene block copolymer) and generally ⁇ -nucleating agent and particles and optionally further polymers of the respective layer is mixed, melted in an extruder and together and simultaneously through a flat die is extruded or coextruded on a take-off roll on which solidifies the one-layer or multilayer melt film to form the ß-crystallites and cools.
- the cooling temperatures and cooling times are selected such that the highest possible proportion of ⁇ -crystalline polypropylene is formed in the porous layer of the prefilm.
- this temperature of the take-off roll or the take-off rolls is 60 to 140 ° C, preferably 80 to 130 ° C.
- the residence time at this temperature may vary and should be at least 20 to 300 seconds, preferably 30 to 100 seconds.
- the prefilm thus obtained generally contains in the porous layer a proportion of ⁇ -crystallites (1st heating) of 40-70%, preferably 50-90%.
- This precursor film with a high proportion of ⁇ -crystalline polypropylene in the porous layer is then biaxially stretched in such a way that, upon drawing, the ⁇ -crystallites are converted into ⁇ -crystalline polypropylene and a network-like porous structure is formed.
- the biaxial stretching (orientation) is generally carried out successively, wherein preferably first stretched longitudinally (in the machine direction) and then transversely (perpendicular to the machine direction).
- the preliminary film is first passed over one or more heating rollers, which heat the film to the appropriate temperature.
- this temperature is less than 140 ° C, preferably 70 to 120 ° C.
- the longitudinal stretching is then generally carried out with the help of two according to the desired stretch ratio of different fast-running rollers.
- the longitudinal stretch ratio is in a range from 2: 1 to 6: 1, preferably 3: 1 to 5: 1.
- the film is first cooled again over appropriately tempered rolls. Subsequently, in the so-called Aufmorefeldern again heating to the transverse stretching temperature, which is generally at a temperature of 120-145 ° C. Subsequently, the transverse stretching takes place with the aid of a corresponding clip frame, wherein the transverse stretch ratio is in a range from 2: 1 to 9: 1, preferably 3: 1 to 8: 1.
- the transverse extension preferably takes place with a moderate to slow transverse stretching speed of> 0 to 40% / s, preferably in a range of 0.5 to 30% / s, in particular 1 to 15% / s.
- a surface of the film can be corona, plasma or flame treated according to one of the known methods, so that the filling with electrolyte is favored.
- a heat-setting heat treatment
- the film is held for about 5 to 500 s, preferably 10 to 300 s at a temperature of 10 to 150 ° C, preferably 125 to 145 ° C, for example via rollers or an air heater.
- the film is driven converging immediately before or during the heat-setting, wherein the convergence is preferably 5 to 25%, in particular 8 to 20%.
- Convergence is understood to mean a slight collapse of the transverse stretching frame, so that the maximum width of the frame, which is given at the end of the transverse stretching process, is greater than the width at the end of the heat setting. The same applies, of course, for the width of the film web.
- the degree of convergence of the transverse stretching frame is given as the convergence calculated from the maximum width of the transverse stretching frame B max and the final film width B F0 iie according to the following formula:
- the film is wound in the usual way with a winding device.
- transverse stretching speed depend on the method speed.
- the withdrawal speed and the cooling rate also vary with the process speed. These parameters can not be selected independently. It follows that, all other things being equal, at a faster process speed both the transverse stretching rate and the withdrawal speed increase, but at the same time the cooling time of the prefilm decreases. This may or may not be an additional problem.
- the above-mentioned process speeds are understood in each case as that speed, for example in m / min, with which the film runs / is wound up during the respective final winding.
- the process conditions in the process according to the invention for producing the porous films differ from the process conditions which are usually observed in the production of a biaxially oriented film.
- both the cooling conditions when solidifying to the precursor film, and the temperatures and the factors involved in drawing are critical.
- a correspondingly slow and moderate cooling, ie at comparatively high temperatures a high proportion of ß-crystallites in the pre-film must be achieved.
- the ⁇ crystals are converted into the alpha modification, resulting in impurities in the form of microcracks.
- the longitudinal stretching must take place at comparatively low temperatures.
- these impurities are torn to pores, so that the characteristic network structure of these porous films is formed.
- the addition of the particles according to the invention greatly facilitates the formation of the porous structure, although the particles alone do not cause pore formation. It appears that the particles, in conjunction with a certain content of ⁇ -crystalline polypropylene, support the formation of the pore structure in a surprising manner, so that, given a ⁇ -crystallite content in the prefilm, substantially higher porosities are achieved by the addition of the particles, which can not be represented without the corresponding additive for a given ⁇ -component.
