EP3111078B1 - Fluid injector - Google Patents
Fluid injector Download PDFInfo
- Publication number
- EP3111078B1 EP3111078B1 EP15703491.9A EP15703491A EP3111078B1 EP 3111078 B1 EP3111078 B1 EP 3111078B1 EP 15703491 A EP15703491 A EP 15703491A EP 3111078 B1 EP3111078 B1 EP 3111078B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- injector
- fluid
- actuator
- control actuator
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
- 239000012530 fluid Substances 0.000 title claims description 52
- 239000000446 fuel Substances 0.000 claims description 32
- 239000002520 smart material Substances 0.000 claims description 11
- 229920001746 electroactive polymer Polymers 0.000 claims description 9
- 229920001971 elastomer Polymers 0.000 claims description 7
- 239000000806 elastomer Substances 0.000 claims description 7
- 238000002485 combustion reaction Methods 0.000 description 7
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 2
- 229920002595 Dielectric elastomer Polymers 0.000 description 1
- 230000004308 accommodation Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M51/00—Fuel-injection apparatus characterised by being operated electrically
- F02M51/06—Injectors peculiar thereto with means directly operating the valve needle
- F02M51/061—Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M47/00—Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
- F02M47/02—Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
- F02M47/027—Electrically actuated valves draining the chamber to release the closing pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M63/00—Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00Â -Â F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00Â -Â F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
- F02M63/0012—Valves
- F02M63/0014—Valves characterised by the valve actuating means
- F02M63/0015—Valves characterised by the valve actuating means electrical, e.g. using solenoid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M63/00—Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00Â -Â F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00Â -Â F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
- F02M63/0012—Valves
- F02M63/0059—Arrangements of valve actuators
- F02M63/0063—Two or more actuators acting on a single valve body
Definitions
- the invention relates to a fluid injector with an electromagnetic actuating actuator, comprising an injector housing in which an injector needle is arranged so as to be longitudinally movable, the injector needle having a nozzle tip which controls nozzle openings and an armature of the actuating actuator which cooperates with the injector needle.
- Such a fluid injector is from the DE 10 2011 076 663 A1 known.
- This fluid injector is a fuel injector for injecting fuel into a combustion chamber of an internal combustion engine, which has an injector needle which is guided in a high-pressure bore of an injector housing in order to open and close at least one injection opening in a stroke-movable manner.
- This fluid injector has a first electromagnetic actuating actuator which adjusts the injector needle to release the at least one nozzle opening.
- the fluid injector has a second electromagnetic actuating actuator which is arranged opposite the first actuating actuator and an armature plate and which, when energized, moves the armature plate connected to the injector needle to an injector needle spring in order to close the at least one nozzle opening.
- a similar fluid injector is from the DE 10 2008 001 895 A1 known.
- This fluid injector has two pairs of actuation actuators, wherein a pair of the electromagnetic actuation actuators is provided for opening and closing the injector needle.
- the accommodation of a total of four electromagnetic actuators requires considerable space.
- Fuel injectors are known which, in addition to the actuator moving the respective injector needle, have a further actuator which controls a fuel flow.
- the EP 2 103 802 A1 also discloses an injector with two magnetic actuators, one of the magnetic actuators opening a pressure compensation valve.
- the object of the invention is to provide a fluid injector which is improved with regard to its dynamic operation and the absorption of electrical energy.
- an additional control actuator is provided for a fluid and that the fluid is introduced into a pressure space which interacts with the injector needle for controlling a movement of the injector needle.
- the fluid to be injected by the fluid injector is under a pressure and this fluid pressure acts - controlled by the control actuator - via the pressure chamber on the injector needle.
- the control actuator controls a flow connection of a high-pressure line of the fluid via the pressure chamber to a low-pressure line. This makes it possible to influence the opening movement and / or the closing movement of the injector needle in such a way that it takes place more quickly and possibly more precisely. This improves the overall dynamic behavior of the fluid injector.
- control actuator controls only the flow of the fluid, a significantly lower electrical energy is required to operate the control actuator than in the case of a second electromagnetic actuation actuator. Since the control actuator supports the actuation actuator, the actuation actuator can also be made smaller and with a lower power consumption. As a result, the electrical energy for actuating the fluid injector can be reduced overall.
- control actuator is arranged in the injector housing. Since the control actuator controlling the fluid flow can be made considerably smaller than the actuation actuator, it can be integrated into the injector housing without any problems.
- control actuator is arranged between the actuation actuator and the nozzle tip.
- This arrangement has proven to be special Proved to be advantageous, since on the one hand a flow line of the fluid to be injected by the fluid injector is present, can be derived from a branch line which is controlled by the control actuator and acts on the injector needle, and on the other hand the control actuator can be easily integrated into this area due to its small size .
- the control actuator is a microactuator, in particular a (hollow shaft) smart material linear actuator (SMLA).
- SMLA smart material linear actuator
- Such a micro actuator or smart material linear actuator is available in different versions and is characterized by its small size and low absorption of electrical energy.
- Such a smart material linear actuator belongs to the category of microactuators that have a shape memory.
- the microactuator can be based in particular on an electroactive polymer (EAP) or dielectric elastomer or on a magnetorheological elastomer (MRE). Actuators based on these principles have the ability to either convert electrical energy directly into mechanical energy or to change their rigidity significantly.
- EAP electroactive polymer
- MRE magnetorheological elastomer
- microactuators in contrast to piezoelectric ceramics, which in principle can also be used, these microactuators have much higher deformation properties and a lower weight. This results in a significantly higher energy density that can be represented.
- One type of microactuator based on an electroactive polymer is a so-called roller actuator, which can thus be designed as a hollow shaft microactuator. This design can be used particularly well, since such an actuator can be installed in the injector housing without problems surrounding the injector needle.
