[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP3179187B1 - Procédé de production d'un produit comprime riche en oxygène, gazeux et liquide dans une installation de décomposition de l'air et installation de décomposition de l'air - Google Patents

Procédé de production d'un produit comprime riche en oxygène, gazeux et liquide dans une installation de décomposition de l'air et installation de décomposition de l'air Download PDF

Info

Publication number
EP3179187B1
EP3179187B1 EP16020460.8A EP16020460A EP3179187B1 EP 3179187 B1 EP3179187 B1 EP 3179187B1 EP 16020460 A EP16020460 A EP 16020460A EP 3179187 B1 EP3179187 B1 EP 3179187B1
Authority
EP
European Patent Office
Prior art keywords
air
turbine
pressure
compressed
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16020460.8A
Other languages
German (de)
English (en)
Other versions
EP3179187A1 (fr
Inventor
Tobias Lautenschlager
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to PL16020460T priority Critical patent/PL3179187T3/pl
Publication of EP3179187A1 publication Critical patent/EP3179187A1/fr
Application granted granted Critical
Publication of EP3179187B1 publication Critical patent/EP3179187B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04175Hot end purification of the feed air by adsorption of the impurities at a pressure of substantially more than the highest pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/042Division of the main heat exchange line in consecutive sections having different functions having an intermediate feed connection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/0446Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases
    • F25J3/04466Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases for producing oxygen as a mixing column overhead gas by mixing gaseous air feed and liquid oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04787Heat exchange, e.g. main heat exchange line; Subcooler, external reboiler-condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04793Rectification, e.g. columns; Reboiler-condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • F25J2200/06Processes or apparatus using separation by rectification in a dual pressure main column system in a classical double column flow-sheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/90Details relating to column internals, e.g. structured packing, gas or liquid distribution
    • F25J2200/94Details relating to the withdrawal point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/40Air or oxygen enriched air, i.e. generally less than 30mol% of O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • F25J2215/52Oxygen production with multiple purity O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/50Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen

Definitions

  • the invention relates to a method for obtaining a liquid and a gaseous, oxygen-rich air product in an air separation plant and an air separation plant arranged for carrying out such a method.
  • cryogenic separation of air in air separation plants is known and, for example at H.-W. Haring (ed.), Industrial Gases Processing, Wiley-VCH, 2006 , in particular Section 2.2.5, "Cryogenic Rectification" described.
  • EP 1 387 136 A1 and EP 1 666 824 A1 are described. Also in the FR 2 895 068 A1 , the EP 0 698 772 A1 and the DE 10 2013 002 094 A1 Air separation plants are disclosed with a mixing column.
  • mixed column air In a mixing column head near an oxygen-rich liquid and near the gaseous compressed air, so-called mixed column air, fed and each other sent to meet. Due to the intensive contact, a certain proportion of the more volatile nitrogen from the mixed column air passes into the oxygen-rich liquid.
  • the oxygen-rich liquid is vaporized in the mixing column and can be removed at the top of the mixing column as so-called "impure" oxygen.
  • the impure oxygen can be taken from the air separation plant as a gas product.
  • the mixing column air in turn is liquefied when passing through the mixing column, enriched to some extent with oxygen, and can be withdrawn from the bottom of the mixing column. This liquefied stream can then be fed into the distillation column system used at an energetically and / or separation-appropriate location.
  • the EP 2 980 514 A1 discloses a HAP process (see below) in which two portions of the feed air are vented after cooling in the main heat exchanger without further compression in two expansion machines. A third portion of the feed air is brought to a higher pressure level in a booster and in booster, which are each coupled to the expansion machines, cooled in the main heat exchanger and expanded in a sealing fluid expander (DLE).
  • DLE sealing fluid expander
  • FR 2 913 759 A1 discloses an air separation process in which at least a portion of the feed air in an auxiliary turbine can be expanded, and in which the air expanded in the auxiliary turbine can be at least partially heated or fed to the distillation column system.
  • Air separation plants with so-called Lachmann turbines, by means of which a portion of the feed air is blown into the low-pressure column, are from the US 5,379,598 A and the DE 199 51 521 A1 known.
  • the refrigeration demand is covered in such systems usually by the relaxation of air in a so-called injection turbine.
  • a blow-in turbine relaxes air from a pressure level of, for example, 5.0 to 6.0 bar to a pressure level of, for example, 1.2 to 1.6 bar (in each case absolute pressures; Invention specific pressure levels are given below).
  • a distillation column system with (at least) a high pressure column and a low pressure column is provided.
  • the high-pressure column is operated in the illustrated example case at the mentioned pressure level of 5.0 to 6.0 bar, the low-pressure column at the mentioned pressure level of 1.2 to 1.6 bar.
  • the air released in the injection turbine is fed into the low-pressure column.
  • the relaxation is possible by the specified pressure difference between the high pressure column and low pressure column.
  • the relaxed in this way in the low pressure column air disturbs the rectification, which is why the amount of air in the spar turbine relaxable air and thus the cooling capacity of the system are highly limited. Therefore, systems with such interconnections no significant amounts of liquid products can be removed.
  • the present invention proposes a method for obtaining a liquid and a gaseous, oxygen-rich air product in an air separation plant and an air separation plant equipped for carrying out such a method with the features of the independent claims.
  • Preferred embodiments are subject of the dependent claims and the following description.
  • turbo compressors are used to compress the air. This applies, for example, to the "main air compressor”, which is characterized in that it compresses the entire quantity of air fed into the distillation column system, that is to say the entire feed air. Accordingly, it is also possible to provide a “secondary compressor” in which a part of the air quantity compressed in the main air compressor is brought to an even higher pressure. This, too, can be designed as a turbocompressor. For compressing partial air quantities, further turbocompressors are typically provided, which are also referred to as boosters, but make only a relatively small amount of compaction compared to the main air compressor or the booster compressor.
  • turboexpanders can also be coupled with turbo compressors and drive them. If one or more turbocompressors without externally supplied energy, i. driven only by one or more turboexpander, the term “turbine booster” is used for such an arrangement. In a turbine booster, the turboexpander and the turbo compressor are mechanically coupled.
  • pressure level and "temperature level” to characterize pressures and temperatures, which is to express that pressures and temperatures in a given equipment need not be used in the form of exact pressure or temperature values to achieve this to realize innovative concept.
  • pressures and temperatures typically range in certain ranges, such as ⁇ 1%, 5%, or even 10%, about an average.
  • values within a "level” are not more than 5% or 10% apart.
  • Corresponding pressure levels and temperature levels can be in disjoint areas or in areas that overlap one another. In particular, for example, pressure levels include unavoidable pressure drops or expected pressure drops, for example, due to cooling effects or line losses. The same applies to temperature levels.
  • the pressure levels specified here in bar are absolute pressures.
  • a “product” leaves the described plant and is stored or consumed, for example, in a tank. So it no longer only participates exclusively in the plant-internal circuits, but can be used accordingly before leaving the plant, for example as a refrigerant in a heat exchanger.
  • the term “product” thus does not include such fractions or streams that remain in the plant itself and are used exclusively there, for example as reflux, coolant or purge gas.
  • product further includes a quantity.
  • a “product” corresponds to at least 1%, in particular at least 2%, for example at least 5% or at least 10% of the amount of air used in a corresponding plant.
  • Lower amounts of liquid fractions also conventionally obtained in spent gas plants and optionally removed from such a plant do not constitute "products" within the meaning of this application.
  • small amounts of a liquid fraction separating off in the bottom are always removed in order to enrich undesired components like to avoid methane. However, this is not due to the amount of "products" in the sense of this application.
  • a liquid or gaseous "oxygen-rich air product” is in the usage of this application, a fluid in a corresponding state of matter having an oxygen content of at least 75%, in particular at least 80%, on a molar, weight or volume basis. Also, the "impure oxygen”, which is taken from the mixing column, is thus an oxygen-rich air product.
  • the present invention proposes a process for the cryogenic separation of air which utilizes an air separation plant having a main heat exchanger and a distillation column system comprising a high pressure column operating at a first pressure level, a low pressure column operating at a second pressure level, and a mixing column.
  • the second pressure level is lower than the first one.
  • an oxygen-rich stream having a first oxygen content can be removed liquid, which is not discharged directly from the liquid separation plant liquid or vaporized, but, especially after heating, with the first oxygen content is fed liquid into the mixing column, in particular in the upper area, for example on the head.