- the particles interact with the ⁇ -crystallites in a synergistic manner such that lowering the ⁇ -content in the film does not result in lower Gurley values.
- the improved gas permeability can also be used positively by increasing the process speed, as the particles contribute to an improvement in the Gurley value, i. the particle-containing films according to the invention having the same Gurley values faster, i. be made cheaper.
- a film can be provided which is suitable for use in high-energy batteries due to the particularly high permeability. Furthermore, the film can advantageously be used in other applications in which a very high permeability is required or has an advantageous effect. For example, as a highly porous separator in batteries, especially in lithium batteries with high performance requirements.
- the average particle size is determined by a laser light scattering method according to ISO 13320-1.
- a suitable instrument for analysis is, for example, a Microtrac S 3500.
- the size of the agglomerates and the absolute particle size can be investigated by means of a scanning electron microscope. For this purpose, one makes either a SEM on the particles that are streaked on a sample carrier or a SEM image on a platinum or gold vaporized foil pattern a size of 10mm 2 or a REM images on the granules of the masterbatch.
- the film pattern or the other corresponding recordings of the particles or of the batch are optically examined for the presence of particles having a particle size of more than 1 ⁇ m.
- the melt flow index of the propylene polymers was measured according to DIN 53 735 at 2.16 kg load and 230 ° C.
- the melting point in the context of the present invention is the maximum of the DSC curve.
- a DSC curve is recorded with a heating and cooling rate of 10 K / 1 min in the range of 20 to 200 ° C.
- the second melting point is determined for the determination of the melting point Heating curve after having been cooled at 10K / 1 min in the range of 200 to 20 ° C was evaluated.
- the proportion of ⁇ -crystalline polypropylene is determined by means of DSC. This characterization is described in J. o. Appl. Polymer Science, Vol. 74, p .: 2357-2368, 1999 by Varga and carried out as follows: The sample additized with the ⁇ -nucleator is first heated to 220 ° C. in the DSC at a heating rate of 20 ° C./min melted (1st heating). Thereafter, it is cooled at a cooling rate of 10 ° C / min to 100 ° C, before being remelted at a heating rate of 10 ° C / min (2nd heating).
- the density is determined according to DIN 53 479, method A. Maximum and average pore size
- the maximum and mean pore sizes were measured by the bubble point method according to ASTM F316.
- porosity [%] 100 ⁇ (p pp - p Fo
- the permeability of the films was measured using the Gurley Tester 4 10 according to ASTM D 726-58. It determines the time (in seconds) that 100 cm 3 of air will take to permeate through the 1 inch 2 (6,452 cm 2 ) film surface. The pressure difference across the film corresponds to the pressure of a water column of 12.4 cm in height. The time required then corresponds to the Gurley value, ie the unit is sec / 100cm 3 .
- the invention will now be illustrated by the following examples.
- Example A Batch production:
- a batch of polymer and particles was prepared, which was used in the subsequent experiment.
- This batch was made as follows: In a twin-screw extruder 60 wt.% Of a Ti02 pigment (Huntsmann TR28) together with 0.04 wt .-% Caiciumpimelat as nucleating agent (Caiciumpimelat) at a temperature of 230 ° C and a screw rotation speed of 270 1 / min with 39.96 wt % Granules of isotactic polypropylene homopolymer (melting point 162 ° C; MFI 3g / 10min) are mixed, melted and granulated.
- the SEM images on the batch show finely divided TiO 2 particles with a particle size of 20 to 500 nm without agglomerates of more than 1 ⁇ m.
- the beta activity of the batch shows a value of 91% on the second heating.
- a two-layer prefilm was extruded from a slot die at an extrusion temperature of 240 to 250 ° C ° C.
- the throughputs of the extruders were chosen such that the thickness ratio of the layers A: B was 1: 2.
- the multilayer prefilm was first stripped off on a chill roll and cooled. Subsequently, the prefilm was oriented in the longitudinal and transverse directions and finally fixed.
- the layers of the film had the following composition:
- Composition of layer A 40 wt .-% TiO 2 batch according to Example A from
- polypropylene blend of: about 60 wt .-% propylene homopolymer (PP) with an n-heptane soluble content of 4.5 wt .-% (based on 100% PP) and a melting point of 165 ° C; and a melt flow index of 3.2 g / 10 min at 230 ° C and 2.16 kg load (DIN 53 735) and
- Ethylene content of about 5 wt .-% based on the block copolymer and a
- composition of layer B is Composition of layer B:
- PP propylene homopolymer having an n-heptane-soluble content of 4.5 wt .-% (based on 100% PP) and a melting point of 165 ° C; and a melt flow index of 3.2 g / 10 min at 230 ° C and 2.16 kg load (DIN 53 735) and
- the layers of the film additionally contained stabilizer and neutralizing agent in conventional amounts.
