EP3120103A2 - Lightweight enhanced ballistic armor system - Google Patents
Lightweight enhanced ballistic armor systemInfo
- Publication number
- EP3120103A2 EP3120103A2 EP15795701.0A EP15795701A EP3120103A2 EP 3120103 A2 EP3120103 A2 EP 3120103A2 EP 15795701 A EP15795701 A EP 15795701A EP 3120103 A2 EP3120103 A2 EP 3120103A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- armor system
- face plate
- ballistic armor
- strike face
- lightweight ballistic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052751 metal Inorganic materials 0.000 claims abstract description 155
- 239000002184 metal Substances 0.000 claims abstract description 155
- 239000002131 composite material Substances 0.000 claims abstract description 133
- 239000000463 material Substances 0.000 claims abstract description 121
- 239000012634 fragment Substances 0.000 claims abstract description 55
- 239000011521 glass Substances 0.000 claims abstract description 30
- -1 polypropylene Polymers 0.000 claims abstract description 26
- 239000004743 Polypropylene Substances 0.000 claims abstract description 18
- 229920000642 polymer Polymers 0.000 claims abstract description 18
- 229920001155 polypropylene Polymers 0.000 claims abstract description 18
- 229920000785 ultra high molecular weight polyethylene Polymers 0.000 claims abstract description 14
- 239000004699 Ultra-high molecular weight polyethylene Substances 0.000 claims abstract description 13
- 229920006231 aramid fiber Polymers 0.000 claims abstract description 9
- 229920005989 resin Polymers 0.000 claims abstract description 5
- 239000011347 resin Substances 0.000 claims abstract description 5
- 239000010410 layer Substances 0.000 claims description 117
- 238000012360 testing method Methods 0.000 claims description 76
- 239000000835 fiber Substances 0.000 claims description 18
- 229910000831 Steel Inorganic materials 0.000 claims description 17
- 239000010959 steel Substances 0.000 claims description 17
- 229920002635 polyurethane Polymers 0.000 claims description 16
- 239000004814 polyurethane Substances 0.000 claims description 16
- 239000011230 binding agent Substances 0.000 claims description 15
- 239000004593 Epoxy Substances 0.000 claims description 14
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 14
- 239000002952 polymeric resin Substances 0.000 claims description 14
- 229920003002 synthetic resin Polymers 0.000 claims description 14
- 239000010936 titanium Substances 0.000 claims description 14
- 229910052719 titanium Inorganic materials 0.000 claims description 14
- 230000007246 mechanism Effects 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 13
- 229910052782 aluminium Inorganic materials 0.000 claims description 12
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 12
- 239000011241 protective layer Substances 0.000 claims description 11
- 229920001296 polysiloxane Polymers 0.000 claims description 9
- 239000004698 Polyethylene Substances 0.000 claims description 8
- 229920002396 Polyurea Polymers 0.000 claims description 8
- 229920000573 polyethylene Polymers 0.000 claims description 8
- 239000006260 foam Substances 0.000 claims description 7
- 229920000647 polyepoxide Polymers 0.000 claims description 7
- 125000003700 epoxy group Chemical group 0.000 claims description 6
- 229910000760 Hardened steel Inorganic materials 0.000 claims description 5
- 150000003673 urethanes Chemical class 0.000 claims description 5
- 229910000851 Alloy steel Inorganic materials 0.000 claims description 4
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 claims description 4
- 239000000956 alloy Substances 0.000 claims description 4
- 238000005538 encapsulation Methods 0.000 claims description 4
- 239000002360 explosive Substances 0.000 claims description 4
- 230000003014 reinforcing effect Effects 0.000 claims description 4
- 238000010998 test method Methods 0.000 claims description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 3
- 239000004620 low density foam Substances 0.000 claims description 3
- 239000011777 magnesium Substances 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 229920001187 thermosetting polymer Polymers 0.000 claims description 3
- 229910001141 Ductile iron Inorganic materials 0.000 claims description 2
- 208000004880 Polyuria Diseases 0.000 claims 1
- 239000002657 fibrous material Substances 0.000 abstract description 4
- 230000001681 protective effect Effects 0.000 description 27
- 230000006378 damage Effects 0.000 description 15
- 230000009467 reduction Effects 0.000 description 15
- 239000000919 ceramic Substances 0.000 description 14
- 238000009863 impact test Methods 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 13
- 230000035515 penetration Effects 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 9
- 238000013461 design Methods 0.000 description 7
- 230000036961 partial effect Effects 0.000 description 7
- 125000006850 spacer group Chemical group 0.000 description 7
- 238000003860 storage Methods 0.000 description 7
- 239000004744 fabric Substances 0.000 description 6
- 230000035939 shock Effects 0.000 description 6
- 102100031831 Adipogenesis regulatory factor Human genes 0.000 description 5
- 101000775473 Homo sapiens Adipogenesis regulatory factor Proteins 0.000 description 5
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 5
- 229920000271 Kevlar® Polymers 0.000 description 4
- 229920010741 Ultra High Molecular Weight Polyethylene (UHMWPE) Polymers 0.000 description 4
- 239000004760 aramid Substances 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 4
- 238000005266 casting Methods 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000007689 inspection Methods 0.000 description 4
- 239000004761 kevlar Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 230000002787 reinforcement Effects 0.000 description 4
- 229910001080 W alloy Inorganic materials 0.000 description 3
- 239000011358 absorbing material Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229920006328 Styrofoam Polymers 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 229920003235 aromatic polyamide Polymers 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000007688 edging Methods 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 235000000396 iron Nutrition 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000004080 punching Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000011343 solid material Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000004901 spalling Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000008261 styrofoam Substances 0.000 description 2
- 230000003313 weakening effect Effects 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- 229910001350 4130 steel Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 229910001208 Crucible steel Inorganic materials 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 229910000604 Ferrochrome Inorganic materials 0.000 description 1
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 235000015842 Hesperis Nutrition 0.000 description 1
- 235000012633 Iberis amara Nutrition 0.000 description 1
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 1
- 102100035115 Testin Human genes 0.000 description 1
- 101710070533 Testin Proteins 0.000 description 1
- 229910000754 Wrought iron Inorganic materials 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000003124 biologic agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 125000004427 diamine group Chemical group 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000011151 fibre-reinforced plastic Substances 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000006261 foam material Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000012812 general test Methods 0.000 description 1
- 230000003116 impacting effect Effects 0.000 description 1
- 238000013101 initial test Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000001141 propulsive effect Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000000935 solvent evaporation Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000002889 sympathetic effect Effects 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000012815 thermoplastic material Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41H—ARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
- F41H1/00—Personal protection gear
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41H—ARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
- F41H5/00—Armour; Armour plates
- F41H5/02—Plate construction
- F41H5/04—Plate construction composed of more than one layer
- F41H5/0414—Layered armour containing ceramic material
- F41H5/0428—Ceramic layers in combination with additional layers made of fibres, fabrics or plastics
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41H—ARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
- F41H5/00—Armour; Armour plates
- F41H5/02—Plate construction
- F41H5/023—Armour plate, or auxiliary armour plate mounted at a distance of the main armour plate, having cavities at its outer impact surface, or holes, for deflecting the projectile
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41H—ARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
- F41H5/00—Armour; Armour plates
- F41H5/02—Plate construction
- F41H5/04—Plate construction composed of more than one layer
- F41H5/0414—Layered armour containing ceramic material
- F41H5/0421—Ceramic layers in combination with metal layers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41H—ARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
- F41H5/00—Armour; Armour plates
- F41H5/02—Plate construction
- F41H5/04—Plate construction composed of more than one layer
- F41H5/0442—Layered armour containing metal
- F41H5/0457—Metal layers in combination with additional layers made of fibres, fabrics or plastics
- F41H5/0464—Metal layers in combination with additional layers made of fibres, fabrics or plastics the additional layers being only fibre- or fabric-reinforced layers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41H—ARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
- F41H7/00—Armoured or armed vehicles
- F41H7/02—Land vehicles with enclosing armour, e.g. tanks
- F41H7/04—Armour construction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B35/00—Testing or checking of ammunition
Definitions
- the framework structure for a possible use of the invention was made with government support under N00024-07-C-5361 and/or N00024-03-D-6606 awarded, by the Department of the Navy. This invention was also made with government support under HQ0276-1 -D-0001 awarded by the Missile Defense Agency. The government has certain rights in the framework structure for a possible use of an embodiment of the invention, but does not have rights in the embodiments of the invention per se.
- the present invention generally relates to lightweight ballistic armor systems which can be integrally formed within, or secured to, a structure, such as a trailer, shipping containers, and the like, for protecting individuals, structures, missile canisters, vehicles and the like against low, medium and high velocity and low, medium and high caliber projectiles, as well as systems and structures, such as trailers, shipping containers, vehicles, body armor, aircraft, missile canisters and the like being integrally formed of such a lightweight ballistic armor system. More particularly, the present invention relates to an enhanced ballistic armor system which is integrally formed within a structure or vehicle, or secured directly thereto, for protection of individuals, structures, vehicles, cargo and the like against low, medium and high velocity and low, medium and high caliber projectiles. These projectiles can include low-caliber to high-caliber bullets, rockets, exploding grenades, exploding mortar shells, exploding mines and the like.