- a micro actuator based on a magnetorheological elastomer usually consists of an elastomer matrix with dispersed magnetically active particles.
- viscoelastic or dynamic mechanical properties can be changed quickly and reversibly by applying an external magnetic field, for example by energizing a field excitation coil.
- Such elastomers can be used particularly expediently according to the invention since they have very good dynamic behavior.
- a branch line of the fluid branching off from the high pressure line of the fluid injector is directed via the pressure chamber to the control actuator, which controls a fluid connection between the branch line and a low pressure line.
- a low pressure line is also already present in the fluid injector and is used to discharge leakage fluid. Thereby the structural effort for introducing flow lines into the fluid injector is low.
- the high-pressure line is connected via the branch line to a high-pressure compensation chamber forming the pressure chamber, the high-pressure compensation chamber connecting to a step shoulder of the injector needle.
- the high-pressure compensation chamber can be arranged in relation to the step shoulder such that either an opening movement or a closing movement of the injector needle is promoted or supported by a lowering of the fluid pressure in the high-pressure compensation chamber.
- the step shoulder is arranged between the nozzle tip and the high-pressure compensation chamber.
- the injector needle is relieved by a pressure reduction in the high pressure compensation chamber and the activation by the electromagnetic actuation actuator can be accelerated.
- the injector needle is loaded for a longer time and the opening time of the fluid injector becomes shorter and less fluid can be injected via the at least one nozzle opening. Accordingly, the closing time of the injector needle can be shortened.
- the fluid injector is a fuel injector and the fluid fuel.
- the fluid injector can in principle be any injector for injecting any fluid, but the use of the configuration according to the invention is particularly advantageously possible with a fuel injector.
- the size of a fuel injector designed in this way can be significantly reduced and the absorption of electrical energy for precise control of the fuel injector is also conventional compared to one trained fuel injector reduced.
- a precise electrically controlled hydraulic servo function of the fuel injector is realized with the fuel injector designed according to the invention, which leads to better dynamic behavior.
- Figure 1 shows a longitudinal section through a fluid injector in the form of a fuel injector 1.
- This fuel injector is part of a fuel injection system of an internal combustion engine, in particular a common rail injection system.
- the fuel injection system has a tank, from which a low-pressure fuel pump supplies fuel to at least one filter device of a high-pressure fuel pump, which pumps the supplied fuel into a high-pressure accumulator.
- One or more fuel injectors 1 take fuel stored there from this high-pressure store under a pressure of up to 3000 bar for injection into associated combustion chambers of an internal combustion engine.
- the fuel injector 1 has an injector housing 2, a control actuator body 21 and an injector needle body 3 as housing parts.
- the injector needle body 3 is screwed to the injector housing 2 in a liquid-tight manner by means of a clamping nut 4 with the control actuator body interposed.
- a guide bore 5 for an injector needle 6 is embedded in the injector needle body 3, the guide bore 5 continuing in the control actuator body 21 and being formed in the injector housing 2 as a recess 7 that receives the part of the injector needle 6 that continues in the injector housing 2.
- the injector needle 6 has an end-side nozzle tip 8, which preferably closes or releases a plurality of nozzle openings 9 at the end region of the injector needle body 3 pointing away from the injector housing. If the nozzle openings 9 are uncovered by the injector needle, fuel supplied through the nozzle openings 9 is injected into an assigned combustion chamber of the internal combustion engine via a high-pressure line 10 let into the injector housing 2, the control actuator body 21 and the injector needle body 3.
- the fuel supplied via the high-pressure line 10 is fed into a high-pressure annular space 11 into the injector needle body 3, which is connected via an annular space between the injector needle body 3 and the injector needle 6 or via flow channels in the injector needle body 3 and / or the injector needle 6 with a space in the region of Nozzle body tip of the injector needle body 3 connected is.
- This space in the nozzle body tip is closed when the nozzle tip 8 of the injector needle 6 is closed and the nozzle openings 9 are shut off, relative to the nozzle openings 9, while after an axial adjustment of the injector needle 6 away from the nozzle openings 9, the flow connection between the space and the nozzle openings 9 is released .
- the axial adjustment of the injector needle 3 is first of all carried out by a conventional electromagnetic actuating actuator 12 which has a coil 13.
- the coil 13 has connecting lines 14a, 14b which are connected to a control device 15.
- the coil 13 can be energized via the connecting lines 14a, 14b or not.
- a magnetic field is built up, which axially attracts an armature 17 connected to the injector needle 6 in the form of an armature disk in the direction of the coil 13.
- the nozzle tip 8 is moved away from the nozzle openings 9 against the active force of an injector needle spring 18 from the nozzle openings 9 into an injection position.
- the injector needle spring 18 is supported on a spring washer 19 which interacts with the injector housing 2 and on a needle washer 20 which is connected to the injector needle 6. If the energization of the coil 13 is released, the magnetic field collapses and the injector needle spring 18 presses the injector needle 6 into its closed position, in which the nozzle openings 9 are closed.
- the control actuator body 21 is arranged between the injector housing 2 and the injector needle body 3, in which a control actuator 22 is installed.
- the control actuator 22 is explained in more detail in the following figures and also has connection lines 14c, 14d which also connect the control actuator 22 to the control device 15.
- the control actuator 22 opens or closes a flow connection between a branch line 23a, 23b branching off from the high-pressure line 10 to a low-pressure line 24.
- the low-pressure line 24 is connected in a suitable manner, for example, to the tank of the fuel system.
- a pressure chamber designed as a high-pressure compensation chamber 25 is arranged between the branch line 23a and the continuing branch line 23b, the high-pressure compensation chamber 25 being adjacent to a step shoulder 26 on the injector needle 6.
