[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP3194869B1 - Refrigeration device having a plurality of storage chambers - Google Patents

Refrigeration device having a plurality of storage chambers Download PDF

Info

Publication number
EP3194869B1
EP3194869B1 EP15756940.1A EP15756940A EP3194869B1 EP 3194869 B1 EP3194869 B1 EP 3194869B1 EP 15756940 A EP15756940 A EP 15756940A EP 3194869 B1 EP3194869 B1 EP 3194869B1
Authority
EP
European Patent Office
Prior art keywords
evaporator
storage chamber
refrigeration device
guide rib
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15756940.1A
Other languages
German (de)
French (fr)
Other versions
EP3194869A1 (en
Inventor
Frank Cifrodelli
Renate Pradel
Rainer Weser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BSH Hausgeraete GmbH
Original Assignee
BSH Hausgeraete GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BSH Hausgeraete GmbH filed Critical BSH Hausgeraete GmbH
Priority to PL15756940T priority Critical patent/PL3194869T3/en
Publication of EP3194869A1 publication Critical patent/EP3194869A1/en
Application granted granted Critical
Publication of EP3194869B1 publication Critical patent/EP3194869B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • F25D17/065Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators with compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/063Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation with air guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/065Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air return
    • F25D2317/0654Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air return through the side
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/065Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air return
    • F25D2317/0655Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air return through the top

Definitions

  • the present invention relates to a refrigerator, in particular a household refrigerator, with a housing in which a plurality of storage chambers, in particular storage chambers for different operating temperatures, such as a freezer compartment and a normal refrigerator compartment, are accommodated.
  • Such household refrigeration devices are often designed as full-no-frost devices.
  • the individual storage chambers are cooled by a common lamella evaporator, which is housed in an evaporator chamber, which is usually separated from the coldest storage chamber.
  • Such refrigeration devices are, for example EP 0 181 781 A2 and GB 1 482 926 A. known.
  • An object of the invention is to provide a refrigeration device of the NoFrost type in which the evaporator can be defrosted quickly and in an energy-efficient manner.
  • the guide rib ensures that air from both chambers can be distributed over the entire width of the evaporator, so that different regions do not exist across the width of the evaporator, which, since they are generally more Moisture-carrying air from the warmer storage chamber is more exposed and more ripe than other regions.
  • the guide rib prevents turbulent mixing of the air flows from the first and the second storage chamber in the inlet volume, it ensures a low pressure loss in the circulation of air between the evaporator chamber and the storage chambers, so that a fan with less power, which is used to drive the air circulation, is required gets along.
  • the guide rib allows the inlet volume to perform the function of a jet pump, in which the stronger of the two air currents pulls the weaker one instead of blocking it by swirling. This also contributes to the fact that both air streams enter the evaporator over the entire width of the inflow side.
  • the restricted turbulence in the inlet volume means that the air flows from the first and the second storage chamber largely unmixed, one above and the other below the guide rib, enter the evaporator.
  • This lack of or incomplete mixing can lead to the formation of more rapid frost in the area on the inflow side that is exposed to the humid air, but in the area exposed to the drier air flow, but the resulting uneven distribution of the frost has only a minor influence on the defrosting time because the distance between the areas is small.
  • snow formation which can occur when the relatively warm, humid air from one storage chamber cools in contact with the colder air from the other storage chamber, remains on a small area of the inlet volume, between the edge of the guide rib and the Upstream side, limited. Therefore, any snow that may be formed does not fall to the ground in the inlet volume, but is flushed into the evaporator, where it sticks and can then be easily defrosted.
  • fins of the evaporator can be oriented transversely to the guide rib and, by doing so, each fins both in the more frosted and in the weaker frosted area of the evaporator engages to ensure efficient heat transfer between the two areas during defrosting.
  • the longitudinal direction of the upstream side is generally a horizontal direction; it typically corresponds to the width direction of the refrigerator.
  • the shell can form at least part of a wall of the inlet volume opposite the inflow side, in which case the second openings communicating with the second storage chamber can be provided in the shell itself or between the shell and the insulation layer.
  • the first openings are preferably connected to the first bearing chamber via pipelines which extend through the thermal insulation layer.
  • these pipelines can each run at least over part of their length in a side wall of the first storage chamber.
  • the guide rib can be formed in one piece with the shell.
  • the guide rib is formed in one piece with the thermal barrier coating.
  • a fan can be provided to drive an air exchange with both storage chambers at the same time.
  • the length and passage cross sections of lines that connect the evaporator chamber to the first and the second storage chamber can be designed in accordance with the average cooling requirement of the two storage chambers so that the cooling capacity of the evaporator is distributed to both storage chambers as required. Costly flaps for controlling the air exchange with the two storage chambers can then be omitted.
  • the air throughput through the second openings should be greater than through the first.
  • Fig. 1 shows a NoFrost combination refrigerator in a schematic section in the depth direction.
  • a body 1 of the refrigerator two storage chambers 2, 3, here a normal refrigerator compartment and a freezer compartment, are separated from one another by a horizontal partition wall 4.
