EP3175006A1 - Procédé de fabrication de tôles d'acier pour durcissement sous presse, et pièces obtenues par ce procédé - Google Patents
Procédé de fabrication de tôles d'acier pour durcissement sous presse, et pièces obtenues par ce procédéInfo
- Publication number
- EP3175006A1 EP3175006A1 EP15753989.1A EP15753989A EP3175006A1 EP 3175006 A1 EP3175006 A1 EP 3175006A1 EP 15753989 A EP15753989 A EP 15753989A EP 3175006 A1 EP3175006 A1 EP 3175006A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- sheet
- steel
- rolled
- weight
- press
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 96
- 239000010959 steel Substances 0.000 title claims abstract description 96
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 35
- 238000000034 method Methods 0.000 title claims description 36
- 230000008569 process Effects 0.000 title claims description 18
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 177
- 239000000203 mixture Substances 0.000 claims abstract description 61
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 61
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 36
- 239000011572 manganese Substances 0.000 claims abstract description 32
- 239000011651 chromium Substances 0.000 claims abstract description 25
- 239000010936 titanium Substances 0.000 claims abstract description 23
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 22
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 20
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 18
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 17
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 14
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052742 iron Inorganic materials 0.000 claims abstract description 14
- 239000010703 silicon Substances 0.000 claims abstract description 14
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 13
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 12
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 12
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000000126 substance Substances 0.000 claims abstract description 8
- 239000012535 impurity Substances 0.000 claims abstract description 7
- -1 and such that Substances 0.000 claims abstract description 4
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims abstract description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims description 39
- 239000001257 hydrogen Substances 0.000 claims description 39
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 37
- 229910052782 aluminium Inorganic materials 0.000 claims description 35
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 34
- 238000000576 coating method Methods 0.000 claims description 34
- 239000011248 coating agent Substances 0.000 claims description 33
- 238000010438 heat treatment Methods 0.000 claims description 24
- 229910000838 Al alloy Inorganic materials 0.000 claims description 17
- 229910000734 martensite Inorganic materials 0.000 claims description 17
- 230000009466 transformation Effects 0.000 claims description 15
- 239000011701 zinc Substances 0.000 claims description 13
- 229910052725 zinc Inorganic materials 0.000 claims description 13
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 12
- 239000000758 substrate Substances 0.000 claims description 12
- 229910045601 alloy Inorganic materials 0.000 claims description 9
- 239000000956 alloy Substances 0.000 claims description 9
- 229910001297 Zn alloy Inorganic materials 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 238000007598 dipping method Methods 0.000 claims description 7
- 238000009792 diffusion process Methods 0.000 claims description 5
- 230000002787 reinforcement Effects 0.000 claims description 5
- 239000001995 intermetallic alloy Substances 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 31
- 229910052748 manganese Inorganic materials 0.000 description 18
- 230000003111 delayed effect Effects 0.000 description 17
- 238000005336 cracking Methods 0.000 description 16
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 12
- 239000002344 surface layer Substances 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- 238000002360 preparation method Methods 0.000 description 10
- 238000001816 cooling Methods 0.000 description 9
- 239000010955 niobium Substances 0.000 description 9
- 238000005520 cutting process Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 238000005096 rolling process Methods 0.000 description 8
- 238000004804 winding Methods 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000005097 cold rolling Methods 0.000 description 6
- 229910052717 sulfur Inorganic materials 0.000 description 6
- 238000000137 annealing Methods 0.000 description 5
- 239000011575 calcium Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000005098 hot rolling Methods 0.000 description 5
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 4
- 229910052791 calcium Inorganic materials 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 229910052758 niobium Inorganic materials 0.000 description 4
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical group [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000003303 reheating Methods 0.000 description 4
- 239000011593 sulfur Substances 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- 229910001566 austenite Inorganic materials 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 239000003973 paint Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 239000011265 semifinished product Substances 0.000 description 3
- 238000004611 spectroscopical analysis Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 230000001627 detrimental effect Effects 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000002203 pretreatment Methods 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- FLDSMVTWEZKONL-AWEZNQCLSA-N 5,5-dimethyl-N-[(3S)-5-methyl-4-oxo-2,3-dihydro-1,5-benzoxazepin-3-yl]-1,4,7,8-tetrahydrooxepino[4,5-c]pyrazole-3-carboxamide Chemical compound CC1(CC2=C(NN=C2C(=O)N[C@@H]2C(N(C3=C(OC2)C=CC=C3)C)=O)CCO1)C FLDSMVTWEZKONL-AWEZNQCLSA-N 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- KJNJCRABCUHOJK-UHFFFAOYSA-N [Pb].[P] Chemical compound [Pb].[P] KJNJCRABCUHOJK-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- 230000003416 augmentation Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 238000010622 cold drawing Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 235000019362 perlite Nutrition 0.000 description 1
- 239000010451 perlite Substances 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000009997 thermal pre-treatment Methods 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/0068—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
- B21D22/02—Stamping using rigid devices or tools
- B21D22/022—Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/06—Surface hardening
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/62—Quenching devices
- C21D1/673—Quenching devices for die quenching
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/005—Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0273—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0278—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/12—Aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/261—After-treatment in a gas atmosphere, e.g. inert or reducing atmosphere
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
- C23C2/29—Cooling or quenching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F17/00—Multi-step processes for surface treatment of metallic material involving at least one process provided for in class C23 and at least one process covered by subclass C21D or C22F or class C25
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B3/00—Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
- B21B3/02—Rolling special iron alloys, e.g. stainless steel
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/009—Pearlite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
Definitions
- the invention relates to a method of manufacturing steel sheets intended to obtain parts with very high mechanical strength after curing in press.
- Pressurized hardening is known to heat steel flasks at a temperature sufficient to achieve austenitic transformation, and then to hot stamp the blanks by holding them within the tooling. of the press so as to obtain quenching microstructures.
- a cold pre-cold-drawing can be carried out beforehand on the blanks before heating and curing in press.
- These blanks may be pre-coated, for example aluminum alloy or zinc.
- the pre-coating diffuses with the steel substrate to form a compound providing protection of the surface of the workpiece against decarburization and scale formation. This compound is suitable for hot forming.
- the parts thus obtained are used in particular as structural elements in motor vehicles to provide anti-intrusion or energy absorption functions.
- the application of the bumper rails, door reinforcements or foot support or the longitudinal members can also be used for example for the manufacture of tools or parts of agricultural machines.
- publication EP 2 137 327 discloses a steel composition containing: 0.040% ⁇ C ⁇ 0.100%, 0.80% ⁇ Mn ⁇ 2.00%, Si ⁇ 0.30%, S ⁇ 0.005%, P ⁇ 0.030 %, 0.010% ⁇ AI ⁇ 0.070%, 0.015% ⁇ Nb ⁇ 0, 100%, 0.030% ⁇ Ti ⁇ 0.080%, N ⁇ 0.009%, Cu, Ni, Mo ⁇ 0.100%, Ca ⁇ 0.006%, which allows get a tensile strength Rm after press curing greater than 500 MPa.
