EP3126290A2 - High purity synthetic fluorite and process for preparing the same - Google Patents
High purity synthetic fluorite and process for preparing the sameInfo
- Publication number
- EP3126290A2 EP3126290A2 EP15771700.0A EP15771700A EP3126290A2 EP 3126290 A2 EP3126290 A2 EP 3126290A2 EP 15771700 A EP15771700 A EP 15771700A EP 3126290 A2 EP3126290 A2 EP 3126290A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- nh4f
- solution
- weight
- silica
- process according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 title claims abstract description 85
- 239000010436 fluorite Substances 0.000 title claims abstract description 54
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims abstract description 32
- 229910001634 calcium fluoride Inorganic materials 0.000 claims abstract description 30
- 238000000034 method Methods 0.000 claims abstract description 29
- 229910000019 calcium carbonate Inorganic materials 0.000 claims abstract description 24
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims abstract description 18
- 238000002360 preparation method Methods 0.000 claims abstract description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 101
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 67
- LDDQLRUQCUTJBB-UHFFFAOYSA-N ammonium fluoride Chemical compound [NH4+].[F-] LDDQLRUQCUTJBB-UHFFFAOYSA-N 0.000 claims description 46
- 239000000243 solution Substances 0.000 claims description 46
- 239000000377 silicon dioxide Substances 0.000 claims description 37
- 238000006243 chemical reaction Methods 0.000 claims description 34
- 229910052681 coesite Inorganic materials 0.000 claims description 26
- 229910052906 cristobalite Inorganic materials 0.000 claims description 26
- 229910052682 stishovite Inorganic materials 0.000 claims description 26
- 229910052905 tridymite Inorganic materials 0.000 claims description 26
- 229910000069 nitrogen hydride Inorganic materials 0.000 claims description 24
- 239000007864 aqueous solution Substances 0.000 claims description 20
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 claims description 19
- 239000000920 calcium hydroxide Substances 0.000 claims description 19
- 229910001861 calcium hydroxide Inorganic materials 0.000 claims description 19
- 238000001914 filtration Methods 0.000 claims description 15
- 229910021529 ammonia Inorganic materials 0.000 claims description 12
- 235000011116 calcium hydroxide Nutrition 0.000 claims description 12
- 239000007787 solid Substances 0.000 claims description 11
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 claims description 10
- 239000000395 magnesium oxide Substances 0.000 claims description 9
- 238000003756 stirring Methods 0.000 claims description 8
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 claims description 7
- MIMUSZHMZBJBPO-UHFFFAOYSA-N 6-methoxy-8-nitroquinoline Chemical compound N1=CC=CC2=CC(OC)=CC([N+]([O-])=O)=C21 MIMUSZHMZBJBPO-UHFFFAOYSA-N 0.000 claims description 7
- 239000006185 dispersion Substances 0.000 claims description 7
- 238000006460 hydrolysis reaction Methods 0.000 claims description 6
- 230000007062 hydrolysis Effects 0.000 claims description 5
- 229910044991 metal oxide Inorganic materials 0.000 claims description 5
- 150000004706 metal oxides Chemical class 0.000 claims description 5
- 229910003638 H2SiF6 Inorganic materials 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- ZEFWRWWINDLIIV-UHFFFAOYSA-N tetrafluorosilane;dihydrofluoride Chemical compound F.F.F[Si](F)(F)F ZEFWRWWINDLIIV-UHFFFAOYSA-N 0.000 claims description 4
- 102000011045 Chloride Channels Human genes 0.000 claims description 3
- 108010062745 Chloride Channels Proteins 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 3
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 238000001354 calcination Methods 0.000 claims description 2
- 239000000356 contaminant Substances 0.000 claims description 2
- 238000009826 distribution Methods 0.000 claims description 2
- 150000002739 metals Chemical class 0.000 claims description 2
- 229910017665 NH4HF2 Inorganic materials 0.000 claims 2
- 239000002253 acid Substances 0.000 abstract description 16
- 238000009776 industrial production Methods 0.000 abstract description 5
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 12
- 238000000746 purification Methods 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 238000003556 assay Methods 0.000 description 9
- 238000004821 distillation Methods 0.000 description 9
