EP3173698B1 - Adaptive vibration damper - Google Patents
Adaptive vibration damper Download PDFInfo
- Publication number
- EP3173698B1 EP3173698B1 EP16197252.6A EP16197252A EP3173698B1 EP 3173698 B1 EP3173698 B1 EP 3173698B1 EP 16197252 A EP16197252 A EP 16197252A EP 3173698 B1 EP3173698 B1 EP 3173698B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- combustion
- volume
- helmholtz resonator
- gas guide
- resonator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003044 adaptive effect Effects 0.000 title description 3
- 238000002485 combustion reaction Methods 0.000 claims description 32
- 239000007789 gas Substances 0.000 claims description 19
- 230000010355 oscillation Effects 0.000 claims description 14
- 239000000567 combustion gas Substances 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 10
- 230000009466 transformation Effects 0.000 claims description 2
- 238000001514 detection method Methods 0.000 claims 2
- 239000002737 fuel gas Substances 0.000 description 9
- 230000008859 change Effects 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 238000013016 damping Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000005662 electromechanics Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000000246 remedial effect Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23M—CASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
- F23M20/00—Details of combustion chambers, not otherwise provided for, e.g. means for storing heat from flames
- F23M20/005—Noise absorbing means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D14/00—Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
- F23D14/02—Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D14/00—Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
- F23D14/46—Details, e.g. noise reduction means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/18—Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D2210/00—Noise abatement
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/18—Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel
- F23N2005/181—Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel using detectors sensitive to rate of flow of air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/18—Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel
- F23N2005/185—Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel using detectors sensitive to rate of flow of fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2223/00—Signal processing; Details thereof
- F23N2223/04—Memory
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2233/00—Ventilators
- F23N2233/06—Ventilators at the air intake
- F23N2233/08—Ventilators at the air intake with variable speed
Definitions
- the invention relates to an adaptive vibration damper.
- the phenomenon is in DE 102004013584 A1 and the VDI progress report no. 364 of the series 6 for energy technology.
- Self-excited vibration (SES) triggers interactions between the temporal release of the flame and the combustion chamber acoustics.
- Condition for the emergence of the described phenomenon is the temporal power release of the flame at the time of a positive sound pressure amplitude (Rayleigh criterion). Remedies are off DE 19730254 C2 known.
- the problem is usually solved by designing the geometry of the air and fuel gas-air mixture-carrying parts so that the system acoustically is detuned and therefore as possible no self-excited vibrations occur.
- additional components are used in the air or exhaust gas path, which have the function to detune the system and thus to prevent or dampen self-excited vibrations.
- intake pipes which increase the pressure loss upstream of the flame or a Helmholtz resonator are used.
- Helmholtz resonator Depending on the geometrical characteristics of the Helmholtz resonator, it has a certain natural frequency at which it acts. Vibrations of the combustion system are damped or completely prevented.
- Another possibility is to change the excess air or the heat load in an electronic fuel gas-air composite when vibrations occur.
- the object of the invention is a device and a method for operating the same, with which self-excited vibrations can be turned off in vollvormischenden combustion systems.
- the invention is preferably used in electronic fuel gas / air systems in which a mass flow sensor measuring a pressure difference between airway and fuel gas path is used.
- Self-excited vibrations can not only be detected with the aid of the mass flow sensor, but can also be determined at a sufficiently high sampling rate with respect to the frequency of the oscillation.
- the measured sensor signal is converted into the frequency domain.
- the invention also relates to a Helmholtz resonator which can be adapted in terms of its frequency of action.
- the frequency at which a Helmholtz resonator acts is defined by its geometric dimensioning. Influencing factors are, on the one hand, the damping volume in the actual body, and, on the other hand, the oscillating volume in the connection channel.
- the change in a side length of the Helmholtz resonator can be adjusted by the position the bottom of the cylinder along the symmetry axis by means of suitable electromechanics (eg Stellmotor) can be changed. From the determined Frequency of the oscillation occurred, the required side length of the cylinder is calculated and changed so that adjusts this page length.
- suitable electromechanics eg Stellmotor
- the invention protects a control system that uses a sensor to determine the frequency of a self-excited oscillation and adjusts an adaptive Helmholtz resonator so that the oscillation is turned off.
- the system requires a gas control valve, a controllable blower and a burner.
- FIG. 1 shows a cylindrical Helmholtz resonator 2 with two cylindrical volumes.
- the first cylindrical Helmholz resonator volume 17 has a length l 1 and a radius r 1 .
- the first cylindrical Helmholz resonator volume 17 is open on both sides and opens on one side in the second cylindrical Helmholz resonator volume 18, which has a length l 2 and a radius r 2 .