- the presence of hardening and / or hardening elements in greater quantity may have consequences during the thermomechanical manufacturing process since a possible variation of certain parameters (end of rolling temperature, winding temperature, speed variation cooling in the width direction of the rolled strip) can lead to a variation of the mechanical properties within the sheet.
- a steel composition that is insensitive to a variation of certain manufacturing parameters is therefore sought so as to produce a sheet having a good homogeneity of mechanical properties.
- the present invention aims to solve all of the problems mentioned above by means of an economical manufacturing process.
- the subject of the invention is a rolled steel sheet, for press hardening, the chemical composition of which comprises the contents being by weight: 0.24% ⁇ C ⁇ 0.38%, 0.40% % ⁇ Mn ⁇ 3%, 0.10% ⁇ Si ⁇ 0.70%, 0.015% ⁇ AI ⁇ 0.070%, 0% ⁇ Cr ⁇ 2%, 0.25% ⁇ Ni ⁇ 2%, 0.015% ⁇ Ti ⁇ 0.10%, 0% ⁇ Nb ⁇ 0.060%, 0.0005% ⁇ B ⁇ 0.0040%, 0.003% ⁇ N ⁇ 0.010%, 0.0001% ⁇ S ⁇ 0.005%, 0.0001% ⁇ P ⁇ 0.025%, it being understood that the contents of titanium and of nitrogen satisfy: Ti / N> 3.42, and that the carbon contents,
- manganese, chromium and silicon satisfy: 2.6C H 1 1- ⁇ 1,1%, the
- the sheet optionally comprising one or more of the following: 0.05% ⁇ Mo ⁇ 0.65%, 0.001% ⁇ W ⁇ 0.30%, 0.0005% ⁇ Ca ⁇ 0.005%, the remainder being iron and unavoidable impurities from the production, the sheet containing a nickel content Ni SU r f at any point of the steel in the vicinity of the surface of said sheet to a depth ⁇ , such that: Ni surf > Ni n0 m, Ni n0 m designating the nominal nickel content of steel, and such that, Ni ma x denoting the maximum nickel content within
- the composition of the sheet comprises, by weight: 0.32% ⁇ C ⁇ 0.36%, 0.40% ⁇ Mn ⁇ 0.80%, 0.05% ⁇ Cr ⁇ 1, 20% .
- the composition of the sheet comprises, by weight: 0.24%
- the silicon content of the sheet is preferably such that: 0.50% ⁇ Si ⁇ 0.60%.
- the composition comprises, by weight: 0.30% ⁇ Cr ⁇ 0.50%.
- the composition of the sheet comprises, by weight: 0.30% ⁇ Ni
- the titanium content is preferably such that: 0.020% ⁇ Ti.
- composition of the sheet advantageously comprises: 0.020% ⁇ Ti ⁇ 0.040%.
- the composition comprises, by weight: 0.15% ⁇ Mo ⁇ 0.25%.
- the composition comprises, by weight, preferentially: 0.010% ⁇ Nb ⁇ 0.060%, and very preferably: 0.030% ⁇ Nb ⁇ 0.050%.
- the composition comprises, by weight: 0.50% ⁇ Mn ⁇ 0.70%.
- the microstructure of the steel sheet is ferrito-pearlitic.
- the steel sheet is a hot-rolled sheet.
- the sheet is a cold-rolled and annealed sheet.
- the steel sheet is pre-coated with a metal layer of aluminum or aluminum alloy or aluminum-based.
- the steel sheet is pre-coated with a metal layer of zinc or zinc alloy or zinc-based.
- the steel sheet is pre-coated with one or more layers of intermetallic alloys containing aluminum and iron, and optionally silicon, the pre-coating containing no aluminum free, phase ⁇ 5 of the type Fe 3 Si 2 Ali 2 , and 7- 6 of the type Fe 2 Si 2 Al 9 .
- the invention also relates to a part obtained by hardening in press of a steel sheet of composition according to any of the above modes, martensitic structure or martensito-bainitic.
- the press-hardened part contains a nominal nickel content Ni n0 m, and is characterized in that the nickel Ni content on f in the steel in the vicinity of the surface is greater than Ni n0 m over a depth ⁇ , and in that, Ni max denoting the maximum nickel content within ⁇
- Ni max and Ni n0 m being expressed in percentages by weight.
- the press-hardened part advantageously has a mechanical strength Rm greater than or equal to 1800 MPa.
- the press-hardened part is coated with an aluminum alloy or aluminum-based alloy, or with a zinc alloy or zinc-based alloy resulting from the diffusion between the steel substrate and the pre-coating, during the press hardening heat treatment.
- the subject of the invention is also a process for manufacturing a hot-rolled steel sheet, comprising the successive stages in which a semi-product of chemical composition is cast according to one of the modes presented above, and then it is heated to a temperature of between 1250 and 1300 ° C for a holding time at this temperature of between 20 and 45 minutes.
- the half-product is hot-rolled to a TFL end-of-flow temperature of between 825 and 950 ° C., to obtain a hot-rolled sheet, and then the hot-rolled sheet is rolled at a temperature of between 500 and 750. ° C, to obtain a hot rolled and wound, and then etch the oxide layer formed in the previous steps.
- the subject of the invention is also a process for manufacturing a cold-rolled and annealed sheet, characterized in that it comprises the successive steps according to which a hot-rolled, wound and pickled sheet, manufactured by the method described, is supplied. above and then cold rolled this hot rolled sheet, wound and stripped, to obtain a cold rolled sheet. This cold-rolled sheet is then annealed at a temperature between 740 and 820 ° C. to obtain a cold-rolled and annealed sheet.
- a rolled sheet manufactured according to one of the above processes is supplied, then a pre-coating is carried out continuously by dipping, the pre-coating being aluminum or an alloy aluminum or aluminum-based, or zinc or a zinc alloy or zinc-based.
- the subject of the invention is also a process for manufacturing a pre-coated and pre-alloyed sheet, according to which a rolled sheet is supplied according to one of the above processes, and then continuous pre-coating is carried out at quenched with an aluminum alloy or aluminum-based, and then a pre-heat treatment of the pre-coated sheet is carried out at a temperature ⁇ of between 620 and 680 ° C.
- the pre-coating for a holding period of between 6 and 15 hours , so that the pre-coating no longer contains free aluminum, of phase ⁇ 5 of the Fe 3 Si 2 Ali 2 type, and ⁇ 5 of the Fe 2 Si 2 Al 9 type , and so as not to provoke austenitic transformation in the steel substrate, the pre-treatment being carried out in an oven under an atmosphere of hydrogen and nitrogen.
- the subject of the invention is also a manufacturing method, of a press hardened part, comprising the successive steps according to which a sheet made by a method according to any one of the above modes is supplied, then said sheet is cut to obtain a blank, then optionally performs a deformation step by cold stamping the blank.
- the blank is heated to a temperature of between 810 and 950 ° C. to obtain a totally austenitic structure in the steel and then the blank is transferred into a press.
