[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP3175119B1 - Flow conducting machine part - Google Patents

Flow conducting machine part Download PDF

Info

Publication number
EP3175119B1
EP3175119B1 EP15744185.8A EP15744185A EP3175119B1 EP 3175119 B1 EP3175119 B1 EP 3175119B1 EP 15744185 A EP15744185 A EP 15744185A EP 3175119 B1 EP3175119 B1 EP 3175119B1
Authority
EP
European Patent Office
Prior art keywords
component
flow
point
angle
component according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15744185.8A
Other languages
German (de)
French (fr)
Other versions
EP3175119A1 (en
Inventor
Alexander BÖHM
Franz Gerhard Bosbach
Christoph Emde
Ewald HÖLZEL
Holger RAUNER
Patrick THOME
Björn WILL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KSB SE and Co KGaA
Original Assignee
KSB SE and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KSB SE and Co KGaA filed Critical KSB SE and Co KGaA
Publication of EP3175119A1 publication Critical patent/EP3175119A1/en
Application granted granted Critical
Publication of EP3175119B1 publication Critical patent/EP3175119B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/023Selection of particular materials especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/026Selection of particular materials especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • F04D29/2205Conventional flow pattern
    • F04D29/2222Construction and assembly
    • F04D29/2227Construction and assembly for special materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • F04D29/24Vanes
    • F04D29/242Geometry, shape
    • F04D29/245Geometry, shape for special effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/34Blade mountings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • F04D29/322Blade mountings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/22Manufacture essentially without removing material by sintering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/23Manufacture essentially without removing material by permanently joining parts together
    • F05D2230/232Manufacture essentially without removing material by permanently joining parts together by welding
    • F05D2230/233Electron beam welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/23Manufacture essentially without removing material by permanently joining parts together
    • F05D2230/232Manufacture essentially without removing material by permanently joining parts together by welding
    • F05D2230/234Laser welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/11Iron

Definitions

  • the present invention relates to the geometric design of a flow-guiding component with special consideration of the mechanical load, wherein the component transitions between individual areas are affected by notches, the load collective of the notches can be calculated, and the production of such a component.
  • Flow-guiding components are known in various embodiments. Depending on the conditions of use, ie working pressure, pumped liquid, medium temperature or similar, the component is made of special materials. The static structure of the housing is also heavily dependent on the application.
  • the EP 1 785 590 A1 shows the design and manufacture of an impeller of a pump or turbine, with particular attention is paid to the design of the notches.
  • the impeller is welded in several layers, whereby voltages are directly suppressed. The procedure requires access to the notches during manufacture with appropriate tools.
  • the object of the invention is to find and apply a geometric design for the mechanical load at the transition points of a flow-guiding component, especially in the region of the notches, which is simple and inexpensive to produce.
  • the flow-leading part which may be an impeller for a centrifugal pump, for example, can be constructed free of classical specifications. Limitations of foundry technology and / or joining methods need not be taken into account in the design of the component, since only the mechanical and hydraulic properties are important. Such an exemption from traditional design principles allows a completely new design of the impeller.
  • This simple construction method makes it very easy to determine a geometry that takes into account the mechanical load in the component, depending on the direction. Attacking forces are analyzed under the influence of the conveyed medium and the intended working conditions, whereby minimum and maximum values are determined. According to these values, the demand of the impeller for mechanical stability is determined. The calculation method specifies the geometric design and thus also the material usage and the workpiece machining.
  • the flow-guiding component is produced by a generative method, in which, in particular, metal powders are joined to form a component by a jet melting method, such as, for example, laser or electron beam melts.
  • a jet melting method such as, for example, laser or electron beam melts.
  • At least one notch is arranged in the interior of the component in the flow-guiding component, in particular in a cavity and / or an undercut.
  • the flow-guiding component is a pump component, in particular a centrifugal pump.
  • a pump component in particular a centrifugal pump.
  • the geometric design in particular in wheels and / or guide wheels of centrifugal pumps. These parts are particularly heavily mechanically stressed. The transitions between a guide / impeller blade and a cover plate are sometimes very difficult to access.
  • the surfaces of the individual impeller blades can also be designed freely, so that the boundary layer between the impeller and the fluid can be influenced.
  • inducers it is also possible for inducers to make components hollow, whereby considerable material savings are possible.
  • the component must then its mechanical stability by the appropriate design of the struts obtained within the cavities, as well as the transitions between mechanically stabilizing areas according to the above design rule.
  • the component is made of an iron-based material.
  • the iron-based material is an austenitic or martensitic or ferritic or duplex material. This allows the production of corrosion-resistant components.
  • the preparation of the powders required for the high-energy jet methods mentioned is likewise inexpensive and simple. This becomes even clearer when the iron base material is advantageously a gray or nodular cast iron material.
  • drawing 1 shows the method according to the invention for constructing the notch between two regions of a flow-guiding component.
  • Drawing 2 explains the application of the method according to the invention for the construction of a centrifugal pump impeller, as well as the advantages of a generic production.
  • FIG. 1 shows an arbitrary point at which the contour of a component changes discontinuously from a first region 1 into a second region 2, wherein the two regions enclose an angle 3.
  • Significant stresses develop at this point of discontinuity, which can be strongly influenced by a suitably constructed geometric course.
  • a predetermined breaking point one would like to use the stresses to allow the component to be selectively crushed at the point of discontinuity during a threshold load.
  • the opposite is desirable and the point of discontinuity should be sufficiently resilient against the applied forces.
  • a so-called engineering notch is provided here, which forms the sharp angle by a rounding with a selected radius.
  • an angle bisector 4 is constructed by the angle 3.
  • a point 5 is selected on this bisector 4.
  • This point 5 are perpendicular to the areas 1 and 2, the lines 6 and 7 laid. To these straight lines 6 and 7 will be at point 5 at an angle of 8 to 45 ° straight lines intersect the areas 1 and 2, wherein in the area 2 of the intersection 11 is set.
  • the proposed construction is based on a non-symmetrical loading of a component. If the component were loaded symmetrically, for example by an alternating left / right rotation, then the construction could be symmetrically supplemented in the direction of the first region 1 in an analogous manner.
  • FIG. 2 shows an exemplary application for the construction and manufacturing method according to the invention.
  • an impeller 16 is shown, as used for example in a centrifugal pump.
  • the impeller 16 has a hub portion 17 and a cover plate 20. More details are the FIG. 2b refer to.
  • Such an impeller with the two shrouds 20 and 19 is referred to as a closed impeller.
  • the impeller blades 18 have, both in the region of the impeller hub 17 and in the region of the cover disks 19 and 20, transitions 21 and 22, respectively, which correspond to those in FIG FIG. 1 correspond described.
  • the transition 21 can be described such that the surface of the cover disk 19 represents the first region 1 and the impeller 16 the second region 2.
  • the forces occurring at the point of discontinuity between the two areas 1 and 2 can be determined from the parameters of the impeller, the fluid of the pump and the application. Based on these forces, the point 5 is set in the notch to be constructed. With this point, the notch is constructed. If the impeller 16 is made, for example, in a 3d printing process, the contours of the transitions 21 and 22 at each point of the impeller can be determined with the accuracy of the resolution of the printing process be prepared without any reworking will be necessary. This particularly advantageous contour, which would not be produced with a corresponding shape fidelity with conventional machining methods, can even be constructed in places that would not be attainable with tools for post-processing, which is apparent from the FIG. 2 initially not directly derivable.
  • the proposed design and manufacturing principle combines the effect of a generic 3d printing production process, which inherently works with discrete elements in which individual voxels or layers are joined to a workpiece with a method of optimizing a non-continuous surface geometry. As a result, it is possible to dispense with further post-processing of the workpiece, during which the individual layers of production must be "smoothed" to form a continuous body.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Measuring Volume Flow (AREA)
  • Non-Insulated Conductors (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Description