- 239000011777 magnesium Substances 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 238000000926 separation method Methods 0.000 description 7
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 229910052749 magnesium Inorganic materials 0.000 description 6
- 238000001556 precipitation Methods 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 5
- 229910052731 fluorine Inorganic materials 0.000 description 5
- 239000011737 fluorine Substances 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- 230000009466 transformation Effects 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 4
- 238000009833 condensation Methods 0.000 description 4
- 230000005494 condensation Effects 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(III) nitrate Inorganic materials [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 description 4
- 238000010907 mechanical stirring Methods 0.000 description 4
- QPJSUIGXIBEQAC-UHFFFAOYSA-N n-(2,4-dichloro-5-propan-2-yloxyphenyl)acetamide Chemical compound CC(C)OC1=CC(NC(C)=O)=C(Cl)C=C1Cl QPJSUIGXIBEQAC-UHFFFAOYSA-N 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 3
- 230000008030 elimination Effects 0.000 description 3
- 238000003379 elimination reaction Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 229910017356 Fe2C Inorganic materials 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 238000004445 quantitative analysis Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- ABTOQLMXBSRXSM-UHFFFAOYSA-N silicon tetrafluoride Chemical compound F[Si](F)(F)F ABTOQLMXBSRXSM-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229910004072 SiFe Inorganic materials 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052925 anhydrite Inorganic materials 0.000 description 1
- -1 as magnesium oxide Chemical compound 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001033 granulometry Methods 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 1
- SZQUEWJRBJDHSM-UHFFFAOYSA-N iron(3+);trinitrate;nonahydrate Chemical compound O.O.O.O.O.O.O.O.O.[Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O SZQUEWJRBJDHSM-UHFFFAOYSA-N 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F11/00—Compounds of calcium, strontium, or barium
- C01F11/20—Halides
- C01F11/22—Fluorides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/51—Particles with a specific particle size distribution
Definitions
- the present invention relates to high purity synthetic fluorite (CaF 2 ). Furthermore, the present invention relates to a process for preparing said high purity synthetic fluorite (CaF2), classified as acid grade, starting from fluorosilicic acid H2S1F6 (FSA). Moreover, the present invention relates to the use of said high purity synthetic fluorite (CaF2) in the industrial production of hydrofluoric acid.
- Fluorosilicic acid H2S1F6 is a by-product of the industrial production of phosphoric acid, obtained by absorption in water of silicon tetrafluoride (SiF 4 ) generated by the reaction between silica, fluorine, which are present in the phosphatic mineral as raw material, and sulfuric acid used for the production of phosphoric acid.
- SiF can be absorbed in an aqueous solution generating FSA with a concentration varying between 23% and 35%.
- Fluorite loss can be calculated stoichiometrically and is about 3.9% per 1 % of S1O2, and sulfuric acid loss is about 4.9% per 1% of Si0 2 .
- the reaction of HF formation from synthetic fluorite is as follows: H 2 S0 + CaF 2 CaS0 4 + 2HF.
- magnesium e.g. as magnesium oxide
- the chalk CaSC produced in the presence of magnesium tends to build scales on the walls of HF production furnaces. This effect can lead to a complete shutdown of the reaction, thus causing an unwanted plant standstill or anyhow to a large increase in specific fluorite consumption (the amount of fluorite lost in chalk increases). Therefore, from the economic and process point of view, it is necessary to be able to reduce the amount of magnesium (expressed as magnesium oxide) in fluorite to an amount below at least 0.5%.
- An object of the present invention is a high purity synthetic fluorite (CaF2), classified as "acid grade", having the characteristics as defined in the appended claims.
- An object of the present invention is a process for the preparation of said high purity synthetic fluorite (CaF2), classified as "acid grade", having the characteristics as defined in the appended claims.