- the blank is hot stamped to obtain a part, then it is held in the press to obtain a hardening by martensitic transformation of the austenitic structure.
- FIG. 1 schematically shows the variation of the nickel content in the vicinity of the surface of press-hardened sheets or parts, and illustrates certain parameters defining the invention: Ni max , Ni SU ref, Ni n0 m, ⁇ .
- FIG. 2 shows the mechanical strength of hot stamped and press-hardened parts, as a function of a parameter combining the contents of C, Mn, Cr and Si, sheets.
- FIG. 3 shows the diffusible hydrogen content, measured on hot stamped pieces and hardened in press, as a function of a parameter expressing the overall nickel content in the vicinity of the surface of the sheets.
- FIG. 4 shows the diffusible hydrogen content measured on hot-stamped and press-hardened parts, as a function of the nickel enrichment intensity in the surface layer of the sheets.
- Figure 5 shows the variation of the nickel content in the vicinity of the sheet surface of different compositions.
- Figure 6 shows the variation of the nickel content in the vicinity of the surface of sheets of identical composition, having undergone two modes of preparation of the surface before curing in press.
- FIG. 7 shows the variation of the diffusible hydrogen content as a function of the enrichment intensity of nickel in the surface layer, for sheets having undergone two modes of preparation of the surface before curing in press.
- FIGS 8 and 9 show the structures of hot-rolled sheet according to the invention.
- the thickness of the steel sheet used in the process according to the invention is preferably between 0.5 and 4 mm, thickness range used in particular in the manufacture of structural parts or reinforcement for the automotive industry. . This can be obtained by hot rolling or subsequent cold rolling and annealing. This thickness range is suitable for industrial press hardening tools, especially hot stamping presses.
- the steel contains the following elements, the composition being expressed by weight: a carbon content of between 0.24 and 0.38%.
- This element plays a major role in the quenchability and the mechanical strength obtained after the cooling following the austenitization treatment. Below a content of 0.24% by weight, the mechanical strength level of 1800 MPa can not be reached after hardening by press-hardening, without additional addition of expensive elements. Beyond a content of 0.38% by weight, the risk of delayed cracking is increased, and the ductile / brittle transition temperature, measured from tests of Charpy-type notched bending, becomes greater than -40. ° C, which reflects an excessive decrease in toughness.
- a carbon content of between 0.32% and 0.36% by weight makes it possible to obtain the properties in question in a stable manner, maintaining weldability at a satisfactory level and limiting the production costs.
- the spot welding ability is particularly good when the carbon content is between 0.24 and 0.28%.
- the carbon content must also be defined in conjunction with the manganese, chromium and silicon contents.
- manganese plays a role on the quenchability: its content must be greater than 0.40% by weight to obtain a temperature Ms of beginning of transformation (austenite ⁇ martensite) during cooling in press, sufficiently low This increases the resistance Rm.
- Ms of beginning of transformation austenite ⁇ martensite
- Rm resistance of beginning of transformation
- the limitation of the manganese content to 3% makes it possible to obtain an increased resistance to delayed cracking. Indeed, manganese segregates at austenitic grain boundaries and increases the risk of intergranular rupture in the presence of hydrogen.
- the resistance to delayed cracking comes in particular from the presence of a surface layer enriched in nickel.
- the manganese content is preferably defined together with the carbon content, optionally in chromium: when the carbon content is between 0.32 and 0.36% by weight, a Mn content of between 0.40 and 0.80% and a chromium content of between 0.05 and 1.20%, allow simultaneous excellent resistance to delayed cracking thanks to the presence of a particularly effective nickel-enriched surface layer, and a very good aptitude for mechanical cutting of the sheets.
- the content of Mn is ideally between 0.50 and 0.70% to reconcile the achievement of a high mechanical strength and a resistance to delayed cracking,
- the spot welding ability is particularly good.
- the silicon content of the steel must be between 0.10 and 0.70% by weight: a silicon content greater than 0.10% makes it possible to obtain additional hardening and contributes to the deoxidation of the steel liquid. Its content must however be limited to 0.70% to avoid the excessive formation of surface oxides during the reheating and / or annealing steps, and not to damage the coating by dipping.
- the silicon content is preferably greater than 0.50% in order to avoid a softening of the fresh martensite, which can occur when the workpiece is held in the press tooling after the martensitic transformation.
- the silicon content is preferably less than 0.60% so that the transformation temperature at heating Ac3 (ferrite + perlite ⁇ austenite) is not too high. In the opposite case, this makes it necessary to heat the blanks before hot stamping at a higher temperature, which is detrimental to the productivity of the process.
- aluminum is an element promoting deoxidation in the liquid metal during the preparation, and the precipitation of nitrogen.
- its content is greater than 0.070%, coarse aluminates may be formed during processing which tend to reduce ductility.
- its content is between 0.020 and 0.060%.
- the chromium increases the quenchability and contributes to obtaining Rm at the desired level after curing in press. Beyond a content equal to 2% by weight, the effect of chromium on the homogeneity of the mechanical properties in the press-hardened part is saturated. In an amount preferably between 0.05 and 1, 20%, this element contributes to increasing the resistance.
- a chromium addition of between 0.30 and 0.50% makes it possible to obtain the desired effects on mechanical strength and delayed cracking, by limiting the costs of addition.
- the manganese content is sufficient, it is that is to say between 1, 50% and 3% Mn, it is considered that the addition of chromium is optional, the quenchability obtained with manganese being considered sufficient.
- FIG. 2 illustrates the mechanical strength of hardened blanks in press. for different steel compositions with varying contents of carbon (between 0.22 and 0.36%), manganese (between 0.4 and 2.6%) and chromium (between 0 and 1.3%) and silicon (between 0.1 and
- the data illustrated in Figure 2 relate to blanks heated in the austenitic range at a temperature of 850 or 900 ° C maintained at this temperature for 150s, then hot stamped and quenched by holding in the tool.
- the line 1 designates the lower envelope of the mechanical strength results.
- a minimum value of 1800 MPa is obtained when the parameter Pi is greater than 1.1%.
- the transformation temperature Ms during press cooling is less than 365 ° C.
- the fraction of martensite autorevenue under the effect of the maintenance in the press tooling, is extremely limited, so that the very high amount of unreturned martensite makes it possible to obtain a high value of mechanical strength.
- Titanium has a high affinity for nitrogen. Given the nitrogen content of the steels of the invention, the titanium content must be greater than or equal to 0.015% so as to obtain effective precipitation. In an amount greater than 0.020% by weight, the titanium protects the boron so that this element is in free form to play its full effect on the quenchability. Its content must be greater than 3.42N, this quantity being defined by the stoichiometry of the TiN precipitation, so as to avoid the presence of free nitrogen. Above 0.10%, however, there is a risk of forming in the liquid steel, coarse titanium nitrides which play a detrimental role on toughness. The titanium content is preferably between 0.020 and 0.040%, so as to form fine nitrides which limit the growth of the austenitic grains during the heating of the blanks before hot stamping.