- Ceramic-based armors and armor systems are well known in the art. However, many conventional armors and armor systems tend to be too heavy and/or bulky to be easily employed as a protection system against high caliber artillery and projectiles, or even lower caliber threats. Moreover, many conventional armors and armor systems can also tend to be too expensive for practical use or manufacture.
- ballistic armor and armor systems are subjected to a variety of projectiles or fragments over a wide range of velocities and calibers designed to defeat the armor or armor systems by penetrating the armor or armor systems, or by causing an impact against the armor or armor system that can cause spalling (i.e., flaking off of material from on object due to impact from another object), in particular spalling through mechanical stress which in turn eventually defeats the armor.
- spalling i.e., flaking off of material from on object due to impact from another object
- armor and armor systems are known for protecting personnel, vehicles, equipment and the like from damage or destruction caused by high caliber artillery and projectiles.
- Many such armor and armor systems are employed in military applications to protect individuals (such as via body armor), aircraft, tanks, ships and vehicles from damage or destruction caused by high caliber artillery and projectiles.
- many such armor and armor systems are employed in military applications to protect missiles during their storage or transport, such as for example in the form of canisters in which the missiles are stored, held or transported.
- Ceramic tiles can often be used to break up and dissipate the energy of high caliber projectiles, and can be applied in specific thicknesses or patterns of the arrangement of tiles to maximize effectiveness.
- a disadvantage of conventional ceramic tiles is that ceramic is brittle and is more susceptible to cracking after impact, thus reducing the effectiveness against subsequent impacts. Cracking of the conventional ceramics can also leave the underlying structure to be protected vulnerable to exposure to outside elements, such as water, air, heat, cold, wind, chemicals, biological agents, etc., thereby further weakening the structure to be protected.
- One known disadvantage in certain conventional armored applications is the allowable road weight that limits the numbers of encased missiles from being transported together. Due to the strict road weight limits, the excessive load created by the combined weight of the missiles, truck, etc. allows for only a few (e.g., 1-4) missiles to be transported together. For example, the Department of Transportation (DOT) has established that the total road weight of a truck, including the weight of the load, cannot exceed 80,000 pounds per vehicle. It should of course be understood that different trucks have different weights, while the specific weight of the particular load, such as missiles to be transported and the respective container or canister, can vary depending on the nature of the type of missile at issue.
- DOT Department of Transportation
- the combined weight of a single missile and the respective canister may be about 7,500 pounds. Nevertheless, the combined weight of the truck and the missiles being transported which comprise the respective load cannot exceed 80,000 pounds. Consequently, the missiles are oftentimes unprotected (i.e., lack a protective structure) in order to maximize the number of missiles that are transported together while also meeting the strict road weight limits or only have the standard protective canisters without additional protective means. Oftentimes, the excessive load caused by the combined weight of the missiles and storage protective canister allows for just one, or at most two, missiles to be transported together. In the event more missiles are transported, such as 3-4, the transport might be done in a manner without any additional protection in which case the missiles are vulnerable to attack.
- the protective system of the present invention in an embodiment may be provided at a weight in the range of about 18 - 30 lb. / square foot (psf).
- psf square foot
- the armor or armor systems is incorporated into the structure that is to be protected.
- Such applications can include military vehicles, armored vehicles or missile storage canisters.
- the armor systems could be difficult to replace in the event of damage or failure.
- Projectiles such as armor piercing ammunition, are designed to specifically penetrate conventional armor and armor systems.
- Conventional ceramic-faced armor systems were consequently developed to defeat armor piercing ammunition.
- the projectile can be blunted or otherwise damaged by the conventional ceramic-faced armor system.
- cracking or other damage to the conventional ceramic-faced armor system is inevitable which leads to a weakening of the integrity of the conventional ceramic- faced armor system and thus more vulnerable to future attacks.
- U.S. Publication No. 2009/0320676 (Cronin, et al.) is directed to the use of an armor for protection against projectiles having a ceramic layer with a confinement layer on the front thereof.
- the ceramic layer is backed by a first metallic layer and the first metallic layer in turn is backed by a composite layer.
- the composite layer is backed by a second metallic layer, which in turn is backed by an anti-trauma layer.
- W0 91/00490 discusses a composite ballistic article comprising at least one hard rigid layer, at least one fibrous layer and a void layer between the rigid layer and the at least one fibrous layer.
- the relative weight percents of the hard rigid layer and the fibrous layer(s), and the relative positions of the layers are such that the article is said to exhibit a mass efficiency equal to or greater than about 2.5.
- U.S. Patent No. 4,061 ,815 discusses a laminated sheet material having high impact resistance for use in with armor plates.
- One or more layers of cellular or non- cellular polyurethane is sandwiched between a rigid, high impact resistant sheet of material, such as aluminum armor plate and fiberglass, in the one face and a thin retaining skin on the other.
- a filler such as ceramic, particulate refractory or strip metal, can be embedded in the polyurethane layer(s).
- U.S. Publication No. 2010/0212486 discusses a strike plate including a base armor plate having an outwardly facing surface and a hard layer deposited on the base armor plate to substantially overlay the outwardly facing surface.
- a ballistic attenuation assembly is allegedly provided having multiple sheets of a first fibrous material and a sheet of a second fibrous material laminated together by a modified epoxy resin with the first sheet of a second fibrous material being exposed along an outward facing surface.
- An alternative ballistic attenuation assembly is also discussed having a first panel having opposed inward and outward facing surfaces, a second panel having opposed inward and outward facing surfaces, and a spacer interposed between the first and second panels forming a gap between the inward facing surfaces of the first and second panels.
- U.S. Patent No. 5,200,256 discusses an armor lining for protecting objects from high velocity projectiles having an extended sheet-like body having a weight of less than eight pounds per square foot and having an inner strike surface being positioned away from the object to be protected.
- a first layer of woven fabric material is carried at a position adjacent the outer strike surface layer and a second layer of material is carried internally of the woven layer between the outer strike surface and an inner attachment surface.
- a third layer of energy absorbent material is positioned adjacent the inner attachment surface and interfaces with the second fabric layer.
- U.S. Publication No. 2009/0293709 discusses an armor system for protecting a vehicle from high energy projectiles having a leading layer, relative to the projectile trajectory, positioned exterior to the hull, a first plurality of sheet-like layers of a low density material positioned between the leading layer and the hull; and a second plurality of sheet-like high strength metal layers positioned between the leading layer and the hull.
- the individual ones of the first plurality of high strength metal layers are positioned alternating with and to the rear of individual ones of the second plurality of low density material layers.
- the leading layer can be one of a sheet-like metallic layer, a metalicized grid layer, and the outer-most layer of the first plurality of low materials layers.
- the materials of the high strength metal layers can be steel and high strength aluminum, and the materials of the low density material may be low density polypropylene composites and R-Glass composites.
- U.S. Publication No. 2010/0294123 discusses a modular armor system having a leading layer with a metal and an intermediate sheet-like layer of a low density material lesser than that of metal, abutting a rear surface of the leading layer.
- the armor system also has an intermediate sheet-like layer having glass fiber material and abutting a rear surface of the intermediate low density material layer, and an intermediate sheet-like layer having metal and abutting a rear surface of the intermediate glass fiber layer.
- U.S. Patent No. 4,836,084 discusses an armor plate composite having four main components, namely, a ceramic impact layer, a sub-layer laminate, a supporting element and a backing layer.
- the ceramic layer serves for allegedly blunting the tip of a projectile.
- the sub-layer laminate of metal sheets alternate with fabrics impregnated with a viscoelastic synthetic material for absorbing the kinetic energy of the projectile by plastic deformation.
- the backing layer away from the side of impact consists of a pack of impregnated fabrics.
- U.S. Publication No. 2006/00651 1 1 discusses an armor system having an outer case of woven or unidirectional fibers filled with one or more protective materials.
- the outer case includes a pressure sensitive adhesive bonded to one side for allegedly quick and easy application to a body to be protected.
- the protective materials may include ceramic material which may be in the form of ceramic tile sheets, loose ceramic balls or perforated tiles, multiple layers of woven or unidirectional cloth and steel mesh.
- FIG. 1 an example of a conventional prior art protective system for transporting missiles is shown and referenced generally at numeral 1.
- the conventional prior art system includes a flatbed trailer 10 having a standard dimension of about 53' x 102" and a set of missiles (not shown) inside a corresponding protective canister 12.
- Protective canister 12 may comprise any missile protective material known in the art, such as steel.
- a frame 14 is provided for securing each canister 12 to the flatbed trailer 10.
- Frame 14 may comprise any material conventional in the art, such as wood or steel.