- the nano Ca-pimelate was prepared as described in Examples 1 a or 1 b of WO201 1047797.
- Cooling roller temperature 125 ° C
- the porous film thus prepared was about 30 ⁇ m thick and had a density of 0.33 g / cm 3 and showed a uniform white-opaque appearance.
- the porosity was 66% and the Gurley value 160 s.
- SEM images of the surface of the side A show no TiO2 agglomerates and no particles with a particle size> 1 pm on an examined area of 10 mm 2 .
- Example 1 It was, as described in Example 1, a two-layer film produced. In contrast to Example 1, the take-off speed was increased to 2.5 m / min. The composition of the layers and the other process conditions were not changed. Despite the increased take-off speed, 800m barrel length was produced without demolition. The thickness decreased to 20pm. Despite the shorter residence time on the take-off roll, the Gurley value surprisingly decreased to about 140 seconds. Also in this film, no TiO2 agglomerates and no particles with a particle size> 1 pm on an area of 10 mm 2 were identified by means of SEM on the side A. W
- Example 2 It was, as described in Example 1, a film produced. Unlike film example 1, layer B now had the same composition as layer A. The composition of layer A and the process conditions were not changed. It was thus made a de facto single-layer film. The thickness of the film was 31 ⁇ m and the Gurley value surprisingly decreased to less than 100 seconds. This composition also showed very good running safety and so a roll was produced with 2000 m run length. Both sides of the film showed no ⁇ 02 agglomerates in the SEM and no particles with a particle size> 1 pm on a surface of 10 mm 2 .
- Example 3 It was, as described in Example 3, a de facto monolayer film with 24 wt.% ⁇ 02 produced.
- the take-off speed was increased (as in Folienbsp. 2) to 2.5 m / min.
- the (same) composition of layers A and B and the other process conditions were not changed.
- the thickness decreased to 20 pm and the Gurley value surprisingly remained below 100 seconds as in Ex.
- In this film on both sides by means of SEM no agglomerates and no particles with a particle size> 1 pm were identified on a surface of 10 mm 2 .
- Example 3 It was, as described in Example 3, a film with 24 wt.% Ti02 produced.
- the polypropylene mixture now contained no nucleating agent and thus had the following composition:
- Example 2 It was prepared as described in Example 1, a two-layer film.
- the concentration of the ⁇ O 2 -batch in layer A was increased to 60% and the proportion of the polypropylene mixture was lowered to 40%, so that layer A contained 36% by weight of ⁇ O 2.
- the composition of layer B and the process conditions were not changed. This composition also showed very good running safety and a roll with a running length of 1000 m was produced.
- the thickness of the film was 27 ⁇ m and the Gurley value surprisingly decreased to less than 100 seconds.
- Side A of the film showed no agglomerates in the SEM> 1 pm on an area of 10 mm 2 . However, a particle with a particle size of about 1.2pm was identified.
- Example 2 It was made under the same conditions as Example 2 a two-layer film. However, in layer A and layer B, the propylene-ethylene block copolymer was replaced by an increase in the proportion of the propylene homopolymer (PP).
- PP propylene homopolymer
- This composition also showed very good running safety despite the absence of the block copolymer and a roll with a running length of 1000 m was produced.
- the thickness of the film was 27 ⁇ m and the Gurley value was 170 seconds.
- this composition showed very good running safety and so a roll with 1000 m barrel length was produced.
- Side A of the film showed no agglomerates in the SEM and no particles with a particle size> 1 pm over an area of 10 mm 2 .
- Example 2 It was prepared under the same conditions as described in Example 1, a film. In contrast to Example 1, the same mixture was used for layer A as for layer B, and thus the addition of TiO 2 was omitted. The composition of layer B as well as the process conditions were not changed. In fact, a single-layer film was thus produced. The thickness of the film was 29 ⁇ m and the Gurley value was 200 seconds. Comparative Example 2
- a film was produced under the same conditions as described in Comparative Example 1.
- the take-off speed was increased here to 2.5 m / min.
- 500m barrel length was produced without demolition.
- the thickness decreased to 20 pm and the Gurley value increased to 280 seconds.