- An object of the present invention is the use of said high purity synthetic fluorite (CaF2), classified as "acid grade", in the industrial production of hydrofluoric acid (HF), having the characteristics as defined in the appended claims.
- CaF2 high purity synthetic fluorite
- HF hydrofluoric acid
- Figure 1 represents a block diagram of the process for the preparation of high purity synthetic fluorite, according to an embodiment of the present invention including the purification of the solution of NH4F, the transformation of NH4F into ammonium bifluoride (NH4HF2) and the use of CaCCb.
- Figure 2 represents a block diagram of the process for the preparation of high purity synthetic fluorite, according to an embodiment of the present invention including the purification of the NH4F solution and the use of Ca(OH) 2 .
- "high purity" synthetic fluorite means a synthetic fluorite having a concentration of 95% by weight or above with respect to dry weight; preferably of 97% by weight or above with respect to dry weight; still more preferably of 99% by weight or above with respect to dry weight.
- high purity synthetic fluorite (CaF2), classified as "acid grade" means a fluorite having a CaF2 content above 95% by weight, e.g. above 97% by weight, with respect to dry weight, as measured according to current techniques and based on the knowledge that 1) fluorite at 100°C, pressure 1 atmosphere, after 60 minutes, has a water content of about 4% by weight; and that 2) fluorite at 800°C, pressure 1 atmosphere, after 80 minutes, has a water content of about 0% by weight.
- the process according to the present invention is represented by way of example and therefore in a manner not limiting the scope of the present invention, in the block diagram of Figure 1 (simplified block diagram of the main steps of the process according to the present invention, including the purification of the solution of NFUF, the transformation of NH 4 F into ammonium bifluoride (NH 4 HF 2 ) and the use of CaC0 3 ).
- said first embodiment R1 ( Figure 1) includes the following steps:
- the process according to the present invention is represented by way of example and therefore in a manner not limiting the scope of the present invention, in the block diagram of Figure 2 (simplified block diagram of the main steps of the process according to the present invention, including the purification of the solution of NH4F and the use of Ca(OH)2).
- composition of the synthetic fluorite, after drying at 110°C until a constant weight is obtained is as follows:
- composition of the above synthetic fluorite, after calcination at 800°C for 30 minutes is as follows:
- a first step R1 F1 includes the decomposition of fluorosilicic acid (FSA) h1 ⁇ 2SiF6 with ammonia and the separation of silica precipitated from the solution of ammonium fluoride NH4F, according to reaction A):
- FSA fluorosilicic acid
- a second step R1 F2 includes the purification of the solution of NH4F by dosing suitable reagents selected among nitrate salts such as iron nitrate and/or magnesium nitrate, which enable the elimination, by precipitation and following separation, of silica still present in the solution of NH4F. It is not advisable to use chlorinated salts such as iron chloride.
- a third step R1 F3 includes the transformation of NH4F into ammonium bifluoride NH4HF2 by means of a distillation under reduced pressure (according to reaction B) and following recovery of a fraction of NH3 by absorption in an aqueous solution or condensation.
- Reaction B is schematized as follows:
- a fourth step R1 F4 includes the synthesis and precipitation of fluorite CaF2 by reaction of NH4HF2 ( aq ) with calcium carbonate and simultaneous distillation of free ammonia so as to recover the remaining fraction of NH3 by absorption in an aqueous solution or condensation (reaction C).
- Reaction C is schematized as follows:
- the process includes a drying step until a synthetic fluorite suitable for use in the industrial production of hydrofluoric acid is obtained.
- fluorosilicic acid FSA having a concentration of 15 to 30% w/w (weight/weight), preferably of 20 to 25% w/w is reacted under constant mechanical stirring with an aqueous solution of NH3 having a concentration of 10 to 35% by weight, preferably of 15 to 25% by weight.
- the reaction is exothermic and temperature can reach 90°C, therefore to avoid excessive losses of NH3 the reaction temperature is kept constant at 50-70°C.
