[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP3155690A1 - Antenne plate de telecommunication par satellite - Google Patents

Antenne plate de telecommunication par satellite

Info

Publication number
EP3155690A1
EP3155690A1 EP15729390.3A EP15729390A EP3155690A1 EP 3155690 A1 EP3155690 A1 EP 3155690A1 EP 15729390 A EP15729390 A EP 15729390A EP 3155690 A1 EP3155690 A1 EP 3155690A1
Authority
EP
European Patent Office
Prior art keywords
radiating
line
antenna
flat
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15729390.3A
Other languages
German (de)
English (en)
Other versions
EP3155690B1 (fr
Inventor
Gérard Collignon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ineo Defense SAS
Original Assignee
Ineo Defense SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ineo Defense SAS filed Critical Ineo Defense SAS
Publication of EP3155690A1 publication Critical patent/EP3155690A1/fr
Application granted granted Critical
Publication of EP3155690B1 publication Critical patent/EP3155690B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/286Adaptation for use in or on aircraft, missiles, satellites, or balloons substantially flush mounted with the skin of the craft
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/02Coupling devices of the waveguide type with invariable factor of coupling
    • H01P5/022Transitions between lines of the same kind and shape, but with different dimensions
    • H01P5/028Transitions between lines of the same kind and shape, but with different dimensions between strip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/288Satellite antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0031Parallel-plate fed arrays; Lens-fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0075Stripline fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/12Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/40Element having extended radiating surface

Definitions

  • the present invention relates to the field of flat satellite telecommunication antennas.
  • the invention is particularly suitable for aircraft.
  • the invention finds a particularly advantageous application for transmitting and receiving data to or from a satellite, particularly for satellite communications of the Satcom type (acronym for satellite communication or "satellite communications" in English terminology).
  • These telecommunication antennas comprise a plane surface comprising at least one radiating line capable of transmitting and receiving signals of a frequency determined according to the shape of the radiating line.
  • the signals are transmitted and received in the direction of the satellite which can be detuned with respect to the normal direction of the antenna according to the movements of the carrier. More specifically, these antennas must point a highly directional beam within a cone of at least 60 ° half-angle so that the gain of the antenna remains sufficient to ensure the signal-to-noise ratio necessary for the quality of the link.
  • a known solution to achieve this pointing is to use a flat antenna 100 as described in Figure 1.
  • This flat antenna 100 extends in an xy plane on an outer wall 101 of an aircraft.
  • Radial lines 102 of the flat antenna 100 emit and receive signals in a detented direction 103 at an angle ⁇ to the z direction normal to the surface of the flat antenna 100 in the plane perpendicular to the radiating lines 102 ( xoz).
  • This depointage requires adjustment of the phase on each radiating line by means for example of programmable electronic phase shifters.
  • the phase ⁇ , to be displayed on the line i to obtain a score in the direction a is given by the expression:
  • the flat antenna 1 00 is moreover rotatable ⁇ about an orthonormal axis z with the xy axes.
  • This first solution makes it possible to scan electronically all the pointing directions inside the cone.
  • the direction of the pointing at a is variable with the wavelength ⁇ and does not allow simultaneous operation in two very different frequency bands such as Satcom band Ka for example (20GHz in reception, 30GHz in transmission).
  • the Rotman lens is a known device which usually makes it possible to obtain a antenna radiating multiple beams in a plane.
  • the lens is provided with N access each giving a beam in a given direction independent of the frequency.
  • the angular sweep is obtained by switching between the N beams available.
  • the lens is formed by the space between two parallel conductive planes
  • the input network consists of fixed horns made as a waveguide radiating a polarization perpendicular to the metal planes.
  • the output network may consist of monopole elements perpendicular to the metal planes and to collect the energy radiated by the cornets of the input network.
  • the linear array of the radiating elements is fed via links (coaxial for example) of lengths such that the radiated wave is plane.
  • US Pat. No. 8,284,102 discloses an electronic phase shifter comprising an electronic selector for a linear or curved source array.
  • the focusing of the antenna is performed by internal reflector elements and dielectric or refractive focusing means.
  • This second solution makes it possible to have a fixed flat antenna on the surface of an aircraft.
  • this solution limits the number of directions that can point the antenna according to the number of linear sources.