- Example 2 It was made under the same conditions as described in Example 1, a two-layer film. In contrast to Example 1, the composition of the layer A batch was changed. The TiO2 was replaced by an AL203 having a mean particle diameter of 3pm. The composition of the layer A polypropylene blend, the composition of the layer B and the process conditions were not changed. However, it could not be produced in fact de facto due to numerous breaks.
- Example 2 It was made under the same conditions as described in Example 1, a two-layer film. However, the ⁇ 02 was incorporated into the extruder instead of a batch by direct metering. There were frequent breaks in the production. The few films produced showed in principle the same properties as the films according to Example 1. Side A of the film showed several agglomerates in the SEM with a size of 1 to 3 pm in an area of 10 mm 2 .
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Laminated Bodies (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Cell Separators (AREA)
Abstract
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102014005890.5A DE102014005890A1 (en) | 2014-04-25 | 2014-04-25 | Biaxially oriented film with particle-containing porous layer |
DE102015001215.0A DE102015001215A1 (en) | 2014-04-25 | 2015-02-03 | Biaxially oriented film with particle-containing porous layer |
PCT/EP2015/000829 WO2015161920A1 (en) | 2014-04-25 | 2015-04-21 | Biaxially oriented film having a particle-containing porous layer |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3134260A1 true EP3134260A1 (en) | 2017-03-01 |
Family
ID=52997396
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15717808.8A Withdrawn EP3134260A1 (en) | 2014-04-25 | 2015-04-21 | Biaxially oriented film having a particle-containing porous layer |
Country Status (10)
Country | Link |
---|---|
US (1) | US20170047567A1 (en) |
EP (1) | EP3134260A1 (en) |
JP (1) | JP2017513996A (en) |
KR (1) | KR20160146684A (en) |
CN (1) | CN106103075A (en) |
BR (1) | BR112016018066A8 (en) |
CA (1) | CA2946783A1 (en) |
DE (1) | DE102015001215A1 (en) |
MX (1) | MX2016013967A (en) |
WO (1) | WO2015161920A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102202932B1 (en) | 2016-11-04 | 2021-01-14 | 주식회사 엘지화학 | Coating composition |
KR102148075B1 (en) * | 2018-07-26 | 2020-08-25 | 한화토탈 주식회사 | Fabrication method for microporous multilayer film having shutdown characteristics at high temperature and high physical strength in transverse direction |
DE102018007418A1 (en) * | 2018-09-20 | 2020-03-26 | Treofan Germany Gmbh & Co. Kg | Biaxially oriented film with particle-containing porous layer |
JP6958586B2 (en) * | 2019-03-11 | 2021-11-02 | 三菱ケミカル株式会社 | Porous film wound body and its manufacturing method |
TW202307111A (en) | 2021-08-10 | 2023-02-16 | 美商科慕Fc有限責任公司 | Treated inorganic particles for modifying polymer crystallinity |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI62130C (en) | 1980-07-18 | 1982-11-10 | Kemira Oy | DETERMINATION OF TITLE DIOXIDE PIGMENT FOR FRAME FRAMEWORK |
GB2108097B (en) | 1981-10-30 | 1985-01-03 | Tioxide Group Plc | Improved pigments and their preparation |
CN1004076B (en) | 1985-04-01 | 1989-05-03 | 中国科学院上海有机化学研究所 | Production method of beta-crystal form polypropylene |
JPS63108041A (en) * | 1986-06-12 | 1988-05-12 | Tokuyama Soda Co Ltd | Microporous film and production thereof |
JPS6454042A (en) * | 1987-08-25 | 1989-03-01 | Tokuyama Soda Kk | Production of microporous film |
US5176953A (en) * | 1990-12-21 | 1993-01-05 | Amoco Corporation | Oriented polymeric microporous films |
US5236963A (en) * | 1991-08-23 | 1993-08-17 | Amoco Corporation | Oriented polymeric microporous films |
US6235823B1 (en) | 1992-01-24 | 2001-05-22 | New Japan Chemical Co., Ltd. | Crystalline polypropylene resin composition and amide compounds |
DE4315006A1 (en) | 1993-05-06 | 1994-11-10 | Hoechst Ag | Sealable, opaque, biaxially oriented polypropylene multilayer film, process for its preparation and its use |
DE4420989B4 (en) | 1994-06-16 | 2005-04-14 | Borealis Polymere Holding Ag | Process for increasing the proportion of β-modification in polypropylene |