- the niobium forms niobium carbonitrides which are also likely to limit the growth of the austenitic grains during the heating of the blanks. Its content must, however, be limited to 0.060% because of its ability to limit recrystallization during hot rolling, which increases the rolling forces and the difficulty of manufacture. The optimal effects are obtained when the niobium content is between 0.030 and 0.050%.
- boron greatly increases the quenchability. By diffusing at the austenitic grain boundaries, it exerts a favorable influence in preventing the intergranular segregation of phosphorus. Above 0.0040%, this effect is saturated.
- a nitrogen content greater than 0.003% makes it possible to obtain a precipitation of TiN, Nb (CN) or of (Ti, Nb) (CN) mentioned above in order to limit the growth of the austenitic grain.
- the content should however be limited to 0.010% so as to avoid the formation of coarse precipitates.
- the sheet may contain molybdenum in quantity between 0.05 and 0.65% by weight: this element forms a co-precipitation with niobium and titanium. These precipitates are very thermally stable, reinforcing the limitation of austenitic grain growth during heating. An optimal effect is obtained for a molybdenum content of between 0.15 and 0.25%.
- the steel may also comprise tungsten in an amount between 0.001 and 0.30% by weight. In the amounts indicated, this element increases the quenchability and curing ability through carbide formation.
- the steel can also contain calcium in a quantity between 0.0005 and 0.005%: by combining with oxygen and sulfur, calcium makes it possible to avoid the formation of large inclusions which are harmful to the ductility of the sheets or parts thus manufactured.
- the phosphorus content is between 0.001 and 0.025% by weight. In excessive content, this element segregates at the austenitic grain boundaries and increases the risk of delayed cracking by intergranular rupture.
- nickel is an important element of the invention: in fact, the inventors have demonstrated that this element, in an amount of between 0.25% and 2% by weight, very significantly reduces the sensitivity to delayed fracture when it is concentrated on the surface of the sheet or part in a specific form:
- FIG. 1 diagrammatically illustrates certain characteristic parameters of the invention: the variation of the nickel content of a steel in the vicinity of the surface of the sheet, for which a surface enrichment has been noted.
- the steel has a nominal nickel content Ni n0 m- Thanks to the manufacturing process to be described later, the steel sheet is enriched with nickel in the vicinity of its surface, up to a maximum Ni max .
- This maximum Ni max may be on the surface of the sheet, as shown in Figure 1, or slightly below this surface, a few tens or hundreds of nanometers below it, without this changing the following description and the results of the invention.
- the variation of the nickel content may not be linear as shown schematically in FIG. 1, but adopt a characteristic profile resulting from diffusion phenomena.
- the definition of characteristic parameters that follows, is also valid for this type of profile.
- the nickel-enriched surface zone is therefore characterized by the fact that at any point the local nickel content Ni SU r f of the steel is such that: Ni surf > Ni n0 m. This enriched zone has a depth ⁇ .
- This first parameter characterizes the overall nickel content in the enriched layer ⁇ and corresponds to the hatched area shown in FIG.
- the second parameter P 3 is defined by:
- P 3 This second parameter characterizes the average nickel concentration gradient, that is to say the intensity of the enrichment within the ⁇ layer.
- the inventors have sought the conditions which make it possible to avoid the delayed cracking of parts with very high mechanical strength hardened under press. It will be recalled that this process is characterized by the fact that blanks of steel, bare or pre-coated with a metal coating (aluminum or aluminum alloy, zinc or zinc alloy), are heated. here being then transferred to a hot stamping press. During the heating step, the water vapor possibly present in a smaller quantity in the oven is adsorbed on the surface of the blank. Hydrogen from the dissociation of water can be dissolved in the austenitic steel substrate at high temperature. The introduction of hydrogen is thus facilitated by an oven atmosphere with a high dew point, a high austenitization temperature and a long holding time.
- a metal coating aluminum or aluminum alloy, zinc or zinc alloy
- the solubility of hydrogen decreases very strongly.
- the alloying coating between the optional metal pre-coating and the steel substrate forms a substantially water-proof barrier to hydrogen desorption.
- a significant diffusible hydrogen content will therefore increase the risk of delayed cracking for a martensitic steel substrate.
- the inventors have therefore sought means for lowering the diffusible hydrogen content hot stamped part at a very low level, that is to say less than or equal to 0.16ppm. This level makes it possible to guarantee the absence of cracking on a part subjected to bending stress under a stress equal to that of the elastic limit of the material, for a duration of 150 hours.
- FIG. 3 established for parts cured in a resistance press Rm of between 1800 and 2140 MPa, indicates that the content of diffusible hydrogen depends on the parameter P 2 above.
- a diffusible hydrogen content of less than 0.16 ppm is obtained when ⁇ max + Ni " om ⁇ ⁇ ( ⁇ )> 0.6, the depth ⁇ being expressed in micrometres, the contents Ni max and Ni n0 m being expressed in percentages in weight.
- the rest of the composition of the steel consists of iron and unavoidable impurities resulting from the elaboration.
- This semi-finished product can be in the form of a slab of thickness typically between 200 and 250 mm, or a slab whose typical thickness is of the order of a few tens of millimeters, or in any other suitable form. This is brought to a temperature between 1250 and 1300 ° C and maintained in this temperature range for a period of between 20 and 45 minutes.
- an oxide layer substantially rich in iron and manganese is formed for the composition of the steel of the invention, in which the solubility of the nickel is very high. low, the nickel remains in metallic form.
- this oxide layer In parallel with the growth of this oxide layer, nickel is diffused towards the interface between the oxide and the steel substrate thus causing the appearance of a layer enriched in nickel in the steel.
- the thickness of this layer depends in particular on the nominal nickel content of the steel, and the temperature and maintenance conditions defined above.
- this enriched initial layer simultaneously undergoes:
- a production cycle of a hot-rolled sheet typically comprises:
- the inventors have demonstrated that a variation of the parameters of hot rolling and winding, in the ranges defined by the invention, did not modify the mechanical characteristics significantly, so that the process was tolerant to a certain variation. within these ranges, without any significant impact on the resulting products.
- the hot-rolled sheet is etched by a method known per se, which only removes the oxide layer, so that the The nickel-enriched layer is located near the surface of the sheet.
- cold rolling is carried out with a suitable reduction ratio, for example between 30 and 70%, then annealing at a temperature typically between 740 and 820 ° C. so as to obtain a recrystallization of the hardened metal.
- the sheet may be cooled so as to obtain an uncoated sheet, or continuously coated by passing through a dip bath, according to methods known per se, and finally cooled.
- the step which had a predominant influence on the characteristics of the nickel-enriched layer on the final sheet was the step of heating the slabs, in a specific range of temperature and hold time.
- the annealing cycle of the cold rolled sheet, whether or not a coating step has only a secondary influence on the characteristics of the nickel-enriched surface layer.
- the characteristics of the enrichment nickel of this layer are substantially identical on a hot-rolled sheet and on a sheet which has further undergone a cold rolling and annealing, whether or not it includes a pre-coating step dipping.