  • a first compressed air flow is also fed in gaseous form and sent in the mixing column to the oxygen-rich stream with the first oxygen content. The feeding of the first compressed air flow into the mixing column is preferably carried out directly above the sump.
  • this head side can be taken from an oxygen-rich stream having a second oxygen content below the first oxygen content and discharged as a gaseous oxygen-rich air product from the air separation plant.
  • the oxygen-rich stream with the second oxygen content is the mentioned "impure” oxygen, whose (second) oxygen content, however, is sufficient for certain applications and makes possible the mentioned energetic optimization.
  • the low-pressure column in particular its sump, a pure oxygen stream can be removed liquid and discharged with its oxygen content as a liquid oxygen-rich air product liquid from the air separation plant.
  • the corresponding is in the WO 2014/037091 A2 shown.
  • the pure oxygen stream has an oxygen content above the first oxygen content.
  • another liquid oxygen-rich air product is provided which has a high oxygen content.
  • a liquid oxygen-rich air product at least temporarily discharged liquid, for example, a corresponding liquid oxygen-rich air product from the low pressure column with the first oxygen content or corresponding pure oxygen.
  • Other oxygen-rich air products can be discharged liquid from the air separation plant.
  • the amount thereof includes at least the values given above in terms of "products". The amount in which a corresponding liquid oxygen-rich air product can be discharged liquid from the air separation plant is very flexible due to the measures proposed according to the invention.
  • oxygen-rich streams namely in particular the oxygen-rich stream with the first oxygen content and possibly the pure oxygen stream with the higher oxygen content and other oxygen-rich streams
  • the speech that are taken from the low-pressure column liquid these are streams that are suitable for the production of corresponding oxygen-rich air products are used. They are therefore, as mentioned above for the term "products", discharged in an amount from the low pressure column, which differs significantly from streams that are not provided as products, such as purge streams, which are only for the removal of impurities, for example from a swamp the Low pressure column to be used.
  • the oxygen-rich stream with the first oxygen content and possibly the pure oxygen stream and others Oxygen-rich streams are thus taken in each case in an amount from the low-pressure column, which is in the range mentioned above with respect to a "product".
  • the first compressed air flow which is fed into the mixing column is formed using air which is compressed to an initial pressure level above the first pressure level and then, in particular in the main heat exchanger, cooled to a first temperature level and expanded in a first turbine becomes.
  • HAP High Air Pressure
  • the present invention is used in particular in so-called HAP ("High Air Pressure") processes, ie processes in which the total amount of air supplied to a distillation column system is compressed to a pressure well above that highest operating pressure used in the distillation column system.
  • HAP High Air Pressure
  • the present invention further proposes to feed into the high-pressure column a second compressed air stream, which is likewise formed using the compressed to the output pressure level and then, in particular in the main heat exchanger, cooled to the first temperature level and relaxed in the first turbine air. Part of the air expanded in the first turbine is thus fed into the mixing column after its expansion in the first turbine and another part into the high-pressure column.
  • the present invention proposes to feed into the low-pressure column a third compressed air flow, which is formed using air, which is compressed to the outlet pressure level and then, in particular in the main heat exchanger, cooled to a second temperature level, expanded in a second turbine, and thereafter in the main heat exchanger is further cooled to a third temperature level.
  • the air is in the first turbine in the context of the present invention to the first, i. the pressure level of the high pressure column, and in the second turbine to the second, i. the pressure level of the low pressure column, relaxed.
  • the mixing column is in the context of the present invention at the first pressure level, i. the pressure level of the high-pressure column, or at a third pressure level, which differs by at most 1 bar from the first pressure level operated.
  • the air expanded in the first turbine and in the second turbine is supplied to the first turbine at the first temperature level and the second turbine at the second temperature level, wherein the first temperature level is at least 20 K, in particular at least 30 K or at least 40 K, below the second temperature level.
  • the first temperature level may be 25 to 35 K or 28 to 32 K, more particularly approximately 30 K, below the second temperature level.
  • the first turbine is a "cold" turbine
  • the second turbine is a "warm” turbine.
  • the liquid production i. reduce the amount in which liquid air products are discharged liquid from the air separation plant
  • the pressure of the main air compressor would have to be lowered at a constant, flowing through the main air compressor air flow.
  • a correspondingly reduced pressure at constant air volume increases the real volume of the compressed air. Therefore, in conventional systems, the devices arranged in the warm part, in particular the air purification and precooling units, would have to be significantly larger. This is not desirable for economic reasons.
  • a reduction in pressure at a constant amount of air is typically not optimal in terms of the efficiency of the main air compressor used.
  • a HAP process using a medium pressure turbine as well as an injection turbine provides plant flexibility advantages for providing the liquid oxygen product and the operating costs, as has been recognized according to the invention.
  • the “medium-pressure turbine” is the aforementioned first turbine, the “injection turbine” is formed in the context of the present application by the second turbine. Because the method according to the invention is designed as a HAP method, only a single main air compressor is required, which significantly reduces the investment costs.
  • the inlet pressures of both turbines are preferably at the same level, in particular at that of the discharge pressure of the main air compressor.
  • the output pressure level ie the pressure level provided by the main air compressor
  • the amount of air in the form of the third Compressed air flow is fed into the low pressure column (ie the "blowing air", which is expanded in the second turbine, ie the "injection turbine"), raised.
  • the increased amount of air expanded in the second turbine thus increases the so-called “air factor”, that is, the total amount of air required for rectification.
  • the main air compressor delivers less power and liquid production drops.
  • the real volume of air in the warm part remains approximately constant.
  • the map of the main air compressor has been reduced in this way, both the amount and the pressure of the compressed air, which i.d.R. more advantageous effect on the efficiency of the main air compressor as a pure pressure reduction.
  • a fourth compressed air flow is advantageously used, which is fed into the high pressure column and formed using air, which is compressed to the output pressure level and then cooled to a third temperature level and expanded by means of a throttle.