- f 0 c 2 ⁇ A 1 V 2 l 1 + 2 ⁇ ⁇ l 1
- c is the speed of sound
- V2 r 2 2 * ⁇ * l 2
- 2 * ⁇ l 1 the orifice correction here: ⁇ l 1 ⁇ ⁇ 4 ⁇ r 1 ).
- FIG. 2 shows a combustion system according to the invention with a burner 11 and a blower 10 in a fresh gas guide 14.
- the blower 10 sucks combustion air and supplies it to the burner 11.
- a fuel gas duct 15 opens into a venturi 3 in the fresh gas duct 14, in which a fuel gas control valve 9 is arranged in front of the mouth.
- a mass flow sensor 1 is arranged between the fuel gas guide 15 and the fresh gas guide 14 and serves to adapt the fuel gas-air mixture.
- Upstream of the Venturi 3 is an off FIG. 1 known cylindrical Helmholtz resonator 2 connected to the fresh gas guide 14. The connection of the Helmholtz resonator 2 must take place at a previously determined active site / active position.
- the Helmholtz resonator 2 has a displaceable resonator cylinder 4 in the second cylindrical Helmholz resonator volume 18, so that its volume can be continuously adjusted.
- a linear stepping motor 5 which can move via a drive shaft 6 in the form of a threaded rod and an internal thread 7 in the resonator cylinder 4 latter.
- An ultrasonic or Laserwegmesser 8 serves to detect the current length of the second cylindrical Helmholz resonator volume 18.
- the resonator 4 closes gas-tight to the side walls of the second cylindrical Helmholz resonator volume 18 from. The necessary seal can be performed for example as a lip seal or ring seal.
- a controller 16 is connected to the blower 10, the fuel gas control valve 9, the mass flow sensor 1, the linear stepping motor 5 and the ultrasonic or Laserwegmesser 8.
- N values of the sensor signal are recorded at a sampling rate f.
- the sampling rate must be twice as high as the expected maximum frequency.
- the number N of the values must correspond to a power of two.
- FFT Fast Fourier Transform
- the frequency with the highest deflection is set as the frequency of the self-excited oscillation and further processed. Subsequently, the required height of the resonator cylinder is determined from this determined frequency of the combustion oscillation.
- f 0 c 2 ⁇ A 1 V 2 l 1 + 2 ⁇ ⁇ l 1
- the controller 16 controls the linear stepper motor 5 such that the resonator cylinder 4 is shifted to the target position until the second cylindrical Helmholtz resonator volume 18 has this calculated length l 2 .
- the ultrasonic or Laserwegmesser 8 serves the control 16 for control. Alternatively, starting from a stop position, a previously calculated number of steps can be moved. This results from the required path, the pitch of the thread and the number of steps per revolution of the motor.
- an incremental encoder can be used to determine the position of the stepper motor and thus the height of the cylinder. This step losses can be compensated.
- FIG. 3 shows an alternative embodiment.
- the Helmholtz resonator 2 is arranged between the blower 10 and burner 11.
- a motor 12, which is connected to the control 16, moves via a threaded rod 13 the resonator cylinder 4 within the second cylindrical Helmholz resonator volume 18.
- the threaded rod 13 is connected to the resonator cylinder 4 rigid or via a movable bearing.
- a determination of the length of the second cylindrical Helmholz resonator volume 18 can be dispensed with by starting from an extreme position of the resonator cylinder 4 while the combustion oscillations occur, which is still detected by the mass flow sensor 1, in the direction of the other extreme position is until the self-excited combustion oscillations are turned off, and thus the correct side length is reached.
- the vehicle will first be moved back to the start position, in order to continue to move until the correct height of the cylinder is reached.
- the necessary position is determined from the mass flow sensor signal as described above. Then the calculated position is approached to a defined distance, and then slowly continue to move until the vibrations are turned off.
- a critical frequency is known even before the start of the incineration plant, it can be stored in the memory and the corresponding size of the Helmholtz resonator can already be set before the start of the burner in order to prevent the vibrations from occurring.
- the setting of the Helmholtz resonator remains after switching off the incinerator in the last set position and is available unchanged at the next start.
- a system may each have a self-excited swing at two different frequencies.
- the problem could be solved by using two Helmholtz resonators, which are tuned in their geometric properties to one of the two frequencies.
- the Helmholtz resonator can be adapted so that it is able to cover both frequencies. If there is more than one frequency in the burner operating range, the control system can always set the resonator to the frequency that has just or previously been measured in the operating point just approached.