- This pre-coating may be aluminum, an aluminum alloy (comprising more than 50% aluminum) or an aluminum-based alloy (of which aluminum is the majority constituent).
- This pre-coating is advantageously an aluminum-silicon alloy comprising by weight 7-15% of silicon, 2 to 4% of iron, optionally between 15 and 30 ppm of calcium, the remainder being aluminum and unavoidable impurities resulting from the preparation.
- the pre-coating may also be an aluminum alloy containing 40-45% Zn, 3-10% Fe, 1 -3% Si, the balance being aluminum and unavoidable impurities resulting from the elaboration.
- the pre-coating may be an aluminum alloy coating, which is in the form of intermetallic compounds comprising iron.
- This type of pre-coating is obtained by performing a heat pre-treatment of the sheet pre-coated with aluminum or aluminum alloy. This thermal pretreatment is carried out at a temperature ⁇ - 1 during a holding period ti, so that the pre-coating no longer contains free aluminum, of phase ⁇ 5 of the Fe 3 Si 2 Ali 2 type, and ⁇ Q of the type Fe 2 Si 2 Al 9, and so as not to cause austenitic transformation in the steel substrate.
- the temperature ⁇ is between 620 and 680 ° C.
- is between 6 and 15 hours.
- This type of pre-coating then makes it possible to heat the blanks, before the hot-stamping step, with a much faster speed, which makes it possible to minimize the holding time at high temperature during the heating of the blanks. that is to say to reduce the amount of hydrogen adsorbed during this blank heating step.
- the pre-coating may be galvanized, or galvanized-alloy, that is to say having an amount of iron of between 7-12% after heat treatment of alloying realized with the parade immediately after the bath of galvanization.
- the pre-coating may also be composed of a superposition of deposited layers in successive steps, at least one of the layers may be aluminum or an aluminum alloy.
- the sheets are cut or punched by methods known per se, so as to obtain blanks whose geometry is related to the final geometry of the stamped part and cured in press.
- the cutting of sheets comprising in particular between 0.32 and 0.36% C, between 0.40 and 0.80% Mn, between 0.05 and 1, 20% Cr, is particularly easy because of the low mechanical resistance at this stage, associated with a ferrito-pearlitic microstructure.
- These blanks are heated to a temperature between 810 and 950 ° C so as to completely austenitize the steel substrate, hot-stamped, and then held in the press tool so as to obtain a martensitic transformation.
- the degree of deformation applied during the hot stamping step may be greater or lesser depending on whether a cold deformation step (stamping) was carried out before or after the austenitization treatment.
- the inventors have demonstrated that the thermal heating cycles for press curing, which consist of heating the blanks in the vicinity of the transformation temperature Ac3, and then keeping them at this temperature for a few minutes, did not cause any problems. substantial modification of the nickel-enriched layer.
- the characteristics of the nickel-enriched surface layer are similar on the sheet before curing in press, and on the part after curing in press, obtained from this sheet.
- compositions of the invention which have a lower Ac3 transformation temperature than conventional steel compositions, it is possible to austenitize the blanks with reduced holding-time temperatures, which makes it possible to reduce the possible adsorption. hydrogen in the heating furnaces.
- the following embodiments will illustrate advantages conferred by the invention.
- the cooling rate measured between 750 ° C and 400 ° C is between 180 and 210 ° C / s.
- the tensile strength Rm was measured on the resulting martensitic structural parts using ISO 12.5 x 50 tensile test pieces.
- thermodisorption in this method, a test sample is heated up to 900 ° C. an infrared heating oven under a stream of nitrogen. The hydrogen content from desorption is measured as a function of temperature. The diffusible hydrogen is quantified by all of the desorbed hydrogen between room temperature and 360 ° C.
- Examples AD show that a composition containing in particular a C content of between 0.32 and 0.36%, an Mn content of between 0.40 and 0.80% Mn, a chromium content of between 0.05 and and 1, 20%, in combination with a nominal Ni content of 0.30-1, 20% and a specific enriched layer in this element, make it possible to obtain a resistance Rm greater than 1950 MPa and a diffusible hydrogen content at a value less than or equal to 0.16ppm.
- test A shows that the Ni content can be lowered between 0.30 and 0.50%, which makes it possible to obtain satisfactory results in terms of mechanical strength and resistance to delayed cracking, in economic conditions of manufacture.
- Examples E-F show that satisfactory results can be obtained with a composition containing in particular a carbon content of between 0.24 and 0.28% and a manganese content of between
- Examples G-K have a diffusible hydrogen content greater than 0.25 ppm, because the steels do not have a nickel-enriched surface layer.
- Examples JK correspond to steel compositions whose parameter P t is less than 1.1%, so that a resistance Rm of 1800 MPa is not obtained after curing in press.
- the variation of the nickel content in FIG. function of the depth measured with respect to the surface of the sheet, measured by SDL technique.
- the marks next to each curve correspond to the reference of the steel.
- the sheets according to the invention have an enrichment in the surface layer.
- a variation in the chromium content of 0.51 to 1.05% makes it possible to preserve an enrichment in the superficial layer. satisfying the conditions of the invention.
- Hot-rolled steel sheet was supplied with the composition corresponding to that of the steels E and F above, that is to say respectively containing a Ni content of 1% and 1.49%, manufactured in the conditions mentioned above.
- FIG. 6 illustrating the nickel content measured by Luminescent Discharge Spectroscopy from the surface for the sheet F, shows that in the preparation method X, a nickel-enriched surface layer is present (curve marked X), whereas the grinding removed the oxide layer and the nickel-enriched underlayer (curve marked Y)
- FIG. 7 shows the diffusible hydrogen content as a function of the steel composition and the method of preparation.
- the reference EX is for example relative to the sheet and hot stamped part made from the steel composition E, with the method of preparation X.
- FIGS. 8 and 9 show the respective microstructures of the hot rolled sheets of the T and V tests. It can be seen that the ferrito-pearlitic microstructures are very similar for both conditions.
- the hot-rolled sheets were continuously etched to remove only the oxide layer formed in the previous steps, leaving the nickel-enriched layer in place.
- the sheets were then rolled to a target thickness of 1.4mm. Whatever the hot rolling conditions, the desired thickness could be achieved, the rolling forces being similar for the different conditions.