  • the body 1 comprises, in a manner customary in the art, an inner container 5 which is deep-drawn in one piece from plastic, an outer skin 6 composed of a plurality of plate-shaped elements and a thermal insulation layer 7 made of plastic foamed between the inner container 5 and the outer skin 6.
  • the two storage chambers 2, 3 can be formed as mutually separate depressions, so that the intermediate wall 4 is also an integral part of the inner container 5.
  • the inner container 5 has only a single depression, into which the intermediate wall 4 is inserted as a separate component.
  • the intermediate wall 4 here comprises a plate-shaped thermal insulation layer 8, preferably made of expanded polystyrene, which is covered at least on its upper side 9, a front side 12 facing doors 10, 11 closing the storage chambers 2, 3 and a front region 13 on its lower side by a plate which is made of the same plastic as the inner container 5.
  • a plastic injection molded shell 14 is attached, which separates an evaporator chamber 15 from the lower, second storage chamber 3.
  • the plate may be missing, so that the thermal insulation layer 8 directly delimits the evaporator chamber 15. Since the lower storage chamber 3 is provided as a freezer compartment, no strong insulation is required between it and the evaporator chamber 15.
  • the shell 14 is therefore made of a non-foamed plastic with a low insulation effect compared to the thermal insulation layer 8.
  • a flat cuboid vane evaporator 16 largely fills the vaporizer chamber 15 and divides it into an inlet volume 17 in front of an upstream side 18 of the vane vaporizer 16 and an outlet volume 19 behind the opposite side of the vane vaporizer 16.
  • a defrost heater 38 is attached below the finned evaporator 16, here in the form of an aluminum plate, the base of which is essentially the same as that of the finned evaporator 16, and a hot gas line, which is fastened on the one hand to the aluminum plate and, on the other hand, is clamped in notches on the lower edges of the fins of the evaporator 16 ,
  • a fan 20 is accommodated in the outlet volume 19 in order to drive air circulation through the lamella evaporator 16.
  • the air expelled by the fan 20 is distributed over the two storage chambers 2, 3 via a channel 21 extending in the rear wall of the body 1 and along the channel 21 on the inner container 5.
  • Air heated in the storage chamber 2 flows via passages 24 located opposite one another in side walls 23 of the body 1, via pipes 25 extending in the side walls, via pipes 26 of the intermediate wall 4, which are plug-connected to the latter, and openings 27 on an upper side of the inlet volume 17 back into the evaporator chamber 15.
  • the passages 24 are placed on the side walls at a height at which they cannot be blocked by a pull-out box 28 arranged in a conventional manner at the bottom of the storage chamber 2.
  • Air heated in the second storage chamber 3 returns to the evaporator chamber 15 via openings 29 which are provided in an end wall 30 of the shell 14 facing the door 11 and / or between an upper edge of the end wall 30 and the intermediate wall 4.
  • the openings 29 are distributed over the entire width of the shell 14 and the evaporator 16 accommodated therein, so that the air flow from the second storage chamber 2 is also distributed uniformly over the entire width of the inflow side 18.
  • the openings 27 communicating with the first storage chamber 2 are located at the lateral ends of the inlet volume 17. If the air flows through the openings 27 and 29 in the inlet volume 17 would meet one another in an uncontrolled manner, then it would be expected that the Relatively moist air flowing through the openings 27 flows through the evaporator 16 essentially only in its lateral areas immediately behind the openings 27 and therefore tire them significantly faster than a central area of the evaporator 16, which essentially only contains air from the storage chamber 3 is flowed through. In order to prevent this, the inlet volume 17 is divided over its entire width by a guide rib 31 which extends in the width direction of the body 1, as in FIG Fig.
  • the front wall 32 is formed here in a lower region by the end wall 30 of the shell 14, above the guide rib 31 it is formed by a flank of the thermal insulation layer 8.
  • the guide rib 31 divides the inlet volume 17 into an upper partial space 33, in which the air flowing in from the storage chamber 2 can be distributed over the entire width of the inlet volume 17 unhindered by the air flow coming from the second storage chamber 3, and a lower partial space 35 between the guide rib 31 and a base plate 34 of the shell 14, in which the air flow from the second storage chamber 3 is guided essentially laminar horizontally and generates a dynamic negative pressure between the upstream side 18 and the opposite rear edge of the guide rib 31, through the air from the upper Partial space 33 is suctioned off and pulled through the evaporator 16.
  • the fins 36 of the finned evaporator 16 are each oriented transversely to the guide rib 31.
  • Each individual lamella 36 is therefore predominantly exposed to air from the storage chamber 2 in its upper region and to air from the bearing chamber 3 in its lower region.
  • frost layer growing somewhat faster in operation on an upper part of the fins 36 than on a lower part, such uneven tires at most lead to a slight displacement of the air flows in the evaporator chamber 15 downwards and therefore have none noticeable influence on the distribution of the cooling capacity on the two storage chambers 2, 3.
  • the guide rib 31 is shown as an independent component which is attached to the underside of the intermediate wall 4.
  • the guide rib 31 is a one-piece component of the shell 14, which projects from an upper edge of the end wall 30 into the inlet volume 17 and is anchored to the plate covering the thermal insulation layer 8, here designated 37.
  • the guide rib 31 is an integral part of the thermal insulation layer 8.
  • REFERENCE NUMBERS ⁇ / b> 1 corpus 21 channel 2 storage chamber 22 outlet 3 storage chamber 23 Side wall 4 partition 24 passage 5 inner container 25 pipeline 6 shell 26 pipeline 7 thermal barrier 27 opening 8th thermal barrier 28 pull-out box 9 top 29 opening 10 door 30 bulkhead 11 door 31 guide rib 12 front 32 front wall 13 Front area 33 upper part 14 Bowl 34 baseplate 15 evaporator chamber 35 lower part 16 fin evaporator 36 lamella 17 intake volume 37 plate 18 inflow 38 defrost heater 19 discharge volume 20 fan