- the frequencies and the operating points are stored in a memory. When changing from one operating point to another, it is read in the memory whether there is another critical frequency to the new operating point than that to which the resonator is currently set. If this is the case, the resonator geometry is already adapted during the modulation as described above.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fluidized-Bed Combustion And Resonant Combustion (AREA)
Description
Die Erfindung betrifft einen adaptiven Schwingungsdämpfer.The invention relates to an adaptive vibration damper.
Bei der Verbrennung von Brenngas in einem vollvormischenden Verbrennungssystem können in bestimmten Betriebspunkten unerwünschte selbsterregte Verbrennungsschwingungen auftreten. Diese sind zumeist mit für den Betreiber unangenehmen Geräuschen verbunden und können unter bestimmten Umständen zu einer Beschädigung der Anlage führen.In the combustion of fuel gas in a fully premixing combustion system undesirable self-excited combustion oscillations may occur at certain operating points. These are usually associated with unpleasant noises for the operator and can in certain circumstances lead to damage to the system.
Das Phänomen ist in
Gemäß dem Stand der Technik wird das Problem zumeist dadurch gelöst, die Geometrie der Luft- und Brenngas-Luft-Gemisch-führenden Teile so zu gestalten, dass das System akustisch verstimmt wird und somit möglichst keine selbsterregten Schwingungen auftreten. Dabei werden beispielsweise zusätzliche Bauteile im Luft- oder Abgasweg eingesetzt, die die Funktion haben, das System zu verstimmen und somit selbsterregte Schwingungen zu verhindern oder zu dämpfen. Hierzu dienen beispielsweise Ansaugrohre, welche den Druckverlust stromauf der Flamme erhöhen oder ein Helmholtz-Resonator. Abhängig von den geometrischen Kenngrößen des Helmholtz-Resonators hat dieser eine bestimmte Eigenfrequenz, bei der er wirkt. Schwingungen des Verbrennungssystems werden gedämpft oder gänzlich verhindert.According to the prior art, the problem is usually solved by designing the geometry of the air and fuel gas-air mixture-carrying parts so that the system acoustically is detuned and therefore as possible no self-excited vibrations occur. In this case, for example, additional components are used in the air or exhaust gas path, which have the function to detune the system and thus to prevent or dampen self-excited vibrations. For this purpose, for example, intake pipes which increase the pressure loss upstream of the flame or a Helmholtz resonator are used. Depending on the geometrical characteristics of the Helmholtz resonator, it has a certain natural frequency at which it acts. Vibrations of the combustion system are damped or completely prevented.
Eine weitere Möglichkeit besteht darin, bei einem elektronischen Brenngas-Luft-Verbund beim Auftreten von Schwingungen den Luftüberschuss oder die Wärmebelastung zu verändern.Another possibility is to change the excess air or the heat load in an electronic fuel gas-air composite when vibrations occur.
Aus
Aufgabe der Erfindung ist eine Vorrichtung und ein Verfahren zum Betrieben derselben, mit denen selbsterregte Schwingungen bei vollvormischenden Verbrennungssystemen abgestellt werden können.The object of the invention is a device and a method for operating the same, with which self-excited vibrations can be turned off in vollvormischenden combustion systems.
Erfindungsgemäß wird dies durch einen individuell anpassbaren Helmholtz-Resonator gemäß Anspruch 1 und ein Verfahren gemäß Anspruch 4 gelöst. Vorteilhafte Ausgestaltungen ergeben sich durch die Merkmale der abhängigen Ansprüche.According to the invention this is achieved by an individually adaptable Helmholtz resonator according to
Die Erfindung findet bevorzugt bei elektronischen Brenngas-Luft-Systemen Anwendung, bei denen ein Massenstromsensor, der eine Druckdifferenz zwischen Luftweg und Brenngasweg misst, verwendet wird. Mit Hilfe des Massenstromsensors können selbsterregte Schwingungen nicht nur detektiert, sondern bei ausreichend hoher Abtastrate auch bezüglich der Frequenz der Schwingung bestimmt werden. Mittels einer Fourier-Transformation wird das gemessene Sensorsignal in den Frequenzbereich überführt.The invention is preferably used in electronic fuel gas / air systems in which a mass flow sensor measuring a pressure difference between airway and fuel gas path is used. Self-excited vibrations can not only be detected with the aid of the mass flow sensor, but can also be determined at a sufficiently high sampling rate with respect to the frequency of the oscillation. By means of a Fourier transformation, the measured sensor signal is converted into the frequency domain.