Die vorliegende Erfindung betrifft die geometrische Ausgestaltung eines strömungsführenden Bauteils unter besonderer Berücksichtigung der mechanischen Belastung, wobei bei dem Bauteil Übergänge zwischen einzelnen Bereichen durch Kerben behaftet sind, wobei das Lastkollektiv der Kerben rechnerisch ermittelbar ist, sowie die Herstellung eines solchen Bauteils.The present invention relates to the geometric design of a flow-guiding component with special consideration of the mechanical load, wherein the component transitions between individual areas are affected by notches, the load collective of the notches can be calculated, and the production of such a component.

Strömungsführende Bauteile sind in verschiedenen Ausführungsformen bekannt. Je nach Einsatzbedingungen, also Arbeitsdruck, Fördermedium, Medientemperatur oder ähnlichem, ist das Bauteil aus speziellen Materialien gefertigt. Der statische Aufbau des Gehäuses ist ebenfalls stark vom Einsatzgebiet abhängig.Flow-guiding components are known in various embodiments. Depending on the conditions of use, ie working pressure, pumped liquid, medium temperature or similar, the component is made of special materials. The static structure of the housing is also heavily dependent on the application.

Besonders beanspruchte Bereiche und vor allem an den Übergängen zwischen verschiedenen Bereichen können besondere mechanische Spannungen aufgebaut werden, die zu verkürzten Standzeiten führen. Durch eine vorteilhafte Ausgestaltung der Kerbe lassen sich Spannungen stark reduzieren, dies erfordert jedoch eine Bearbeitung des Übergangsbereiches mit Werkzeugen.Particularly stressed areas and, above all, at the transitions between different areas, special mechanical stresses can be built up, resulting in shortened service life. By an advantageous embodiment of the notch tensions can be greatly reduced, but this requires a processing of the transition region with tools.

Die EP 1 785 590 A1 zeigt die Ausgestaltung und Herstellung eines Laufrades einer Pumpe oder Turbine, wobei besonders Augenmerk auf der Gestaltung der Kerben liegt. Das Laufrad wird in mehreren Lagen verschweißt, wobei Spannungen direkt unterbunden werden. Die Vorgehensweise erfordert bei der Herstellung einen Zugang mit entsprechenden Werkzeugen zu den Kerben.The EP 1 785 590 A1 shows the design and manufacture of an impeller of a pump or turbine, with particular attention is paid to the design of the notches. The impeller is welded in several layers, whereby voltages are directly suppressed. The procedure requires access to the notches during manufacture with appropriate tools.