- the conventional prior art system for the transport of missiles inside protective canisters 12 lacks any additional type of protective structure since an additional protective structure that would provide sufficient protection to the canisters 12 would be too heavy to comply with STANG 4241 and STANAG 4496 requirements and thus would cause the weight of the entire load to exceed 80,000 pounds. Therefore, an additional protective structure cannot be employed and the missiles must be transported in a vulnerable manner as shown in Figure 1.
- Typical armored vehicles and body armor known in the art can be disadvantageous in that they fail to meet the requirements for protecting against, even low-caliber ammunition and/or are too heavy for normal use on streets in a city environment.
- armored vehicles known in the art that may sufficiently protect against even low-caliber threats tend to be too heavy or cumbersome for use on roads and highways and can be too expensive to manufacture.
- an armored vehicle in which a lightweight ballistic armor system is integrally built into the armored trailer, which is relatively inexpensive and easy to manufacture and can be employed in a wide range of applications for a wide range of purposes, including protecting cargo such as missiles, munitions, explosives and high value cargo, as well as for use with body armor, or vehicles such as police cars.
- the present invention is a lightweight armor system comprising a laminate composite material backing alone or in combination with at least one perforated metal or expanded metal strike face plate (also known as a tipping plate or an applique armor).
- the metal strike face plate or plates may be, for example, steel or steel alloys, cast irons, aluminum, magnesium, titanium, and the like, or any combination thereof.
- a thin composite skin or metal skin may cover the front face of the strike plate for protection from outside elements.
- An example of a perforated metal strike face plate is that found in U.S. Patent No. 5,007,326 (Gooch, et al.), the details of which are incorporated herein by reference.
- the laminate composite backing may comprise a cross-sectional composition of a backing material of fibers, such as KEVLAR ® fibers, E-glass, S-Glass, polypropylene, Ultrahigh Molecular Weight Polyethylene (UHMWPE), including fibrous UHMWPE such as a pressed Spectra Shield II ® SR-3130 ballistic composite material from Honeywell Advanced Fibers and Composites, Colonial Heights, Virginia, with polymer resin binders such as, but not limited to, silicones, epoxies, polyethylenes, polyurethanes, and polyureas, such as those disclosed in U.S. Patent Nos. 6,638,572 and 7,098,275 (both to Inglefield), the details of which are incorporated herein by reference.
- UHMWPE Ultrahigh Molecular Weight Polyethylene
- the laminate composite backing may optionally be enclosed or encased within a surrounding support layer of a silicone, epoxy, polyurethane, and/or polyurea, such as those disclosed in U.S. Patent Nos. 6,638,572 and 7,098,275 (both to Inglefield) to encase the cross-sectional composition during application.
- a silicone, epoxy, polyurethane, and/or polyurea such as those disclosed in U.S. Patent Nos. 6,638,572 and 7,098,275 (both to Inglefield) to encase the cross-sectional composition during application.
- an optional environmentally insensitive protective layer, wrapping, or encasement may be employed such as comprising an appropriate polymer or metal material, as discussed further below. It should be understood that the environmentally insensitive protective layer may also advantageously provide an additional layer for improving the ballistic characteristics of the present invention. Still further, a single-layered or multi-layered perforated metal sheet may be employed in accordance with the present invention, or even alone without an associated composite layer, for use with, for example, low or medium level insensitive munitions applications including on a missile canister.
- An air space may be present between the strike face plate or plates, when employed, and the laminate composite backing.
- the air space may be provided in the range from about 0 to at least 12 inches depending on the specific type of application with which the present invention armor system is employed, in particular in the range from about 0-8 inches, and more particularly in the range from about 0.25 to 4 inches or even 0.5 - 3 inches.
- the air space in accordance with the present invention may be optionally filled with an energy absorbing foam material or other comparable energy absorbing material, such as but not limited to a low density foam, and in particular, but not limited to, a polyurethane-based foam or a polypropylene-based foam. It should be appreciated that air space having zero inches in depth would be having essentially no air space employed in accordance with the present invention.
- the armor system according to an embodiment the present invention is designed to defeat lead, copper, steel or high density cored projectiles of tungsten carbide or tungsten alloy by fracture, erosion and enhanced rotation via the strike face plate.
- the remaining energy and projectile fragments are then absorbed in the laminate composite backing.
- the lightweight armor system is designed to defeat, or at least slow down, small arms to heavy machine gun threats and/or low, medium and high caliber projectiles, (5.45mm to 14.5mm) including, but not limited to 0.30-CaI APM2, 0.50-Cal APM2, or 5.56X45 M193, 5.45X45 M855/M855A1 , and/or meet the requirements defined in VPAM 2009 (German Association of Test Laboratories for Bullet Resistant Materials and Constructions) - Edition: 2009-05-14; Ballistic Resistance of Body Armor NIJ Standard-0101.06; Department of State SD-STD-01.01, Forced Entry And Ballistic Resistance of Structural Systems, Revision G, April 30, 1993; Underwriters laboratories UL752, Standard UL Protection Levels; STANAG AEP Edition 1 1955, STANAG 4569, STANAG 4241, STANAG 4496, STANAG 4439, or MIL-STD-2105 (the details and specifics of which are VPAM 2009 (German Association of Test Laboratories
- the remaining energy and projectile fragments are then absorbed in the laminate composite backing.
- the lightweight system can also advantageously be employed to disrupt, deflect and dissipate the energy of a small arms impact.
- the allowed munitions response to STANAG 4241 bullet impact or STANAG 4496 fragment impacts as defined in STANAG 4439 may not require a defeat of the threat but only a reduction of the threat.
- This lightweight system of an embodiment of the present invention is provided at a weight of about 4.0 psf to 15.0 psf, and is designed to disrupt STANAG 4241 and STANAG 4496 impacts enabling the munitions to meet minimum requirements as defined in STANAG 4439.
- the lightweight armor system according to the present invention can be used for various applications such as tanks, trucks, vehicles, individual protective systems (i.e., body armor), aircraft, helicopters, barriers, protective structures and missile storage containers or canisters.
- Yet another object of the present invention is to provide a lightweight armor system that meets all relevant and required military standards and requirements for weight and size for the specific type of application with which the system of the present invention is employed, and for defeating the necessary projectiles and fragments.
- Yet another object of the present invention is to provide an armor system that meets all relevant and required military standards and requirements for weight and size for the specific type of application with which the system of the present invention is employed, and for defeating projectiles and fragments.
- Still yet another object of the present invention is to provide an armor system that provides an improved multi-hit capacity.
- An object of an embodiment of the present invention is to provide an armored structure or vehicle, such as an armored trailer, an armored shipping container or an armored canister, and the like having a ballistic armor system integrally built within the walls, roof/ceiling and/or floor of the structure, trailer, shipping container or canister, or secure directly thereto.
- Another object of an embodiment of the present invention is to provide an armored structure or vehicle, such as an armored trailer or armored shipping container, and the like that employs conventional end loading/unloading of cargo or alternative methods for loading/unloading of cargo.
- Yet another object of an embodiment of the present invention is to provide an armored structure, such as an armored trailer or armored shipping container, and the like that sufficiently protects cargo held and carried therein from a range of ballistics, including from small arms to heavy machine gun threats, and larger scale threats, including improvised explosive devices (IEDs).
- IEDs improvised explosive devices
- Still yet another object of the present invention is to provide a lightweight armor system for incorporating directly into the body of body armor or canisters, as well as vehicles, including police vehicles, aircraft, and military vehicles and having improved multi- hit capability, increased durability, lower cost and increased structural properties, or secure directly thereto.
- Still yet another object of an embodiment of the present invention is to provide a lightweight armor system for protecting the body of an individual having improved multi-hit capability, increased durability and increased structural properties.
- An additional object of the present invention is to provide an armor system or a lightweight armor system that, regardless of the specific application with which it is employed, meets the necessary requirements of any potential natural environment, including extreme temperatures such as between -46°C to +71°C, various levels of humidity, thermal shock, contaminating fluids, radiation including solar radiation, rain, fungus, and salt fog.
- An additional object of the present invention is to provide an armor system or a lightweight armor system that, regardless of the specific application with which it is employed, meets the necessary requirements of any potential induced environment, including shock, functional shock, handling drop shock, transient drop shock, truck and trailer vibrations, aircraft, jet, helicopter and other vehicle cargo vibrations.
- Figure 1 is a perspective view of a prior art missile container transport system.
- Figure 2 is a perspective view of a first embodiment of the armor system according to the present invention.
- Figure 3 is a perspective view of a second embodiment of the armor system according to the present invention.
- Figure 3A is a cross-sectional view of the second embodiment of the armor system as shown in Figure 3.
- Figure 3B is a perspective view of the second embodiment of the armor system as shown in Figures 3 and 3A.
- Figure 4 is a front view of a perforated metal or expanded metal strike face plate in accordance with an embodiment of the present invention.
- Figure 5 is an exploded schematic view of a portion of the perforated metal or expanded metal strike face plate in accordance with an embodiment of the present invention as shown in Figure 4.