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Description

Die vorliegende Erfindung betrifft ein Kältegerät, insbesondere ein Haushaltskältegerät, mit einem Gehäuse, in dem mehrere Lagerkammern, insbesondere Lagerkammern für unterschiedliche Betriebstemperaturen wie etwa ein Gefrierfach und ein Normalkühlfach, untergebracht sind.The present invention relates to a refrigerator, in particular a household refrigerator, with a housing in which a plurality of storage chambers, in particular storage chambers for different operating temperatures, such as a freezer compartment and a normal refrigerator compartment, are accommodated.

Derartige Haushaltskältegeräte sind häufig als Full-NoFrost-Geräte ausgeführt. Bei Geräten dieses Typs sind die einzelnen Lagerkammern durch einen gemeinsamen Lamellenverdampfer gekühlt, der in einer meist von der kältesten Lagerkammer abgeteilten Verdampferkammer untergebracht ist. Solche Kältegeräte sind z.B. aus EP 0 181 781 A2 und GB 1 482 926 A bekannt. Wenn in den Lagerkammern erwärmte Luft durch den Lamellenverdampfer zirkuliert, schlägt sich die von der Luft mitgeführte Feuchtigkeit an den Lamellen des Verdampfers nieder und bildet darauf eine Reifschicht, die zum einen den Wärmeaustausch zwischen den Lamellen und der zirkulierenden Luft behindert und zum anderen die Durchgänge zwischen den Lamellen des Verdampfers verengt und dadurch auch die Luftzirkulation erschwert. Die Reifschicht muss deshalb regelmäßig abgetaut werden. Eine ungleichmäßige Verteilung des Reifs im Verdampfer führt dazu, dass dünn bereifte Bereiche des Verdampfers schneller eisfrei werden als dick bereifte und sich in der Zeit, die die dick bereiften Bereiche zum Abtauen brauchen, auf eine Temperatur deutlich oberhalb des Gefrierpunkts erwärmen. Dies führt zu hohem Energieverbrauch, einerseits wegen der langen Dauer des Abtauvorgangs und andererseits weil die unnötig aufgeheizten Teile des Verdampfers wieder heruntergekühlt werden müssen, bevor der Verdampfer wieder die Lagerkammern kühlen kann.Such household refrigeration devices are often designed as full-no-frost devices. In devices of this type, the individual storage chambers are cooled by a common lamella evaporator, which is housed in an evaporator chamber, which is usually separated from the coldest storage chamber. Such refrigeration devices are, for example EP 0 181 781 A2 and GB 1 482 926 A. known. When heated air circulates through the lamella evaporator in the storage chambers, the moisture entrained in the air condenses on the fins of the evaporator and forms a layer of frost on it, which on the one hand impedes the heat exchange between the fins and the circulating air and on the other hand the passages between the fins of the evaporator are narrowed, making air circulation difficult. The frost layer must therefore be thawed regularly. An uneven distribution of the frost in the evaporator means that thinly frosted areas of the evaporator become ice-free more quickly than thickly frosted ones and warm up to a temperature well above freezing in the time it takes for the thickly frosted areas to defrost. This leads to high energy consumption, on the one hand because of the long duration of the defrosting process and on the other hand because the unnecessarily heated parts of the evaporator have to be cooled down again before the evaporator can cool the storage chambers again.

Eine Aufgabe der Erfindung ist, ein Kältegerät in NoFrost-Bauart zu schaffen, bei dem der Verdampfer schnell und energieeffizient abtaubar ist.An object of the invention is to provide a refrigeration device of the NoFrost type in which the evaporator can be defrosted quickly and in an energy-efficient manner.

Die Aufgabe wird gelöst durch ein Kältegerät mit den Merkmalen des Anspruchs 1.The object is achieved by a refrigerator with the features of claim 1.

Die Führungsrippe stellt sicher, dass Luft aus beiden Kammern sich über die gesamte Breite des Verdampfers verteilen kann, so dass nicht über die Breite des Verdampfers hinweg verschiedene Regionen existieren, die, da sie der im Allgemeinen mehr Feuchtigkeit mitführenden Luft aus der wärmeren Lagerkammer stärker ausgesetzt sind, stärker Reif ansetzen als andere Regionen. Indem die Führungsrippe eine turbulente Durchmischung der Luftströme aus der ersten und der zweiten Lagerkammer im Einlassvolumen behindert, sorgt sie überdies für einen geringen Druckverlust im Kreislauf der Luft zwischen der Verdampferkammer und den Lagerkammern, so dass ein erforderlichenfalls zum Antreiben der Luftzirkulation eingesetzter Ventilator mit geringerer Leistung auskommt.The guide rib ensures that air from both chambers can be distributed over the entire width of the evaporator, so that different regions do not exist across the width of the evaporator, which, since they are generally more Moisture-carrying air from the warmer storage chamber is more exposed and more ripe than other regions. In addition, since the guide rib prevents turbulent mixing of the air flows from the first and the second storage chamber in the inlet volume, it ensures a low pressure loss in the circulation of air between the evaporator chamber and the storage chambers, so that a fan with less power, which is used to drive the air circulation, is required gets along.

Die Führungsrippe ermöglicht es dem Einlassvolumen, die Funktion einer Strahlpumpe wahrzunehmen, in der die stärkere der beiden Luftströmungen die schwächere mitzieht, anstatt sie durch Verwirbelung zu blockieren. Auch dies trägt dazu bei, dass über die gesamte Breite der Anströmseite hinweg beide Luftströme übereinander in den Verdampfer eintreten.The guide rib allows the inlet volume to perform the function of a jet pump, in which the stronger of the two air currents pulls the weaker one instead of blocking it by swirling. This also contributes to the fact that both air streams enter the evaporator over the entire width of the inflow side.

Andererseits bewirkt die eingeschränkte Turbulenz in dem Einlassvolumen, dass die Luftströme aus der ersten und der zweiten Lagerkammer weitgehend undurchmischt, einer oberhalb und der andere unterhalb der Führungsrippe, in den Verdampfer eintreten. Diese fehlende bzw. unvollständige Durchmischung kann zwar dazu führen, dass sich in dem Bereich der Anströmseite, der der feuchteren Luft ausgesetzt ist, schneller Reif bildet als in dem dem trockeneren Luftstrom ausgesetzten Bereich, doch hat eine daraus resultierende Ungleichverteilung des Reifs nur einen geringen Einfluss auf die Abtauzeit, da der Abstand zwischen den Bereichen klein ist.On the other hand, the restricted turbulence in the inlet volume means that the air flows from the first and the second storage chamber largely unmixed, one above and the other below the guide rib, enter the evaporator. This lack of or incomplete mixing can lead to the formation of more rapid frost in the area on the inflow side that is exposed to the humid air, but in the area exposed to the drier air flow, but the resulting uneven distribution of the frost has only a minor influence on the defrosting time because the distance between the areas is small.

Infolge der eingeschränkten Durchmischung bleibt Schneebildung, zu der es kommen kann, wenn sich die relativ warme, feuchte Luft aus einer Lagerkammer in Kontakt mit der kälteren Luft aus der anderen Lagerkammer abkühlt, auf einen kleinen Bereich des Einlassvolumens, zwischen der Kante der Führungsrippe und der Anströmseite, begrenzt. Daher fällt eventuell entstehender Schnee nicht in dem Einlassvolumen zu Boden, sondern wird in den Verdampfer hineingespült, wo er haftenbleibt und anschließend problemlos abgetaut werden kann.As a result of the limited mixing, snow formation, which can occur when the relatively warm, humid air from one storage chamber cools in contact with the colder air from the other storage chamber, remains on a small area of the inlet volume, between the edge of the guide rib and the Upstream side, limited. Therefore, any snow that may be formed does not fall to the ground in the inlet volume, but is flushed into the evaporator, where it sticks and can then be easily defrosted.