Sowohl Gusstechnik als auch Fügetechnik gelangen schnell an Grenzen für strömungsführende Bauteile, da teilweise die Kerben außen nur schwer und/oder gar nicht direkt zugänglich sind. Dies führt zu erheblichen Einschränkungen bei der Ausgestaltung der Geometrie des Bauteils.Both casting technology and joining technology are rapidly reaching their limits for fluid-conducting components, as some of the notches are difficult and / or not directly accessible on the outside. This leads to considerable limitations in the design of the geometry of the component.

DE 10 2012 106810 A1 , JP 2009 185733 A und US 2004/062636 A1 beschreiben ebenfalls gattungsgemäße Gestaltungen solcher Kerben. DE 10 2012 106810 A1 . JP 2009 185733 A and US 2004/062636 A1 also describe generic designs of such notches.

Die Aufgabe der Erfindung ist es, für die mechanische Belastung an den Übergangsstellen eines strömungsführenden Bauteils speziell im Bereich der Kerben, eine geometrische Ausgestaltung zu finden und anzuwenden, die einfach und kostengünstig herstellbar ist.The object of the invention is to find and apply a geometric design for the mechanical load at the transition points of a flow-guiding component, especially in the region of the notches, which is simple and inexpensive to produce.

Die Aufgabe wird durch einen Gegenstand gemäß dem Anspruch 1 gelöst.The object is achieved by an article according to claim 1.

Von Vorteil ist dabei, dass das strömungsführende Teil, das beispielsweise ein Laufrad für eine Kreiselpumpe sein kann, frei von klassischen Vorgaben konstruiert werden kann. Beschränkungen durch Gießereitechnik und/oder Fügeverfahren müssen bei der Konstruktion des Bauteils nicht berücksichtigt werden, da lediglich die mechanischen und hydraulischen Eigenschaften von Bedeutung sind. Eine derartige Befreiung von traditionellen Konstruktionsprinzipien ermöglicht eine völlig neue Ausgestaltung des Laufrades.The advantage here is that the flow-leading part, which may be an impeller for a centrifugal pump, for example, can be constructed free of classical specifications. Limitations of foundry technology and / or joining methods need not be taken into account in the design of the component, since only the mechanical and hydraulic properties are important. Such an exemption from traditional design principles allows a completely new design of the impeller.

Diese einfache Konstruktionsmethode ermöglicht sehr einfach eine Geometrie zu ermitteln, die richtungsabhängig die mechanische Belastung im Bauteil differenziert berücksichtigt. Angreifende Kräfte werden unter Einwirkung des geförderten Mediums und der vorgesehenen Arbeitsbedingungen analysiert, wobei minimale und maximale Werte ermittelt werden. Entsprechend dieser Werte wird der Bedarf des Laufrades an mechanischer Stabilität ermittelt. Die Berechnungsmethode gibt die geometrische Ausgestaltung und somit auch den Materialeinsatz und die Werkstückbearbeitung vor.This simple construction method makes it very easy to determine a geometry that takes into account the mechanical load in the component, depending on the direction. Attacking forces are analyzed under the influence of the conveyed medium and the intended working conditions, whereby minimum and maximum values are determined. According to these values, the demand of the impeller for mechanical stability is determined. The calculation method specifies the geometric design and thus also the material usage and the workpiece machining.

In einer vorteilhaften Ausgestaltung ist das strömungsführende Bauteil mit einem generativen Verfahren hergestellt, wobei insbesondere Metallpulver durch ein Strahlschmelzverfahren wie beispielsweise Laser- oder Elektronenstrahlschmelzen zu einem Bauteil verbunden werden. Dies hat den Vorteil, dass das Laufrad sehr einfach und trotzdem sehr stabil herstellbar ist. Die genannten Verfahren ermöglichen die Herstellung von fluiddichten Bauteilen mit hoher Detaillierungsmöglichkeit. Den Bauteilen kann bei diesen noch Verfahren noch zusätzlich eine spezielle Oberflächenstruktur aufgeprägt werden, beispielsweise eine Haifischhaut, die die mechanischen und hydraulischen Eigenschaften zusätzlich verbessert.In an advantageous embodiment, the flow-guiding component is produced by a generative method, in which, in particular, metal powders are joined to form a component by a jet melting method, such as, for example, laser or electron beam melts. This has the advantage that the impeller is very simple and yet very stable to produce. The methods mentioned make it possible to produce fluid-tight components with a high degree of detail. In addition to this, the components can additionally be given a special surface structure, for example a shark skin, which additionally improves the mechanical and hydraulic properties.

In einer weiteren vorteilhaften Ausgestaltung ist bei dem strömungsführenden Bauteil mindestens eine Kerbe im Innern des Bauteils angeordnet ist, insbesondere in einem Hohlraum und oder einer Hinterschneidung. Dies hat den Vorteil, dass Stellen bei der geometrischen Ausgestaltung des Bauteils vorteilhaft geformt sein können, die der mechanischen Nachbearbeitung nicht zugänglich sind. Diese detaillierte Ausgestaltung ermöglicht die Herstellung von mechanisch belastbareren Bauteilen bei geringerem Materialeinsatz.In a further advantageous embodiment, at least one notch is arranged in the interior of the component in the flow-guiding component, in particular in a cavity and / or an undercut. This has the advantage that points in the geometric configuration of the component can be advantageously formed, which are not accessible to the mechanical post. This detailed embodiment allows the production of mechanically stronger components with less material use.