  • a corresponding fourth compressed air flow corresponds to a throttle flow of a conventional air separation process.
  • the method according to the invention comprises a first method mode and a second method mode, wherein in the first method mode from the air separation plant, the liquid oxygen-rich air product is discharged in a greater amount liquid than in the second method mode, and wherein in the first method mode, a larger amount of air in the second turbine is relaxed than in the second method mode and thereby at the same time the third compressed air flow in the first method of operation comprises the same larger amount of air than in the second method mode.
  • the amount of bubbling air which is expanded by the second turbine and fed into the low-pressure column, is increased.
  • an additional cooling demand which consists of the removal of the liquid oxygen product, are covered.
  • the liquid oxygen-rich air product which is discharged from the air separation plant, is taken from the low-pressure column.
  • the pure oxygen as explained above, or a liquid oxygen product with a lower oxygen content can be used. If such a liquid oxygen-rich air product "discharged liquid", this means that no evaporation takes place within the air separation plant.
  • the liquid oxygen-rich air product is discharged in a greater amount liquid than in the second process mode, this may also include that in the second process mode, no liquid oxygen-rich air product is discharged.
  • the amount of the liquid oxygen-rich air product that is liquidly discharged from the air separation plant in the first process mode may be 1.5 times, 2 times, 3 times, 4 times, or 5 times the corresponding amount in the second process mode include.
  • the increase in the relaxed in the second turbine and at the same time encompassed by the third compressed air flow amount of air is advantageously carried out taking into account a so-called Einblaseäquivalents.
  • the injection equivalent initially comprises the amount of air expanded by the second turbine, which at the same time corresponds to the volume of air covered by the third compressed air flow, and additionally the amount of nitrogen-rich streams, which are likewise taken from the high-pressure column.
  • These nitrogen-rich streams are liquid nitrogen and pressurized nitrogen, which are provided as nitrogen-rich air products of a corresponding air separation plant. These nitrogen-rich streams are not used as liquid reflux to the high pressure column and the low pressure column.
  • the sum of the amount of air expanded in the second turbine and simultaneously encompassed by the third compressed air flow and the amount of such nitrogen-rich streams in the first process mode comprises 12 to 18% and in the second process mode 0 to 8% of the total amount of air fed into the distillation column system.
  • This total amount of air fed into the distillation column system also comprises the air expanded in the second turbine.
  • variable speed turbine is used in the context of this application only as a distinction from turbines whose speed is adjusted to a fixed speed value, for example by means of appropriately controlled brakes. The same applies to the second turbine.
  • the process according to the invention is advantageously used in connection with so-called HAP processes in which the entire air fed into the distillation column system is compressed to a pressure level which is above the pressure level of the high-pressure column using a main air compressor.
  • the entire air fed into the distillation column system is brought to the outlet pressure level using a main air compressor.
  • the air factor i. the amount of air used to obtain a fixed amount of product, significantly greater than in the second mode of operation, because the relaxed in the second turbine and at the same time included by the third compressed air flow and fed into the low pressure column air amount is greater than in the second process mode.
  • a larger amount of liquid product is withdrawn than in the second method mode. Therefore, a larger amount of air must also be conducted through the main air compressor than in the second method mode. Due to the larger air factor in this case the final pressure of the main air compressor, so here referred to as "output pressure level" pressure level, but still less than at lower air factor.
  • the air factor is significantly lower than in the first method mode, because the amount of air expanded in the second turbine and at the same time encompassed by the third compressed air flow and fed into the low pressure column is less than in the first method mode.
  • a smaller amount of liquid product is withdrawn than in the first process mode.
  • output pressure level output pressure level
  • the amount of air guided through the main air compressor must be kept the same at reduced pressure, resulting in an increased real volume of this amount of air.
  • the load case in the second operating mode is therefore no longer dimensioning for the warm part of the air separation plant.
  • the pressure difference with respect to the final pressure of the main air compressor (ie, the "output pressure level") in the first and second process modes is lower than would be the case in conventional methods because, as mentioned, the final pressure of the main air compressor is lower in the first mode of operation due to the larger air factor remains as at a lower air factor. Since both the amount of air compressed in the main air compressor and the pressure used there sink, this load case is generally better in the characteristic diagram than in the case of a constant compressed air quantity and a more reduced pressure.
  • the air expanded in the first turbine and the second turbine is supplied to the first turbine and the second turbine at the same pressure level, in particular the outlet pressure level.
  • the outlet pressure level in the first process mode is 1 to 10 bar above the outlet pressure level in the second process mode.
  • the third pressure level if the mixing column is not operated at the first pressure level, differs, as mentioned, by at most 1 bar from the first one.
  • the first temperature level is preferably 110 to 140 ° C, the second temperature level 130 to 240 ° C and the third temperature level 97 to 102 ° C.
  • the turbines used in the present invention can be braked in different ways.
  • a generator, a booster and / or an oil brake can be used.
  • the process according to the invention is particularly suitable for cases in which the first oxygen content is below 99 mole percent, for example 98 to 99 mole percent, and the second oxygen content is 80 to 98 mole percent.
  • the oxygen content of the pure oxygen stream, if formed, is advantageously 99 to 100 mole percent.
  • a method using a mixing column proves to be particularly energy efficient in these cases.
  • the present invention further extends to an air separation plant having a main heat exchanger and a distillation column system comprising a high pressure column adapted for operation at a first pressure level, a low pressure column adapted for operation at a second, lower pressure level, and a mixing column.
  • a corresponding system means are provided which are adapted to remove the low-pressure column an oxygen-rich stream with a first oxygen content liquid and feed with the first oxygen content liquid in the mixing column, in particular in the upper region, further a first compressed air flow in gaseous form in the mixing column feed, in particular in the vicinity of the sump, and in the mixing column