DE10208277A1 (en) | 2002-02-26 | 2003-09-04 | Creavis Tech & Innovation Gmbh | Electrical separator, process for its production and use |
KR100686816B1 (en) | 2005-07-22 | 2007-02-26 | 삼성에스디아이 주식회사 | Lithium secondary battery |
US8304113B2 (en) | 2007-03-05 | 2012-11-06 | Advanced Membrane Systems, Inc. | Polyolefin and ceramic battery separator for non-aqueous battery applications |
JP5519682B2 (en) | 2008-10-24 | 2014-06-11 | 東レバッテリーセパレータフィルム株式会社 | Multilayer microporous membranes and methods for making and using such membranes |
DE102009050439A1 (en) * | 2009-10-20 | 2011-05-05 | Treofan Germany Gmbh & Co. Kg | Nanoscale ß-nucleating agent for polypropylene |
JP5705868B2 (en) * | 2010-10-06 | 2015-04-22 | 三菱樹脂株式会社 | Polyolefin resin porous film |
JP2012131990A (en) * | 2010-12-02 | 2012-07-12 | Toray Ind Inc | Separator for use in electricity-storage device |
WO2013080867A1 (en) * | 2011-11-28 | 2013-06-06 | 東レ株式会社 | Porous film, separator for electrical storage device, and electrical storage device |
DE102011120474A1 (en) | 2011-12-08 | 2013-06-13 | Treofan Germany Gmbh & Co. Kg | Highly porous separator film with coating |
-
2015
- 2015-02-03 DE DE102015001215.0A patent/DE102015001215A1/en not_active Withdrawn
- 2015-04-21 JP JP2016564172A patent/JP2017513996A/en active Pending
- 2015-04-21 BR BR112016018066A patent/BR112016018066A8/en not_active Application Discontinuation
- 2015-04-21 MX MX2016013967A patent/MX2016013967A/en unknown
- 2015-04-21 CN CN201580012406.4A patent/CN106103075A/en active Pending
- 2015-04-21 EP EP15717808.8A patent/EP3134260A1/en not_active Withdrawn
- 2015-04-21 CA CA2946783A patent/CA2946783A1/en not_active Abandoned
- 2015-04-21 WO PCT/EP2015/000829 patent/WO2015161920A1/en active Application Filing
- 2015-04-21 US US15/306,615 patent/US20170047567A1/en not_active Abandoned
- 2015-04-21 KR KR1020167027304A patent/KR20160146684A/en unknown
Also Published As
Publication number | Publication date |
---|---|
MX2016013967A (en) | 2017-01-11 |
CA2946783A1 (en) | 2015-10-29 |
US20170047567A1 (en) | 2017-02-16 |
JP2017513996A (en) | 2017-06-01 |
WO2015161920A1 (en) | 2015-10-29 |
BR112016018066A8 (en) | 2020-06-23 |
CN106103075A (en) | 2016-11-09 |
KR20160146684A (en) | 2016-12-21 |
BR112016018066A2 (en) | 2017-08-08 |
DE102015001215A1 (en) | 2016-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2823519B1 (en) | Highly porous separator-film with partial coating | |
EP2794271B1 (en) | Highly porous separator film having a coating and a disconnecting function | |
EP2789032A1 (en) | Highly-porous separator film with a coating | |
EP2563852B1 (en) | Highly porous separator film | |
EP3134260A1 (en) | Biaxially oriented film having a particle-containing porous layer | |
EP2377186A1 (en) | Single-layer microporous film for batteries having shut-off function | |
WO2010145770A1 (en) | Microporous foil for batteries having shutdown function | |
WO2009132802A2 (en) | Membrane film for batteries with a cut-off function | |
EP2903830B1 (en) | Microporous separator film having homogeneous porosity and greater resistance to puncturing | |
JP2017513996A5 (en) | ||
EP2274152B1 (en) | Single-layer membrane film for batteries, having a shut-off function | |
EP2321126B1 (en) | Membrane film for batteries, having a shut-off function | |
WO2017067656A1 (en) | Biaxially oriented porous film having a particles-containing porous layer and an inorganic coating | |
DE102014005890A1 (en) | Biaxially oriented film with particle-containing porous layer | |
WO2019057325A1 (en) | Separator film having improved mechanical properties | |
WO2020058470A1 (en) | Biaxially oriented film with particle-containing porous layer | |
WO2019158266A1 (en) | Separator film having improved mechanical properties | |
WO2019120605A1 (en) | Separator film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20161125 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: CRIGHTON, ALLAN Inventor name: SCHLACHTER, PETER Inventor name: SCHMITZ, BERTRAM Inventor name: MOHR, THILO |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20201002 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20201103 |