In einer weiteren Ausgestaltung ist das strömungsführende Bauteil ein Pumpenbauteil, insbesondere einer Kreiselpumpe. Von Vorteil ist die geometrische Ausgestaltung insbesondere bei Laufrädern und/oder Leiträdern von Kreiselpumpen. Diese Teile sind besonders stark mechanisch belastet. Die Übergänge zwischen einer Leit-/Laufradschaufel und einer Deckscheibe sind teilweise sehr schwer zugänglich. Bei einem Kreiselpumpenlaufrad lassen sich neben der reinen geometrischen Grobstruktur selbstverständlich auch die Oberflächen der einzelnen Laufradschaufeln frei gestalten, so dass die Grenzschicht zwischen dem Laufrad und dem Fluid beeinflusst werden kann. Unter anderem auch bei Inducern bietet es sich an Bauteile hohl auszuführen, wobei erhebliche Materialeinsparungen möglich werden. Das Bauteil muss seine mechanische Stabilität dann durch die entsprechende Ausgestaltung der Verstrebungen innerhalb der Hohlräume, sowie der Übergänge zwischen mechanisch stabilisierenden Bereichen nach obiger Konstruktionsregel erhalten.In a further embodiment, the flow-guiding component is a pump component, in particular a centrifugal pump. Of advantage is the geometric design, in particular in wheels and / or guide wheels of centrifugal pumps. These parts are particularly heavily mechanically stressed. The transitions between a guide / impeller blade and a cover plate are sometimes very difficult to access. In the case of a centrifugal pump impeller, of course, in addition to the pure geometric coarse structure, the surfaces of the individual impeller blades can also be designed freely, so that the boundary layer between the impeller and the fluid can be influenced. Among other things, it is also possible for inducers to make components hollow, whereby considerable material savings are possible. The component must then its mechanical stability by the appropriate design of the struts obtained within the cavities, as well as the transitions between mechanically stabilizing areas according to the above design rule.

In einer weiteren vorteilhaften Ausgestaltung ist das Bauteil aus einem Eisenbasiswerkstoff hergestellt. Dies ermöglicht eine einfache und kostengünstige Herstellung auf bereits großserienreifen Werkzeugen. Vorteilhafter Weise ist der Eisenbasiswerkstoff ein austenitischer oder martensitischer oder ferritischer oder Duplex-Werkstoff. Dies ermöglicht die Herstellung von korrosionsfesten Bauteilen. Die Herstellung der für die genannten Hochenergiestrahlverfahren benötigten Pulver ist ebenfalls kostengünstig und einfach. Dies wird noch deutlicher, wenn der Eisenbasiswerkstoff vorteilhaft ein Grau- oder Sphäroguss-Werkstoff ist.In a further advantageous embodiment, the component is made of an iron-based material. This allows a simple and cost-effective production on already large-volume tools. Advantageously, the iron-based material is an austenitic or martensitic or ferritic or duplex material. This allows the production of corrosion-resistant components. The preparation of the powders required for the high-energy jet methods mentioned is likewise inexpensive and simple. This becomes even clearer when the iron base material is advantageously a gray or nodular cast iron material.

Anhand eines Ausführungsbeispiels wird die Erfindung näher erläutert. Die Zeichnung 1 zeigt die erfindungsgemäße Methode zur Konstruktion der Kerbe zwischen zwei Bereichen eines Strömungsführenden Bauteils. Zeichnung 2 erläutert die Anwendung der erfindungsgemäßen Methode zur Konstruktion an einem Kreiselpumpenlaufrad, sowie die Vorteile einer generischen Fertigung.Reference to an embodiment of the invention will be explained in more detail. The drawing 1 shows the method according to the invention for constructing the notch between two regions of a flow-guiding component. Drawing 2 explains the application of the method according to the invention for the construction of a centrifugal pump impeller, as well as the advantages of a generic production.

Die Figur 1 zeigt eine beliebige Stelle an der die Kontur eines Bauteils von einem ersten Bereich 1 unstetig in einen zweiten Bereich 2 übergeht, wobei die beiden Bereiche einen Winkel 3 einschließen. An dieser Unstetigkeitsstelle entwickeln sich erhebliche Spannungen, die durch einen geeignet konstruierten geometrischen Verlauf stark deutlich beeinflusst werden können. Im Falle einer Sollbruchstelle möchte man die Spannungen nutzen, um das Bauteil bei einer Schwellbelastung gezielt an der Unstetigkeitsstelle brechen zu lassen. Meist ist jedoch das Gegenteil erwünscht und die Unstetigkeitsstelle soll gegen die anliegenden Kräfte ausreichend belastbar sein. Traditionell wird hier eine sogenannte Ingenieurskerbe vorgesehen, die den Scharfen Winkel durch eine Rundung mit ausgewähltem Radius ausgestaltet.The FIG. 1 shows an arbitrary point at which the contour of a component changes discontinuously from a first region 1 into a second region 2, wherein the two regions enclose an angle 3. Significant stresses develop at this point of discontinuity, which can be strongly influenced by a suitably constructed geometric course. In the case of a predetermined breaking point, one would like to use the stresses to allow the component to be selectively crushed at the point of discontinuity during a threshold load. In most cases, however, the opposite is desirable and the point of discontinuity should be sufficiently resilient against the applied forces. Traditionally, a so-called engineering notch is provided here, which forms the sharp angle by a rounding with a selected radius.