- NH3 is dosed in a stoichiometric excess of about 20-30% by weight on FSA with respect to the theoretical value (6 moles of NH3 per mole of FSA).
- the reagents are added so that the pH of the solution remains stable at a value of about 9.
- FSA in NH3 is added, thus ensuring to obtain a silica that can be easily filtered.
- the effectiveness of the hydrolysis process is strictly related to the speed of addition of the reagents, i.e. FSA in NH3.
- the total estimated time for obtaining a filterable, high quality silica and completing the hydrolysis reaction is 2 to 6 total hours, preferably 3 to 5 total hours, e.g. 4 total hours considering a speed of addition of 0.01 l/min per 1 liter of NH 3 18% or FSA 23%.
- the sequence of addition produces two different reaction environments, an initial and a final environment, which differently affect the quality of the silica obtained, in particular as far as the structural and surface properties are concerned.
- the pH of the formation of nuclei, aggregates and agglomerates switches from acid to basic depending on whether NH3 in FSA is added or vice versa.
- the environment in which the nuclei, aggregates and agglomerates is different in one case and in the other.
- the different environment affects the nucleation, aggregation and agglomeration of the amorphous silica here produced.
- silica is formed and a white-colored suspension is generated.
- the silica present in the suspension is preferably separated from the solution containing ammonium fluoride NH4F and a slight excess of NH3.
- the separation of silica can be carried out by filtration, e.g. by means of a filter press or basket strainers, or by centrifugation.
- the first washing water of silica is recovered in the solution of NH4F, water from the following washing steps is sent to water purification.
- the final solution is clear and still contains a small fraction of dissolved silica of 1 to 5 g/l. As a matter of fact, by letting the solution rest for about 2-4 hours a further formation of precipitated silica can be observed.
- the silica present in the solution of NH4F should be eliminated before producing the synthetic fluorite so as to reduce the content of S1O2 in the finished product.
- the purification process includes the addition of small amounts of an aqueous solution of iron nitrate and/or magnesium nitrate.
- the optimal dosage in grams is of 0.010 (e.g. 0.015) to 0.10, preferably 0.020 (e.g. 0.025 or 0.030) to 0.080 (e.g. 0.050) of Fe(N0 3 ) 3 per 1 g of Si0 2 present in the solution of NH 4 F, and 0.010 (e.g. 0.015) to 0.10, preferably 0.020 (e.g.
- the reaction can be carried out at room temperature or anyhow at the final temperature of the first step, without advantageously including a cooling step of the solution of NH4F.
- the silica present in the obtained suspension is separated by filtration (e.g. basket strainer).
- Said first embodiment R1 includes a distillation process, which is necessary for the conversion of NhUF into more reactive (NH4)HF 2 .
- NH4HF 2 more reactive
- carbonate does not react with NH4F spontaneously and it is mandatory to implement a distillation process so as to lead the reaction to fluorite formation.
- the solution of NH4F which was previously purified from S1O2, is distilled under reduced pressure so as to promote the decomposition of the compound NH4F, which is not very stable, and its transformation into the more stable form NH4HF2 (reaction B).
- the decomposition includes the removal of a mole of NH3 per mole of NH4F, to this amount NH3 already present in free form in the solution is added.
- the distillation is carried out by increasing system temperature from 30°C to 130°C) under a slight vacuum (about 60 mbar lower than ambient pressure).
- the synthesis of fluorite goes on (said fourth step R1 F4) by adding calcium carbonate (reaction C) in stoichiometric amounts with respect to fluorine present in the solution of NH4HF2 obtained above (molar ratio 1 :2), so as to avoid the presence of an excess of carbonates in the finished product.
- the calcium carbonate used should be dry or with a moisture below 10% by weight, preferably below 5% by weight, and as a fine powder.
- the chemical quality of calcium carbonate should be high with a concentration of CaCC>3 above 97%, advantageously above 99%, and with a low content of inorganic contaminants (S1O2, MgC03 and other metal).