Außerdem können Lamellen des Verdampfers quer zu der Führungsrippe orientiert sein und, indem so jede Lamelle sowohl in den stärker bereiften als auch in den schwächer bereiften Bereich des Verdampfers eingreift, einen effizienten Wärmeübergang zwischen den beiden Bereichen beim Abtauen gewährleisten.In addition, fins of the evaporator can be oriented transversely to the guide rib and, by doing so, each fins both in the more frosted and in the weaker frosted area of the evaporator engages to ensure efficient heat transfer between the two areas during defrosting.

Die Längsrichtung der Anströmseite ist im Allgemeinen eine horizontale Richtung; typischerweise entspricht sie der Breitenrichtung des Kältegeräts.The longitudinal direction of the upstream side is generally a horizontal direction; it typically corresponds to the width direction of the refrigerator.

Die Schale kann wenigstens einen Teil einer der Anströmseite gegenüberliegenden Wand des Einlassvolumens bilden, wobei dann die mit der zweiten Lagerkammer kommunizierenden zweiten Öffnungen in der Schale selbst oder zwischen der Schale und der Dämmschicht vorgesehen sein können.The shell can form at least part of a wall of the inlet volume opposite the inflow side, in which case the second openings communicating with the second storage chamber can be provided in the shell itself or between the shell and the insulation layer.

Die ersten Öffnungen sind vorzugsweise über Rohrleitungen, die sich durch die Wärmedämmschicht erstrecken, mit der ersten Lagerkammer verbunden.The first openings are preferably connected to the first bearing chamber via pipelines which extend through the thermal insulation layer.

Zweckmäßigerweise, und um eine Blockierung durch am Boden der ersten Lagerkammer angeordnete Gegenstände, insbesondere durch einen Auszugkasten, zu vermeiden, können diese Rohrleitungen jeweils wenigstens auf einem Teil ihrer Länge in einer Seitenwand der ersten Lagerkammer verlaufen.Appropriately, and in order to avoid blocking by objects arranged on the bottom of the first storage chamber, in particular by a pull-out box, these pipelines can each run at least over part of their length in a side wall of the first storage chamber.

Um den Zusammenbau des Kältegeräts zu vereinfachen, kann die Führungsrippe einteilig mit der Schale ausgebildet sein.In order to simplify the assembly of the refrigeration device, the guide rib can be formed in one piece with the shell.

Einer alternativen Ausgestaltung zu Folge ist die Führungsrippe einteilig mit der Wärmedämmschicht ausgebildet.According to an alternative embodiment, the guide rib is formed in one piece with the thermal barrier coating.

Ein Ventilator kann vorgesehen sein, um einen Luftaustausch mit beiden Lagerkammern gleichzeitig anzutreiben. Länge und Durchlassquerschnitte von Leitungen, die die Verdampferkammer mit der ersten und der zweiten Lagerkammer verbinden, können entsprechend dem mittleren Kältebedarf der beiden Lagerkammern so ausgelegt sein, dass die Kühlleistung des Verdampfers sich bedarfsgerecht auf beide Lagerkammern verteilt. Kostenaufwändige Klappen zum Steuern des Luftaustauschs mit den beiden Lagerkammern können dann entfallen.A fan can be provided to drive an air exchange with both storage chambers at the same time. The length and passage cross sections of lines that connect the evaporator chamber to the first and the second storage chamber can be designed in accordance with the average cooling requirement of the two storage chambers so that the cooling capacity of the evaporator is distributed to both storage chambers as required. Costly flaps for controlling the air exchange with the two storage chambers can then be omitted.

Da die zweite Lagerkammer im Allgemeinen eine niedrigere Betriebstemperatur als die erste Lagerkammer hat, und dementsprechend einen größeren Anteil an der Kühlleistung des Verdampfers beansprucht, sollte der Luftdurchsatz durch die zweiten Öffnungen stärker sein als durch die ersten.Since the second storage chamber generally has a lower operating temperature than the first storage chamber and accordingly takes up a larger share of the cooling capacity of the evaporator, the air throughput through the second openings should be greater than through the first.

Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen unter Bezugnahme auf die beigefügten Figuren. Es zeigen:

Fig. 1
einen schematischen Schnitt in Tiefenrichtung durch ein erfindungsgemäßes Haushaltskältegerät;
Fig. 2
einen Detailquerschnitt entlang der Linie II-II aus Fig. 1;
Fig. 3
ein vergrößertes Detail des Kältegeräts gemäß einer zweiten Ausgestaltung im Schnitt in Tiefenrichtung; und
Fig. 4
einen zu Fig. 3 analogen Schnitt gemäß einer dritten Ausgestaltung.
Further features and advantages of the invention result from the following description of exemplary embodiments with reference to the attached figures. Show it:
Fig. 1
a schematic section in the depth direction through an inventive household refrigerator;
Fig. 2
a detailed cross section along the line II-II Fig. 1 ;
Fig. 3
an enlarged detail of the refrigerator according to a second embodiment in section in the depth direction; and
Fig. 4
one too Fig. 3 analog section according to a third embodiment.

Fig. 1 zeigt ein NoFrost-Kombinationskältegerät in einem schematischen Schnitt in Tiefenrichtung. In einem Korpus 1 des Kältegeräts sind zwei Lagerkammern 2, 3, hier ein Normalkühlfach und ein Gefrierfach, durch eine horizontale Zwischenwand 4 voneinander getrennt. Der Korpus 1 umfasst in fachüblicher Weise einen aus Kunststoff einteilig tiefgezogenen Innenbehälter 5, eine aus mehreren plattenförmigen Elementen zusammengesetzte Außenhaut 6 und eine Wärmedämmschicht 7 aus zwischen dem Innenbehälter 5 und der Außenhaut 6 aufgeschäumten Kunststoff. In dem Innenbehälter 5 können die zwei Lagerkammern 2, 3 als voneinander getrennte Vertiefungen ausgebildet sein, so dass auch die Zwischenwand 4 einteiliger Bestandteil des Innenbehälters 5 ist. Fig. 1 shows a NoFrost combination refrigerator in a schematic section in the depth direction. In a body 1 of the refrigerator, two storage chambers 2, 3, here a normal refrigerator compartment and a freezer compartment, are separated from one another by a horizontal partition wall 4. The body 1 comprises, in a manner customary in the art, an inner container 5 which is deep-drawn in one piece from plastic, an outer skin 6 composed of a plurality of plate-shaped elements and a thermal insulation layer 7 made of plastic foamed between the inner container 5 and the outer skin 6. In the inner container 5, the two storage chambers 2, 3 can be formed as mutually separate depressions, so that the intermediate wall 4 is also an integral part of the inner container 5.