  • the implementation of a linear source network and electronic selection means increases the size of the flat antenna.
  • the ROTMAN lens is conventionally connected by coaxial cables connected between the ROTMAN lens and the radiating lines of the antenna.
  • the length of the coaxial cables is adapted to introduce a delay necessary for the focusing of the radiated wave by the radiating lines for each horn of the ROTMAN lens.
  • These cables are, of course, equipped with connectors at each end.
  • Such an antenna poses implementation problems when the antenna is designed to operate in the Ku or Ka high frequency bands.
  • the length of the cables must be extremely precise to limit errors on the phase. For example, for an antenna operating at 30 GHz, an error of 0.2 mm in length of a coaxial cable induces a phase error of about 10 °.
  • the size of the coaxial cable connectors limits the possibilities of implantation and the number of usable cones. For example, for an antenna operating at 30 GHz, the pitch of the radiating lines and outputs of the Rotman lens is close to 5mm.
  • a 500mm diameter antenna operating at 30GHz has about 100 different cables, which has a negative impact on specifications and implementation steps.
  • the present invention intends to overcome the disadvantages of the prior art by proposing a fixed flat antenna provided with a mobile horn to sweep a large number of pointing directions of the antenna.
  • the connections between the horn and the radiating plate are made by a multilayer supply circuit.
  • the present invention relates to a satellite telecommunication flat antenna comprising a radiating plate comprising at least one radiating line, and an adaptation means able to modify the delay of the fields emitted or received by the at least one radiating line.
  • said adaptation means comprising a rotating horn between the two metal plates, and a multilayer supply circuit having a first layer formed by the at least one metal plate containing a slot-type sensor array and a last layer is provided with at least one coupling slot connected to the at least one radiating line, the first layer and the last layer being connected by at least one transmission line, the length of the at least one transmission line being adapted to introduce a delay necessary for the focusing of the radiated wave by the radiating line.
  • the invention thus makes it possible to scan a large number of pointing directions by moving the rotating mobile horn associated with the radiating lines of the antenna.
  • the tuning of each radiating line is effected by the length of a transmission line connecting the sensor array of the at least one metal plate and the radiating plate.
  • the invention makes it possible to fix the antenna on a flat surface thus limiting the fragility of the antenna and improving the aerodynamics of the wearer of the antenna.
  • the antenna according to the invention also eliminates the need for coaxial cables and connectors. This antenna structure operates in a very broad band of frequency because the horn allows a pointing independent of the frequency.
  • the horn is able to transmit between the metal plates a wave whose electric field is perpendicular to the metal plates.
  • the length of the at least one transmission line is adapted to introduce an additional delay making it possible to obtain an initial fixed score so that the total score varies from 0 ° to 60 ° for a symmetrical displacement. cornet of ⁇ 30 °.
  • This embodiment, associated with the overall rotation of the antenna 360 ° about its axis z can contain all directions in a 60 ° half-angle cone centered on the direction normal to the antenna.
  • the supply circuit consists of five metal circuit layers separated by four layers of dielectric.
  • This embodiment is particularly suitable for a satellite type antenna (acronym for satellite communication or "satellite communications" in English terminology).
  • the supply circuit is assembled by gluing. This embodiment limits the complexity of assembly operations of the multilayer power supply circuit.
  • two layers of the supply circuit are connected by at least one metallized hole passing through a conductive layer without contact through a non-metallized pellet.
  • This embodiment is particularly suitable for a satellite type antenna (acronym for satellite communication or "satellite communications" in English terminology).
  • the two metal plates containing the slot-type sensor array are fixed on a plane parallel to the plane of said radiating plate.
  • said radiant plate comprises several radiating lines spaced by a half-wavelength. This embodiment makes it possible in particular to avoid problems related to the network lobes.
  • said radiant plate comprises a plurality of radiating lines consisting of an alignment of radiating elements such as dipoles, patches or slots.
  • said radiating plate comprises a plurality of radiating lines each comprising a splitter with an input and a plurality of outputs corresponding to the number of radiating elements of the radiating line.