- Blanks obtained from the test conditions T in Table 4 above were then cut, heated under different conditions and then hot stamped. In all cases, the rapid cooling thus obtained imparts a martensitic structure to the steel substrate. Some parts have also undergone a thermal cycle of paint baking. Temperature
- the invention allows the manufacture of hardened parts in press, simultaneously offering a very high mechanical strength and resistance to delayed cracking. These parts will be used profitably as structural parts or reinforcement in the field of automotive construction.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Articles (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL15753989T PL3175006T3 (pl) | 2014-07-30 | 2015-07-29 | Sposób wytwarzania blach stalowych do utwardzania w prasie oraz elementy otrzymywane z pomocą tego sposobu |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/IB2014/001428 WO2016016676A1 (fr) | 2014-07-30 | 2014-07-30 | Procédé de fabrication de tôles d'acier, pour durcissement sous presse, et pièces obtenues par ce procédé |
PCT/IB2015/001273 WO2016016707A1 (fr) | 2014-07-30 | 2015-07-29 | Procédé de fabrication de tôles d'acier pour durcissement sous presse, et pièces obtenues par ce procédé |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3175006A1 true EP3175006A1 (fr) | 2017-06-07 |
EP3175006B1 EP3175006B1 (fr) | 2019-03-06 |
Family
ID=51610400
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15753989.1A Active EP3175006B1 (fr) | 2014-07-30 | 2015-07-29 | Procédé de fabrication de tôles d'acier pour durcissement sous presse, et pièces obtenues par ce procédé |
Country Status (16)
Country | Link |
---|---|
US (3) | US20170253941A1 (fr) |
EP (1) | EP3175006B1 (fr) |
JP (2) | JP6580123B2 (fr) |
KR (2) | KR101820273B1 (fr) |
CN (1) | CN106574348B (fr) |
BR (1) | BR112017007999B1 (fr) |
CA (3) | CA2956537C (fr) |
CO (1) | CO2017001981A2 (fr) |
ES (1) | ES2732319T3 (fr) |
HU (1) | HUE043636T2 (fr) |
MX (1) | MX2017001374A (fr) |
PL (1) | PL3175006T3 (fr) |
RU (1) | RU2667189C2 (fr) |
TR (1) | TR201908459T4 (fr) |
UA (1) | UA118298C2 (fr) |
WO (2) | WO2016016676A1 (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021084302A1 (fr) * | 2019-10-30 | 2021-05-06 | Arcelormittal | Procédé d'emboutissage à chaud |
WO2021084377A1 (fr) * | 2019-10-30 | 2021-05-06 | Arcelormittal | Procédé d'emboutissage à chaud |
WO2024149909A1 (fr) | 2023-02-17 | 2024-07-18 | Thyssenkrupp Steel Europe Ag | Acier à haute résistance à la traction ayant une résistance améliorée à la fragilisation par l'hydrogène |
WO2024170670A1 (fr) | 2023-02-17 | 2024-08-22 | Thyssenkrupp Steel Europe Ag | Acier à haute résistance à la traction ayant une résistance améliorée à la fragilisation par l'hydrogène |
Families Citing this family (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8999380B2 (en) | 2012-04-02 | 2015-04-07 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of biologics and proteins associated with human disease |
GB2546809B (en) * | 2016-02-01 | 2018-05-09 | Rolls Royce Plc | Low cobalt hard facing alloy |
GB2546808B (en) * | 2016-02-01 | 2018-09-12 | Rolls Royce Plc | Low cobalt hard facing alloy |
WO2018096387A1 (fr) * | 2016-11-24 | 2018-05-31 | Arcelormittal | Tôle d'acier laminé à chaud et revêtu pour estampage à chaud, pièce d'acier revêtu estampé à chaud, et ses procédés de fabrication |
US20180147614A1 (en) * | 2016-11-28 | 2018-05-31 | Ak Steel Properties, Inc. | Press hardened steel with increased toughness and method for production |
WO2018160462A1 (fr) | 2017-03-01 | 2018-09-07 | Ak Steel Properties, Inc. | Acier trempé à la presse à résistance extrêmement élevée |
WO2018203097A1 (fr) | 2017-05-05 | 2018-11-08 | Arcelormittal | Procédé de fabrication d'une tôle d'acier recuite après galvanisation résistant à la fragilisation par métal liquide |
KR102045622B1 (ko) | 2017-06-01 | 2019-11-15 | 주식회사 포스코 | 수소지연파괴 저항성이 우수한 열간 프레스 성형 부재용 강판 및 그 제조방법 |
WO2018220412A1 (fr) * | 2017-06-01 | 2018-12-06 | Arcelormittal | Procede de fabrication de pieces d'acier a haute resistance mecanique et ductilite amelioree, et pieces obtenues par ce procede |
DE102017218704A1 (de) * | 2017-10-19 | 2019-04-25 | Thyssenkrupp Ag | Verfahren zur Herstellung eines mit einem metallischen, vor Korrosion schützenden Überzug versehenen Stahlbauteils |
MX2020004927A (es) | 2017-11-13 | 2020-08-27 | Jfe Steel Corp | Miembro de lamina de acero prensado en caliente y metodo para la produccion del mismo. |
KR20200066350A (ko) | 2017-11-13 | 2020-06-09 | 제이에프이 스틸 가부시키가이샤 | 열간 프레스 강판 부재 및 그 제조 방법 |
WO2019102255A1 (fr) | 2017-11-24 | 2019-05-31 | Arcelormittal | Procédé de fabrication d'une ébauche en acier soudée avec fourniture d'un fil de remplissage ayant une teneur en carbone définie, ébauche soudée associée, procédé de fabrication d'une pièce soudée avec pièce en acier formée par pressage à chaud et refroidie et pièce associée |
US11535916B2 (en) | 2017-12-05 | 2022-12-27 | Nippon Steel Corporation | Aluminum-based plated steel sheet, method of manufacturing aluminum-based plated steel sheet, and method of manufacturing component for vehicle |
CN111511942B (zh) * | 2017-12-05 | 2021-12-28 | 日本制铁株式会社 | 镀铝系钢板、镀铝系钢板的制造方法及汽车用部件的制造方法 |
US11174542B2 (en) | 2018-02-20 | 2021-11-16 | Ford Motor Company | High volume manufacturing method for forming high strength aluminum parts |
WO2019171157A1 (fr) * | 2018-03-09 | 2019-09-12 | Arcelormittal | Procédé de fabrication de pièces durcies à la presse à productivité élevée |
CN111630198B (zh) * | 2018-03-29 | 2022-06-24 | 日本制铁株式会社 | 热冲压用钢板 |
WO2020070545A1 (fr) * | 2018-10-04 | 2020-04-09 | Arcelormittal | Procédé d'emboutissage à chaud |
EP3868904A4 (fr) * | 2018-10-19 | 2022-05-11 | Nippon Steel Corporation | Tôle d'acier laminée à chaud et son procédé de fabrication |
EP3868903A4 (fr) * | 2018-10-19 | 2022-05-18 | Nippon Steel Corporation | Tôle d'acier laminée à chaud et procédé pour la fabrication de celle-ci |
ES2967098T3 (es) * | 2018-12-18 | 2024-04-26 | Arcelormittal | Pieza endurecida a presión con alta resistencia a la fractura retardada y un procedimiento de fabricación de la misma |
EP3854900B1 (fr) * | 2019-02-05 | 2023-05-03 | Nippon Steel Corporation | Membre en acier, tôle d'acier et leurs procédés de production |
US11427882B2 (en) | 2019-02-05 | 2022-08-30 | Nippon Steel Corporation | Coated steel member, coated steel sheet, and methods for manufacturing same |