  • the mixing column head side to remove an oxygen-rich stream with a second oxygen content below the first oxygen content and out of the air separation plant, and the first compressed air flow using of air compressed to an outlet pressure level above the first pressure level and thereafter cooled to a first temperature level and expanded in a first turbine.
  • a pure oxygen stream can be removed liquid from the low-pressure column and discharged liquid from the air separation plant.
  • means set up for this purpose are available.
  • means are provided which are adapted to discharge from the air separation plant, at least temporarily, a liquid, oxygen-rich air product in a liquid state.
  • means are provided which are adapted to feed into the high-pressure column a second compressed air stream and this also using the compressed to the output pressure level and then to the first Temperature level cooled and relaxed in the first turbine to form air, fed to the low pressure column a third compressed air flow and form this using air, which is compressed to the output pressure level and then cooled to a second temperature level, relaxed in a second turbine and in the main heat exchanger is further cooled to a third temperature level, and to relax the air in the first turbine to the first and in the second turbine to the second pressure level and to operate the mixing column at the first pressure level or a third pressure level, which is at most 1 bar of different from the first pressure level.
  • these means are further configured to supply the first and second turbine relaxed air in the first turbine to the first turbine at the first temperature level and the second turbine at the second temperature level, wherein the first temperature level is at least 20K below the second temperature level ,
  • the air separation plant is set up for operation in a first method mode and a second method mode, in which means are provided which in the first method mode from the air separation plant discharge the oxygen-rich liquid air product in a larger amount in a liquid than in the second method mode, and in the first mode of operation to vent a larger amount of air in the second turbine than in the second mode of operation, thereby the third compressed air stream in the first method of operation comprises the same larger amount of air than in the second method of operation.
  • FIG. 1 shows an air separation plant according to an embodiment of the invention in the form of a schematic diagram of the system.
  • FIG. 1 an air separation plant according to a particularly preferred embodiment of the invention is shown and designated 100 in total.
  • the air separation plant 100 is sucked by means of a main air compressor 2 via a filter 1 an air feed stream a and compressed in the example shown to a pressure level of 6 to 15 bar (abs.).
  • the compaction can be followed by drying, cooling and purification steps of known type, which for clarity in FIG. 1 not illustrated.
  • a correspondingly compressed and purified air stream b is divided into two partial streams c and d, which are supplied at the said pressure level to a main heat exchanger 3 on the warm side, cooled therein and removed at different temperature levels.
  • two partial flows e and f are formed by removal from the main heat exchanger 3 at different temperature levels.
  • the partial flow e is expanded in a relaxation machine 4, the partial flow f in a relaxation machine 5. Since the partial flow e is cooled to a lower temperature than the partial flow f, the expansion machine 4 is also referred to as a "cold" expansion machine, the expansion machine 5, however, as a "warm” relaxation machine.
  • the relaxation of the two partial flows e and f is carried out in each case starting from the mentioned pressure level of 5 to 15 bar (abs.).
  • the partial flow e is in the example shown to a pressure level of about 5.4 bar (abs.) Relaxed, the partial flow f, however, to a pressure level of about 1.4 bar (abs.).
  • Generators 41 and 51 are coupled to the expansion machines 4 and 5, respectively.
  • the partial flow e is again divided into two partial flows g and h after its expansion in the expansion machine 4.
  • the partial flow g is supplied close to the bottom of a high-pressure column 61, which is formed as part of a double column 6.
  • the partial flow h is relaxed near the sump in a mixing column 7.
  • the high pressure column 61 is operated at the mentioned pressure level of about 5.4 bar (abs.), the mixing column 7 at a slightly lower pressure level of about 5.0 bar (abs.).
  • the partial flow f is returned to its relaxation in the expansion machine 5 at an intermediate temperature level in the main heat exchanger 3, taken this cold side, and fed into a low pressure column 62, which is also formed as part of the double column 6.
  • the low pressure column 62 is operated at the mentioned pressure level of about 1.4 bar (abs.).
  • the partial flow d is taken from the main heat exchanger 3 cold side and, starting from the mentioned pressure level of 6 to 15 bar (abs.) Relaxed in the high-pressure column 61.
  • a liquid, oxygen-enriched fraction is separated on the swamp side and withdrawn in the form of the current i.
  • the current i is passed through a supercooling countercurrent 8 and then released into the low-pressure column 62.
  • a nitrogen-rich top product from the head of the high-pressure column 61 is withdrawn and led to a part in the form of the current k through a main condenser 63 of the double column 6 and there at least partially liquefied.
  • a portion of the liquid, nitrogen-rich overhead product of the high pressure column 61 is passed (see linkage A) in the form of stream I through the subcooling countercurrent and discharged as a liquid nitrogen-rich air product at the plant boundary.
  • Another part of the liquefied, nitrogen-rich overhead product of the high pressure column 61 is recycled as reflux to the high pressure column 61.
  • a nitrogen-enriched stream m is withdrawn, also guided by the supercooling countercurrent 8 and relaxed close to the head into the low-pressure column 62.
  • a liquid, oxygen-rich fraction is formed, which is subtracted (see link B) in the form of the current n, passed through the supercooling countercurrent 8 and discharged as a liquid oxygen-rich air product at the plant boundary.
  • an oxygen-enriched stream o is withdrawn, pressurized by a pump 9 in the liquid state, passed through the subcooling countercurrent 8, heated in the main heat exchanger 3 and fed close to the head into the mixing column 7.
  • the mixing column 7 is operated as explained several times. From the top of the mixing column 7, a stream p depleted of oxygen relative to the stream o is withdrawn, heated in the main heat exchanger 3 and discharged as gaseous oxygen product at the plant boundary.
  • an impure nitrogen stream q is withdrawn, passed through the subcooling countercurrent 8 and the main heat exchanger 3 and used for example in a purification device for the current a.
  • a nitrogen-rich stream r is formed from nitrogen-enriched top product of the low-pressure column 61, which is not passed through the main condenser 63.
  • the in the FIG. 1 illustrated air separation plant 100 is configured for two modes of operation, which were previously discussed.
  • a first method of operation the amount of the liquid air product discharged here in liquid form from the air separation plant 100 in the form of the flow n is greater than in the second method of operation.
  • a larger amount of air is released via the turbine 5 in the first method mode than in the second method mode, so that the air factor increases.
  • the pressure and the amount of the flow b ie the final pressure of the main air compressor 2 and the amount of air guided through it, decrease.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Claims (13)