- a closing force caused by the fuel under high pressure acts in the high-pressure compensation chamber 25, which supports the closing force of the injector needle spring 18. If the fuel pressure prevailing in the high-pressure compensation chamber 25 is reduced by connecting the flow connection between the branch line 23a, 23b and the low-pressure line 24, the additional closing force is reduced.
- a throttle can be installed in the branch line 23a. In the Figure 1 the control actuator is otherwise de-energized and the flow connection between the branch line 23a, 23b and the low-pressure line 24 is released.
- FIG Figure 2a This currentless position, which releases the flow connection, of the control actuator 2 is also shown in FIG Figure 2a shown enlarged longitudinal section through the control actuator 22 and the injector needle 6 shown in sections and to scale.
- the control actuator 22 has a cup-shaped control actuator housing 27 which is inserted into the control actuator body 21 ( Figure 1 ) is used.
- the control actuator housing 27 has an access opening 28 into which the branch line 23b opens.
- the access opening 28 is via a throttle point 29, which can be provided in addition or as an alternative to the throttle in the branch line 23a, with a crescent-shaped high pressure chamber 30 (see also Figure 2b ) connected.
- the high pressure chamber 30 is connected in FIG.
- a control actuator piston 34 is arranged to be longitudinally movable.
- the inner wall of the control actuator housing 27 forms the guide for the outer peripheral wall of the control actuator piston 34.
- the control actuator piston 34 is repositioned by a control actuator spring 35 in the position shown pressed right towards the actuator 12.
- Figure 2a is the flow connection 36 ( Figure 2b ) released through the flow chamber 31 to the low pressure chamber 32.
- the control actuator piston 34 has an annular recess 37, into which a microactuator in the form of a (hollow shaft) smart material linear actuator (SMLA) 38a, based on an electroactive polymer (EAP), is installed.
- the hollow shaft Smart Material Linear Actuator 38a is not activated.
- the hollow shaft smart material linear actuator 38a is supported on an inner piston crown of the control actuator piston 34 and the injector housing 2 ( Figure 1 ) or a cup-shaped element 39 arranged between the control actuator housing 27 and the control actuator piston 34.
- the cup-shaped element 39 is movable relative to the control actuator piston 34 and both components enclose the hollow shaft smart material linear actuator 38a.
- the control actuator 22 can compensate for the disadvantage of the EAP material (constant volume when it is actuated) by a structure with two complementary bearings / partial housings, in particular in the form of the control actuator piston 34.
- the exemplary embodiment shown is merely a (hollow shaft) smart material linear actuator (SMLA) 38b based on a magnetorheological elastomer (MRE) instead of the (hollow shaft) smart material linear actuator 38a based on an electroactive polymer.
- SMLA smart material linear actuator
- MRE magnetorheological elastomer
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Electromagnetism (AREA)
- Fuel-Injection Apparatus (AREA)
Description
Die Erfindung betrifft einen Fluidinjektor mit einem elektromagnetischen Betätigungsaktor, aufweisend ein Injektorgehäuse, in dem eine Injektornadel längsbeweglich angeordnet ist, wobei die Injektornadel eine Düsenöffnungen beherrschende Düsenspitze und einen mit der Injektornadel zusammenwirkenden Anker des Betätigungsaktors aufweist.The invention relates to a fluid injector with an electromagnetic actuating actuator, comprising an injector housing in which an injector needle is arranged so as to be longitudinally movable, the injector needle having a nozzle tip which controls nozzle openings and an armature of the actuating actuator which cooperates with the injector needle.
Ein derartiger Fluidinjektor ist aus der
Ein ähnlicher Fluidinjektor ist aus der
Weiter sind aus
Der Erfindung liegt die Aufgabe zugrunde, einen Fluidinjektor bereitzustellen, der hinsichtlich seines dynamischen Betriebs und der Aufnahme elektrischer Energie verbessert ist.The object of the invention is to provide a fluid injector which is improved with regard to its dynamic operation and the absorption of electrical energy.
Diese Aufgabe wird dadurch gelöst, dass ein zusätzlicher Steueraktor für ein Fluid vorgesehen ist und dass das Fluid in einen mit der Injektornadel zusammenwirkenden Druckraum für eine Steuerung einer Bewegung der Injektornadel eingeleitet ist. Das von dem Fluidinjektor zu injizierende Fluid steht unter einem Druck und dieser Fluiddruck wirkt - gesteuert von dem Steueraktor - über den Druckraum auf die Injektornadel ein. Der Steueraktor beherrscht eine Strömungsverbindung einer Hochdruckleitung des Fluids über den Druckraum zu einer Niederdruckleitung. Dadurch ist es möglich, die Öffnungsbewegung und/oder die Schließbewegung der Injektornadel in der Form zu beeinflussen, dass diese insbesondere schneller und gegebenenfalls genauer erfolgt. Dadurch wird das dynamische Verhalten des Fluidinjektors insgesamt verbessert. Da der Steueraktor nur den Fluss des Fluids steuert, ist eine deutlich geringere elektrische Energie zum Betreiben des Steueraktors als bei einem zweiten elektromagnetischen Betätigungsaktor notwendig. Da der Steueraktor den Betätigungsaktor unterstützt, kann der Betätigungsaktor auch kleiner und mit einer geringeren Leistungsaufnahme ausgestaltet sein. Dadurch kann insgesamt die elektrische Energie zur Betätigung des Fluidinjektors verringert werden.This object is achieved in that an additional control actuator is provided for a fluid and that the fluid is introduced into a pressure space which interacts with the injector needle for controlling a movement of the injector needle. The fluid to be injected by the fluid injector is under a pressure and this fluid pressure acts - controlled by the control actuator - via the pressure chamber on the injector needle. The control actuator controls a flow connection of a high-pressure line of the fluid via the pressure chamber to a low-pressure line. This makes it possible to influence the opening movement and / or the closing movement of the injector needle in such a way that it takes place more quickly and possibly more precisely. This improves the overall dynamic behavior of the fluid injector. Since the control actuator controls only the flow of the fluid, a significantly lower electrical energy is required to operate the control actuator than in the case of a second electromagnetic actuation actuator. Since the control actuator supports the actuation actuator, the actuation actuator can also be made smaller and with a lower power consumption. As a result, the electrical energy for actuating the fluid injector can be reduced overall.