US20220186339A1 (en) * | 2019-02-21 | 2022-06-16 | Jfe Steel Corporation | Hot-pressed member, cold-rolled steel sheet for hot pressing, and manufacturing methods therefor |
US11149327B2 (en) * | 2019-05-24 | 2021-10-19 | voestalpine Automotive Components Cartersville Inc. | Method and device for heating a steel blank for hardening purposes |
CN110257702B (zh) * | 2019-06-24 | 2021-04-27 | 鞍钢股份有限公司 | 一种热冲压成形用钢及其热成形方法 |
WO2021009807A1 (fr) * | 2019-07-12 | 2021-01-21 | ヒノデホールディングス株式会社 | Acier coulé résistant à la chaleur à base d'austénite et composant d'échappement |
WO2021009543A1 (fr) * | 2019-07-16 | 2021-01-21 | Arcelormittal | Procédé de production de pièce en acier et pièce en acier |
WO2021084304A1 (fr) * | 2019-10-30 | 2021-05-06 | Arcelormittal | Procédé d'emboutissage à chaud |
WO2021084305A1 (fr) * | 2019-10-30 | 2021-05-06 | Arcelormittal | Procédé d'emboutissage à chaud |
CN111168329A (zh) * | 2020-01-15 | 2020-05-19 | 蚌埠市荣盛金属制品有限公司 | 一种用于玻璃切割机控制箱金属外壳的制作方法 |
EP4151770A4 (fr) | 2020-05-13 | 2023-10-04 | Nippon Steel Corporation | Élément d'estampage à chaud |
CN115398035B (zh) | 2020-05-13 | 2024-03-29 | 日本制铁株式会社 | 热压用钢板 |
WO2021230311A1 (fr) | 2020-05-13 | 2021-11-18 | 日本製鉄株式会社 | Tôle d'acier pour estampage à chaud |
CN111809122B (zh) * | 2020-05-29 | 2021-07-27 | 浙江吉森金属科技有限公司 | 一种模压不锈钢板及其热处理方法 |
WO2022050501A1 (fr) * | 2020-09-01 | 2022-03-10 | 현대제철 주식회사 | Matériau d'estampage à chaud et son procédé de fabrication |
CN112442635B (zh) * | 2020-11-13 | 2022-03-29 | 唐山钢铁集团高强汽车板有限公司 | 高性能800MPa级以上低合金高强钢板及其制备方法 |
WO2022234319A1 (fr) * | 2021-05-04 | 2022-11-10 | Arcelormittal | Tôle d'acier et pièce en acier trempé sous presse à haute résistance et leur procédé de fabrication |
WO2022234320A1 (fr) * | 2021-05-04 | 2022-11-10 | Arcelormittal | Tôle d'acier et pièce en acier trempé sous presse à haute résistance et leur procédé de fabrication |
KR20220158157A (ko) * | 2021-05-21 | 2022-11-30 | 주식회사 포스코 | 내수소취성이 우수한 열간성형용 도금강판, 열간성형 부재 및 이들의 제조방법 |
WO2024209234A1 (fr) * | 2023-04-05 | 2024-10-10 | Arcelormittal | Tôle d'acier laminée à froid et traitée thermiquement et son procédé de fabrication |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3375205B2 (ja) * | 1994-08-29 | 2003-02-10 | 日本鋼管株式会社 | 耐遅れ破壊特性に優れたクラッド鋼線 |
FR2780984B1 (fr) | 1998-07-09 | 2001-06-22 | Lorraine Laminage | Tole d'acier laminee a chaud et a froid revetue et comportant une tres haute resistance apres traitement thermique |
US7998289B2 (en) * | 2002-09-13 | 2011-08-16 | Daimler Ag | Press-hardened part and method for the production thereof |
JP3993831B2 (ja) * | 2002-11-14 | 2007-10-17 | 新日本製鐵株式会社 | 熱間成形加工後の硬化能および衝撃特性に優れた鋼板およびその使用方法 |
JP4500124B2 (ja) * | 2004-07-23 | 2010-07-14 | 新日本製鐵株式会社 | ホットプレス用めっき鋼板の製造方法 |
EP1749895A1 (fr) | 2005-08-04 | 2007-02-07 | ARCELOR France | Procédé de fabrication de tôles d'acier présentant une haute résistance et une excellente ductilité, et tôles ainsi produites |
EP1767659A1 (fr) * | 2005-09-21 | 2007-03-28 | ARCELOR France | Procédé de fabrication d'une pièce en acier de microstructure multi-phasée |
LT2086755T (lt) * | 2006-10-30 | 2017-12-27 | Arcelormittal | Padengtos plieno juostos, jų gaminimo būdas, ruošinių iš jų štampavimo būdas, ir jų pagaminti štampuoti gaminiai ir pramonės gaminiai, kurių sudėtyje yra minėti gaminiai |
WO2008110670A1 (fr) | 2007-03-14 | 2008-09-18 | Arcelormittal France | Acier pour formage a chaud ou trempe sous outil a ductilite amelioree |
ES2784014T3 (es) * | 2007-04-11 | 2020-09-21 | Nippon Steel Corp | Chapa de acero de alta resistencia revestida por inmersión en caliente para uso en el conformado por prensado, excelente en tenacidad a baja temperatura y método de producción de la misma |
JP5023871B2 (ja) * | 2007-08-03 | 2012-09-12 | 住友金属工業株式会社 | 熱間プレス鋼板部材の製造方法 |
RU2362815C2 (ru) * | 2007-09-12 | 2009-07-27 | Ооо "Карат" | Низколегированная сталь и изделие, выполненное из нее |
EP2123786A1 (fr) * | 2008-05-21 | 2009-11-25 | ArcelorMittal France | Procédé de fabrication de tôles d'aciers dual phase laminées à froid à trés haute résistance et tôles ainsi produites |
WO2012127125A1 (fr) * | 2011-03-24 | 2012-09-27 | Arcelormittal Investigatión Y Desarrollo Sl | Tôle d'acier laminée à chaud et procédé de fabrication associé |
UA112771C2 (uk) * | 2011-05-10 | 2016-10-25 | Арселормітталь Інвестігасьон І Десароло Сл | Сталевий лист з високою механічною міцністю, пластичністю і формованістю, спосіб виготовлення та застосування таких листів |
WO2012153008A1 (fr) | 2011-05-12 | 2012-11-15 | Arcelormittal Investigación Y Desarrollo Sl | Procede de fabrication d'acier martensitique a tres haute resistance et tole ou piece ainsi obtenue |
JP5811020B2 (ja) * | 2012-04-25 | 2015-11-11 | 新日鐵住金株式会社 | 高い靱性と高い加工性および成形性とを有し水素脆化起因による遅れ破壊特性に優れた高強度鋼板 |
JP5835622B2 (ja) * | 2012-07-06 | 2015-12-24 | 新日鐵住金株式会社 | 熱間プレス鋼板部材およびその製造方法ならびに熱間プレス用鋼板 |
-
2014
- 2014-07-30 WO PCT/IB2014/001428 patent/WO2016016676A1/fr active Application Filing
-
2015
- 2015-07-29 KR KR1020177005391A patent/KR101820273B1/ko active Application Filing
- 2015-07-29 PL PL15753989T patent/PL3175006T3/pl unknown
- 2015-07-29 HU HUE15753989A patent/HUE043636T2/hu unknown
- 2015-07-29 KR KR1020177034083A patent/KR102129162B1/ko active IP Right Grant
- 2015-07-29 ES ES15753989T patent/ES2732319T3/es active Active
- 2015-07-29 US US15/500,090 patent/US20170253941A1/en not_active Abandoned
- 2015-07-29 CA CA2956537A patent/CA2956537C/fr active Active
- 2015-07-29 CN CN201580041638.2A patent/CN106574348B/zh active Active
- 2015-07-29 MX MX2017001374A patent/MX2017001374A/es active IP Right Grant
- 2015-07-29 BR BR112017007999-2A patent/BR112017007999B1/pt active IP Right Grant
- 2015-07-29 UA UAA201701941A patent/UA118298C2/uk unknown
- 2015-07-29 WO PCT/IB2015/001273 patent/WO2016016707A1/fr active Application Filing
- 2015-07-29 JP JP2017504820A patent/JP6580123B2/ja active Active
- 2015-07-29 TR TR2019/08459T patent/TR201908459T4/tr unknown
- 2015-07-29 EP EP15753989.1A patent/EP3175006B1/fr active Active
- 2015-07-29 RU RU2017106289A patent/RU2667189C2/ru active
- 2015-07-29 CA CA3071136A patent/CA3071136C/fr active Active
- 2015-07-29 CA CA3071152A patent/CA3071152C/fr active Active
-
2017
- 2017-02-28 CO CONC2017/0001981A patent/CO2017001981A2/es unknown
- 2017-05-31 US US15/610,084 patent/US9845518B2/en active Active
-
2018
- 2018-08-24 JP JP2018157240A patent/JP6698128B2/ja active Active
-
2021
- 2021-03-30 US US17/217,770 patent/US20210214816A1/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021084302A1 (fr) * | 2019-10-30 | 2021-05-06 | Arcelormittal | Procédé d'emboutissage à chaud |