Gegenstand der Erfindung ist zudem ein in seiner Wirkfrequenz anpassbarer Helmholtz-Resonator. Die Frequenz, bei der ein Helmholtz-Resonator wirkt, wird durch seine geometrische Dimensionierung definiert. Einflussgrößen sind zum einen das dämpfende Volumen im eigentlichen Körper, als zum anderen auch das schwingende Volumen im Anbindungskanal.The invention also relates to a Helmholtz resonator which can be adapted in terms of its frequency of action. The frequency at which a Helmholtz resonator acts is defined by its geometric dimensioning. Influencing factors are, on the one hand, the damping volume in the actual body, and, on the other hand, the oscillating volume in the connection channel.
So kann beispielsweise bei einem geschlossenen Zylinder, der über einen entsprechend ausgelegten Anbindungskanal mit dem Verbrennungssystem an der entsprechenden vorher zu ermittelnden Wirkstelle verbunden oder an dieser Position in das Verbrennungssystem integriert ist, die Veränderung einer Seitenlänge des Helmholtz-Resonators dadurch eingestellt werden, dass die Position des Bodens des Zylinders entlang der Symmetrieachse mittels geeigneter Elektromechanik (z.B.Stellmotor) verändert werden kann. Aus der ermittelten Frequenz der aufgetretenen Schwingung wird die erforderliche Seitenlänge des Zylinders ausgerechnet und so verändert, dass sich diese Seitenlänge einstellt.Thus, for example, in the case of a closed cylinder, which is connected via a correspondingly designed connection channel to the combustion system at the corresponding previously determined active site or integrated into the combustion system at this position, the change in a side length of the Helmholtz resonator can be adjusted by the position the bottom of the cylinder along the symmetry axis by means of suitable electromechanics (eg Stellmotor) can be changed. From the determined Frequency of the oscillation occurred, the required side length of the cylinder is calculated and changed so that adjusts this page length.
Die Erfindung schützt ein Regelungssystem, das mithilfe eines Sensors die Frequenz einer selbsterregten Schwingung ermittelt und einen anpassbaren Helmholtz-Resonator derart einstellt, dass die Schwingung abgestellt wird. Das System benötigt dafür ein Gasregelventil, ein regelbares Gebläse und einem Brenner.The invention protects a control system that uses a sensor to determine the frequency of a self-excited oscillation and adjusts an adaptive Helmholtz resonator so that the oscillation is turned off. The system requires a gas control valve, a controllable blower and a burner.
Die Erfindung wird nun anhand der Figuren erläutert. Hierbei zeigen:
-
einen Helmholtz-Resonator,Figur 1 -
eine erste Ausführungsform eines Verbrennungssystems mit einem erfindungsgemäßen Helmholtz-Resonator undFigur 2 -
eine zweite Ausführungsform eines Verbrennungssystems mit einem erfindungsgemäßen Helmholtz-Resonator.Figur 3
-
FIG. 1 a Helmholtz resonator, -
FIG. 2 a first embodiment of a combustion system with a Helmholtz resonator according to the invention and -
FIG. 3 a second embodiment of a combustion system with a Helmholtz resonator according to the invention.
Die Eigenfrequenz f 0 dieses Helmholtz-Resonators lässt sich wie folgt bestimmen.
Hierbei sind c die Schallgeschwindigkeit, A1 die Querschnittsöffnung des Eingangs des Helmholtz-Resonators (hier: A1 = r1 2 * π), V2 das Volumen des zweiten Helmholz-Resonator-Volumens 18 (hier: V2 = r2 2 * π *l2) und 2 *Δl1 die Mündungskorrektur (hier:
Treten beim Betrieb der Anlage selbsterregte Verbrennungsschwingungen auf, so führt dies zu einer Rückkopplung auf den Verbrennungs- und Brenngasfluss, so dass der Massenstromsensor 1 die Schwingungen erfasst. Da in der Praxis das Signal des Massenstromsensors 1 stets von diversen Frequenzen überlagert wird, müssen für die Notwendigkeit zur Durchführung von Abstellmaßnahmen Schwellwerte für die Intensität der Schwingungen überschritten werden.If self-excited combustion oscillations occur during operation of the system, this leads to a feedback to the combustion and fuel gas flow, so that the
Zuerst werden N Werte des Sensorsignals mit einer Abtastrate f aufgezeichnet. Die Abtastrate muss dabei doppelt so hoch sein wie die erwartete maximale Frequenz. Um eine schnelle Fourier-Transformation-Analyse anwenden zu können, muss die Anzahl N der Werte einer Zweierpotenz entsprechen.First, N values of the sensor signal are recorded at a sampling rate f. The sampling rate must be twice as high as the expected maximum frequency. In order to be able to apply a fast Fourier transform analysis, the number N of the values must correspond to a power of two.