In Weiterbildung der Erfindung ist der Steueraktor in dem Injektorgehäuse angeordnet. Da der den Fluidfluss steuernde Steueraktor erheblich kleiner als der Betätigungsaktor ausgebildet sein kann, ist dieser problemlos in das Injektorgehäuse zu integrieren.In a development of the invention, the control actuator is arranged in the injector housing. Since the control actuator controlling the fluid flow can be made considerably smaller than the actuation actuator, it can be integrated into the injector housing without any problems.
In weiterer Ausgestaltung der Erfindung ist der Steueraktor zwischen dem Betätigungsaktor und der Düsenspitze angeordnet. Diese Anordnung hat sich als besonders vorteilhaft erwiesen, da einerseits in diesem Bereich eine Strömungsleitung des von dem Fluidinjektor zu injizierenden Fluids vorhanden ist, von einer dem Steueraktor beherrschte und auf die Injektornadel einwirkende Zweigleitung abgeleitet werden kann, und andererseits der Steueraktor in diesem Bereich aufgrund seiner geringen Größe problemlos zu integrieren ist.In a further embodiment of the invention, the control actuator is arranged between the actuation actuator and the nozzle tip. This arrangement has proven to be special Proved to be advantageous, since on the one hand a flow line of the fluid to be injected by the fluid injector is present, can be derived from a branch line which is controlled by the control actuator and acts on the injector needle, and on the other hand the control actuator can be easily integrated into this area due to its small size .
In Weiterbildung der Erfindung ist der Steueraktor ein Mikroaktor, insbesondere ein (Hohlwellen) Smart Material Linear Aktor (SMLA). Ein solcher Mikroaktor beziehungsweise Smart Material Linear Aktor steht in verschiedenen Ausführungen zur Verfügung und zeichnet sich durch seine geringe Baugröße und geringe Aufnahme von elektrischer Energie aus. Ein solcher Smart Material Linear Aktor gehört zur Kategorie der Mikroaktoren, die ein Formgedächtnis aufweisen. Dabei kann der Mikroaktor insbesondere auf einem elektroaktiven Polymer (EAP) beziehungsweise dielektrischen Elastomer basieren oder aber auf einem magnetorheologischen Elastomer (MRE). Aktoren, die auf diesen Prinzipien basieren, haben die Fähigkeit, entweder die elektrische Energie direkt in mechanische Energie umzuwandeln oder aber ihre Steifigkeit stark zu verändern. Weiterhin haben diese Mikroaktoren im Unterschied zu piezoelektrischen Keramiken, die grundsätzlich auch verwendet werden können, sehr viel höhere Verformungseigenschaften und ein geringeres Gewicht. Dadurch ergibt sich eine deutlich höhere darstellbare Energiedichte. Eine Bauform des Mikroaktors auf Basis eines elektroaktiven Polymers ist ein sogenannter Rollenaktor, der somit als Hohlwellenmikroaktor ausgebildet sein kann. Diese Bauform lässt sich besonders gut verwenden, da ein solcher Aktor problemlos die Injektornadel umgebend in das Injektorgehäuse eingebaut werden kann. Ein auf Basis eines magnetorheologischen Elastomers beruhender Mikroaktor besteht in der Regel aus einer Elastomermatrix mit dispergierten magnetisch aktiven Partikeln. Bei diesen Elastomeren können viskoelastische oder dynamisch-mechanische Eigenschaften durch Anlegen eines äußeren Magnetfeldes, zum Beispiel durch die Bestromung einer Feld-Erregerspule, schnell und reversibel verändert werden. Solche Elastomere können erfindungsgemäß besonders sinnvoll eingesetzt werden, da sie ein sehr gutes Dynamikverhalten aufweisen.In a development of the invention, the control actuator is a microactuator, in particular a (hollow shaft) smart material linear actuator (SMLA). Such a micro actuator or smart material linear actuator is available in different versions and is characterized by its small size and low absorption of electrical energy. Such a smart material linear actuator belongs to the category of microactuators that have a shape memory. The microactuator can be based in particular on an electroactive polymer (EAP) or dielectric elastomer or on a magnetorheological elastomer (MRE). Actuators based on these principles have the ability to either convert electrical energy directly into mechanical energy or to change their rigidity significantly. Furthermore, in contrast to piezoelectric ceramics, which in principle can also be used, these microactuators have much higher deformation properties and a lower weight. This results in a significantly higher energy density that can be represented. One type of microactuator based on an electroactive polymer is a so-called roller actuator, which can thus be designed as a hollow shaft microactuator. This design can be used particularly well, since such an actuator can be installed in the injector housing without problems surrounding the injector needle. A micro actuator based on a magnetorheological elastomer usually consists of an elastomer matrix with dispersed magnetically active particles. With these elastomers, viscoelastic or dynamic mechanical properties can be changed quickly and reversibly by applying an external magnetic field, for example by energizing a field excitation coil. Such elastomers can be used particularly expediently according to the invention since they have very good dynamic behavior.