  1. Procédé de décomposition cryogénique de l'air, dans lequel on utilise une installation de décomposition de l'air (100) dotée d'un échangeur de chaleur principal (3) et d'un système de colonnes de distillation (6, 7), qui comprend une colonne haute pression (61) fonctionnant à un premier niveau de pression, une colonne basse pression (62) fonctionnant à un second niveau de pression, moins élevé, et une colonne de mélange (7), et dans lequel
    - on prélève sous forme liquide de la colonne basse pression (62) un courant riche en oxygène (n) avec une première teneur en oxygène et on le charge avec la première teneur en oxygène sous forme liquide dans la colonne de mélange (7),
    - on charge en plus un premier courant d'air comprimé (h) sous forme gazeuse dans la colonne de mélange (7) et on l'envoie dans la colonne de mélange (7) en sens inverse du courant riche en oxygène (n) avec la première teneur en oxygène,
    - on prélève en tête de la colonne de mélange (7) un courant riche en oxygène (o) avec une seconde teneur en oxygène inférieure à la première teneur en oxygène et on l'évacue hors de l'installation de décomposition de l'air (100),
    - on forme le premier courant d'air comprimé (h) en utilisant de l'air, que l'on comprime à un niveau de pression initial supérieur au premier niveau de pression et que l'on refroidit ensuite à un premier niveau de température, on l'envoie au premier niveau de température à une première turbine (4) et on le détend dans la première turbine (4),
    - à partir de laquelle on évacue au moins temporairement un produit liquide de l'air riche en oxygène à l'état liquide hors de l'installation de décomposition de l'air (100),
    - on charge dans la colonne haute pression (61) un deuxième courant d'air comprimé (g), que l'on forme également en utilisant l'air comprimé au niveau de pression initial et ensuite refroidi au premier niveau de température et détendu dans la première turbine (4),
    - on charge dans la colonne basse pression (62) un troisième courant d'air comprimé (f), que l'on forme en utilisant de l'air, que l'on comprime au niveau de pression initial et que l'on refroidit ensuite à un deuxième niveau de température, que l'on envoie au deuxième niveau de température à une deuxième turbine (5), que l'on détend dans la deuxième turbine (5) et que l'on refroidit de nouveau à un troisième niveau de température dans l'échangeur de chaleur principal (3),
    - on détend l'air dans la première turbine (4) au premier niveau de pression et dans la deuxième turbine (5) au deuxième niveau de pression et on fait fonctionner la colonne de mélange (7) au premier niveau de pression ou à un troisième niveau de pression, qui diffère au maximum de 1 bar du premier niveau de pression,
    - le premier niveau de température se situe au moins 20 K en dessous du deuxième niveau de température, et
    - le procédé comprend un premier mode de fonctionnement et un second mode de fonctionnement, dans lequel dans le premier mode de fonctionnement on évacue le produit liquide de l'air riche en oxygène en une plus grande quantité hors de l'installation de décomposition de l'air (100) que dans le second mode de fonctionnement, et dans le premier mode de fonctionnement on détend une plus grande quantité d'air dans la deuxième turbine (5) que dans le second mode de fonctionnement, et en même temps de ce fait le troisième courant d'air comprimé (f) comprend la même quantité d'air plus élevée dans le premier mode de fonctionnement que dans le second mode de fonctionnement.
  2. Procédé selon la revendication 1, dans lequel on charge dans la colonne haute pression (62) un quatrième courant d'air comprimé (f), que l'on forme en utilisant de l'air, que l'on comprime au niveau de pression initial, que l'on refroidit ensuite à un troisième niveau de température et que l'on détend au moyen d'un étrangleur.
  3. Procédé selon la revendication 1, dans lequel on prélève de la colonne haute pression (61) un ou plusieurs courant(s) riche(s) en azote (l, q) et on les évacue hors de l'installation de décomposition de l'air (100), dans lequel on règle la quantité d'air détendu dans la deuxième turbine (4) et en même temps comprise par le troisième courant d'air comprimé (f), de telle manière qu'une somme de la quantité de la quantité d'air détendu par la deuxième turbine (4) et en même temps comprise par le troisième courant d'air comprimé (f) et de la quantité comprise par le ou les courant(s) riche(s) en azote (l, q) corresponde dans le premier mode de fonctionnement à 12 à 18 pour cent et dans le second mode de fonctionnement à 0 à 8 pour cent de la quantité totale d'air chargée dans le système de colonnes de distillation (6, 7).
  4. Procédé selon la revendication 1 ou 3, dans lequel on porte tout l'air chargé dans le système de colonnes de distillation (6, 7) au niveau de pression initial en utilisant un compresseur d'air principal (2).
  5. Procédé selon la revendication 4, dans lequel on conduit une plus grande quantité d'air sous pression accrue à travers le compresseur d'air principal (2) dans le premier mode de fonctionnement que dans le second mode de fonctionnement.
  6. Procédé selon l'une quelconque des revendications précédentes, dans lequel on envoie l'air détendu dans la première turbine (4) et dans la deuxième turbine (5) au même niveau de pression à la première turbine (4) et à la deuxième turbine (5).
  7. Procédé selon l'une quelconque des revendications précédentes, dans lequel la pression initiale dans le premier mode de fonctionnement se situe de 1 à 10 bars au-dessus de la pression initiale dans le second mode de fonctionnement.
  8. Procédé selon l'une quelconque des revendications précédentes, dans lequel le niveau de pression initial se situe à 6 à 15 bars (abs.), le premier niveau de pression se situe à 4,3 à 6,9 bars (abs.) et le deuxième niveau de pression se situe à 1,3 à 1,7 bars (abs.).
  9. Procédé selon l'une quelconque des revendications précédentes, dans lequel le premier niveau de température se situe à 110°C à 140°C, le deuxième niveau de température se situe à 130°C à 240°C et le troisième niveau de température se situe à 97°C à 102°C.
  10. Procédé selon l'une quelconque des revendications précédentes, dans lequel on freine la première turbine (4) et/ou la deuxième turbine (5) en utilisant un générateur, un booster et/ou un frein hydraulique.
  11. Procédé selon l'une quelconque des revendications précédentes, dans lequel la première teneur en oxygène vaut 99 à 100 pour cent molaires et la seconde teneur en oxygène vaut 80 à 98 pour cent molaires.
  12. Procédé selon l'une quelconque des revendications précédentes, dans lequel la première turbine (4) et la deuxième turbine (5) sont des turbines à vitesse de rotation variable.
  13. Installation de décomposition de l'air (100) dotée d'un échangeur de chaleur principal (3) et d'un système de colonnes de distillation (6, 7), qui comprend une colonne haute pression (61) conçue pour fonctionner à un premier niveau de pression, une colonne basse pression (62) conçue pour fonctionner à un deuxième niveau de pression, moins élevé, et une colonne de mélange (7), et dans laquelle il est prévu des moyens qui sont conçus pour
    - prélever sous forme liquide de la colonne basse pression (62) un courant riche en oxygène (n) avec une première teneur en oxygène et le charger avec la première teneur en oxygène sous forme liquide dans la colonne de mélange (7),
    - charger en plus un premier courant d'air comprimé (h) sous forme gazeuse dans la colonne de mélange (7) et l'envoyer dans la colonne de mélange (7) en sens inverse du courant riche en oxygène (n) avec la première teneur en oxygène,
    - prélever en tête de la colonne de mélange (7) un courant riche en oxygène (o) avec une seconde teneur en oxygène inférieure à la première teneur en oxygène et l'évacuer hors de l'installation de décomposition de l'air (100),
    - former le premier courant d'air comprimé (h) en utilisant de l'air, que l'on comprime à un niveau de pression initial supérieur au premier niveau de pression et que l'on refroidit ensuite à un premier niveau de température, que l'on envoie au premier niveau de température à une première turbine (4) et que l'on détend dans la première turbine (4),
    - évacuer au moins temporairement un produit liquide de l'air riche en oxygène à l'état liquide hors de l'installation de décomposition de l'air (100),
    - charger dans la colonne haute pression (62) un deuxième courant d'air comprimé (g) et former celui-ci également en utilisant l'air comprimé au niveau de pression initial et ensuite refroidi au premier niveau de température et détendu dans la première turbine (4),
    - charger dans la colonne basse pression (62) un troisième courant d'air comprimé (f) et former celui-ci également en utilisant de l'air, que l'on comprime au niveau de pression initial et que l'on refroidit ensuite à un deuxième niveau de température, que l'on envoie au deuxième niveau de température à une deuxième turbine (5), que l'on détend dans la deuxième turbine (4) et que l'on refroidit de nouveau à un troisième niveau de température dans l'échangeur de chaleur principal (3),
    - détendre l'air dans la première turbine (4) au premier niveau de pression et dans la deuxième turbine (5) au deuxième niveau de pression et faire fonctionner la colonne de mélange (7) au premier niveau de pression ou à un troisième niveau de pression, qui diffère au maximum de 1 bar du premier niveau de pression, dans lequel le premier niveau de température se situe au moins 20 K en dessous du deuxième niveau de température, et
    dans laquelle l'installation de décomposition de l'air est conçue pour un fonctionnement dans un premier mode de fonctionnement et dans un second mode de fonctionnement, du fait qu'il est prévu des moyens, qui ont conçus pour
    - dans le premier mode de fonctionnement évacuer le produit liquide de l'air riche en oxygène en une plus grande quantité hors de l'installation de décomposition de l'air (100) que dans le second mode de fonctionnement, et
    - dans le premier mode de fonctionnement détendre une plus grande quantité d'air dans la deuxième turbine (5) que dans le second mode de fonctionnement, de telle manière que de ce fait le troisième courant d'air comprimé (f) comprenne la même quantité d'air plus élevée dans le premier mode de fonctionnement que dans le second mode de fonctionnement.
EP16020460.8A 2015-12-07 2016-11-23 Procédé de production d'un produit comprime riche en oxygène, gazeux et liquide dans une installation de décomposition de l'air et installation de décomposition de l'air Active EP3179187B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL16020460T PL3179187T3 (pl) 2015-12-07 2016-11-23 Sposób pozyskiwania płynnego i gazowego bogatego w tlen produktu powietrza w instalacji rozkładu powietrza i instalacja rozkładu powietrza