  • Figure 1 illustrates a flat and mobile satellite telecommunications antenna according to the state of the art
  • FIG. 2 illustrates a flat satellite telecommunications antenna partially shown according to one embodiment of the invention
  • Figure 3 illustrates the mobile horn of the antenna of Figure 2
  • Figure 4 illustrates the multilayer power supply circuit of the antenna of Figure 2
  • Figure 5 illustrates a multilayer power supply circuit path according to one embodiment in a perspective view
  • Figure 6 illustrates the path of Figure 5 in a sectional view
  • FIG. 7 illustrates the first layer of transmission lines of the multi-layer supply circuit for an exemplary antenna comprising 49 radiating lines
  • FIG. 8 illustrates the second layer of transmission lines of the multi-layer supply circuit for the example of FIG. 7.
  • Figure 9 illustrates the first and second transmission line layers of the multilayer power supply circuit for the example of Figure 7;
  • FIG. 2 reveals a satellite dish antenna 10 consisting of a radiating plate 16 connected to a matching means 1 1 adapted to change the delays of the fields transmitted or received by the radiating plate 1 6.
  • the radiating plate 1 6 extends in a plane xy and has several radiating lines 17 disposed along the y axis at a step close to half a wavelength along the x axis.
  • Each radiating line 17 consists of an alignment of N radiating elements (not shown), for example dipoles, patches or slots arranged at a pitch less than a wavelength along the y-axis and fed by a splitter having an input and N outputs.
  • the adaptation means 1 1 consists of a horn 12 rotatable between two metal plates 13a and 13b parallel to the radiating plate 1 6.
  • the horn 12, shown in Figure 3, is rotatable around the z axis' (parallel or coincident with the z axis) extending in a direction normal to the xy plane.
  • the mobility of the horn 12 is provided by a digitally controlled guide 20.
  • the horn 12 radiates between the two metal plates 13a, 13b a TEM wave (for electrical-magnetic transverse) whose electric field is perpendicular to the metal plates 13a, 13b.
  • the adaptation means 1 1 also comprises a multilayer supply circuit 14, shown in FIG. 4, connecting the horn 12 to the radiating plate 1 6.
  • This supply circuit 14 consists of five copper circuit layers 13a, 20-23 separated by four layers of dielectric. The whole is assembled by gluing.
  • the first layer 13a is formed by the upper metal plate 13a.
  • a coupling slot 27 formed in this layer 13a gives one of the sensors of the sensor network.
  • the layers 13a, 20 and 21 form a triplate type transmission line whose conductive line is located on the layer 20 and the ground planes on the layers 13a and 21.
  • the layers 21, 22 and 23 form a second transmission line of triplate type whose conductive line is located on the layer 22 and the ground planes on the layers 21 and 23
  • a bushing 28 for connecting the lines 25 of the layers 20 and 22 is made by means of a metallized hole through the conductive layer 21 without contact through a non-metallized chip or chip.
  • the layer 23 is provided with a coupling slot 26 for feeding a line 17 of the radiating plate 1 6.
  • This structure makes it possible to obtain a transmission coefficient between the coupling slot 27 and the radiant plate 1 6 of a module substantially equal to one and of easily controllable delay by adjusting the length of the lines 25 of the layers 20 and 22. These lines also induce an additional delay making it possible to obtain an initial fixed score so that the total score varies from 0 ° to 60 ° for a symmetrical movement of the horn 12 by approximately ⁇ 30 °.
  • Figures 5 and 6 show an embodiment of the adaptation means 1 1 for a channel.
  • the adaptation means 1 1 consists of metal plates 13a, 13b arranged around the horn 12 (not shown).
  • the propagation of the waves emitted and received by the horn 12 are transmitted to the multilayer supply circuit 14 by a coupling slot 27.
  • the propagation is closed between the metal plates 13a and 13b at the rear of the slot 27 by a metal part 30 whose profile allows the adaptation of the transmission.
  • the supply circuit 14 consists of four layers of printed circuit assembled by gluing.
  • the material used can be for example Rogers RT / duroid 5880 thickness 0.508mm.
  • the layers 13a and 21 are connected in the vicinity of the slot 27 by metallized holes to prevent the propagation of undesirable modes in the circuit.
  • the energy taken by the slot 27 flows in the line 25a and then in the line 25b after changing the layer produced by means of the passage 28.