Der Algorithmus für eine schnelle Fourier-Transformation (FFT) basiert auf der diskreten Fourier-Transformation. Für N reele Abtastwerte werden N /2 Frequenz- bzw. Spektrallinien F(iωk ) berechnet:
Die Frequenz mit der höchsten Auslenkung wird als Frequenz der selbsterregten Schwingung festgelegt und weiter verarbeitet. Anschließend wird aus dieser ermittelten Frequenz der Verbrennungsschwingung die erforderliche Höhe des Resonatorzylinders ermittelt. Für die Eigenfrequenz f 0 des Helmholtz-Resonators gilt (unter Bezug auf
Es ergibt sich für l 2 :
Die Regelung 16 steuert den Linearschrittmotor 5 derart an, dass der Resonatorzylinder 4 in die Zielposition verschoben wird, bis das zweite zylindrische Helmholz-Resonator-Volumen 18 über diese berechnete Länge l2 verfügt. Die Ultraschall- oder Laserwegmesser 8 dient hierbei der Regelung 16 zur Kontrolle. Alternativ kann auch aus einer Anschlagposition startend eine vorher errechnete Anzahl von Schritten verfahren werden. Diese ergibt sich aus dem erforderlichen Weg, der Steigung des Gewindes und der Schrittzahl pro Umdrehung des Motors.The
In einer weiteren Ausführung kann ein Inkrementaldrehgeber verwendet werden, um die Position des Schrittmotors und damit die Höhe des Zylinders zu bestimmen. Damit können Schrittverluste ausgeglichen werden.In another embodiment, an incremental encoder can be used to determine the position of the stepper motor and thus the height of the cylinder. This step losses can be compensated.
Treten später erneut Schwingungen auf, wird erneut zuerst in die Startposition gefahren, um anschließen wieder zu verfahren bis die korrekte Höhe des Zylinders erreicht ist.If vibrations occur again later, the vehicle will first be moved back to the start position, in order to continue to move until the correct height of the cylinder is reached.
Möglich ist auch eine Kombination der beiden beschriebenen Verfahren: Die notwendige Position wird aus dem Massenstromsensorsignal wie oben beschrieben ermittelt. Dann wird die errechnete Position bis auf einen definierten Abstand angefahren, um dann langsam weiter zu verfahren, bis die Schwingungen abgestellt sind.Also possible is a combination of the two described methods: The necessary position is determined from the mass flow sensor signal as described above. Then the calculated position is approached to a defined distance, and then slowly continue to move until the vibrations are turned off.
Ist eine kritische Frequenz bereits vor dem Start der Verbrennungsanlage bekannt, so kann diese im Speicher abgelegt werden und bereits vor dem Start des Brenners die entsprechende Größe des Helmholtz-Resonators eingestellt werden, um ein Auftreten der Schwingungen zu verhindern. Im einfachsten Fall verbleibt die Einstellung des Helmholtz-Resonators nach dem Abschalten der Verbrennungsanlage in der zuletzt eingestellten Position und steht beim nächsten Start unverändert zur Verfügung.If a critical frequency is known even before the start of the incineration plant, it can be stored in the memory and the corresponding size of the Helmholtz resonator can already be set before the start of the burner in order to prevent the vibrations from occurring. In the simplest case, the setting of the Helmholtz resonator remains after switching off the incinerator in the last set position and is available unchanged at the next start.
Ein System kann bei zwei unterschiedlichen Frequenzen jeweils ein selbsterregtes Schwingen aufweisen. In diesem Fallbeispiel gibt es beispielsweise eine Schwingungsneigung bei 40Hz und bei 160Hz. Nach dem Stand der Technik könnte das Problem dadurch gelöst werden, dass zwei Helmholtz-Resonatoren eingesetzt werden, die in ihren geometrischen Eigenschaften auf jeweils eine der beiden Frequenzen abgestimmt sind. Erfindungsgemäß kann der Helmholtz-Resonator anpasst werden, so dass er in der Lage ist, beide Frequenzen abzudecken. Gibt es mehr als eine Frequenz in dem Brennerbetriebsbereich, so kann das Regelungssystem den Resonator immer auf die Frequenz einstellen, die gerade oder vorher schon einmal in dem gerade angefahrenen Betriebspunkt gemessen wurde. Die Frequenzen und die Betriebspunkte werden in einem Speicher abgelegt. Beim Wechsel von einem Betriebspunkt in einen anderen wird im Speicher ausgelesen, ob es zu dem neuen Betriebspunkt eine andere kritische Frequenz gibt, als die, auf die der Resonator gerade eingestellt ist. Ist dies der Fall, so wird die Resonatorgeometrie bereits während der Modulation wie oben beschrieben angepasst.A system may each have a self-excited swing at two different frequencies. In this case example, for example, there is a tendency to oscillate at 40Hz and at 160Hz. According to the prior art, the problem could be solved by using two Helmholtz resonators, which are tuned in their geometric properties to one of the two frequencies. According to the invention, the Helmholtz resonator can be adapted so that it is able to cover both frequencies. If there is more than one frequency in the burner operating range, the control system can always set the resonator to the frequency that has just or previously been measured in the operating point just approached. The frequencies and the operating points are stored in a memory. When changing from one operating point to another, it is read in the memory whether there is another critical frequency to the new operating point than that to which the resonator is currently set. If this is the case, the resonator geometry is already adapted during the modulation as described above.