In Weiterbildung der Erfindung wird eine von der Hochdruckleitung des Fluidinjektors abzweigende Zweigleitung des Fluids über den Druckraum zu dem Steueraktor geleitet, der eine Fluidverbindung zwischen der Zweigleitung und einer Niederdruckleitung beherrscht. Eine Niederdruckleitung ist ebenfalls in dem Fluidinjektor schon vorhanden und dient zur Abführung von Leckagefluid. Dadurch ist der bauliche Aufwand zur Einbringung von Strömungsleitungen in den Fluidinjektor gering.In a further development of the invention, a branch line of the fluid branching off from the high pressure line of the fluid injector is directed via the pressure chamber to the control actuator, which controls a fluid connection between the branch line and a low pressure line. A low pressure line is also already present in the fluid injector and is used to discharge leakage fluid. Thereby the structural effort for introducing flow lines into the fluid injector is low.
In Weiterbildung der Erfindung ist die Hochdruckleitung über die Zweigleitung mit einer den Druckraum bildenden Hochdruckkompensationskammer verbunden, wobei die Hochdruckkompensationskammer an einen Stufenabsatz der Injektornadel anschließt. Die Hochdruckkompensationskammer kann so in Bezug zu dem Stufenabsatz angeordnet sein, dass entweder eine Öffnungsbewegung oder Schließbewegung der Injektornadel durch ein Absenken des Fluiddrucks in der Hochdruckkompensationskammer begünstigt oder unterstützt wird. Grundsätzlich ist es darüber hinaus auch möglich, einen doppelseitigen Stufenabsatz vorzusehen, wobei auf jeder Seite eine Hochdruckkompensationskammer angeordnet ist, die jeweils von einem eigenen Steueraktor beherrscht wird. Dadurch ist es möglich, sowohl die Öffnungsbewegung als auch die Schließbewegung der Injektornadel zusätzlich zu beeinflussen.In a further development of the invention, the high-pressure line is connected via the branch line to a high-pressure compensation chamber forming the pressure chamber, the high-pressure compensation chamber connecting to a step shoulder of the injector needle. The high-pressure compensation chamber can be arranged in relation to the step shoulder such that either an opening movement or a closing movement of the injector needle is promoted or supported by a lowering of the fluid pressure in the high-pressure compensation chamber. In principle, it is also possible to provide a double-sided step heel, with a high-pressure compensation chamber being arranged on each side, each of which is controlled by its own control actuator. This makes it possible to additionally influence both the opening movement and the closing movement of the injector needle.
In weiterer Ausgestaltung der Erfindung ist der Stufenabsatz zwischen der Düsenspitze und der Hochdruckkompensationskammer angeordnet. Dies ist die bevorzugte Ausgestaltung und bei dieser wird durch eine Druckabsenkung in der Hochdruckkompensationskammer die Injektornadel entlastet und die Aktivierung durch den elektromagnetischen Betätigungsaktor kann beschleunigt werden. Umgekehrt wird bei Erhöhung des Drucks in der Hochdruckkompensationskammer auf den herrschenden Hochdruck in der Hochdruckleitung die Injektornadel länger belastet und die Öffnungszeit des Fluidinjektors wird kürzer und weniger Fluid kann über die zumindest eine Düsenöffnung injiziert werden. Dementsprechend kann auch die Schließzeit der Injektornadel verkürzt werden.In a further embodiment of the invention, the step shoulder is arranged between the nozzle tip and the high-pressure compensation chamber. This is the preferred embodiment and in this case the injector needle is relieved by a pressure reduction in the high pressure compensation chamber and the activation by the electromagnetic actuation actuator can be accelerated. Conversely, when the pressure in the high-pressure compensation chamber increases to the prevailing high pressure in the high-pressure line, the injector needle is loaded for a longer time and the opening time of the fluid injector becomes shorter and less fluid can be injected via the at least one nozzle opening. Accordingly, the closing time of the injector needle can be shortened.
In Weiterbildung der Erfindung ist der Fluidinjektor ein Kraftstoffinjektor und das Fluid Kraftstoff. Der Fluidinjektor kann grundsätzlich ein beliebiger Injektor zur Injizierung eines beliebigen Fluids sein, wobei aber die Anwendung der erfindungsgemäßen Ausgestaltung besonders vorteilhaft bei einem Kraftstoffinjektor möglich ist. Die Baugröße eines solchermaßen ausgebildeten Kraftstoffinjektors lässt sich deutlich reduzieren und auch die Aufnahme von elektrischer Energie zur präzisen Steuerung des Kraftstoffinjektors ist gegenüber einem herkömmlich ausgebildeten Kraftstoffinjektor reduziert. Dabei ist mit dem erfindungsgemäß ausgebildeten Kraftstoffinjektor eine genaue elektrisch gesteuerte hydraulische Servo-Funktion des Kraftstoffinjektors realisiert, was zu einem besseren Dynamikverhalten führt.In a further development of the invention, the fluid injector is a fuel injector and the fluid fuel. The fluid injector can in principle be any injector for injecting any fluid, but the use of the configuration according to the invention is particularly advantageously possible with a fuel injector. The size of a fuel injector designed in this way can be significantly reduced and the absorption of electrical energy for precise control of the fuel injector is also conventional compared to one trained fuel injector reduced. A precise electrically controlled hydraulic servo function of the fuel injector is realized with the fuel injector designed according to the invention, which leads to better dynamic behavior.
Weitere vorteilhafte Ausgestaltungen der Erfindung sind der Zeichnungsbeschreibung zu entnehmen, in der in den Figuren dargestellte Ausführungsbeispiele der Erfindung näher beschrieben sind.Further advantageous refinements of the invention can be found in the description of the drawing, in which exemplary embodiments of the invention illustrated in the figures are described in more detail.