Anhand verschiedener Beobachtungen in der Natur hat sich eine Methode zur Gestaltung der Kerbe entwickelt, die einfach zu konstruieren ist und dennoch die Kraftverhältnisse an der Unstetigkeitsstelle so aufnimmt, dass die Belastungen des Bauteils bei minimalem Konstruktions- und Fertigungsaufwand sehr stark reduziert werden können. Hierzu wird durch den Winkel 3 eine Winkelhalbierende 4 konstruiert. Ein Punkt 5 wird auf dieser Winkelhalbierenden 4 ausgewählt. Durch diesen Punkt 5 werden senkrecht zu den Bereichen 1 und 2 die Geraden 6 und 7 gelegt. Zu diesen Geraden 6 und 7 werden im Punkt 5 unter dem Winkel 8 zu 45° Geraden angelegt, die die Bereiche 1 und 2 schneiden, wobei im Bereich 2 der Schnittpunkt 11 festgelegt wird. Die Strecke zwischen dem Punkt 5 und dem Punkt 11 wird halbiert, wodurch man den Punkt 9 erhält, an den unter dem Winkel 10 zu 22,5° eine Gerade angelegt wird, die den Bereich 2 in Punkt 13 schneidet. Die Strecke zwischen dem Punkt 9 und dem Punkt 13 wird wieder halbiert, wodurch man den Punkt 12 erhält, an den unter dem Winkel 14 zu 12,2° eine Gerade angelegt wird, die den Bereich 2 im Punkt 15 schneidet. Die Einhüllende dieser Konstruktion ergibt eine Kontur, die verschiedene Unstetigkeitsstellen aufweist. Dies wäre für eine zerspanende Bearbeitung eher nachteilig. In einem generativen Herstellverfahren, wo das Werkstück durch aneinandersetzen einzelner Volumenelemente oder Materialschichten erstellt wird, wo also in diskreten Einheiten gearbeitet wird, kann eine derartige Konstruktion ideal in ein Werkstück umgesetzt werden.On the basis of various observations in nature, a method has been developed for the design of the notch, which is easy to construct and yet absorbs the force at the point of discontinuity so that the loads of the component can be greatly reduced with minimal design and manufacturing costs. For this purpose, an angle bisector 4 is constructed by the angle 3. A point 5 is selected on this bisector 4. By this point 5 are perpendicular to the areas 1 and 2, the lines 6 and 7 laid. To these straight lines 6 and 7 will be at point 5 at an angle of 8 to 45 ° straight lines intersect the areas 1 and 2, wherein in the area 2 of the intersection 11 is set. The distance between the point 5 and the point 11 is halved, whereby the point 9 is obtained, to which a straight line is applied at the angle 10 to 22.5 °, which intersects the area 2 at point 13. The distance between the point 9 and the point 13 is again halved, whereby one obtains the point 12, to which a line is applied at the angle 14 to 12.2 °, which intersects the area 2 at the point 15. The envelope of this construction results in a contour having various points of discontinuity. This would be rather disadvantageous for a machining operation. In a generative manufacturing process, where the workpiece is created by juxtaposing individual volume elements or material layers, that is, where work is done in discrete units, such a construction can be ideally converted into a workpiece.

Die vorgestellte Konstruktion geht von einer nicht symmetrischen Belastung eines Bauteils aus. Würde das Bauteil symmetrisch belastet, beispielsweise durch einen wechselweisen Links-/Rechtslauf, dann ließe sich die Konstruktion symmetrisch in Richtung des ersten Bereichs 1 auf analoge Weise ergänzen.The proposed construction is based on a non-symmetrical loading of a component. If the component were loaded symmetrically, for example by an alternating left / right rotation, then the construction could be symmetrically supplemented in the direction of the first region 1 in an analogous manner.