  • the layers 13a, 21 and 23 are connected in the vicinity of the crossing by metallized holes allowing avoid the spread of undesirable modes in the circuit.
  • the crossing is made by a metallized hole connecting the layers 20 and 22. It passes through the layer 21 without contact through a non-metallized pellet.
  • the coupling at the input of a line of the radiating plate 1 6 is achieved by the slot 26.
  • the layers 21 and 23 are connected in the vicinity of the slot 26 by metallized holes to prevent the propagation of undesirable modes in the circuit.
  • the input of the line of the radiating plate 1 6 is also carried out in triplate technology between the radiating line 17 and the ground planes 36 and 37. It is embedded in a metal part 40 ensuring precise positioning and low impedances between the different metal layers 23, 36 and 37.
  • the coupling between the radiating line 17 and the line 25b is obtained through the slot 26 and the connection of the radiating line 17 to the ground plane 37 through the metallized hole 41.
  • the layers 36 and 37 are connected by metallized holes 42 to prevent the propagation of undesirable modes in the circuit.
  • Figures 7, 8 and 9 give the appearance of the complete circuit for an example antenna having 49 radiating lines.
  • the coupling slots with the radiating lines 26 are aligned at a step close to half a wavelength (5 mm at 30 GHz).
  • the slots 27 in connection with the horn 12 are arranged on the output curve (close to an arc) at a step also close to half a wavelength.
  • the length of the lines 25a, 25b adjusted by means of the position of the bushings 28 gives the delay necessary for the focusing and the initial pointing of the beam to 30 ° (centrally located horn).
  • This embodiment makes it possible to limit the bulk of the supply circuit 14 to connect the horn 12 to the radiating lines 17.
  • the invention also makes it possible to point all the directions contained in the 60 ° half-angle cone centered on the z axis by means of a rotation of the horn 12 of ⁇ 30 ° approximately around the z 'axis and a rotation of the antenna assembly 360 ° about the z axis.
  • This antenna structure operates in a very wide band of frequencies because the mobile horn 12 provides a score independent of the frequency.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

La présente invention se rapporte à une antenne plate (10) de télécommunication par satellite comprenant une platine rayonnante (16) comprenant au moins une ligne rayonnante (17), et un moyen d'adaptation (11) apte à modifier le retard des champs émis ou reçu par l'au moins une ligne rayonnante, ledit un moyen d'adaptation (11) comportant un cornet (12) mobile en rotation entre les deux plaques métalliques (13a, 13b), et un circuit d'alimentation (14) multicouches dont une première couche (13a) est formée par l'au moins une plaque métallique contenant un réseau de capteur de type fente et une dernière couche est munie d'au moins une fente de couplage connectée à l'au moins une ligne rayonnante (17), la première couche et la dernière couche étant reliées par au moins une ligne de transmission, la longueur de l'au moins une ligne de transmission étant adaptée pour introduire un retard nécessaire à la focalisation de l'onde rayonnée par la ligne rayonnante.

Description

ANTENNE PLATE DE TELECOMMUNICATION PAR SATELLITE
Domaine de l'invention
La présente invention se rapporte au domaine des antennes plates de télécommunication par satellite. L'invention est particulièrement adaptée aux aéronefs.
L'invention trouve une application particulièrement avantageuse pour l'émission et la réception des données vers ou depuis un satellite notamment pour les télécommunications par satellites de type Satcom (acronyme de communication par satellite ou « Satellite communications » en terminologie anglo-saxonne).
Etat de la technique
Pour certaines applications de télécommunications, notamment aéroportées, il est nécessaire d'utiliser des antennes plates de très faible épaisseur afin de ne pas modifier le profil aérodynamique du porteur, par exemple lorsque l'antenne est positionnée sur la surface d'un aéronef.
Ces antennes de télécommunication comportent une surface plane comprenant au moins une ligne rayonnante apte à transmettre et recevoir des signaux d'une fréquence déterminée en fonction de la forme de la ligne rayonnante. Les signaux sont émis et reçus dans la direction du satellite qui peut être dépointée par rapport à la direction normale de l'antenne en fonction des mouvements du porteur. Plus spécifiquement, ces antennes doivent pointer un faisceau très directif à l'intérieur d'un cône d'au moins 60° de demi-angle afin que le gain de l'antenne reste suffisant pour garantir le rapport signal sur bruit nécessaire à la qualité de la liaison.