- 11
- MassenstromsensorMass flow sensor
- 22
- Helmholtz-ResonatorHelmholtz resonator
- 33
- Venturiventuri
- 44
- ResonatorzylinderResonatorzylinder
- 55
- LinearschrittmotorLinear Stepper Motor
- 66
- Antriebswelledrive shaft
- 77
- Innengewindeinner thread
- 88th
- Ultraschall- oder LaserwegmessersUltrasonic or Laser Wegmessers
- 99
- GasregelventilGas control valve
- 1010
- Gebläsefan
- 1111
- Brennerburner
- 1212
- Motorengine
- 1313
- Gewindestangethreaded rod
- 1414
- FrischgasführungFresh gas management
- 1515
- BrenngasführungFuel gas management
- 1616
- Regelungregulation
- 1717
- erstes zylindrisches Helmholz-Resonator-Volumenfirst cylindrical Helmholz resonator volume
- 1818
- zweites zylindrisches Helmholz-Resonator-Volumensecond cylindrical Helmholz resonator volume
Claims (8)
- Combustion system having a burner (11), a fan (10) for conveying combustion air and optionally combustion gas to this burner (11), a fresh gas guide (14) in which the fan (14) is arranged, a combustion gas guide (15) in which a gas control valve (9) is arranged, wherein the combustion gas guide (15) opens in the fresh gas guide (14) or directly in the burner (11), and a Helmholtz resonator (2) is connected to the fresh gas guide (14), wherein the Helmholtz resonator (2) has a drive (4, 5, 6, 7) for adjusting the volume of the Helmholtz resonator (2), characterised in that a volume or mass flow sensor (1) is arranged in the combustion gas guide (15) and/or fresh gas guide (14) or between the combustion gas guide (15) and fresh gas guide (14), wherein the volume or mass flow sensor (1) is connected to a controller (16), and the controller (16) is connected to the drive (5, 6, 7) for adjusting the volume of the Helmholtz resonator (2).
- Combustion system according to claim 1, characterised in that the Helmholtz resonator (2) has means for detecting at least one parameter of the Helmholtz resonator (2).
- Combustion system according to any of the preceding claims, characterised in that the fan (10) has a speed detection unit.
- Method for operating a combustion system having a burner (11), a fan (10) for conveying combustion air and optionally combustion gas to this burner (11), a fresh gas guide (14) in which the fan (14) is arranged, a combustion gas guide (15) in which a gas control valve (9) is arranged, wherein the combustion gas guide (15) opens in the fresh gas guide (14) or directly in the burner (11), a volume or mass flow sensor (1) is arranged in the combustion gas guide (15) and/or fresh gas guide (14) and/or the fan (10) has a speed detection unit, a Helmholtz resonator (2) is connected to the fresh gas guide (14), wherein the Helmholtz resonator (2) has a drive (4, 5, 6, 7) for adjusting the volume of the Helmholtz resonator (2), characterised in that by means of the volume or mass flow sensor (1) self-excited combustion oscillations and optionally the frequency thereof are identified and subsequently the volume of the Helmholtz resonator (2) is adjusted in accordance with the established frequency and/or the drive (4, 5, 6, 7) for adjusting the volume of the Helmholtz resonator (2) is moved until the self-excited combustion oscillations stop.
- Method for operating a combustion system according to claim 4, characterised in that the frequency is established by means of Fourier transformation.
- Method for operating a combustion system according to claim 4, characterised in that when self-excited combustion oscillations occur the drive (4, 5, 6, 7) for adjusting the volume of the Helmholtz resonator (2) is continuously moved from one extreme position in the direction of another extreme position.