Die Figur 2 zeigt eine beispielhafte Anwendung für die erfindungsgemäße Konstruktions- und Herstellungsmethode. In der Figur 2a ist ein Laufrad 16 dargestellt, wie es beispielsweise in einer Kreiselpumpe zum Einsatz kommt. Das Laufrad 16 weist einen Nabenbereich 17 und eine Deckscheibe 20 auf. Weitere Details sind der Figur 2b zu entnehmen. Hier sind die Laufradschaufeln 18 und eine weitere Deckscheibe zu sehen. Ein derartiges Laufrad mit den beiden Deckscheiben 20 und 19 wird als geschlossenes Laufrad bezeichnet. Die Laufradschaufeln 18 weisen sowohl im Bereich der Laufradnabe 17 als auch im Bereich der Deckscheiben 19 und 20 jeweils Übergänge 21 und 22 auf, die den in Figur 1 beschriebenen entsprechen. Im Bereich der Deckscheibe 19 lässt sich der Übergang 21 so beschreiben, dass die Fläche der Deckscheibe 19 den ersten Bereich 1 und das Laufrad 16 den zweiten Bereich 2 darstellt. Die an der Unstetigkeitsstelle zwischen den beiden Bereichen 1 und 2 auftretenden Kräfte lassen sich aus den Parametern des Laufrades, der Flüssigkeit der Pumpe und der Anwendung ermitteln. Anhand dieser Kräfte wird der Punkt 5 in der zu konstruierenden Kerbe festgelegt. Mit diesem Punkt wird die Kerbe konstruiert. Wird das Laufrad 16 beispielsweise in einem 3d Druckverfahren hergestellt, so können die Konturen der Übergänge 21 und 22 an jeder Stelle des Laufrades mit der Genauigkeit der Auflösung des Druckverfahrens hergestellt werden, ohne dass irgendeine Nachbearbeitung notwendig sein wird. Diese besonders vorteilhafte Kontur, die mit herkömmlichen spanenden Verfahren nicht mit entsprechender Formtreue herstellbar wäre, kann selbst an Stellen konstruiert werden, die mit Werkzeugen zur Nachbearbeitung gar nicht erreichbar wären, was aus der Figur 2 zunächst nicht direkt ableitbar ist.The FIG. 2 shows an exemplary application for the construction and manufacturing method according to the invention. In the FIG. 2a an impeller 16 is shown, as used for example in a centrifugal pump. The impeller 16 has a hub portion 17 and a cover plate 20. More details are the FIG. 2b refer to. Here are the impeller blades 18 and another cover disc to see. Such an impeller with the two shrouds 20 and 19 is referred to as a closed impeller. The impeller blades 18 have, both in the region of the impeller hub 17 and in the region of the cover disks 19 and 20, transitions 21 and 22, respectively, which correspond to those in FIG FIG. 1 correspond described. In the region of the cover disk 19, the transition 21 can be described such that the surface of the cover disk 19 represents the first region 1 and the impeller 16 the second region 2. The forces occurring at the point of discontinuity between the two areas 1 and 2 can be determined from the parameters of the impeller, the fluid of the pump and the application. Based on these forces, the point 5 is set in the notch to be constructed. With this point, the notch is constructed. If the impeller 16 is made, for example, in a 3d printing process, the contours of the transitions 21 and 22 at each point of the impeller can be determined with the accuracy of the resolution of the printing process be prepared without any reworking will be necessary. This particularly advantageous contour, which would not be produced with a corresponding shape fidelity with conventional machining methods, can even be constructed in places that would not be attainable with tools for post-processing, which is apparent from the FIG. 2 initially not directly derivable.

Das vorgestellte Konstruktions- und Herstellungsprinzip verknüpft den Effekt eines generischen 3d Druck-Herstellverfahrens, das prinzipbedingt mit diskreten Elementen arbeitet, in dem einzelne Voxel oder Schichten an ein Werkstück gefügt werden mit einer Methode der Optimierung einer nichtstetigen Oberflächengeometrie. Im Ergebnis kann auf eine weitere Nachbearbeitung des Werkstücks, bei der die einzelnen Schichten der Herstellung zu einem kontinuierlichen Körper "geglättet" werden müssen verzichtet werden.The proposed design and manufacturing principle combines the effect of a generic 3d printing production process, which inherently works with discrete elements in which individual voxels or layers are joined to a workpiece with a method of optimizing a non-continuous surface geometry. As a result, it is possible to dispense with further post-processing of the workpiece, during which the individual layers of production must be "smoothed" to form a continuous body.

Die Anwendung bei dem gezeigten geschlossen Laufrad zeigt bereits die Vorteile bei der Herstellung und das Potenzial zur Materialeinsparung bei sorgfältiger Konstruktion. Besonders vorteilhaft kann die erfindungsgemäße Methode angewendet werden in einem Innenraum, der nach der Herstellung des Rohteils gar nicht mehr von außen zugänglich ist. Bezugszeichenliste 1 Erster Bereich 12 Punkt 2 Zweiter Bereich 13 Punkt 3 Winkel 14 Winkel zu 12,25° 4 Winkelhalbierende 15 Punkt 5 Punkt 16 Laufrad 6 Rechter Winkel 17 Laufradnabe 7 Rechter Winkel 18 Laufradschaufeln 8 Winkel zu 45° 19 Deckscheibe 9 Punkt 20 Deckscheibe 10 Winkel zu 22,5° 21 Übergang 11 Schnittpunkt 22 Übergang The application with the shown closed impeller already shows the advantages in the production and the potential for material saving with careful construction. Particularly advantageous method of the invention can be applied in an interior, which is no longer accessible from the outside after the production of the blank. LIST OF REFERENCE NUMBERS 1 First area 12 Point 2 Second area 13 Point 3 angle 14 Angle to 12.25 ° 4 bisecting 15 Point 5 Point 16 Wheel 6 Right angle 17 impeller hub 7 Right angle 18 impeller blades 8th Angle to 45 ° 19 cover disc 9 Point 20 cover disc 10 Angle to 22.5 ° 21 crossing 11 intersection 22 crossing