Es zeigen:
- Figur 1
- einen Längsschnitt durch einen erfindungsgemäß ausgestalteten Fluidinjektor,
- Figur 2a, 2b
- einen Längsschnitt durch einen Fluidinjektor im Bereich einer ersten Ausbildungsform eines Steueraktors in seiner geöffneten Position und einem dadurch ermöglichten Strömungsfluss,
- Figur 3a, 3b
- einen Längsschnitt durch einen Fluidinjektor im Bereich einer ersten Ausbildungsform eines Steueraktors in seiner geschlossenen Position und einem dadurch abgesperrten Strömungsfluss,
- Figur 4a, 4b
- einen Längsschnitt durch einen Fluidinjektor im Bereich einer zweiten Ausbildungsform eines Steueraktors in seiner geöffneten Position und einem dadurch ermöglichten Strömungsfluss und
- Figur 5a, 5b
- einen Längsschnitt durch einen Fluidinjektor im Bereich einer zweiten Ausbildungsform eines Steueraktors in seiner geschlossenen Position und einem dadurch abgesperrten Strömungsfluss.
- Figure 1
- 2 shows a longitudinal section through a fluid injector designed according to the invention,
- Figure 2a, 2b
- 2 shows a longitudinal section through a fluid injector in the area of a first embodiment of a control actuator in its open position and a flow flow thereby enabled,
- Figure 3a, 3b
- 2 shows a longitudinal section through a fluid injector in the area of a first embodiment of a control actuator in its closed position and a flow flow blocked thereby,
- Figure 4a, 4b
- a longitudinal section through a fluid injector in the region of a second embodiment of a control actuator in its open position and a flow flow thereby enabled and
- Figure 5a, 5b
- a longitudinal section through a fluid injector in the region of a second embodiment of a control actuator in its closed position and a flow flow blocked thereby.
Der Kraftstoffinjektor 1 weist als Gehäuseteile ein Injektorgehäuse 2, einen Steueraktorkörper 21 und einen Injektornadelkörper 3 auf. Der Injektornadelkörper 3 ist mittels einer Spannmutter 4 unter Zwischenfügung des Steueraktorkörpers mit dem Injektorgehäuse 2 flüssigkeitsdicht verschraubt. In dem Injektornadelkörper 3 ist eine Führungsbohrung 5 für eine Injektornadel 6 eingelassen, wobei sich die Führungsbohrung 5 in dem Steueraktorkörper 21 fortsetzt und in dem Injektorgehäuse 2 als eine den sich in dem Injektorgehäuse 2 fortsetzenden Teil der Injektornadel 6 aufnehmende Ausnehmung 7 ausgebildet ist.The fuel injector 1 has an
Die Injektornadel 6 weist eine stirnseitige Düsenspitze 8 auf, die vorzugsweise eine Vielzahl von Düsenöffnungen 9 an dem von dem Injektorgehäuse wegweisenden Endbereich des Injektornadelkörpers 3 verschließt oder freigibt. Werden die Düsenöffnungen 9 von der Injektornadel freigegeben, wird durch die Düsenöffnungen 9 über eine in das Injektorgehäuse 2, den Steueraktorkörper 21 und den Injektornadelkörper 3 eingelassene Hochdruckleitung 10 zugeführter Kraftstoff in einen zugeordneten Brennraum der Brennkraftmaschine eingespritzt. Dabei wird der über die Hochdruckleitung 10 zugeführte Kraftstoff in einen Hochdruckringraum 11 in den Injektornadelkörper 3 geführt, der über einen Ringraum zwischen dem Injektornadelkörper 3 und der Injektornadel 6 oder über Strömungskanäle in dem Injektornadelkörper 3 und/oder der Injektornadel 6 mit einem Raum im Bereich der Düsenkörperspitze des Injektornadelkörpers 3 verbunden ist. Dieser Raum in der Düsenkörperspitze ist bei geschlossener und die Düsenöffnungen 9 absperrenden Stellung der Düsenspitze 8 der Injektornadel 6 gegenüber den Düsenöffnungen 9 abgesperrt, während nach einer axialen Verstellung der Injektornadel 6 weg von den Düsenöffnungen 9 die Strömungsverbindung zwischen dem Raum und den Düsenöffnungen 9 freigegeben ist.The
Die axiale Verstellung der Injektornadel 3 wird zunächst einmal von einem konventionellen elektromagnetischen Betätigungsaktor 12 vorgenommen, der eine Spule 13 aufweist. Die Spule 13 weist Anschlussleitungen 14a, 14b auf, die mit einem Steuergerät 15 verbunden sind. Mittels des Steuergeräts 15 kann die Spule 13 über die Anschlussleitungen 14a, 14b bestromt werden oder nicht. Bei einer Bestromung der in ein Betätigungsaktorgehäuse 16 eingebauten Spule 13 wird ein magnetisches Feld aufgebaut, das einen mit der Injektornadel 6 verbundenen Anker 17 in Form einer Ankerscheibe in Richtung zu der Spule 13 axial anzieht. Dadurch wird die Düsenspitze 8 von den Düsenöffnungen 9 gegen die Wirkkraft einer Injektornadelfeder 18 von den Düsenöffnungen 9 in eine Einspritzstellung wegbewegt. Die Injektornadelfeder 18 stützt sich an einer mit dem Injektorgehäuse 2 zusammenwirkenden Federscheibe 19 und einer mit der Injektornadel 6 verbundenen Nadelscheibe 20 ab. Wird die Bestromung der Spule 13 aufgehoben, bricht das magnetische Feld zusammen und die Injektornadelfeder 18 drückt die Injektornadel 6 in ihre Schließstellung, bei der die Düsenöffnungen 9 verschlossen sind. Stirnseitig des Injektorgehäuses 2 ist der Steueraktorkörper 21 zwischen dem Injektorgehäuse 2 und dem Injektornadelkörper 3 angeordnet, in den ein Steueraktor 22 eingebaut ist. Der Steueraktor 22 wird in den nachfolgenden Figuren genauer erläutert und weist ebenfalls Anschlussleitungen 14c, 14d auf, die den Steueraktor 22 ebenfalls mit dem Steuergerät 15 verbinden. Der Steueraktor 22 öffnet oder schließt eine Strömungsverbindung zwischen einer von der Hochdruckleitung 10 abzweigenden Zweigleitung 23a, 23b zu einer Niederdruckleitung 24. Die Niederdruckleitung 24 ist in geeigneter Weise beispielsweise mit dem Tank des Kraftstoffsystems verbunden. Zwischen der Zweigleitung 23a und der weiterführenden Zweigleitung 23 b ist ein als Hochdruckkompensationskammer 25 ausgebildeter Druckraum angeordnet, wobei die Hochdruckkompensationskammer 25 an einen Stufenabsatz 26 an der Injektornadel 6 angrenzt.The axial adjustment of the