Im hier betrachteten Fall weist der Innenbehälter 5 nur eine einzige Vertiefung auf, in die die Zwischenwand 4 als separates Bauteil eingefügt ist. Die Zwischenwand 4 umfasst hier eine plattenförmige Wärmedämmschicht 8, vorzugsweise aus expandiertem Polystyrol, die wenigstens an ihrer Oberseite 9, einer die Lagerkammern 2, 3 verschließenden Türen 10, 11 zugewandten Stirnseite 12 und einem vorderen Bereich 13 ihrer Unterseite von einer Platte überdeckt ist, die aus demselben Kunststoff wie der Innenbehälter 5 gefertigt ist. An einem unteren hinteren Rand dieser Platte ist eine aus Kunststoff spritzgeformte Schale 14 befestigt, die eine Verdampferkammer 15 von der unteren, zweiten Lagerkammer 3 abtrennt. In dem von der Schale 14 überdeckten Bereich der Zwischenwand 4 kann die Platte fehlen, so dass die Wärmedämmschicht 8 unmittelbar die Verdampferkammer 15 begrenzt. Da die untere Lagerkammer 3 als Gefrierfach vorgesehen ist, wird zwischen ihr und der Verdampferkammer 15 keine starke Isolation benötigt. Die Schale 14 ist daher aus einem nicht aufgeschäumten Kunststoff mit im Vergleich zur Wärmedämmschicht 8 geringer Isolationswirkung gefertigt.In the case considered here, the inner container 5 has only a single depression, into which the intermediate wall 4 is inserted as a separate component. The intermediate wall 4 here comprises a plate-shaped thermal insulation layer 8, preferably made of expanded polystyrene, which is covered at least on its upper side 9, a front side 12 facing doors 10, 11 closing the storage chambers 2, 3 and a front region 13 on its lower side by a plate which is made of the same plastic as the inner container 5. At a lower rear edge of this plate, a plastic injection molded shell 14 is attached, which separates an evaporator chamber 15 from the lower, second storage chamber 3. In the area of the intermediate wall 4 covered by the shell 14, the plate may be missing, so that the thermal insulation layer 8 directly delimits the evaporator chamber 15. Since the lower storage chamber 3 is provided as a freezer compartment, no strong insulation is required between it and the evaporator chamber 15. The shell 14 is therefore made of a non-foamed plastic with a low insulation effect compared to the thermal insulation layer 8.

Ein flach quaderförmiger Lamellenverdampfer 16 füllt die Verdampferkammer 15 zum großen Teil aus und unterteilt sie in ein Einlassvolumen 17 vor einer Anströmseite 18 des Lamellenverdampfers 16 und ein Auslassvolumen 19 hinter der gegenüberliegenden Seite des Lamellenverdampfers 16.A flat cuboid vane evaporator 16 largely fills the vaporizer chamber 15 and divides it into an inlet volume 17 in front of an upstream side 18 of the vane vaporizer 16 and an outlet volume 19 behind the opposite side of the vane vaporizer 16.

Unter dem Lamellenverdampfer 16 ist eine Abtauheizung 38 angebracht, hier in Form einer Aluminiumplatte, deren Grundfläche im Wesentlichen der des Lamellenverdampfers 16 gleicht, und einer Heißgasleitung, die einerseits auf der Aluminiumplatte befestigt und andererseits in Kerben an den Unterkanten der Lamellen des Verdampfers 16 eingeklemmt ist.A defrost heater 38 is attached below the finned evaporator 16, here in the form of an aluminum plate, the base of which is essentially the same as that of the finned evaporator 16, and a hot gas line, which is fastened on the one hand to the aluminum plate and, on the other hand, is clamped in notches on the lower edges of the fins of the evaporator 16 ,

In dem Auslassvolumen 19 ist ein Ventilator 20 untergebracht, um Luftzirkulation durch den Lamellenverdampfer 16 anzutreiben. Die vom Ventilator 20 ausgestoßene Luft verteilt sich über einen sich in der Rückwand des Korpus 1 erstreckenden Kanal 21 und entlang des Kanals 21 am Innenbehälter 5 verteilte Auslassöffnungen 22 auf die beiden Lagerkammern 2, 3.A fan 20 is accommodated in the outlet volume 19 in order to drive air circulation through the lamella evaporator 16. The air expelled by the fan 20 is distributed over the two storage chambers 2, 3 via a channel 21 extending in the rear wall of the body 1 and along the channel 21 on the inner container 5.

In der Lagerkammer 2 erwärmte Luft fließt über sich in Seitenwänden 23 des Korpus 1 gegenüberliegende Durchgänge 24, über sich in den Seitenwänden erstreckende Rohrleitungen 25, über mit letzteren steckverbundene Rohrleitungen 26 der Zwischenwand 4 und Öffnungen 27 an einer Oberseite des Einlassvolumens 17 zurück in die Verdampferkammer 15. Die Durchgänge 24 sind an den Seitenwänden in einer Höhe platziert, in der sie von einem in üblicher Weise am Boden der Lagerkammer 2 angeordneten Auszugkasten 28 nicht blockiert werden können.Air heated in the storage chamber 2 flows via passages 24 located opposite one another in side walls 23 of the body 1, via pipes 25 extending in the side walls, via pipes 26 of the intermediate wall 4, which are plug-connected to the latter, and openings 27 on an upper side of the inlet volume 17 back into the evaporator chamber 15. The passages 24 are placed on the side walls at a height at which they cannot be blocked by a pull-out box 28 arranged in a conventional manner at the bottom of the storage chamber 2.

In der zweiten Lagerkammer 3 erwärmte Luft gelangt zurück in die Verdampferkammer 15 über Öffnungen 29, die in einer der Tür 11 zugewandten Stirnwand 30 der Schale 14 und/oder zwischen einer Oberkante der Stirnwand 30 und der Zwischenwand 4 vorgesehen sind. Die Öffnungen 29 sind über die gesamte Breite der Schale 14 und des darin untergebrachten Verdampfers 16 verteilt, so dass auch die Luftströmung aus der zweiten Lagerkammer 2 gleichmäßig über die gesamte Breite der Anströmseite 18 verteilt ist.Air heated in the second storage chamber 3 returns to the evaporator chamber 15 via openings 29 which are provided in an end wall 30 of the shell 14 facing the door 11 and / or between an upper edge of the end wall 30 and the intermediate wall 4. The openings 29 are distributed over the entire width of the shell 14 and the evaporator 16 accommodated therein, so that the air flow from the second storage chamber 2 is also distributed uniformly over the entire width of the inflow side 18.