- Figure 5A is a cross-sectional view of a portion of the perforated metal or expanded metal strike face plate in accordance with an embodiment of the present invention taken in the direction 5A-5A in Figure 5.
- Figure 5B is a schematic view of a portion of the perforated metal or expanded metal strike face plate in accordance with an embodiment of the present invention taken in the direction B-B in Figure 5.
- Figure 6 is a cutaway cross-sectional view of the strike face plate according to one embodiment of the present invention.
- Figure 7 is a cutaway cross-sectional view of the strike face plate according to an alternative embodiment of the present invention.
- Figure 8 is a perspective view of the strike face plate according to one embodiment of the present invention.
- Figure 9A is a cross-sectional view of an embodiment of the layers of the armor system according to the present invention.
- Figure 9B is a cross-sectional view of an alternative embodiment of the layers of the armor system according to the present invention.
- Figure 10 is an exploded perspective view of the armor system according to an embodiment of the present invention in an exemplary application of use thereof being a missile transport system.
- Figure 1 1 is a rear view of the armor system according to the present invention in an example application of use as shown in Figure 10.
- Figure 12 is an exploded perspective view of a frame system for use with the armor system according to the present invention in an example application of use as shown in Figure 10.
- Figure 13 is a perspective view of a flatbed truck trailer for use with the armor system according to the present invention in an example application of use as shown in Figure 10.
- Figure 14 is a perspective view of the armor system according to the present invention in an alternative example application of use.
- Figure 15 is a schematic drawing of a test configuration of the present invention.
- Figure 16 is a schematic drawing of a bullet impact instrumentation configuration of the present invention.
- Figure 17 is a schematic drawing of the gun barrel arrangement of the test configuration of the present invention.
- Figure 18 is a schematic drawing of the velocity screen arrangement of the test configuration of the present invention.
- Figure 19 is a perspective schematic drawing of the plate arrangement of the test configuration of the present invention.
- Figure 20 is a schematic drawing of the plate projectile impact locations of the test configuration of the present invention.
- Figure 21 is a schematic drawing of the post-test plate condition of the test configuration of the present invention.
- Figure 22 is a schematic drawing of the test plate shown secured to the target stand of the test configuration of the present invention.
- Figure 23 is a schematic drawing of the projectile impact locations of the test configuration of the present invention.
- Figure 24 is a schematic drawing of the post-test plate condition of the test configuration of the present invention.
- Figure 25 is a schematic drawing of the witness plate of the test configuration of the present invention.
- Figure 26 is a schematic drawing of a fragment impact test configuration of the present invention.
- Figure 27 is a schematic drawing of the fragment impact test instrumentation configuration of the present invention.
- Figure 28 is a schematic drawing of the fragment impact target points.
- Figure 29 is a schematic drawing of the test plate configuration pre-fragment impact test of the present invention.
- Figure 30 is a schematic drawing of the test plate post-fragment impact test of the present invention.
- Figure 31 is a schematic drawing of the witness plate post-fragment impact test of the present invention.
- Figure 32 is a schematic side view of the plate configuration during the fragment impact test of the present invention.
- Figure 33A is a schematic side view of the plate configuration post-fragment impact test of the present invention.
- Figure 33 B is a schematic side view of the witness plate post-fragment impact test of the present invention.
- Figure 34 is a perspective view of a semi-truck trailer for use with the armor system according to another alternative embodiment of the present invention wherein the armor system is integrally formed within the parameters of the flatbed truck trailer and as an alternative exemplary use in accordance with the present invention.
- Figure 35 is a perspective view of another alternative embodiment in accordance with the present invention.
- Figure 36 is a perspective view of yet another alternative embodiment in accordance with the present invention.
- FIG. 2 the armor system according to a first embodiment ( Figure 2) and a second or alternative embodiment ( Figure 3) of the present invention is shown generally at numerals 100 and 200, respectively.
- the armor system as described herein may be employed for use in an armor trailer system, such as that described in co-pending application serial no. 14/006,065, the entirety of which is incorporated herein by reference, or alternatively for use as body armor, missile canisters or with a vehicle including for use with the body of a vehicle or portions thereof, as described below.
- Armor systems 100 and 200 both comprise a perforated metal or expanded metal strike face plate 1 10, 210 and a laminate composite backing 120, 220.
- strike face plate multiple layers of both strike face plate and/or laminate composite backing may be employed in accordance with the present invention. However, for purposes of explanation a single layer of both strike face plate and laminate composite backing is shown and described herein. It should also be appreciated that any type, configuration, design or style of strike face plate (i.e., tipping plate) may be employed with the present invention as known in the art. However, for purposes of explanation, particular versions of the strike face plate (i.e., tipping plate) are shown and described herein.
- the term "strike face plate” refers to a high strength metal that has a front face surface that would receive the initial impact of a projectile or shock waves or material from a blast.
- the back surface of the strike face plate can be adjacent to the front surface of the laminate composite backing in one embodiment of the present invention.
- the perforated metal or expanded metal strike face plate provides a ballistic strike face which is the first layer of the ballistic armor or armor system that is struck by a projectile or fragment.
- the perforated metal or expanded metal plate 1 10, 210 fractures and/or rotates the projectile or fragment.
- strike face plate 1 10, 210 is provided at a thickness in the range of about 0.10 - 1.5 inches, or even 0.25 inch - 1.5 inches. More particularly, in accordance with the present invention, strike face plate 1 10, 210 is provided at a thickness in the range of about 0.1 inch to 0.50 inch, or even 1 ⁇ 2 inch - 5/8 inch. It should be appreciated that the particular thickness of strike face plate or plates 1 10, 210 depends on the specific application with which the present invention is employed as discussed below.
- Perforated metal or expanded metal strike face plate 1 10, 210 may be a material that is for example, but not limited to, steel or steel alloys, hardened steel, cast irons, aluminum, magnesium, titanium and the like, or a combination thereof.
- strike face plate 1 10, 210 may comprise a cast iron material such as a cast steel material, i.e., ductile cast iron.
- a perforated metal strike face plate is that found in U.S. Patent No. 5,007,326 (Gooch, et al.), and which is incorporated herein by reference in its entirety.
- strike face plate 1 10, 210 can be any buffer plate of a high strength material that receives impact or impact-induced stress waves prior to a shock-absorbing element.
- strike face plate 1 10, 210 can alternatively be a flat sheet of a high strength metal, or polymer-based composite such as a fiber-reinforced polymer composite.
- any wrought iron plate or casting in accordance with MIL-PRF-32269 would be in accordance with the present invention.
- MIL-PRF-32269 provides that 4130 steel alloy and 4330 steel alloy are acceptable alloys for cast perforated plate (Class 2 armor), that MIL-A-12560 rolled homogenous steel (Class la armor) and MIL-A-46100 high hard rolled homogenous steel armor (Class lb armor) is acceptable for imparting a hole pattern into to make perforated plate.
- Class 2 armor MIL-A-12560 rolled homogenous steel
- Class lb armor MIL-A-46100 high hard rolled homogenous steel armor
- a composite layer or metal skin layer 21 1 may optionally cover the perforated metal or expanded metal strike face plate 210 as shown in Figures 3 and 5.
- Composite layer or metal skin layer 21 1 is depicted only in the embodiment of Figure 3 (i.e., armor system 200), but it should be appreciated that composite layer or metal skin layer 21 1 may be employed with the embodiment of the present invention as shown in Figure 2 as well (i.e., armor system 100) or any other embodiment of the present invention as discussed below. It should also be appreciated that composite layer or metal skin layer 21 1 covers the entire front surface of strike face plate 210, but only a cut-away portion of composite layer or metal skin layer 21 1 is depicted in Figure 3 for illustrative purposes only.
- the optional, thin metal skin layer provides reinforcement protection against any projectile effect and aids in the breakup of a projectile striking armor systems 100 or 200.
- the optional, thin metal skin layer also facilitates cleaning and painting of perforated metal or expanded metal strike face plate 210.
- composite layer or metal skin layer 21 1 may be a material that is the same as or different from the material of strike face plate 210. As understood from Figure 3, composite layer or metal skin layer 21 1 comprises a thickness that is relatively thin and is thinner than the thickness of strike face plate 210. In particular, composite layer or metal skin layer 21 1 can comprise a thickness in the range of from about 1/32 inch to 1 ⁇ 4 inch, or even 1/8 inch - 1 ⁇ 4 inch.
- strike face plate 1 10, 210 comprises a plurality of slotted holes 130 (230 in Figure 3) which are set at an oblique angle relative to the vertical orientation of perforated metal or expanded metal strike face plate 1 10, 210.
- Plurality of holes 130, 230 of perforated metal or expanded metal strike face plate 1 10, 210 is preferably produced by a casting method, a punching method, or by an additive manufacturing method which should be understood by those skilled in the art.
- plurality of holes 130, 230 can be produced in perforated metal or expanded metal strike face plate 1 10, 210 via a water jet, laser, or plasma cutting method.