Ist die Strömungsverbindung durch den Steueraktor 22 von der Zweigleitung 23a, 23b zu der Niederdruckleitung 24 unterbrochen, wirkt in der Hochdruckkompensationskammer 25 eine von dem unter Hochdruck stehenden Kraftstoff hervorgerufene Schließkraft auf den Stufenabsatz 6, die die Schließkraft der Injektornadelfeder 18 unterstützt. Wird der in der Hochdruckkompensationskammer 25 herrschende Kraftstoffdruck durch Verbindung der Strömungsverbindung zwischen der Zweigleitung 23a, 23b und der Niederdruckleitung 24 abgesenkt, wird die zusätzliche Schließkraft vermindert. Zur Beschränkung der über die Zweigleitung 23a in die Hochdruckkompensationskammer 25 eingeleiteten Kraftstoffmenge kann in die Zweigleitung 23a eine Drossel eingebaut sein. In der
Diese unbestromte, die Strömungsverbindung freigebende Stellung des Steueraktors 2 ist ebenfalls in dem in
Der Steueraktorkolben 34 weist eine ringförmige Ausnehmung 37 auf, in die ein Mikroaktor in Form eines (Hohlwellen) Smart Material Linear Aktors (SMLA) 38a, basierend auf einem elektroaktiven Polymer (EAP) eingebaut ist. Dabei ist der Hohlwellen Smart Material Linear Aktor 38a nicht angesteuert. Der Hohlwellen Smart Material Linear Aktor 38a stützt sich an einem inneren Kolbenboden des Steueraktorkolbens 34 und dem Injektorgehäuse 2 (
Wird der Hohlwellen Smart Material Linear Aktor 38a bestromt, verformt sich dieser wie in
Bei dem in den
Claims (8)
- Fluid injector with an electromagnetic operating actuator (12), having an injector housing (2) in which an injector needle (6) is arranged in a longitudinally movable manner, wherein the injector needle (6) has an end-side nozzle tip (8) which closes off or opens up at least one nozzle opening (9), and is connected to an armature (17) of the operating actuator (12),
wherein an additional control actuator (22) for the fluid to be injected is arranged in the injector housing (2), wherein the fluid is introduced into a pressure space (25), interacting with the injector needle (6), for control of a movement of the injector needle (6), and the control actuator (22) opens and closes a flow connection between a branch line (23a, 23b), branching off from a high-pressure line (10), and a low-pressure line (24), wherein the pressure space (25) is arranged between the branch line (23a) and the continuing branch line (23b). - Fluid injector according to Claim 1,
characterized in that the control actuator (22) is arranged between the operating actuator (12) and the nozzle tip (8). - Fluid injector according to either of the preceding claims,
characterized in that the control actuator (22) is a micro-actuator, in particular a smart material linear actuator (SMLA) (38a, 38b). - Fluid injector according to Claim 3,
characterized in that the control actuator (22) is based on an electroactive polymer (EAP). - Fluid injector according to Claim 3,
characterized in that the control actuator (22) is based on a magnetorheological elastomer (MRE). - Fluid injector according to Claim 1,
characterized in that the pressure space (25) adjoins a step shoulder (26) of the injector needle (6) . - Fluid injector according to Claim 6,
characterized in that the step shoulder (26) is arranged between the nozzle tip (8) and the high-pressure compensation chamber (25). - Fluid injector according to one of the preceding claims,
characterized in that the fluid injector is a fuel injector (1) and the fluid is fuel.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102014203640.2A DE102014203640A1 (en) | 2014-02-28 | 2014-02-28 | fluid injector |
PCT/EP2015/051487 WO2015128136A1 (en) | 2014-02-28 | 2015-01-26 | Fluid injector |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3111078A1 EP3111078A1 (en) | 2017-01-04 |
EP3111078B1 true EP3111078B1 (en) | 2020-04-22 |
Family
ID=52464342
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15703491.9A Not-in-force EP3111078B1 (en) | 2014-02-28 | 2015-01-26 | Fluid injector |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3111078B1 (en) |
DE (1) | DE102014203640A1 (en) |
WO (1) | WO2015128136A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102016103661A1 (en) * | 2016-03-01 | 2017-09-07 | Khs Gmbh | Actuator for controlling the fluid paths of a filling unit for a beverage filling installation, filling unit for a beverage filling installation and beverage filling installation |
DE102017116383A1 (en) * | 2017-07-20 | 2019-01-24 | Liebherr-Components Deggendorf Gmbh | Injector for injecting fuel |
DE102021204811B4 (en) | 2021-05-12 | 2023-05-04 | Zf Friedrichshafen Ag | Actuator with rheological clutch |
DE102021123656A1 (en) | 2021-09-13 | 2023-03-16 | Universität des Saarlandes, Körperschaft des öffentlichen Rechts | IMPLANT FOR FIXATION AND RECOVERY ASSISTANCE OF BONE FRACTURES |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2103802A1 (en) * | 2008-03-17 | 2009-09-23 | Robert Bosch GmbH | Injector |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5984258A (en) * | 1998-09-28 | 1999-11-16 | General Motors Corporation | Method and apparatus for control of a shape memory alloy actuator for a fuel injector |
US20070235554A1 (en) * | 2006-03-29 | 2007-10-11 | Williams Arthur R | Dual stroke injector using SMA |
EP1860317A1 (en) * | 2006-05-23 | 2007-11-28 | Keihin Corporation | Fuel Injection Device, Fuel Injection Control Device, and Control Method of Fuel Injection Device |
US20090250021A1 (en) * | 2007-10-02 | 2009-10-08 | Artificial Muscle, Inc. | Fluid control systems employing compliant electroactive materials |
DE102008001895A1 (en) | 2008-05-21 | 2009-11-26 | Robert Bosch Gmbh | Fuel injector |
EP2273097B1 (en) * | 2009-06-15 | 2011-12-14 | Delphi Technologies Holding S.Ã .r.l. | Fuel Injector |
DE102011076663A1 (en) | 2011-05-30 | 2012-12-06 | Robert Bosch Gmbh | fuel injector |
CA2780864C (en) * | 2012-06-21 | 2013-09-24 | Westport Power Inc. | Fuel injection valve and method of actuating |
-
2014
- 2014-02-28 DE DE102014203640.2A patent/DE102014203640A1/en not_active Withdrawn
-
2015
- 2015-01-26 WO PCT/EP2015/051487 patent/WO2015128136A1/en active Application Filing