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15003483.3A EP3179186A1 (fr) 2015-12-07 2015-12-07 Procede de production d'un produit comprime riche en oxygene, gazeux et liquide dans une installation de decomposition de l'air et installation de decomposition de l'air

Publications (2)

Publication Number Publication Date
EP3179187A1 EP3179187A1 (fr) 2017-06-14
EP3179187B1 true EP3179187B1 (fr) 2019-01-30

Family

ID=54838147

Family Applications (2)

Application Number Title Priority Date Filing Date
EP15003483.3A Withdrawn EP3179186A1 (fr) 2015-12-07 2015-12-07 Procede de production d'un produit comprime riche en oxygene, gazeux et liquide dans une installation de decomposition de l'air et installation de decomposition de l'air
EP16020460.8A Active EP3179187B1 (fr) 2015-12-07 2016-11-23 Procédé de production d'un produit comprime riche en oxygène, gazeux et liquide dans une installation de décomposition de l'air et installation de décomposition de l'air

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP15003483.3A Withdrawn EP3179186A1 (fr) 2015-12-07 2015-12-07 Procede de production d'un produit comprime riche en oxygene, gazeux et liquide dans une installation de decomposition de l'air et installation de decomposition de l'air

Country Status (7)

Country Link
EP (2) EP3179186A1 (fr)
CN (1) CN107131718B (fr)
AU (1) AU2016269434B2 (fr)
BR (1) BR102016028677B1 (fr)
CL (1) CL2016003150A1 (fr)
PL (1) PL3179187T3 (fr)
RU (1) RU2722074C2 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019081065A1 (fr) 2017-10-24 2019-05-02 Linde Aktiengesellschaft Procédé et appareil de traitement d'un mélange de gaz acides
EP3727646B1 (fr) 2017-12-19 2023-05-24 Linde GmbH Procédé de traitement de gaz comprenant un processus oxydatif fournissant de la chaleur perdue et appareil correspondant
EP3557166A1 (fr) 2018-04-19 2019-10-23 Linde Aktiengesellschaft Procédé de décomposition à basse température de l'air et installation de décomposition de l'air
EP3614083A1 (fr) * 2018-08-22 2020-02-26 Linde Aktiengesellschaft Installation de séparation d'aire, procédé de séparation d'air à basse température au moyen de l'installation de séparation d'aire et procédé de fabrication d'une installation de séparation d'aire
US20200080773A1 (en) * 2018-09-07 2020-03-12 Zhengrong Xu Cryogenic air separation unit with flexible liquid product make
WO2020083527A1 (fr) 2018-10-23 2020-04-30 Linde Aktiengesellschaft Procédé et installation de séparation d'air à basse température
WO2020160842A1 (fr) 2019-02-07 2020-08-13 Linde Gmbh Procédé et appareil de traitement de gaz comprenant un processus oxydatif pour traiter un mélange de gaz acides à l'aide de gaz provenant d'un processus de séparation d'air
WO2022016416A1 (fr) * 2020-07-22 2022-01-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et dispositif d'amélioration d'argon
JP2024013252A (ja) * 2022-07-20 2024-02-01 大陽日酸株式会社 熱交換器