Wie aus dem Schnitt der Fig. 2 deutlich wird, befinden sich die mit der ersten Lagerkammer 2 kommunizierenden Öffnungen 27 jeweils an den seitlichen Enden des Einlassvolumens 17. Wenn die über die Öffnungen 27 und 29 verlaufenden Luftströmungen in dem Einlassvolumen 17 ungesteuert aufeinander treffen würden, dann wäre damit zu rechnen, dass die über die Öffnungen 27 zuströmende, relativ feuchte Luft deren Verdampfer 16 im Wesentlichen nur in dessen unmittelbar hinter den Öffnungen 27 liegenden seitlichen Bereichen durchströmt und diese daher deutlich schneller bereifen als ein mittlerer Bereich des Verdampfers 16, der im Wesentlichen nur von Luft aus der Lagerkammer 3 durchflossen wird. Um dies zu verhindern, ist das Einlassvolumen 17 auf seiner gesamten Breite durch eine Führungsrippe 31 unterteilt, die sich in Breitenrichtung des Korpus 1, wie in Fig. 2 zu sehen, horizontal von einer Seitenwand 23 des Korpus 1 zur anderen erstreckt und die sich in Tiefenrichtung ausgehend von einer vorderen Wand 32 des Einlassvolumens 17 bis kurz vor die Anströmseite 18 erstreckt. Die vordere Wand 32 ist hier in einem unteren Bereich durch die Stirnwand 30 der Schale 14 gebildet, oberhalb der Führungsrippe 31 ist sie durch eine Flanke der Wärmedämmschicht 8 gebildet. Die Führungsrippe 31 unterteilt das Einlassvolumen 17 in einen oberen Teilraum 33, in dem sich die aus der Lagerkammer 2 zuströmende Luft, ungehindert durch die von der zweiten Lagerkammer 3 herrührende Luftströmung über die gesamte Breite des Einlassvolumens 17 verteilen kann, und einen unteren Teilraum 35 zwischen der Führungsrippe 31 und einer Bodenplatte 34 der Schale 14, in dem die Luftströmung aus der zweiten Lagerkammer 3 im Wesentlichen laminar horizontal geführt ist und zwischen der Anströmseite 18 und der ihr gegenüberliegenden Hinterkante der Führungsrippe 31 einen dynamischen Unterdruck erzeugt, durch den Luft aus dem oberen Teilraum 33 abgesaugt und durch den Verdampfer 16 hindurch gezogen wird.As from the cut of the Fig. 2 it becomes clear that the openings 27 communicating with the first storage chamber 2 are located at the lateral ends of the inlet volume 17. If the air flows through the openings 27 and 29 in the inlet volume 17 would meet one another in an uncontrolled manner, then it would be expected that the Relatively moist air flowing through the openings 27 flows through the evaporator 16 essentially only in its lateral areas immediately behind the openings 27 and therefore tire them significantly faster than a central area of the evaporator 16, which essentially only contains air from the storage chamber 3 is flowed through. In order to prevent this, the inlet volume 17 is divided over its entire width by a guide rib 31 which extends in the width direction of the body 1, as in FIG Fig. 2 to be seen, extends horizontally from one side wall 23 of the body 1 to the other and which extends in the depth direction from a front wall 32 of the inlet volume 17 to just before the inflow side 18. The front wall 32 is formed here in a lower region by the end wall 30 of the shell 14, above the guide rib 31 it is formed by a flank of the thermal insulation layer 8. The guide rib 31 divides the inlet volume 17 into an upper partial space 33, in which the air flowing in from the storage chamber 2 can be distributed over the entire width of the inlet volume 17 unhindered by the air flow coming from the second storage chamber 3, and a lower partial space 35 between the guide rib 31 and a base plate 34 of the shell 14, in which the air flow from the second storage chamber 3 is guided essentially laminar horizontally and generates a dynamic negative pressure between the upstream side 18 and the opposite rear edge of the guide rib 31, through the air from the upper Partial space 33 is suctioned off and pulled through the evaporator 16.

Wie ferner in Fig. 2 zu erkennen, sind die Lamellen 36 des Lamellenverdampfers 16 jeweils quer zu der Führungsrippe 31 orientiert. Jede einzelne Lamelle 36 ist daher in ihrem oberen Bereich überwiegend Luft aus der Lagerkammer 2 und in ihrem unteren Bereich Luft aus der Lagerkammer 3 ausgesetzt. Dies kann zwar dazu führen, dass im Betrieb die Reifschicht an einem oberen Teil der Lamellen 36 etwas schneller wächst als an einem unteren Teil, doch führt eine solche ungleichmäßige Bereifung allenfalls zu einer geringfügigen Verdrängung der Luftströmungen in der Verdampferkammer 15 nach unten und hat daher keinen merklichen Einfluss auf die Verteilung der Kühlleistung auf die beiden Lagerkammern 2, 3. Da außerdem während des Abtauens Wärme von der Abtauheizung 38 innerhalb der einzelnen Lamellen 36 schnell und effizient transportiert wird, kommt es beim Abtauen des Verdampfers 16 selbst dann, wenn die Lamellen 36 in ihren oberen Bereichen länger zum Abtauen benötigen als in den unteren, allenfalls zu geringen Temperaturgradienten. So ist eine schnelle und energieeffiziente Abtauung gewährleistet.As further in Fig. 2 can be seen, the fins 36 of the finned evaporator 16 are each oriented transversely to the guide rib 31. Each individual lamella 36 is therefore predominantly exposed to air from the storage chamber 2 in its upper region and to air from the bearing chamber 3 in its lower region. Although this can result in the frost layer growing somewhat faster in operation on an upper part of the fins 36 than on a lower part, such uneven tires at most lead to a slight displacement of the air flows in the evaporator chamber 15 downwards and therefore have none noticeable influence on the distribution of the cooling capacity on the two storage chambers 2, 3. Since also during the defrost heat from the Defrost heater 38 is transported quickly and efficiently within the individual fins 36, it occurs when the evaporator 16 is defrosted even if the fins 36 need longer to defrost in their upper regions than in the lower, possibly too low, temperature gradients. This ensures fast and energy-efficient defrosting.