Une solution connue pour réaliser ce pointage consiste à utiliser une antenne plate 100 telle que décrite sur la Figure 1 . Cette antenne plate 100 s'étend dans un plan xy sur une paroi externe 101 d'un aéronef. Des lignes rayonnantes 102 de l'antenne plate 100 émettent et reçoivent des signaux dans une direction dépointée 103 d'un angle a par rapport à la direction z normale à la surface de l'antenne plate 100 dans le plan perpendiculaire aux lignes rayonnantes 102 (xoz). Ce dépointage nécessite un réglage de la phase sur chaque ligne rayonnante au moyen par exemple de déphaseurs électroniques programmables. La phase φ, à afficher sur la ligne i pour obtenir un pointage dans la direction a est donnée par l'expression :
avec : i correspondant à l'indice de la ligne, d au pas entre les lignes et λ à la longueur d'onde.
Afin de dépointer les signaux reçus dans un cône, l'antenne plate 1 00 est de plus mobile en rotation β autour d'un axe z orthonormé avec les axes xy.
Cette première solution permet de balayer électroniquement toutes les directions de pointage à l'intérieur du cône.
Cependant la direction du pointage en a est variable avec la longueur d'onde λ et ne permet pas un fonctionnement simultané dans deux bandes de fréquences très différentes comme en Satcom bande Ka par exemple (20GHz en réception , 30GHz en émission).
Pour remédier à ce problème, il est connu d'utiliser une lentille de ROTMAN décrite, par exemple, dans le brevet américain N° US 3,1 70,1 58. La lentille de ROTMAN est un dispositif connu permettant habituellement d'obtenir une antenne rayonnant plusieurs faisceaux dépointés dans un plan. La lentille est munie de N accès donnant chacun un faisceau dans une direction donnée indépendante de la fréquence. Le balayage angulaire est obtenu par commutation entre les N faisceaux disponibles.
La lentille est formée par l'espace entre deux plans conducteurs parallèles, le réseau d'entrée est constitué de cornets fixes réalisés en guide d'onde rayonnant une polarisation perpendiculaire aux plans métalliques. Le réseau de sortie peut être constitué par des éléments de type monopôles perpendiculaires aux plans métalliques et permettant de prélever l'énergie rayonnée par les cornets du réseau d'entrée. Le réseau linéaire des éléments rayonnant est alimenté par l'intermédiaire de liaisons (coaxiales par exemple) de longueurs telles que l'onde rayonnée soit plane. Selon un principe voisin, le brevet américain N° US 8,284,102, divulgue un déphaseur électronique comprenant un sélectionneur électronique pour un réseau de sources linéaire ou courbe. La focalisation de l'antenne est réalisée par des éléments réflecteurs internes et des moyens de focalisation diélectrique ou réfractif.
Cette deuxième solution permet de disposer d'une antenne plate fixe sur la surface d'un aéronef. Cependant, cette solution limite le nombre de direction que peut pointer l'antenne en fonction du nombre de sources linéaires. De plus, l'implantation d'un réseau de sources linéaire et des moyens de sélection électronique augmente l'encombrement de l'antenne plate.
En outre, la lentille de ROTMAN est classiquement raccordée par des câbles coaxiaux connectés entre la lentille de ROTMAN et les lignes rayonnantes de l'antenne. La longueur des câbles coaxiaux est adaptée pour introduire un retard nécessaire à la focalisation de l'onde rayonnée par les lignes rayonnantes pour chaque cornet de la lentille de ROTMAN. Ces câbles sont, bien entendu, équipés de connecteurs à chaque extrémité.
Une telle antenne pose des problèmes de réalisation lorsque l'antenne est prévue pour fonctionner dans les bandes de fréquences élevées Ku ou Ka. Premièrement, la longueur des câbles doit être extrêmement précise pour limiter les erreurs sur la phase. Par exemple, pour une antenne fonctionnent à 30 GHz, une erreur de 0.2 mm de longueur d'un câble coaxial induit une erreur de phase de 10° environ. Deuxièmement, la taille des connecteurs des câbles coaxiaux limite les possibilités d'implantation et le nombre de cornets utilisables. Par exemple, pour une antenne fonctionnant à 30 GHz, le pas des lignes rayonnantes et des sorties de la lentille de Rotman est voisin de 5mm. De plus, une antenne de diamètre 500mm fonctionnant à 30GHz comporte environ 100 câbles tous différents ce qui impacte négativement les spécifications et les étapes de réalisation.