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4022030A (en) 1971-02-01 1977-05-10 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Thermal cycle for the compression of a fluid by the expansion of another fluid
GB2079428A (en) * 1980-06-17 1982-01-20 Air Prod & Chem A method for producing gaseous oxygen
EP0383994A3 (fr) * 1989-02-23 1990-11-07 Linde Aktiengesellschaft Procédé et dispositif de rectification d'air
US5379598A (en) * 1993-08-23 1995-01-10 The Boc Group, Inc. Cryogenic rectification process and apparatus for vaporizing a pumped liquid product
US5454227A (en) 1994-08-17 1995-10-03 The Boc Group, Inc. Air separation method and apparatus
US5490391A (en) 1994-08-25 1996-02-13 The Boc Group, Inc. Method and apparatus for producing oxygen
DE19803437A1 (de) 1998-01-29 1999-03-18 Linde Ag Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
DE19951521A1 (de) 1999-10-26 2001-05-03 Linde Ag Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
DE10015602A1 (de) 2000-03-29 2001-10-04 Linde Ag Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
DE10139727A1 (de) 2001-08-13 2003-02-27 Linde Ag Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
DE10209421A1 (de) 2002-03-05 2003-04-03 Linde Ag Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
DE10217093A1 (de) 2002-04-17 2003-01-23 Linde Ag Verfahren zur Regelung eines Trennsäulen-Systems zur Gaszerlegung
DE10228111A1 (de) 2002-06-24 2004-01-15 Linde Ag Luftzerlegungsverfahren und -anlage mit Mischsäule und Krypton-Xenon-Gewinnung
EP1387136A1 (fr) 2002-08-02 2004-02-04 Linde AG Procédé et appareil de production d'oxygène impur par distillation cryogénique de l'air
EP1666824A1 (fr) 2004-12-03 2006-06-07 Linde Aktiengesellschaft Procédé et dispositif pour la récupération d'Argon par séparation cryogénique d'air
FR2895068B1 (fr) * 2005-12-15 2014-01-31 Air Liquide Procede de separation d'air par distillation cryogenique
FR2913759B1 (fr) * 2007-03-13 2013-08-16 Air Liquide Procede et appareil de production de gaz de l'air sous forme gazeuse et liquide a haute flexibilite par distillation cryogenique.
DE102012017484A1 (de) 2012-09-04 2014-03-06 Linde Aktiengesellschaft Verfahren und Anlage zur Erzeugung flüssiger und gasförmiger Sauerstoffprodukte durch Tieftemperaturzerlegung von Luft
DE102013002094A1 (de) * 2013-02-05 2014-08-07 Linde Aktiengesellschaft Verfahren zur Produktion von Luftprodukten und Luftzerlegungsanlage
EP2980514A1 (fr) * 2014-07-31 2016-02-03 Linde Aktiengesellschaft Procédé de séparation cryogénique de l'air et installation de séparation d'air

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
RU2722074C2 (ru) 2020-05-26
BR102016028677B1 (pt) 2022-08-16
PL3179187T3 (pl) 2019-07-31
CN107131718A (zh) 2017-09-05
EP3179187A1 (fr) 2017-06-14
RU2016147701A (ru) 2018-06-07
BR102016028677A2 (pt) 2017-07-25
CL2016003150A1 (es) 2017-06-02
AU2016269434B2 (en) 2022-03-31
RU2016147701A3 (fr) 2020-04-14
EP3179186A1 (fr) 2017-06-14
AU2016269434A1 (en) 2017-06-22
CN107131718B (zh) 2020-12-22

Similar Documents

Publication Publication Date Title
EP3179187B1 (fr) Procédé de production d'un produit comprime riche en oxygène, gazeux et liquide dans une installation de décomposition de l'air et installation de décomposition de l'air
EP1067345B1 (fr) Procédé et dispositif pour la séparation cryogénique des constituants de l'air
EP2980514A1 (fr) Procédé de séparation cryogénique de l'air et installation de séparation d'air
EP2963370B1 (fr) Procede et dispositif cryogeniques de separation d'air
EP1074805B1 (fr) Procédé et dispositif pour la production d'oxygène sous pression
EP3410050B1 (fr) Procédé de production d'un ou de plusieurs produits pneumatiques et installation de séparation d'air
EP4133227A2 (fr) Procédé de séparation d'air à basse température, installation de séparation d'air et ensemble composé d'au moins deux installations de séparation d'air
EP3870915A1 (fr) Procédé et installation de séparation d'air à basse température
EP2963369B1 (fr) Procede et dispositif cryogeniques de separation d'air
WO2020164799A1 (fr) Procédé et installation pour fournir un ou plusieurs produits présents dans l'air, gazeux et à teneur élevée en oxygène
WO2014154339A2 (fr) Procédé de séparation d'air et installation de séparation d'air
DE19933558C5 (de) Dreisäulenverfahren und -vorrichtung zur Tieftemperaturzerlegung von Luft
EP2906889B1 (fr) Procédé et installation de production de produits d'oxygène liquides et gazeux par fractionnement cryogénique de l'air
DE102012021694A1 (de) Verfahren zur Tieftemperaturzerlegung von Luft in einer Luftzerlegungsanlage und Luftzerlegungsanlage
DE102016015446A1 (de) Verfahren zur Tieftemperaturzerlegung von Luft und Luftzerlegungsanlage
DE10045128A1 (de) Verfahren und Vorrichtung zur Erzeugung hoch reinen Stickstoffs durch Tieftemperatur-Luftzerlegung
EP4127583B1 (fr) Procédé et installation de séparation d'air à basse température
DE202018006161U1 (de) Anlage zur Tieftemperaturzerlegung von Luft
WO2020048634A1 (fr) Procédé de séparation cryogénique d'air et système de séparation d'air
EP4435364A1 (fr) Procédé de séparation d'air à basse température et installation de séparation d'air
DE10339230A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP4435365A1 (fr) Procédé et installation de séparation d'air à basse température, procédé et installation de production d'ammoniac
WO2022263013A1 (fr) Procédé et installation permettant de fournir un produit à base d'air gazeux sous pression riche en oxygène
EP4211409A1 (fr) Procédé d'obtention d'un ou de plusieurs produits à base d'air, et installation de fractionnement d'air
WO2021204418A1 (fr) Procédé de production d'un produit d'azote gazeux et liquide au moyen d'une séparation à basse température de l'air, et système de séparation d'air

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171206

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180815

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1093618

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016003245

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190430

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190530

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190430

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190530

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016003245

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20191031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502016003245

Country of ref document: DE

Owner name: LINDE GMBH, DE

Free format text: FORMER OWNER: LINDE AKTIENGESELLSCHAFT, 80331 MUENCHEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191123

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20161123

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1093618

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211123

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231124

Year of fee payment: 8

Ref country code: DE

Payment date: 20231120

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231114

Year of fee payment: 8