- the reaction can occur at a temperature of 20°C; advantageously. In order to improve ammonia recovery it is advisable to work with temperatures of about 60-70°C and always under a slight vacuum.
- the stirring speed should be such as to prevent the deposition of solid material onto the reactor bottom.
- the reaction is practically instantaneous, the best yields are obtained by leaving the fluorite suspension thus obtained under constant stirring for at least 30-60 minutes. The fluorite thus obtained is separated from the suspension by filtration.
- the filtered product is washed and takes a muddy consistency with an average residual moisture of about 40%.
- Said first step R2F1 includes the production of NhUF by basic hydrolysis of H SiFe in an aqueous solution having a concentration of 15 to 30% by weight, preferably of 20 to 25% by weight, with an aqueous solution of NH3, under constant mechanical stirring, having a concentration of 10 to 35% by weight, preferably of 15 to 25% by weight.
- Said first step R2F1 is carried out under the same conditions as for the step R1 F1.
- a container e.g. a 500 ml container, containing an amount of 200 to 250 g of ammonia, e.g. 237 g of ammonia (e.g. 30% excess with respect to the estimated stoichiometric amount for the reaction), an amount of FSA of 150 to 250 g, preferably 200 g, is added.
- the dispersion obtained from the reaction above was intensively stirred e.g. for about 20-40 minutes with a mechanical stirrer, e.g. Velp, monitoring pH and temperature. During this time the pH remained stable at a value of 8.5 to 9,5, preferably around 9. The temperature rose from 25°C to about 60-65°C.
- a mechanical stirrer e.g. Velp
- the precipitated silica was preferably separated by filtration, e.g. by filtration under vacuum, preferably at a relative pressure of about 50-150 mbar, still more preferably at a pressure of about 100 mbar.
- the solid thus obtained was re-dispersed in water and filtered under the same operating conditions as described above.
- the solid thus obtained was dried, preferably in an oven at about 105-110°C, and weighed.
- the dried solid was analyzed by XRF. According to the above operating conditions, the Applicant executed three assays and observed that of the theoretical estimated amount of silica (17.62 g) 15.60 g of silica were obtained in the first assay, 16.40 g in the second assay, and 16.94 g in the third assay.
- the first silica washing water is added to the initial solution of NH4F.
- Said second step R2F2 includes the purification of NH4F from silica.
- the solution containing NH4F, obtained after filtration, is treated/purified (said second step R2F2) under the same operating conditions as described for step R1 F2.
- a solution containing NH4F, obtained after filtration, is treated/purified with a solution comprising iron (III) nitrate having a concentration of 20 to 60%by weight/volume, preferably of 30 to 50% by weight/volume, and/or magnesium (II) nitrate having a concentration of 40-80% by weight/volume, preferably of 50 to 70% by weight/volume.
- iron (III) nitrate having a concentration of 20 to 60%by weight/volume, preferably of 30 to 50% by weight/volume
- magnesium (II) nitrate having a concentration of 40-80% by weight/volume, preferably of 50 to 70% by weight/volume.
- the solution containing NH4F, obtained after filtration, is treated with an amount of 0.02 to 0.08 g, preferably 0.04 to 0.06 g of Fe(N0 3 ) 3 (ferric nitrate nonahydrate - ⁇ ( ⁇ 0 3 ) 3 ⁇ 9 ⁇ 2 0 -43.3% weight/volume aqueous solution) and with an amount of 0.05 g to 1 g, preferably of 0.07 to 0.09 g of Mg(NC>3)2 (magnesium nitrate - Mg(NOa)2 - 64.4% weight/volume aqueous solution).
- the solution thus obtained is kept under stirring for a time of 10 to 90 minutes, preferably 60 minutes, at a temperature of 20C° to 25°C.
- the third step (R2F3) includes the treatment of said aqueous solution of NH4F basically without silica directly with calcium hydroxide in an excess amount of 0.01 to 0,5% with respect to the stoichiometric amount, thus obtaining a dispersion which is kept under stirring for a time of 10 to 60 minutes at a temperature of 40 to 90°C. Finally, the latter solution is filtered thus obtaining the synthetic fluorite.