In der Ausgestaltung der Fig. 1 ist die Führungsrippe 31 als ein eigenständiges Bauteil dargestellt, das an der Unterseite der Zwischenwand 4 befestigt ist. Einer in Fig. 3 gezeigten bevorzugten Weiterbildung zu Folge ist die Führungsrippe 31 ein einteiliger Bestandteil der Schale 14, der von einer Oberkante der Stirnwand 30 in das Einlassvolumen 17 hinein vorspringt und an der die Wärmedämmschicht 8 überdeckenden, hier mit 37 bezeichneten Platte, verankert ist.In the design of the Fig. 1 the guide rib 31 is shown as an independent component which is attached to the underside of the intermediate wall 4. One in Fig. 3 According to the preferred development shown, the guide rib 31 is a one-piece component of the shell 14, which projects from an upper edge of the end wall 30 into the inlet volume 17 and is anchored to the plate covering the thermal insulation layer 8, here designated 37.

Einer in Fig. 4 gezeigten alternativen Weiterentwicklung zu Folge ist die Führungsrippe 31 einteiliger Bestandteil der Wärmedämmschicht 8. BEZUGSZEICHEN 1 Korpus 21 Kanal 2 Lagerkammer 22 Auslassöffnung 3 Lagerkammer 23 Seitenwand 4 Zwischenwand 24 Durchgang 5 Innenbehälter 25 Rohrleitung 6 Außenhaut 26 Rohrleitung 7 Wärmedämmschicht 27 Öffnung 8 Wärmedämmschicht 28 Auszugkasten 9 Oberseite 29 Öffnung 10 Tür 30 Stirnwand 11 Tür 31 Führungsrippe 12 Stirnseite 32 vordere Wand 13 Vorderer Bereich 33 oberer Teilraum 14 Schale 34 Bodenplatte 15 Verdampferkammer 35 unterer Teilraum 16 Lamellenverdampfer 36 Lamelle 17 Einlassvolumen 37 Platte 18 Anströmseite 38 Abtauheizung 19 Auslassvolumen 20 Ventilator One in Fig. 4 As a result of the alternative development shown, the guide rib 31 is an integral part of the thermal insulation layer 8. <B> REFERENCE NUMBERS </ b> 1 corpus 21 channel 2 storage chamber 22 outlet 3 storage chamber 23 Side wall 4 partition 24 passage 5 inner container 25 pipeline 6 shell 26 pipeline 7 thermal barrier 27 opening 8th thermal barrier 28 pull-out box 9 top 29 opening 10 door 30 bulkhead 11 door 31 guide rib 12 front 32 front wall 13 Front area 33 upper part 14 Bowl 34 baseplate 15 evaporator chamber 35 lower part 16 fin evaporator 36 lamella 17 intake volume 37 plate 18 inflow 38 defrost heater 19 discharge volume 20 fan

Claims (8)

  1. Refrigeration device, in particular household refrigeration device, having a first storage chamber (2) and a second storage chamber (3), an evaporation chamber (15) which is accommodated in a dividing wall (4) between the storage chambers (2, 3) and is separated from the first storage chamber (2) by a thermal barrier layer (8) and from the second storage chamber (3) by a shell (14), an evaporator (16) arranged in the evaporator chamber (15), wherein the storage chambers (2, 3) are cooled by exchanging air with the evaporator chamber (15), wherein in the evaporator chamber (15) upstream of an inflow side (18) of the evaporator (16) an inlet volume (17) is kept free which communicates with the first storage chamber (2) via first intake openings (27) and with the second storage chamber (3) via second intake openings (29), wherein a guide rib (31) extends in the inlet volume (17) in the longitudinal direction of the inflow side (18) and from a wall (32) opposite the inflow side (18) to the inflow side (18) and the inlet volume (17) divides into two partial spaces (33, 35) elongated along the inflow side (18), wherein the first and second intake openings (27, 29) are arranged on different sides of the guide rib (31) and in the second partial space (35) the second intake openings (29) are opposite the inflow side (18), wherein the first intake openings (27) are arranged at longitudinal ends of the first partial space (22), characterised in that the thermal barrier effect of the shell (14) is weaker than that of the thermal barrier layer (8), and in that the guide rib (31) prevents a turbulent mixing of the air flows from the first and the second storage chamber (2, 3) in the inlet volume (17).
  2. Refrigeration device according to claim 1, characterised in that fins (36) of the evaporator (16) are oriented transversely to the guide rib (31).
  3. Refrigeration device according to claim 1 or 2, characterised in that the shell (14) forms at least a part of the wall (32) of the inlet volume (17) lying opposite an inflow side (18) and the second openings (30) are provided in the shell (14) or between the shell (14) and the barrier layer (8).
  4. Refrigeration device according to one of the preceding claims, characterised in that the first intake openings (27) are connected to the first storage chamber (2) via conduits (26) extending through the thermal barrier layer (8).
  5. Refrigeration device according to one of claims 1 to 4, characterised in that the guide rib (31) is formed integrally with the shell (14).
  6. Refrigeration device according to one of claims 1 to 4, characterised in that the guide rib (31) is formed integrally with the thermal barrier layer (8).
  7. Refrigeration device according to one of the preceding claims, characterised in that a fan (20) is arranged to simultaneously drive an exchange of air with both storage chambers (2, 3).
  8. Refrigeration device according to claim 7, characterised in that the air throughput through the second intake openings (29) is stronger than through the first intake openings (27).
EP15756940.1A 2014-09-15 2015-09-04 Refrigeration device having a plurality of storage chambers Active EP3194869B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL15756940T PL3194869T3 (en) 2014-09-15 2015-09-04 Refrigeration device having a plurality of storage chambers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014218411.8A DE102014218411A1 (en) 2014-09-15 2014-09-15 Refrigerating appliance with several storage chambers
PCT/EP2015/070289 WO2016041791A1 (en) 2014-09-15 2015-09-04 Refrigeration device having a plurality of storage chambers

Publications (2)

Publication Number Publication Date
EP3194869A1 EP3194869A1 (en) 2017-07-26
EP3194869B1 true EP3194869B1 (en) 2020-01-15

Family

ID=54014841

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15756940.1A Active EP3194869B1 (en) 2014-09-15 2015-09-04 Refrigeration device having a plurality of storage chambers