- perforated metal or expanded metal strike face plate 1 10 comprises a plurality of oblique-angled holes or slots.
- strike face plate 1 10, 210 comprises a plurality of holes or perforations 130, 230.
- plurality of holes 130 is uniformly distributed along the entire front face of strike face plate 1 10.
- Holes 130, 230 may comprise any configuration conventional in the art, such as but not limited to circular, rectangular, oblong, rectangular or of any polygon shape (or different shapes), or any combination thereof, and can be created in the solid plate by any mechanism conventional in the art, such as punching, casting, water jet, laser or plasma cutting.
- Plurality of holes 130, 230 may be perpendicular to or provided at any angle relative to the front surface of strike face plate 1 10, 210 and may be oriented upwardly or downwardly, or by any other orientation conventional in the art.
- Plurality of holes 130, 230 may be arranged in a repetitive manner in two planes that form webs 132 ( Figure 5) whose width and thicknesses can be varied as necessary, but are uniformly distributed throughout.
- Perforated metal or expanded metal strike face 1 10, 210 and laminate composite backing 120, 220 may be flat, bent or formed into compound angles. It should also be understood that the plurality of holes or slots are not limited to being oblique, but may alternatively be straight (i.e., non-oblique) in accordance with the present invention. For example, multiple layers of perforated metal may alternatively be employed in accordance with the present invention in a desired embodiment, wherein the plurality of slots or holes are straight (i.e., non-oblique). In this instance, the multiple layers of perforated metal and/or the configuration of the respective plurality of holes or slots may be advantageously offset.
- multiple layers of perforated metal plates could be simultaneously employed with each having an individual thickness of about in the range of 1 ⁇ 4 inch - 3/8 inch such that the overall thickness of the multiple layers of perforated metal plates would be consistent with the desired constant overall thickness if a single perforated metal plate had been employed.
- the sizes of the openings of the slots which may be advantageously used in embodiments of the present invention range from about 0.15 inch to about 2 inches in length, or even about 0.50 inch to about 2.0 inches in length for an embodiment (i.e., the vertical orientation of the openings of the slots), by about 0.15 inches to about 2 inches, or even about 0.25 inch to about 1.0 inch in width for an embodiment in width (i.e., the horizontal orientation of the openings of the slots).
- the web 132, defined as the solid material between the plurality of slots or holes 130, 230 can vary in thickness from about 0.10 inches to 1 inch (i.e., the spacing between adjacent slots or holes).
- each hole or slot of the plurality of holes or slots may advantageously be consistent there-between, but need not be consistent there-between.
- the number of slots, for example, per square foot may be within the range of about 15 to 680 slots/square foot. This number, however, may be left for the skilled artisan to determine depending on the nature of the particular application with which the present invention is employed.
- Slots or holes 130, 230 are preferably arranged in a uniformed fashion and are equally spaced apart from each other.
- the slots of the present invention are set in obliquity of up to about 60 degrees, such as from 0 degrees to 50 degrees measured from a vertical orientation or axis.
- plurality of holes that are designed for use with protecting against 30 caliber bullets would be approximately half the size of the plurality of holes that are designed for use with protecting against 50 caliber bullets.
- the distance between the respective focal points (shown by opposing "F's") of the opposing arced ends is about 1 ⁇ 2 inch and the angle of each opposing arced end is about 0.17 - 0.19°, in particular about 0.1875° ( Figures 5 A, 5B) with each hole angled at about 20°-30° relative to the vertical orientation of the present invention, and more particularly at about 25° relative to the vertical orientation of the present invention.
- the armor of an embodiment of the present invention may be produced and represented by the following: Styrofoam master sheets having a thickness of about 0.50 inches and dimensions of about 14 inches by about 30 inches are used.
- the styrofoam sheets have slots in a regular pattern produced from a die and the slots have the dimensions of 0.625 inches by 1.625 inches on 0.625 inch vertical centers and 1.625 inch horizontal centers. These slots are set at an obliquity of 30 degrees relative to a vertical orientation or axis.
- the web, defined as the solid material between the slots, is about 0.150 inches in thickness.
- plurality of holes 130, 230 are provided in a pattern referred to as the "historic" pattern. It should be appreciated that any pattern of plurality of holes 130, 230 conventional in the art may be employed in accordance with the present invention. For example, in a particular embodiment of the present invention, plurality of holes 130, 230 can be provided in a non-homogenous cross-sectional pattern.
- plurality of holes 230 is shown having an oblique-angled configuration relative to a vertical orientation or axis.
- plurality of holes 230 may comprise an oblique-angle configuration of about between 20°- 60° relative to the vertical orientation of the strike face plate 210.
- plurality of holes 230 may comprise an oblique-angle configuration of about 25° relative to the vertical orientation of the strike face plate 210.
- plurality of holes 230 may even be straight.
- a further optional hard surface material 212 can be placed onto composite layer or metal skin layer 21 1, a further optional hard surface material 212 can be placed.
- the additional hard faced material 212 may be composed of carbon cloth, tungsten carbide particles, FeCr coating, FeCr-/Mo/V surfacing, 1642 CrC surfacing or Ceramo Cr 7 Cr3 surfacing and can be employed to provide an additional protective layer.
- the hard faced material may be sintered to the thin composite layer or metal skin layer 21 1 during the casting process and aids in the breakup of a high caliber projectile.
- armor system 100, 200 further comprises laminate composite backing 120 (220 in Figure 3).
- Laminate composite backing 120, 220 can comprise a cross-sectional composition of fibers such as, but not limited to, at least one of a synthetic aramid fibers or para-aramid fibers known as KEVLAR ® fibers, E-glass, S- Glass, polypropylene, Ultrahigh Molecular Weight Polyethylene (UHMWPE), including fibrous UHMWPE such as a pressed SPECTRA SHIELD II ® SR-3 130 ballistic composite material from Honeywell Advanced Fibers and Composites, Colonial Heights, Virginia, and integrally combined with polymer resin-based binders such as, but not limited to, at least one of silicones, epoxies, urethanes, polyethylenes, polyurethanes, and polyureas, such as those disclosed in U.S.
- polymer resin-based binders such as, but not limited to, at least one of silicones, epoxies, urethanes, polyethylenes, polyurethanes, and polyureas may be those sold under the trademark HOTBLOX ® which may be readily obtained from American Technical Coatings, Inc. located in Cleveland, Ohio.
- laminate composite backing 120, 220 comprises a thickness in the range of about 1 ⁇ 4 inch to about 5 inches, and in particular in the range of about 1 -4 inches, or even about 0.25-4 inches.
- laminate composite backing 200 comprises a thickness of about 0.5-3 inches, or even about 2.5 inches, in accordance with the embodiments of the present invention. It should be appreciated, however, that the particular thickness of the laminate composite backing depends on the particular type of application with which the present invention is used. For example, use of the laminate composite backing in an armor system according to the present invention would be comparatively thinner for use with body armor than for use with, for example, an armor system for protecting vehicles or missile transport canisters.
- laminate composite backing 120, 220 can comprise a layered configuration of cross-sectional composition of fibers such as, but not limited to, at least one of synthetic aramid fibers or para-aramid fibers known as KEVLAR ® fibers, E-glass, S-Glass, polypropylene, Ultrahigh Molecular Weight Polyethylene (UHMWPE), such as a plurality of layers of standard ballistic cloth based on a UHMWPE known under the trademark DYNEEMA ® , and integrally combined with polymer resin-based binders such as, but not limited to, at least one of silicones, epoxies, urethanes, polyethylenes, polyurethanes, and polyureas, such as those disclosed in U.S.
- fibers such as, but not limited to, at least one of synthetic aramid fibers or para-aramid fibers known as KEVLAR ® fibers, E-glass, S-Glass, polypropylene, Ultrahigh Molecular Weight Polyethylene (UHMWPE), such as
- polymer resin-based binders such as silicones, epoxies, urethanes, polyethylenes, polyurethanes, and polyureas may be those sold under the trademark HOTBLOX ® which may be readily obtained from American Technical Coatings, Inc. located in Cleveland, Ohio as discussed above.
- a bottom layer, side layers and a top layer of a polymer resin-based binder material such as a silicone, epoxy, polyurethane, urethane and/or polyurea, such as those sold under the trademark HOTBLOX ® readily obtained from American Technical Coatings, Inc.
- the layered configuration comprising the laminate composite backing 120, 220 is treated under pressure, such as in the range of about 2,000 psi - 3,500 psi for a period of time as needed, such as in the range of between 1 ⁇ 2 hour - 10 hours, and preferably in the range between 1 - 5 hours, to arrive at an appropriate laminate composite backing for use with the protective system of the present invention.
- armor system 700 includes a layered configuration of perforated metal and composite backing 702, shown as adjacent to each other.
- An environmentally insensitive sheet or layer 704 comprising an appropriate material such as but not limited to a polymer (e.g., polypropylene) or a metal (e.g., aluminum, titanium, and the like) is applied directly onto at least one surface, such as the outwardly facing surface of layered configuration 702 exposed to external environmental conditions, or even all surfaces thereof (e.g., entirely wrapped).