- Method for operating a combustion system according to any one of claims 4 to 6, characterised in that first the drive (4, 5, 6, 7) for adjusting the volume of the Helmholtz resonator (2) roughly adjusts the calculated volume and subsequently the drive (4, 5, 6, 7) for adjusting the volume of the Helmholtz resonator (2) is moved until the self-excited combustion oscillations stop.
- Method for operating a combustion system according to any one of claims 4 to 7, characterised in that results of earlier adjustment methods are stored in a store and, before the combustion system is operated, the volume of the Helmholtz resonator (2) is adjusted accordingly.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102015222587.9A DE102015222587A1 (en) | 2015-11-16 | 2015-11-16 | Adaptive vibration damper |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3173698A1 EP3173698A1 (en) | 2017-05-31 |
EP3173698B1 true EP3173698B1 (en) | 2019-01-02 |
Family
ID=57226878
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16197252.6A Active EP3173698B1 (en) | 2015-11-16 | 2016-11-04 | Adaptive vibration damper |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3173698B1 (en) |
CN (1) | CN106705037B (en) |
DE (1) | DE102015222587A1 (en) |
ES (1) | ES2716654T3 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110857774B (en) * | 2018-08-24 | 2021-08-20 | 宁波方太厨具有限公司 | Noise-reducing fire grate |
DE102019119186A1 (en) * | 2019-01-29 | 2020-07-30 | Vaillant Gmbh | Method and device for controlling a fuel gas-air mixture in a heater |
CN114483219A (en) * | 2020-10-26 | 2022-05-13 | 中国航发商用航空发动机有限责任公司 | Vortex reducer, vortex reducing pipe and method for arranging vortex reducing pipe |
DE102022107984A1 (en) | 2022-04-04 | 2023-10-05 | Ebm-Papst Landshut Gmbh | Gas control valve for electronic pressure control on a gas boiler |
DE102022116819A1 (en) * | 2022-07-06 | 2024-01-11 | Vaillant Gmbh | Heater, method for equipping a heater with a check valve, silencer and use of a check valve and a control line |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3025794C2 (en) * | 1980-07-08 | 1984-09-20 | Didier-Werke Ag, 6200 Wiesbaden | Device for suppressing vibrations that occur in fired industrial furnaces, in particular wind heaters |
DE3517859A1 (en) * | 1985-05-17 | 1986-11-20 | Wolf Klimatechnik GmbH, 8302 Mainburg | Heating boiler |
JPS63172817A (en) * | 1987-01-13 | 1988-07-16 | Rinnai Corp | Forced blasting type combustion apparatus |
CH692095A5 (en) * | 1995-03-23 | 2002-01-31 | Vaillant Gmbh | Central heating, fuel burning heater |
DE19730254C2 (en) | 1996-07-09 | 2002-01-03 | Vaillant Joh Gmbh & Co | Fuel-heated heater |
DE10058688B4 (en) * | 2000-11-25 | 2011-08-11 | Alstom Technology Ltd. | Damper arrangement for the reduction of combustion chamber pulsations |
US6792907B1 (en) * | 2003-03-04 | 2004-09-21 | Visteon Global Technologies, Inc. | Helmholtz resonator |
DE102004013584B4 (en) | 2003-05-10 | 2016-01-21 | IfTA Ingenieurbüro für Thermoakustik GmbH | Method for investigating the frequency-dependent vibration behavior of a burner |
US7337877B2 (en) * | 2004-03-12 | 2008-03-04 | Visteon Global Technologies, Inc. | Variable geometry resonator for acoustic control |
DE102005052881A1 (en) * | 2005-11-07 | 2007-05-10 | Robert Bosch Gmbh | Heating device e.g. oil-heated heating device, has helmholtz-resonator connected to opening as noise damping device and having resonator chamber formed with controller to change acoustic mass and/or volume of resonator chamber |
DE102005062284B4 (en) * | 2005-12-24 | 2019-02-28 | Ansaldo Energia Ip Uk Limited | Combustion chamber for a gas turbine |
DE102008007967B4 (en) * | 2008-02-07 | 2022-11-10 | Eberspächer Climate Control Systems GmbH | Fuel-operated vehicle heater and exhaust system for a fuel-operated vehicle heater |
AT506228B1 (en) * | 2008-03-25 | 2009-07-15 | Vaillant Austria Gmbh | METHOD FOR OPERATING A HEATER |
GB201108917D0 (en) * | 2011-05-27 | 2011-07-13 | Rolls Royce Plc | A Hydraulic damping apparatus |
DE102012019409A1 (en) * | 2012-10-04 | 2014-04-10 | August Brötje GmbH | Device for generating heat from at least one energy carrier medium with the addition of air |
DE102013110489B4 (en) * | 2013-09-23 | 2022-05-12 | Rational Aktiengesellschaft | Cooking device and method for detecting the degree of contamination of a filter unit |
CN104566477B (en) * | 2014-12-31 | 2019-02-01 | 北京华清燃气轮机与煤气化联合循环工程技术有限公司 | Frequency modulation device and term durability gas turbine flame barrel for term durability gas turbine flame barrel |
-
2015
- 2015-11-16 DE DE102015222587.9A patent/DE102015222587A1/en not_active Withdrawn
-
2016
- 2016-10-26 CN CN201610948234.8A patent/CN106705037B/en active Active
- 2016-11-04 EP EP16197252.6A patent/EP3173698B1/en active Active
- 2016-11-04 ES ES16197252T patent/ES2716654T3/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