Country Status (5)

Country Link
EP (1) EP3194869B1 (en)
CN (1) CN106716030B (en)
DE (1) DE102014218411A1 (en)
PL (1) PL3194869T3 (en)
WO (1) WO2016041791A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102604833B1 (en) * 2016-09-29 2023-11-22 엘지전자 주식회사 Refrigerator
KR102632585B1 (en) * 2016-09-29 2024-02-02 엘지전자 주식회사 Refrigerator
KR102632586B1 (en) * 2016-09-29 2024-02-02 엘지전자 주식회사 Refrigerator
KR102261134B1 (en) * 2017-03-10 2021-06-07 엘지전자 주식회사 Refrigerator
DE102017219162A1 (en) 2017-10-25 2019-04-25 BSH Hausgeräte GmbH Refrigerating appliance with vertical evaporator
CN110285095B (en) * 2019-05-21 2022-03-11 合肥美的电冰箱有限公司 Volute, refrigerating system and refrigerating equipment with same

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3310957A (en) * 1966-02-14 1967-03-28 Gen Motors Corp Keeping insulation dry
US3466891A (en) * 1967-09-06 1969-09-16 Amana Refrigeration Inc Combination freezer and refrigerator with fast freezing means
US3766976A (en) * 1971-11-01 1973-10-23 Gen Electric Integral fin evaporator
GB1482926A (en) * 1974-11-18 1977-08-17 Hotpoint Ltd Refrigerators
JPS5514457A (en) * 1978-07-14 1980-01-31 Sanyo Electric Co Refrigerator
JPS619332Y2 (en) * 1979-06-18 1986-03-24
GB2143015B (en) * 1983-05-16 1987-03-25 Toshiba Kk Refrigerator with a freezing chamber
JPS59212663A (en) * 1983-05-16 1984-12-01 株式会社東芝 Freezing refrigerator
US4569206A (en) * 1983-05-16 1986-02-11 Kabushiki Kaisha Toshiba Indirect cooling refrigerator with freezing and storage chambers and a forced air circulating path
US4527624A (en) * 1983-06-20 1985-07-09 Sanyo Electric Co., Ltd. Cooling device for refrigerator
JPS60117068A (en) * 1983-11-28 1985-06-24 三洋電機株式会社 Cooler for refrigerator, etc.
US4543799A (en) * 1984-08-23 1985-10-01 General Electric Company Household refrigerator with air circulating and cooling arrangement
JPS6189460A (en) * 1984-10-05 1986-05-07 株式会社東芝 Refrigerator
JPS61119968A (en) * 1984-11-15 1986-06-07 株式会社東芝 Refrigerator
JPS62124471U (en) * 1986-01-29 1987-08-07
JPH063341B2 (en) * 1986-06-02 1994-01-12 松下冷機株式会社 refrigerator
DE8909029U1 (en) * 1989-07-25 1989-09-07 Bosch-Siemens Hausgeräte GmbH, 8000 München Cooling device, especially no-frost refrigerator
DE8909402U1 (en) * 1989-08-03 1989-09-21 Bosch-Siemens Hausgeräte GmbH, 8000 München Cooling device, especially household refrigerator
DE3932459A1 (en) * 1989-09-28 1991-04-11 Bosch Siemens Hausgeraete REFRIGERATOR, ESPECIALLY MULTI-TEMPERATURE REFRIGERATOR
US5156015A (en) * 1990-12-20 1992-10-20 Samsung Electronics Co., Ltd. Method and apparatus for circulating cold air for an indirect-cooling type refrigerator
KR970011047B1 (en) * 1992-02-21 1997-07-05 삼성전자 주식회사 Cooling equipment of refrigerators
KR940009644A (en) * 1992-10-09 1994-05-20 배순훈 Refrigeration temperature control method and device
KR100203983B1 (en) * 1995-04-06 1999-06-15 전주범 Refrigerator
KR970014645U (en) * 1995-09-26 1997-04-28 Refrigeration air conditioning structure
JPH11304335A (en) * 1998-04-20 1999-11-05 Fujitsu General Ltd Electric refrigerator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN106716030A (en) 2017-05-24
WO2016041791A1 (en) 2016-03-24
CN106716030B (en) 2020-03-06
PL3194869T3 (en) 2020-07-13
EP3194869A1 (en) 2017-07-26
DE102014218411A1 (en) 2016-03-17

Similar Documents

Publication Publication Date Title
EP3194869B1 (en) Refrigeration device having a plurality of storage chambers
DE69826562T2 (en) Cooling air supply device for refrigerator
WO2020083419A2 (en) Air temperature-controlllable module
DE102006015994A1 (en) Refrigerating appliance with defrost heating
DE2807352A1 (en) REFRIGERATOR
WO2006120110A1 (en) Refrigerator featuring recirculated air cooling
WO2007115866A1 (en) Fan for a refrigeration device
EP2798285B1 (en) Domestic refrigeration device having a cold storage compartment
EP1848938B1 (en) Refrigeration device
DE212014000178U1 (en) fridge
EP2522937A2 (en) Evaporation device for a built in cooler, built-in cooler and method for installing a built-in cooler
WO2012156035A2 (en) Multichannel evaporator system
EP2694895B1 (en) Evaporator assembly for a cooling device
DE212015000136U1 (en) fridge
EP3218659B1 (en) No-frost refrigerator
EP2467656B1 (en) Refrigerator with defrost water channel and siphon
EP2382429A1 (en) Refrigeration unit having an air channel
EP2372277A2 (en) Cooling device with condensate atomiser
EP3701204B1 (en) A refrigerator wherein the air flows vertically through the evaporator
CH710730A2 (en) Cooling unit with a base part divided into a warm area and a cold area.
DE102014222850A1 (en) Frost-free refrigerating appliance
DE212015000137U1 (en) fridge
EP1882134B1 (en) Refrigerating appliance with circulating air cooling
WO2017215958A1 (en) Frost-free refrigeration appliance
DE102008042908A1 (en) Refrigerating appliance with cold air duct

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170418

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

INTG Intention to grant announced

Effective date: 20190829

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20191009

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015011544

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1225503

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200215

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200115

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200607

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200416

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015011544

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20201016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200904

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200904

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200904

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1225503

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230504

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230829

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240930

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20240826

Year of fee payment: 10