- Environmentally insensitive sheet or layer 704 may be advantageously bonded or otherwise secured to layered configuration 702 by conventional methods known in the art, such as heat, pressure or bonding materials. It should also be understood that environmentally insensitive sheet or layer 704 could alternatively comprise an encasing to fully encase or enclose layered configuration.
- an optional molding, edging or frame 706 comprising a material such as but not limited to a glass epoxy composite (or a comparable conventional protective material) may advantageously be provided around the outside edges of layered configuration 702 having sheet or layer 704 bonded or secured thereon for reinforcing layer 704 onto layered configuration 702.
- frame 706 may also be employed in the case of an environmentally insensitive material fully encases or wraps layered configuration 702. It should be appreciated that frame 706 is optional for providing additional reinforcement and/or ballistic characteristics to armor system 700.
- Fig. 36 yet another alternative embodiment is shown and described.
- the optional encasing or encapsulation in accordance with the present invention may optionally be replaced by employing an environmentally insensitive layer or wrap, such as a polymer layer, sheet, or encasing (e.g., polypropylene) or a metal layer, sheet, or encasing (e.g., aluminum, titanium, and the like).
- an environmentally insensitive layer or wrap such as a polymer layer, sheet, or encasing (e.g., polypropylene) or a metal layer, sheet, or encasing (e.g., aluminum, titanium, and the like).
- armor system 800 includes a composite backing 802 having an environmentally insensitive sheet or layer 804, comprising an appropriate material such as but not limited to a polymer (e.g., polypropylene) or a metal (e.g., aluminum, titanium, and the like) applied directly onto at least one surface, such as the outwardly facing surface of layered configuration 802 exposed to external environmental conditions, or even all surfaces thereof (e.g., entirely wrapped).
- environmentally insensitive sheet or layer 804 may be advantageously bonded or otherwise secured to composite backing 802 by conventional methods known in the art, such as heat, pressure or bonding materials. It should also be understood that environmentally insensitive sheet or layer 804 may comprise an encasing to fully encase or enclose composite backing 802.
- an optional molding, edging or frame 806 comprising a material such as but not limited to a glass epoxy composite (or a comparable conventional protective material) may advantageously be provided around the outside edges of composite backing 802 having sheet or layer 804 bonded or secured thereon for reinforcing layer 804 onto composite backing 802.
- frame 806 may also be employed in the case of an environmentally insensitive material fully encases or wraps composite backing 802. It should be appreciated that frame 806 is optional for providing additional reinforcement and/or ballistic characteristics to armor system 800.
- armor system 800 also includes at least one layer of perforated metal 803 adjacent to composite backing 802 relative to the external environment at a distance as described above.
- a process for encapsulating the laminate composite backing layer in accordance with the present invention can be as follows. It should also be appreciated that the process for forming the laminate composite backing layer in accordance with the present invention would envision any alternative or modifications that would be apparent to one skilled in the art.
- a material in a liquid form is encapsulated around a fibrous bundle core in a manner conventional in the art.
- the liquid is solidified to form an encapsulating skin.
- the transformation from liquid may occur, for example, via solvent evaporation, chemical reaction, or cooling from a molten state or by any alternative comparable manner conventional in the art.
- a two-component system which is liquid under normal ambient conditions without the addition of a solvent can be poured over the fibrous bundle core and the components solidify by a chemical reaction.
- a thermoplastic material can be melted and molded around the fibrous bundle core, i.e., by insert injection molding.
- thermoset elastomeric resins may be employed in accordance with the present invention as follows.
- An example of the formulation in accordance with the present invention can be as follows. It should be appreciated that the formation of the present invention is not . limited to this example, but would envisions any alternatives or modifications that would be understood by one skilled in the art.
- a polyurethane that is made by the reaction of a multifunctional amine and a multifunctional isocyanate without the addition of a solvent is provided. More specifically, an oligomeric ether or ester with diamine functionality reacted with a diisocyanate is provided.
- the bundle or layered composite configuration may be environmentally protected by pressing or wrapping protective layers of polypropylene or other comparable materials, such as metal, Kevlar, S-glass, and the like, around the bundle or layered composite configuration. Edges may be reinforced with glass epoxy composites or other comparable protective and/or reinforcement materials as shown in Fig. 36. It should therefore be understood that in accordance with the embodiments of the present invention, embodiments for lower weight systems of the present invention may be advantageously used for example in connection with "on canister" ballistic systems for protecting missile canisters.
- a layer, sheet or board of a high tensile strength material such as a high tensile strength polymer board, may be employed adjacent to laminate composite backing 200 at a thickness in the range of about 1/32 inch - 4 inches, or about 1/8 inch to about 4 inches, or about 1 ⁇ 4 inch to about 4 inches, or even about 1/16 inch - 4 inches and more particularly at a thickness in the range of about 1/32 inch - 2 inches.
- High tensile strength polymer board may supplement the laminate composite backing 200, or replace at least a portion of the cross-sectional composition of the laminate composite backing 200.
- armor system 100 is provided with the strike face plate 1 10 and laminate composite backing 120 bonded together by bonding methods conventional in the art, such as by a urethane or polyurethane bonding. As shown in Figure 2, strike face plate 1 10 and composite backing 120 are bonded directly together with no air space there between. It should be appreciated that strike face plate 1 10 and laminate composite backing 120 could also be secured together via mechanical means conventional in the art, as discussed further below. Such a configuration may be employed, for example, for use of the present invention in a body armor type of application.
- air space 300 may be provided at a distance or depth in the range of about 0.25 to 5 or 6 inches. More particularly, air space 300 may be provided at a distance or depth of about 0.25 inches to 2 inches, or even about 5 1/8 inches to about 5 1 ⁇ 2 inches. It should be appreciated that the particular depth of the air space would depend on the particular type of application with which the present invention is employed, including no air space at all, i.e., air space having zero inches depth. In other words, armor system 200 may be devoid of air space 300 in an embodiment of the invention. Air space 300 may be optionally filled with a foam energy absorbing material, such as low density foam, or other comparable energy absorbing material as conventional in the art.
- a foam energy absorbing material such as low density foam, or other comparable energy absorbing material as conventional in the art.
- the armor system according to the present invention may be employed for use as an armor system for missile transport canisters, for body armor, for the missile canisters, or for vehicles including for incorporation into the body of the vehicle or. portion(s) of the vehicle body.
- armor system is shown at numeral 100 comprising perforated metal or expanded metal plate 1 10 having plurality of holes 130, laminate composite backing 120 and air space 300 between perforated metal or expanded metal strike face plate 1 10 having plurality of holes 130 and laminate composite backing 120.
- Laminate composite backing comprises a thickness defined as thickness X, which may be for example about 0.25 - 5 inches, or 0.25 - 4 inches, or even about 2.5 inches.
- thickness X an alternative embodiment of armor system is shown at numeral 100a comprising perforated metal or expanded metal plate 1 10a having plurality of holes 130a, laminate composite backing 120a and air space 300a between perforated metal or expanded metal plate 1 10a having plurality of holes 130a and laminate composite backing 120a.
- a sheet of material or board, shown at numeral 140a may be provided on top of and adjacent to laminate composite backing 120a.
- Sheet of material or board 140a may be, but is not limited to, a high tensile strength urethane board having a defined thickness of yl .
- the armor system of the present invention meets the appropriate military weight specifications and requirements for defeating high velocity and high caliber projectiles, or alternatively for disrupting/deflecting/dissipating the energy of small arms impact (i.e., a reduction of the energy of the small arms threat).
- the armor system of the present invention meets the appropriate military weight specifications and requirements as defined by NATO Standardization Agreement (STANAG) Bullet Impact, Munitions Test Procedures promulgated on April 15, 2003 and NATO Standardization Agreement (STANAG) Fragment Impact, Munitions Test Procedures promulgated on December 13, 2006, both of which are incorporated herein by reference in their entireties.
- the present invention meets the appropriate test of stopping, or alternatively slowing down (i.e., deflecting, disrupting, dissipating the energy of) three (3) 50-caliber bullets shot within a 2-inch diameter area and shot in a time interval of 1/10 second apart.
- the armor system of the present invention comprises a weight in the range of about 18-35 psffor use with missile canister protection systems. More particularly, in accordance with the present invention, the armor system comprises a weight of no greater than about 29 psf in the embodiment in which the present invention is employed for use with a missile canister armor system. Even more particularly, in accordance with the present invention, the armor system comprises a weight of about 23 psf in the embodiment in which the present invention is employed for use with a missile canister armor system. In accordance with the present invention, the respective weights meet those that are needed by the particular application of use with which the present invention is employed.
- the lightweight armor system of the present invention comprises a weight of about 3-15 psf, including about 6-1 1 psf. More particularly, the lightweight armor system of the present invention comprises a weight in the range of about 7-1 1 psf, or even 7.1-10.8 psf, when employed with a metal strike plate, such as steel or titanium, for defeating, for example, 0.30 caliber armor piercing threats.