- the solution is preferably filtered under vacuum at a pressure of 50 mbar to 150 mbar, preferably at 100 mbar, e.g. with a 0.45 ⁇ filter made of cellulose acetate.
- Quantitative analyses by ICP-AES are carried out on the samples of solution of NH 4 F taken before and after treatment. It was found that on average, the concentration of Si0 2 decreased of at least 70% by weight in the samples treated with nitrates, e.g. from an initial value of 2.5 g/l to 0.3 g/l.
- Said third step R2F3 includes the synthesis of CaF2 starting from NhUF in the presence of calcium hydroxide.
- the reaction can be schematized as follows:
- NH4F e.g. ammonium fluoride - NH4F - 9.5 by weight aqueous solution
- the assays were made using an excess amount of about 0.3% with respect to the stoichiometric amount. In all the assays that were made, the dispersion was left under mechanical stirring for a time of 20 to 60 minutes, preferably 30 minutes in an oil bath at a temperature of 80-90°C.
- the precipitate (CaF 2 ) was filtered by filtration under vacuum at a relative pressure of 50 mbar to 150 mbar, preferably 100 mbar with a filter, e.g. a Whatman 42 paper filter, washed and dried in an oven at a temperature of 110°C and analyzed by XRF.
- a filter e.g. a Whatman 42 paper filter
- the yield of the reaction is above 95% and the quantitative analysis of the solid shows a very low percentage of residual silica (below 0.2% of Si0 2 ). Fluorite washing water does not exhibit residual fluorine and ammonia is recovered at 100% in a closed system.
- said third step R2F3 includes the synthesis of CaF 2 starting from NH4F in the presence of calcium carbonate.
- the reaction can be schematized as follows:
- Calcium carbonate is used in an excess amount of 0.01 to 0.5% with respect to the stoichiometric amount to give a dispersion which is kept under stirring for a time of 10 to 60 minutes, preferably 30 minutes at a temperature of 60 to 90°C, preferably 80°C.
- an amount of 250 g to 350 g, preferably of 300 g of NFUF, e.g. ammonium fluoride - NH 4 F - 9.5 by weight aqueous solution was placed in a 500 ml PTFE three-neck flask and reacted with calcium carbonate.
- the assays were made using an excess amount of 0.3% with respect to the stoichiometric amount. In all the assays that were made, the dispersion was left under mechanical stirring for a time of 20 to 60 minutes, preferably 30 minutes in an oil bath at a temperature of 80-90°C.
- the precipitate (CaF2) was filtered by filtration under vacuum at a relative pressure of e.g. 50 mbar to 150 mbar, preferably 100 mbar with a filter, e.g. a Whatman 42 paper filter, washed and dried in an oven at a temperature of 110°C and analyzed by XRF.