Claims (9)

  1. Flow-conducting component, wherein in the component transitions between individual regions have notches, wherein the load spectrum of the notch can be established arithmetically, wherein the notches which are directly accessible from the outer side only with difficulty and/or not at all are geometrically formed in accordance with the mechanical stress thereof; characterized in that
    the notch is constructed in such a manner that a transition in the component from a first region (1) to a second region (2) encloses an angle (3), wherein the angle bisector of the angle (3) is established, wherein along this angle bisector a first point (5) is determined, wherein in each case a perpendicular (6, 7) from one of the regions (1, 2) which form the angle (3) is dropped from the first point (5), wherein there is placed through the first point (5) to each perpendicular a straight line with an angle (8) of 45º, wherein as a result of the intersection of the straight line, which is placed at the perpendicular (7) from the second region (2), with the second region (2) there is determined a path whose center determines a second point (9), wherein, at the second point (9), a straight line with an angle (10) of 22.5º is placed on the path which intersects the second region (2) at a third point (13), wherein the envelope of this construction predetermines the geometric configuration of the notch.
  2. Flow-conducting component according to Claim 1, characterized in that the component is produced using a generative method in which in particular metal powders are connected to form a component by means of a beam melting method, such as, for example, laser or electron beam melting.
  3. Flow-conducting component according to one of the preceding claims, characterized in that at least one notch is arranged inside the component, in particular in a hollow space and/or an undercut portion.
  4. Flow-conducting component according to one of the preceding claims, characterized in that the component is a pump component, in particular of a centrifugal pump.
  5. Flow-conducting component according to one of the preceding claims, characterized in that the component is a centrifugal pump impeller.
  6. Flow-conducting component according to one of the preceding claims, characterized in that the component is an inducer.
  7. Flow-conducting component according to one of the preceding claims, characterized in that the component is produced from an iron-based material.
  8. Flow-conducting component according to Claim 7, characterized in that the iron-based material is an austenitic or martensitic or ferritic or duplex material.
  9. Flow-conducting component according to Claim 7, characterized in that the iron-based material is a grey cast iron or a spheroidal graphite iron material.
EP15744185.8A 2014-07-31 2015-07-28 Flow conducting machine part Active EP3175119B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014215089.2A DE102014215089A1 (en) 2014-07-31 2014-07-31 Flow guiding component
PCT/EP2015/067235 WO2016016223A1 (en) 2014-07-31 2015-07-28 Flow-conducting component

Publications (2)

Publication Number Publication Date
EP3175119A1 EP3175119A1 (en) 2017-06-07
EP3175119B1 true EP3175119B1 (en) 2018-10-17

Family

ID=53761373

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15744185.8A Active EP3175119B1 (en) 2014-07-31 2015-07-28 Flow conducting machine part

Country Status (14)

Country Link
US (1) US10393133B2 (en)
EP (1) EP3175119B1 (en)
JP (1) JP6612844B2 (en)
KR (1) KR101879734B1 (en)
CN (1) CN106662114B (en)
BR (1) BR112017000490B1 (en)
DE (1) DE102014215089A1 (en)
DK (1) DK3175119T3 (en)
ES (1) ES2702211T3 (en)
IL (1) IL250009B (en)
PT (1) PT3175119T (en)
RU (1) RU2689060C2 (en)
TR (1) TR201819488T4 (en)
WO (1) WO2016016223A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014219557A1 (en) * 2014-09-26 2016-03-31 Ksb Aktiengesellschaft Flow guiding component
EA201891956A1 (en) * 2016-04-12 2019-04-30 ПУРАК Биокем БВ METHOD OF FERMENTATION WITH OBTAINING MAGNESIUM LACTATE
EP4001659A1 (en) * 2020-11-16 2022-05-25 BMTS Technology GmbH & Co. KG Blade wheel, in particular compressor wheel or turbine wheel, comprising blades with fillet
DE102021105624A1 (en) 2021-03-09 2022-09-15 KSB SE & Co. KGaA Production of an idler wheel in a hybrid way
DE102021105623A1 (en) 2021-03-09 2022-09-15 KSB SE & Co. KGaA Production of a stage casing in a hybrid process