- a metal strike plate such as steel or titanium
- the respective weights meet those that are needed by the particular application of use with which the present invention is employed.
- the lightweight armor system of the present invention comprises a weight in the range of about 4-8 psf, or even about 5-6 psf, or more particularly about 5.6 psf, when employed with a hardened steel plate for defeating threats such as 5.56 X 45 Ml 93 and SS 109 (M855 equivalent).
- the embodiment of the present invention may be employed for use with vehicles, such as a material for forming at least a portion of the vehicle body, such as a police vehicle or military vehicle.
- Ultrahigh Molecular Weight Polyethylene UHMWPE
- UHMWPE Ultrahigh Molecular Weight Polyethylene
- the lightweight armor system of the present invention comprises a weight in the range of about 4-9 psf, or even about 4-7.7 psf, or more particularly about 4.0-6.7 psf, or even more particularly in the range of about 4.3-6.3 psf or still even more particularly about 4.0-5.5 psf, when employed for use as a missile canister for encasing and protecting missiles during transport.
- S-Glass may be advantageously employed as the component of the composite backing, such as for lowering flammability properties.
- the fibers or composite material may be advantageously used to wrap the perforated metal plate directly. For use on a missile canister, it should be appreciated that, for example, the wrapped perforated strike plate can be used as a singular item for improving ballistic and/or environmental properties.
- A- comprise:
- Vehicle armor c Manufactured by cast, punch, laser,
- a mechanical attachment mechanism 400 can be fabricated into the components 1 10 and 120 for attaching components 1 10 and 120 to each other and/or for attaching an armor system to another object to be protected, such as a vehicle, and which is employed with the specific application of use.
- strike face plate 1 10 comprises recessed pockets 42 through which tubular spacers 40, each having a threaded end 41 passes through.
- Strike face plate 1 10 is attached to a structure 13 to be protected (e.g., a vehicle) ( Figure 8) through tubular spacers 40 by a washer 30 and nut 32.
- face plate 1 10 comprises an opening 45 through which tubular spacer 40 may be accommodated.
- mechanical attachment mechanism 400 may be a conventional threaded screw and nut engagement mechanism as known in the art.
- FIGs 10-14 an exemplary use of the armor system in accordance with the present invention in connection with a particular type of application will be shown and described, namely for use with an armor system for the transport of missile canisters. It should be appreciated, however, that the specific application of the present invention shown in Figures 10-14 is for illustrative purposes only and the armor system of the present invention should not be considered limited or exclusive to such an application or use. As indicated above, the present invention may alternatively and advantageously be employed for use with body armor, missile canisters, or the vehicle body itself or a portion or portions of the vehicle body as within the scope of the present invention.
- the armor system is shown generally at numeral 500.
- a flatbed truck trailer 510 is provided for carrying at least one missile canister 512.
- four missile canisters 512 are provided on flatbed truck trailer 510.
- a frame 514 such as a wooden or metal frame as known in the art, is provided for securing each individual canister 512 to flatbed truck trailer 510.
- Spacers 534 such as wood spacers or metal spacers, are provided on the floor of the flatbed truck trailer 510 to further ensure stability of canisters 512 ( Figure 13).
- An additional frame system 516 such as an aluminum frame system ( Figure 1 1) having a top frame 516a and side frames 516b, is provided for securing the armor system panels 518 to the side of the flatbed truck trailer 510 and totally surrounding the canisters 512 secured by frame 514.
- frame system 516 any comparable material to aluminum may be employed for frame system 516.
- each segment of frame system 516 contains or houses strike face plate 520 and laminate composite backing 524, with air space 522 therebetween, and regardless of whether the respective segment of frame system 516 is employed on a side, front, top or back of the trailer bed 510.
- Each segment of frame system 516 is employed in series so as to directly and securely abut the respective adjacent segment of frame system 516 to form a secure protective system in all directions surrounding the canisters 512, including top and all sides.
- top frame 516a and side frames 516b of frame system 516 are secured to together via a mechanical locking mechanism.
- the mechanical locking mechanism comprises a plurality of upwardly angled hooks, forks or the like 530 on top frame 516a which secure into and lock with corresponding grooves, holes, pockets or the like on side frames 516b.
- Side frames 516b are directly secured to each armor system panel 518, such as via conventional threaded bolt and nut securing mechanism or any other comparable mechanism conventional in the art.
- Straps 536 ( Figure 14) may be employed to further stabilize canisters 512 in place on flatbed truck trailer 510.
- the objective of the test was to impact each candidate plate in a specified quadrant with a volley of three 0.50-caliber armor-piercing (AP) projectiles, fired at 100 +/- 8 msec intervals from 0.50 caliber Mann barrel devices.
- the projectiles were required to have velocities of 2788 +/- 66 ft./sec. These projectiles were to impact the specified plate quadrant within a 2-in circle, without key-holing or overlapping.
- Figure 17 depicts the three Mann barrels (Ml , M2 and M3) used in the testin the present invention.
- the center muzzle distance to the target plate was approximately 29.6 feet.
- the guns were sequenced to fire at 100 msec intervals.
- the target plate was secured to the test stand.
- the target plate consisted of a 5/8-inch perforated grate up-range and a 2.5-inch thick piece of composite down-range.
- the target panels were bolted to the test stand as shown in Figure 19. The distance from the perforated plate to the composite plate was approximately 5 1/8-inches.
- test panel according to the present invention prevented all three projectiles from impacting the witness plate.
- the objective of the test was to impact each candidate plate in a specified quadrant with a single North Atlantic Treaty Organization (NATO) standardized fragment with a nominal mass of 18.6 grams, traveling at a velocity of 8300 +/- 300 ft/s.
- NEO North Atlantic Treaty Organization
- test plate was secured to the target test stand as shown in Figure 29.
- test plate reactions during the fragment impact are shown in Table 5 along with the associated frame number, as set forth below.
- the additional test plate in accordance with the present invention was installed with the same standoff used for the bullet impact portion of the test. A distance of 5 1/8- inches was measured from the back side of the grate to the face of the composite plate as shown in Figure 32.
- the armor system in accordance with the present invention may be employed in any type of appropriate application for protection against high velocity and high caliber projectiles.
- Such applications for employment may include, but is not limited to, individual protective systems, i.e., body armor, armor for tanks, armor for ships or boats, armor for trucks, armor for vehicles, armor for aircraft including airplanes, jets and helicopters, armor for barriers, armor for protective structures, i.e., blast panels and armor for missile containers for storage or transport.
- FIG 34 an alternative embodiment of the armor system in accordance with the present invention will be shown and described, namely for use with an armored structure, such as an armored trailer or armored shipping container and the like in which the armor system is integrally built into the respective walls, floors and ceiling of the armored structure, such as an armored trailer or armored shipping container.
- the armored structure as depicted in Figure 34 is an armored trailer.
- the armored structure is not limited to an armored trailer but can include other types of structures requiring an integral armor system including but not limited to an armored shipping container.
- the armored trailer system is shown generally at numeral 600.
- a flatbed semi-truck trailer 610 is provided and comprises a conventional configuration including two opposing walls 612a, 612b, a ceiling or roof 614, a rear end 616, a front end 618 and a floor 620 of the armored trailer system 600.
- armored trailer system 600 as shown includes a conventional rear end 616 that is configured for loading and unloading of cargo into and from armored trailer 610 in known conventional mechanisms.
- the armored trailer system 600 is not limited to such armored trailers for exclusive rear loading and unloading, but can also be employed with modified armored trailer systems which employ alternative methods for loading or unloading cargo conventional in the art including side loading and unloading systems or top loading and unloading systems or even combinations of the foregoing loading and unloading systems.
- all of opposing walls 612a, 612b, ceiling or roof 614, rear end 616, front end 618 and, optionally, floor 620 comprise the armor system of the present invention discussed herewith integrally formed within the parameters of flatbed semi- truck trailer 610.
- the aforementioned described framework system is omitted in the instant alternative embodiment and the ballistic armor system is employed directly and integrally into each of opposing walls 612a, 612b, ceiling or roof 614, rear end 616, front end 618 and, optionally, floor 620 thereby forming a singular and unitary armored trailer system 600 having the ballistic armor system of the present invention integrally formed into armored trailer system 600.
- the armored trailer system 600 need not be limited to the particular application described herein of carrying cargo in the nature of missiles, but rather can be modified for protection of alternative types of cargo that might be less sensitive or less vulnerable.
- the threats against an armored trailer for transport can be defined by the particular classes of weapons that are mobile, can be fired by an individual or individuals can engage a moving type target at a given range, including small arms to heavy machine gun threats, and fragments from roadside improvised explosive devices (IEDs).