- a filter e.g. a Whatman 42 paper filter
- the yield of the reaction is above 95% and the quantitative analysis of the solid shows a very low percentage of residual silica (about 0.1% of S1O2). Fluorite washing water does not exhibit residual fluorine and ammonia is recovered at 100% in a closed system.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ITMI20140607 | 2014-04-04 | ||
PCT/IB2015/000442 WO2015150907A2 (en) | 2014-04-04 | 2015-04-02 | High purity synthetic fluorite and process for preparing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3126290A2 true EP3126290A2 (en) | 2017-02-08 |
Family
ID=50897749
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15771700.0A Withdrawn EP3126290A2 (en) | 2014-04-04 | 2015-04-02 | High purity synthetic fluorite and process for preparing the same |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3126290A2 (en) |
MA (1) | MA39797A (en) |
WO (1) | WO2015150907A2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT201900015324A1 (en) * | 2019-08-30 | 2021-03-02 | Fluorsid S P A | High purity amorphous silica and its preparation process |
CN113683113A (en) * | 2021-07-21 | 2021-11-23 | 嘉峪关宏晟电热有限责任公司 | Process for purifying calcium fluoride from fluorite ore subjected to flotation |
CN119263335A (en) * | 2024-12-11 | 2025-01-07 | 浙江森田新材料有限公司 | A method for recycling BOE waste liquid |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2407238C3 (en) * | 1974-02-15 | 1979-06-28 | Kali-Chemie Ag, 3000 Hannover | Process for the production of calcium fluoride from hexafluorosilicic acid |
DE2750943A1 (en) * | 1977-11-15 | 1979-05-17 | Bayer Ag | METHOD FOR PURIFYING AMMONIUM FLUORIDE SOLUTIONS |
EP2676938A1 (en) * | 2012-06-21 | 2013-12-25 | Nanofluor GmbH | Calcium fluoride sol and optically active surface coatings derived thereof |
-
2015
- 2015-04-02 EP EP15771700.0A patent/EP3126290A2/en not_active Withdrawn
- 2015-04-02 WO PCT/IB2015/000442 patent/WO2015150907A2/en active Application Filing
- 2015-04-02 MA MA039797A patent/MA39797A/en unknown
Non-Patent Citations (1)
Title |
---|
JOHN W ANTHONY ET AL: "Fluorite", HANBOOK OF MINERALOGY, 1 January 2001 (2001-01-01), XP055553681, Retrieved from the Internet <URL:http://www.handbookofmineralogy.org/pdfs/fluorite.pdf> [retrieved on 20190207] * |
Also Published As
Publication number | Publication date |
---|---|
WO2015150907A3 (en) | 2016-03-10 |
WO2015150907A2 (en) | 2015-10-08 |
MA39797A (en) | 2017-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104843712B (en) | A kind of method of the purification co-producing white carbon black of industrial fluosilicic acid | |
IL156652A (en) | Production of aluminum compounds and silica from ores | |
RU2720313C2 (en) | Method of producing calcium fluoride from fluorosilicic acid | |
CN110642282A (en) | Method for preparing calcium fluoride and potassium bicarbonate by using carbon dioxide | |
US5002749A (en) | Process for the manufacture of zirconium oxide hydrate from granular crystallized zirconium oxide | |
EP3126290A2 (en) | High purity synthetic fluorite and process for preparing the same | |
JP6623673B2 (en) | Method for producing calcium fluoride | |
AU2016241255B2 (en) | High purity synthetic fluorite, process for preparing the same and apparatus therefor | |
WO2013153846A1 (en) | Method and device for manufacturing calcium fluoride | |
JP5421088B2 (en) | Method for producing valuable materials and hydrochloric acid from waste liquid | |
TWI535662B (en) | Method for recovering dihydrate gypsum from ammonium sulfate | |
US2996355A (en) | Process for the manufacture of sodium aluminum fluorides | |
US2920938A (en) | Method for manufacture of aluminum fluoride | |
JP2864617B2 (en) | Process for producing hydrosilicofluoric acid, ammonium silicofluoride and high-purity silica | |
CN102167376B (en) | Technique for purifying cryolite | |
CN101993100B (en) | Method for separating silicon tetrafluoride by-product | |
SE437015B (en) | PROCEDURE FOR THE RECOVERY OF APPLICABLE PRODUCTS FROM WASTE PRODUCTS CONCERNING MANUFACTURING ALUMINUM FLUORIDE | |
JP2011201770A (en) | Method for producing valuable substance from waste liquid | |
JPH0692247B2 (en) | Method for producing magnesium silicofluoride | |
WO2013153847A1 (en) | Method and device for manufacturing calcium fluoride | |
JP3970208B2 (en) | Method for synthesizing reactive oxygen species inclusion materials | |
RU2487082C1 (en) | Method of producing calcium fluoride | |
RU2317252C2 (en) | Mineral desiliconization process | |
RU2377332C2 (en) | Method to process titanium-silicon-containing stock | |
WO2009113089A2 (en) | A process for manufacturing of aluminium fluoride |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20161026 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20190218 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20231211 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20240408 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20240809 |