CN106705037B (en) | 2020-01-17 |
CN106705037A (en) | 2017-05-24 |
ES2716654T3 (en) | 2019-06-13 |
DE102015222587A1 (en) | 2017-05-18 |
EP3173698A1 (en) | 2017-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3173698B1 (en) | Adaptive vibration damper | |
EP3849740B1 (en) | Method and device for laser cutting a tailored blank from a continuously conveyed sheet strip | |
DE102005059530B4 (en) | Command generation device | |
DE102010052261A1 (en) | Method and device for calibrating a torque measuring device | |
EP2855096A1 (en) | Percussion unit | |
EP3024684B1 (en) | Haptic motor-vehicle accelerator pedal having an elastically coupled actuator and method and control unit for controlling said accelerator pedal | |
WO2001029819A1 (en) | Method and device for actively influencing the intake noise of an internal combustion engine | |
DE102012018209B4 (en) | Measuring method and device for determining an iron loss in a laminated core for an electrical machine | |
EP3464862B1 (en) | Method and apparatus for calibrating an actuator system | |
EP3171510A1 (en) | Method for operating an electromotor | |
WO2000008416A1 (en) | Device for determining a rotational speed | |
DE19938319A1 (en) | Method and circuit for controlling RPMs in an electric motor driving a ventilating fan in a gaseous hot spa has a power input for an electrical energy source and a signal input for a sensor to detect noise, vibration or its mechanical load. | |
DE102004021645A1 (en) | Machine component test unit has contactless actuators with contactless sensors including actuator air gap magnetic flux sensors | |
DE102008052261A1 (en) | Exhaust gas turbocharger for internal combustion engine, particularly motor vehicle, has shaft, which rotates compressor and turbine wheel | |
EP2030588B1 (en) | Oscillation sensor for a motor and for a dental hand tool and method for calculating and evaluating the oscillation | |
DE102017101581A1 (en) | Method for operating a workpiece machining system, and workpiece machining system | |
DE102016213720A1 (en) | System for data transmission and processing for controlling a rotor blade actuator | |
EP3791073A1 (en) | Method for determining a fluid delivery parameter | |
DE102020129988B4 (en) | Handling device and method for recognizing a condition | |
WO2018189057A1 (en) | Method for intermittent ultrasonic processing of a length of material | |
EP3481081B1 (en) | Exhaust finisher with sound wave source | |
EP3480436B1 (en) | Method and device for analysing the acoustics of an exhaust gas flap | |
EP1596130A1 (en) | Device for damping thermoacoustic oscillations in a combustion chamber with a variable resonator frequency | |
DE102022123277A1 (en) | Method for evaluating vibrations in a flow system | |
DE102023208836A1 (en) | Test device for determining the vibration behaviour of a test object, method for operating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20171115 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F23M 20/00 20140101AFI20180713BHEP |
|
INTG | Intention to grant announced |
Effective date: 20180802 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1084863 Country of ref document: AT Kind code of ref document: T Effective date: 20190115 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502016003056 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2716654 Country of ref document: ES Kind code of ref document: T3 Effective date: 20190613 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190502 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190402 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190502 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190402 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502016003056 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 |
|
26N | No opposition filed |
Effective date: 20191003 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191130 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191104 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191130 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20191130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191104 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20161104 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20221027 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20231026 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231026 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20231201 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20231129 Year of fee payment: 8 Ref country code: FR Payment date: 20231127 Year of fee payment: 8 Ref country code: DE Payment date: 20231026 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1084863 Country of ref document: AT Kind code of ref document: T Effective date: 20231104 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231104 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231104 |