- kinetic energy threats can include but are not limited to threats ranging in caliber from about 5 mm - 15 mm, more particularly from about 5.45 mm to about 14.5 mm, in both steel and tungsten carbide cores. Still further, these threats can be fired from single and multiple shot assault weapons, sniper rifles and machine guns at near or extended ranges. Even further, it should be understood that the presently claimed armored trailer system 600 can protect against a second class of threats including but not limited to IED type weapons that can be simulated in testing by fragment simulating projectiles (FSP) in calibers up to 20mm in diameter.
- FSP fragment simulating projectiles
- the armored trailer system 600 of the present invention comprises a weight in the range of about 18-35 psffor use with missile canister protection systems for munitions, and comprises a weight in the range of about 1-35 psf for use in carrying other types of cargo. More particularly, in accordance with the present invention, the armor system comprises a weight of no greater than about 29 psf in the embodiment in which the present invention is employed for use with a missile canister armor system for munitions. Even more particularly, in accordance with the present invention, the armor system comprises a weight of about 23 psf in the embodiment in which the present invention is employed for use with a missile canister armor system for munitions.
- the armored trailer system 600 in accordance with the present alternative embodiment of the present invention can have a total thickness of about 8.0 inches as set forth above, and can be further modified by elimination of certain components and/or materials.
- metal strike face plate may be an optional metal strike face plate in accordance with the armored trailer system 600 of the alternative embodiment of the present invention and may comprise a material including but not limited to carbon steels, alloyed steels, stainless steels or titanium.
- metal strike face plate may be omitted in armored trailer system 600 depending on the required level of protection desired for the particular cargo being protected.
- the airspace according to armored trailer system 600 may be in the range of about 0 inches (i.e., negligible or no airspace) to about 10 inches.
- the rear composite layer of armored trailer system 600 may comprise any material as described above, including but not limited to polyethylene, aramid- or glass-based composite materials.
- the respective weights meet those that are needed by the particular application of use with which the present invention is employed.
- each of two opposing wal ls 612a, 612b, ceiling or roof 614, rear end 616, front end 618 and floor 620 which are integrally formed with the armor system of the present invention may be joined to each other or otherwise interconnected by mechanisms known in the art, such as but not limited to welding, conventional threaded bolt and nut securing mechanisms and the like, or any other comparable mechanisms that are conventional in the art.
- Table 8A sets forth and describes testing results regarding armor systems comprising perforated titanium / polymer composite backing for 0.30 caliber armor-piercing (APM2) threats.
- Total weight in Table 8A is shown as “pounds per square feet” and “velocity” is shown as “feet per second.” TABLE 8A
- Table 8B sets forth and describes additional testing results regarding light weight armor systems for defeating 0. 30 caliber M2AP projectiles. Weights of 7.1 to 10.4 psf are shown. All systems tested comprise at least one perforated metal strike plate, a 2" space, and a corresponding composite backing.
- Table 9 sets forth and describes testing results regarding light weight armor systems having a weight of 5.6 psf employing a perforated hardened steel plate / polymer composite having UHMWPE for use with armored vehicles with both threats shot at the same panel.
- Tables 10 - 18 below set forth and describe background information and testing results regarding light weight armor systems employing a perforated hardened steel plate / polymer composite having S-Glass for use with structures such as missile canisters for insensitive munitions requirements compliance.
- Tables 10 - 18 below set forth and describe background information and testing results regarding light weight armor systems for insensitive munitions (IM) bullet impact/fragment impact (BI/FI) testing.
- IM insensitive munitions
- BI/FI bullet impact/fragment impact
- Tables 10 - 18 below set forth and describe background information and testing results regarding light weight armor systems for insensitive munitions (IM) bullet impact/fragment impact (BI/FI) testing.
- IM insensitive munitions
- BI/FI bullet impact/fragment impact
- IM Insensitive munitions
- IM test methodologies and compliance requirements defined by MIL- STD-2105(D) and supporting Standard NATO Agreements (STANAGs) include testing for fast cook off, slow cook off, bullet impact, fragment impact, sympathetic reaction and shaped charged jet impact.
- IM assessments includes Type I - Type VI, as summarized below, with each IM test having a maximum allowable reaction requirement. For example, shaped charged jet requires reaction of Type III or better and bullet and fragment impact require reaction of Type V or better.
- the FSP was also substantially deformed in length as well as being fractured approximately one fifth of its original mass.
- the FSP also appears to be substantially. deformed and broken up as determined by visual inspection of the "Catcher Panel" as no fragments of the FSP were located
- Tables 16 - 17 below set forth and describe background information and testing results regarding light weight armor systems for insensitive munitions (IM) bullet impact/fragment impact (BI/FI) testing. Weights of 4.7 to 7.7 psf are shown.
- IM insensitive munitions
- BI/FI bullet impact/fragment impact
- Test included 0.25" glass epoxy panel as a canister simulator material placed 2" behind ballistic panel
- Table 18 sets forth and describes testing results regarding light weight armor systems for 14.3 mm fragment impact testing for insensitive munitions compliance. Weights of 4.2 to 6.7 psf are shown. TABLE 18: 14.3 mm Fragment Test
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
Abstract
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201461954985P | 2014-03-18 | 2014-03-18 | |
US201462090492P | 2014-12-11 | 2014-12-11 | |
PCT/US2015/021303 WO2015179013A2 (en) | 2014-03-18 | 2015-03-18 | Lightweight enhanced ballistic armor system |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3120103A2 true EP3120103A2 (en) | 2017-01-25 |
EP3120103A4 EP3120103A4 (en) | 2017-11-08 |
EP3120103B1 EP3120103B1 (en) | 2020-02-05 |
Family
ID=57588810
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15795701.0A Active EP3120103B1 (en) | 2014-03-18 | 2015-03-18 | Lightweight enhanced ballistic armor system |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP3120103B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4253900A1 (en) * | 2022-03-31 | 2023-10-04 | Airbus Operations GmbH | Method for producing an armoured wall in an aircraft and an aircraft section comprising an armoured wall |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8006605B2 (en) * | 2007-10-10 | 2011-08-30 | Hardware, LLC | Armor panel system |
EP2718663B1 (en) * | 2011-06-08 | 2018-08-15 | American Technical Coatings, Inc. | Enhanced ballistic protective system |
-
2015
- 2015-03-18 EP EP15795701.0A patent/EP3120103B1/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4253900A1 (en) * | 2022-03-31 | 2023-10-04 | Airbus Operations GmbH | Method for producing an armoured wall in an aircraft and an aircraft section comprising an armoured wall |
Also Published As
Publication number | Publication date |
---|---|
EP3120103B1 (en) | 2020-02-05 |
EP3120103A4 (en) | 2017-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11421963B2 (en) | Lightweight enhanced ballistic armor system | |
AU2012267563B2 (en) | Enhanced ballistic protective system | |
EP1409948B1 (en) | Ceramic armour systems with a front spall layer and a shock absorbing layer | |
US8215223B2 (en) | Ceramic components, ceramic component systems, and ceramic armour systems | |
US7926407B1 (en) | Armor shielding | |
US8297177B2 (en) | Ballistic projectile armour | |
US8468926B2 (en) | Ballistic armor system | |
US20100242714A1 (en) | Anti-ballistic egress window assembly | |
US20110008598A1 (en) | Protective panel | |
US20110083549A1 (en) | Multi-Functional Armor System | |
US20100024633A1 (en) | Articles, manufactures, and assemblies utilizing configured and sized plates comprised of penetration-proof laminated constructs formed of asymmetric composite materials | |
US20170254625A1 (en) | Composite ballistic armor | |
Ash | Vehicle armor | |
EP3120103B1 (en) | Lightweight enhanced ballistic armor system | |
CA2500619C (en) | Improved ceramic components, ceramic component systems, and ceramic armour systems | |
WO2006129133A1 (en) | Bullet-proof armour effective against small arms and production method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20161017 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20171009 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F41H 5/04 20060101AFI20171003BHEP Ipc: F41H 7/04 20060101ALI20171003BHEP Ipc: F42B 35/00 20060101ALI20171003BHEP Ipc: F41H 5/02 20060101ALI20171003BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20180829 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20191030 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1230219 Country of ref document: AT Kind code of ref document: T Effective date: 20200215 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602015046440 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20200205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200628 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200205 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200205 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200205 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200205 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200205 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200506 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200605 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200505 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200205 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200205 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200205 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200205 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200205 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200205 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200205 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200205 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602015046440 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1230219 Country of ref document: AT Kind code of ref document: T Effective date: 20200205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200205 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200318 |
|
26N | No opposition filed |
Effective date: 20201106 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200205 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200205 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200318 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200205 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200205 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200205 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200205 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200205 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602015046440 Country of ref document: DE Representative=s name: PAGE, WHITE & FARRER GERMANY LLP, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240220 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240220 Year of fee payment: 10 Ref country code: GB Payment date: 20240220 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NO Payment date: 20240222 Year of fee payment: 10 Ref country code: FR Payment date: 20240220 Year of fee payment: 10 Ref country code: BE Payment date: 20240220 Year of fee payment: 10 |