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2710580A (en) * 1946-10-29 1955-06-14 Kellogg M W Co Vaned rotor
US2766699A (en) * 1954-12-24 1956-10-16 Gen Electric Impeller assembly
SE506358C2 (en) * 1996-04-17 1997-12-08 Flaekt Ab Rotor blade for attaching to a hub of a rotor, such as a vane for attaching to a fan hub
DE10051954A1 (en) * 2000-10-20 2002-05-02 Behr Gmbh & Co Fan impeller for radial fan in motor vehicle's heating or air conditioning system has radial blades with support rings which have profile which at least partially corresponds to U-shape
US6851924B2 (en) 2002-09-27 2005-02-08 Siemens Westinghouse Power Corporation Crack-resistance vane segment member
JP2006226199A (en) 2005-02-18 2006-08-31 Honda Motor Co Ltd Centrifugal impeller
EP1785590A1 (en) 2005-11-10 2007-05-16 Sulzer Markets and Technology AG Workpiece and welding method for the fabrication of a workpiece
JP4946901B2 (en) 2008-02-07 2012-06-06 トヨタ自動車株式会社 Impeller structure
DE102009031737A1 (en) 2009-07-04 2011-07-21 MAN Diesel & Turbo SE, 86153 Impeller for a turbomachine
RU2452875C2 (en) * 2010-08-03 2012-06-10 Закрытое акционерное общество "ОПТИМА" Rotary pump impeller
RU123868U1 (en) * 2011-12-06 2013-01-10 Научно-производственное общество с ограниченной ответственностью "Фенокс" CENTRIFUGAL PUMP DRIVING WHEEL
ITFI20120035A1 (en) * 2012-02-23 2013-08-24 Nuovo Pignone Srl "IMPELLER PRODUCTION FOR TURBO-MACHINES"
DE102012106810B4 (en) * 2012-07-26 2020-08-27 Ihi Charging Systems International Gmbh Impeller for a fluid energy machine
US20170058916A1 (en) * 2015-09-01 2017-03-02 United Technologies Corporation Gas turbine fan fairing platform and method of fairing a root leading edge of a fan blade of a gas turbine engine
US20180142557A1 (en) * 2016-11-19 2018-05-24 Borgwarner Inc. Turbocharger impeller blade stiffeners and manufacturing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
JP2017522496A (en) 2017-08-10
JP6612844B2 (en) 2019-11-27
IL250009B (en) 2021-09-30
RU2017106527A (en) 2018-08-28
DE102014215089A1 (en) 2016-02-04
CN106662114B (en) 2020-04-03
RU2689060C2 (en) 2019-05-23
IL250009A0 (en) 2017-03-30
EP3175119A1 (en) 2017-06-07
US10393133B2 (en) 2019-08-27
RU2017106527A3 (en) 2018-12-25
US20170218969A1 (en) 2017-08-03
KR20170039647A (en) 2017-04-11
PT3175119T (en) 2018-12-06
KR101879734B1 (en) 2018-07-18
BR112017000490A2 (en) 2017-11-07
DK3175119T3 (en) 2019-01-21
CN106662114A (en) 2017-05-10
TR201819488T4 (en) 2019-01-21
WO2016016223A1 (en) 2016-02-04
BR112017000490B1 (en) 2022-08-16
ES2702211T3 (en) 2019-02-27

Similar Documents

Publication Publication Date Title
EP3175119B1 (en) Flow conducting machine part
DE3100335C2 (en) Composite turbine wheel
EP3156591A1 (en) Turbine wheel for a radial turbine
DE1776015A1 (en) Turbine blade
DE1752430A1 (en) Process for the manufacture of turbine blades
EP3600731B1 (en) Composite part
EP2994643B1 (en) Pump arrangement and method for producing a containment shell for the pump arrangement
DE2734507C2 (en) Impeller element
EP2435721A1 (en) Shaft-hub connection having polygon profile
DE102016217093A1 (en) Coupling pin and turbine with coupling pin
EP3250396B1 (en) Solid wheel for a rail vehicle, and method for producing same
DE102012003476B4 (en) Method and tool for increasing the strength of load bearing cylindrical surfaces on crankshafts
DE102008020673A1 (en) Graded stator blade
DE102011011572A1 (en) Casting blade wheels of hydrodynamic component having partially lost casting mold, comprises forming casting mold on side of blade wheel facing the working chamber of hydrodynamic component, and forming casting mold as sand mold
EP2753477B1 (en) Bearing and force transmission component having cross-section transition
EP3856459B1 (en) Method of surface finishing of a component by flow grinding
EP3458224A1 (en) Method for manufacturing a piston rod unit and a hollow shaft
DE2322599A1 (en) Paddle wheel or propeller
DE102013013360A1 (en) Gear, gear arrangement and method for producing a gear
DE102011013081A1 (en) Rail vehicle wheel and rail vehicle
DE19708255B4 (en) Bearing point for an impeller
DE102021215028A1 (en) Process for optimizing the structure of a brake caliper
DE19540216C1 (en) Running wheel block assembly
EP3156643A1 (en) Method for producing control panels of a hydraulic machine
DE102015219331A1 (en) Radial impeller

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

17P Request for examination filed

Effective date: 20161209

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KSB SE & CO. KGAA

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F04D 29/02 20060101ALI20180528BHEP

Ipc: F04D 29/22 20060101AFI20180528BHEP

INTG Intention to grant announced

Effective date: 20180615

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015006489

Country of ref document: DE

Ref country code: AT

Ref legal event code: REF

Ref document number: 1054382

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181115

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3175119

Country of ref document: PT

Date of ref document: 20181206

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20181129

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20190107

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2702211

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20190227

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190117

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190217

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190117

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190118

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015006489

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

26N No opposition filed

Effective date: 20190718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190728

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190728

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20200622

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20200722

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20200720

Year of fee payment: 6

Ref country code: TR

Payment date: 20200727

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MT

Payment date: 20200720

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150728

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1054382

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200728

REG Reference to a national code

Ref country code: FI

Ref legal event code: MAE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20210801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220128

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210728

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240725

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20240723

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240723

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240724

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240801

Year of fee payment: 10

Ref country code: ES

Payment date: 20240801

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240729

Year of fee payment: 10