- 2015-01-26 EP EP15703491.9A patent/EP3111078B1/en not_active Not-in-force
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2103802A1 (en) * | 2008-03-17 | 2009-09-23 | Robert Bosch GmbH | Injector |
Also Published As
Publication number | Publication date |
---|---|
WO2015128136A1 (en) | 2015-09-03 |
DE102014203640A1 (en) | 2015-09-03 |
EP3111078A1 (en) | 2017-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1771650B1 (en) | Fuel injector comprising a two-stage transmission element | |
EP3478957B1 (en) | Valve for injecting gaseous fuel | |
EP3111078B1 (en) | Fluid injector | |
DE102010039048A1 (en) | Injector | |
EP1865192B1 (en) | Fuel injector with servo assistance | |
DE102008032133A1 (en) | Fuel injector | |
DE102014220975A1 (en) | Electromagnetically actuated inlet valve and high-pressure pump with inlet valve | |
DE102009047559A1 (en) | fuel injector | |
DE102016221547A1 (en) | Fuel injection valve for injecting a gaseous and / or liquid fuel | |
DE102016220326A1 (en) | Valve for metering a gaseous or liquid fuel | |
DE102008002416A1 (en) | Fuel injector has injector housing or body, high-pressure chambers or storages, which are constantly connected with high-pressure source for fuel, and nozzle needle | |
EP2156050B1 (en) | Pressure boosting system for at least one fuel injector | |
WO2011079989A1 (en) | Electromagnetically actuated volume control valve, in particular for controlling the delivery volume of a high-pressure fuel pump | |
DE102012220027A1 (en) | Switching valve for common-rail fuel injector for injecting diesel into combustion chamber of internal combustion engine, has control space filled with fuel via hole, and closing element closing hole in position for pressure relief of space | |
DE102005028400A1 (en) | Fuel injection system especially for diesel IC engine has a piezo two piston control for the injector valve in a compact layout | |
DE102013218895A1 (en) | Inlet valve for one pump and pump with inlet valve | |
EP2256332B1 (en) | Fuel injector with pressure intensifier piston | |
EP2413333B1 (en) | Pressure control valve | |
DE102007001365A1 (en) | Common rail injector, for injecting e.g. petrol, into combustion chamber of internal combustion engine, has switching chamber connected with low pressure area by connecting channel that is closed and opened by control valve | |
DE102005044389B3 (en) | Injection valve for hydraulic system has return line closable by second end of control needle which faces away from valve boring | |
EP3056725B1 (en) | Control valve assembly | |
DE102014211469A1 (en) | Nozzle assembly for a fuel injector and fuel injector | |
DE102014201850A1 (en) | Nozzle assembly for a fuel injector and fuel injector | |
EP1898083B1 (en) | Injector for a fuel injection system | |
DE102010030385A1 (en) | Injection valve for injecting fuel into combustion chamber of combustion engine, has axially movable pressure equalization piston included within hollow needle such that combustion and pressure chambers are axially limited |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20160928 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20181213 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20191111 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: ROBERT BOSCH GMBH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502015012349 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1260411 Country of ref document: AT Kind code of ref document: T Effective date: 20200515 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20200422 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200824 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200722 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200723 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200422 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200822 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200422 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200422 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200422 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200722 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200422 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200422 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200422 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200422 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502015012349 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200422 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200422 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200422 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200422 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200422 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200422 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200422 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200422 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200422 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20210125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200422 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200422 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210126 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210131 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210126 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210126 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1260411 Country of ref document: AT Kind code of ref document: T Effective date: 20210126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210126 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20220324 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20150126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200422 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502015012349 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200422 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200422 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200422 |