WO2021084376A1 (fr) * | 2019-10-30 | 2021-05-06 | Arcelormittal | Procédé de durcissement à la presse |
WO2021084377A1 (fr) * | 2019-10-30 | 2021-05-06 | Arcelormittal | Procédé d'emboutissage à chaud |
WO2021084303A1 (fr) * | 2019-10-30 | 2021-05-06 | Arcelormittal | Procédé d'emboutissage à chaud |
WO2024149909A1 (fr) | 2023-02-17 | 2024-07-18 | Thyssenkrupp Steel Europe Ag | Acier à haute résistance à la traction ayant une résistance améliorée à la fragilisation par l'hydrogène |
WO2024170670A1 (fr) | 2023-02-17 | 2024-08-22 | Thyssenkrupp Steel Europe Ag | Acier à haute résistance à la traction ayant une résistance améliorée à la fragilisation par l'hydrogène |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3175006B1 (fr) | Procédé de fabrication de tôles d'acier pour durcissement sous presse, et pièces obtenues par ce procédé | |
EP3783116B1 (fr) | Tôles prerevêtues permettant la fabrication de pieces d'acier revêtues et durcies a la presse | |
CA2680623C (fr) | Acier pour formage a chaud ou trempe sous outil, a ductilite amelioree | |
EP2171112B1 (fr) | Procede de fabrication de tôles d'acier a hautes caracteristiques de resistance et de ductilite, et tôles ainsi produites | |
CA3065036C (fr) | Procede de fabrication de pieces d'acier a haute resistance mecanique et ductilite amelioree, et pieces obtenues par ce procede | |
EP3146083B1 (fr) | Tôle d'acier doublement recuite a hautes caracteristiques mecaniques de resistance et de ductilite, procede de fabrication et utilisation de telles tôles | |
JP6086162B2 (ja) | 高強度溶融亜鉛めっき鋼板の製造方法 | |
WO2017182896A1 (fr) | Procédé de fabrication d'une pièce en acier inoxydable martensitique à partir d'une tôle | |
AU2006217983A1 (en) | Method for steel strip coating and a steel strip provided with said coating | |
EP2753723A1 (fr) | Acier lamine durcissant par precipitation apres formage a chaud et/ou trempe sous outil a tres haute resistance et ductilite et son procede de fabrication | |
WO2011104443A1 (fr) | Procédé de fabrication d'une pièce a partir d'une tôle revêtue d'aluminium ou d'alliage d'aluminium | |
KR102330604B1 (ko) | 전기저항 점용접부의 피로강도가 우수한 아연도금강판 및 그 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
17P | Request for examination filed |
Effective date: 20170228 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C23C 2/06 20060101ALI20180905BHEP Ipc: C21D 8/00 20060101ALI20180905BHEP Ipc: C23C 2/40 20060101ALI20180905BHEP Ipc: C21D 1/18 20060101ALI20180905BHEP Ipc: C21D 9/46 20060101AFI20180905BHEP Ipc: C23C 2/28 20060101ALI20180905BHEP Ipc: C22C 38/06 20060101ALI20180905BHEP Ipc: C22C 38/00 20060101ALI20180905BHEP Ipc: C22C 38/02 20060101ALI20180905BHEP Ipc: C23C 2/12 20060101ALI20180905BHEP Ipc: C21D 1/673 20060101ALI20180905BHEP Ipc: C21D 1/06 20060101ALI20180905BHEP Ipc: C22C 38/04 20060101ALI20180905BHEP Ipc: C21D 9/00 20060101ALI20180905BHEP Ipc: C21D 8/02 20060101ALI20180905BHEP |
|
INTG | Intention to grant announced |
Effective date: 20180919 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: BEAUVAIS, MARTIN Inventor name: PUERTA VELASQUEZ, JUAN DAVID Inventor name: VINCI, CATHERINE Inventor name: COBO, SEBASTIAN |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1104628 Country of ref document: AT Kind code of ref document: T Effective date: 20190315 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602015025901 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: RO Ref legal event code: EPE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190606 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190306 |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E043636 Country of ref document: HU |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190306 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190306 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190607 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190606 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190306 |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: T3 Ref document number: E 31177 Country of ref document: SK |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190306 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190706 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190306 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2732319 Country of ref document: ES Kind code of ref document: T3 Effective date: 20191121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190306 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602015025901 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190706 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190306 |
|
26N | No opposition filed |
Effective date: 20191209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190306 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190306 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190729 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190731 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190306 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190306 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190306 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: UEP Ref document number: 1104628 Country of ref document: AT Kind code of ref document: T Effective date: 20190306 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230427 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20230626 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240620 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240619 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20240625 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SK Payment date: 20240627 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240619 Year of fee payment: 10 Ref country code: FI Payment date: 20240619 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20240625 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20240619 Year of fee payment: 10 Ref country code: BE Payment date: 20240619 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240619 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240619 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240802 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240620 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: HU Payment date: 20240709 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: RO Payment date: 20240701 Year of fee payment: 10 |