Exposé de l'invention
La présente invention entend remédier aux inconvénients de l'art antérieur en proposant une antenne plate fixe munie d'un cornet mobile afin de balayer un grand nombre de directions de pointage de l'antenne. Les connexions entre le cornet et la platine rayonnante sont réalisées par un circuit d'alimentation multicouches.
A cet effet, la présente invention concerne une antenne plate de télécommunication par satellite comprenant une platine rayonnante comprenant au moins une ligne rayonnante, et un moyen d'adaptation apte à modifier le retard des champs émis ou reçu par l'au moins une ligne rayonnante, ledit un moyen d'adaptation comportant un cornet mobile en rotation entre les deux plaques métalliques, et un circuit d'alimentation multicouches dont une première couche est formée par l'au moins une plaque métallique contenant un réseau de capteurs de type fente et une dernière couche est munie d'au moins une fente de couplage connectée à l'au moins une ligne rayonnante, la première couche et la dernière couche étant reliées par au moins une ligne de transmission, la longueur de l'au moins une ligne de transmission étant adaptée pour introduire un retard nécessaire à la focalisation de l'onde rayonnée par la ligne rayonnante.
L'invention permet ainsi de balayer un grand nombre de directions de pointage par déplacement du cornet mobile en rotation associées aux lignes rayonnantes de l'antenne. L'accord de chaque ligne rayonnante étant effectué par la longueur d'une ligne de transmission reliant le réseau de capteurs de l'au moins une plaque métallique et la platine rayonnante. L'invention permet de fixer l'antenne sur une surface plane limitant ainsi la fragilité de l'antenne et améliorant l'aérodynamisme du porteur de l'antenne. L'antenne conforme à l'invention élimine également le besoin de câbles coaxiaux et de connecteurs. Cette structure d'antenne fonctionne dans une très large bande de fréquence car le cornet permet un pointage indépendant de la fréquence.
Selon un mode de réalisation, le cornet est apte à transmettre entre les plaques métalliques une onde dont le champ électrique est perpendiculaire aux plaques métalliques..
Selon un mode de réalisation, la longueur de l'au moins une ligne de transmission est adaptée pour introduire un retard supplémentaire permettant d'obtenir un pointage fixe initial de telle sorte que le pointage total varie de 0° à 60° pour un déplacement symétrique du cornet de ± 30° environ. Ce mode de réalisation, associé à la rotation globale de l'antenne sur 360° autour de son axe z permet de contenir toutes les directions dans un cône de demi-angle 60° centré sur la direction normale à l'antenne.
Selon un mode de réalisation, le circuit d'alimentation est constitué de cinq couches de circuits métalliques séparées de quatre couches de diélectrique. Ce mode de réalisation est particulièrement adapté à une antenne de type Satcom (acronyme de communication par satellite ou « Satellite communications » en terminologie anglo-saxonne).
Selon un mode de réalisation, le circuit d'alimentation est assemblé par collage. Ce mode de réalisation limite la complexité des opérations d'assemblage du circuit d'alimentation multicouches.
Selon un mode de réalisation, deux couches du circuit d'alimentation sont reliées par au moins un trou métallisé traversant une couche conductrice sans contact à travers une pastille non métallisée. Ce mode de réalisation est particulièrement adapté à une antenne de type Satcom (acronyme de communication par satellite ou « Satellite communications » en terminologie anglo-saxonne).
Selon un mode de réalisation, les deux plaques métalliques contenant le réseau de capteurs de type fente sont fixées sur un plan parallèle au plan de ladite platine rayonnante.
Selon un mode de réalisation, ladite platine rayonnante comporte plusieurs lignes rayonnantes espacées d'une demi-longueur d'onde. Ce mode de réalisation permet notamment d'éviter des problèmes liés aux lobes de réseau.
Selon un mode de réalisation, ladite platine rayonnante comporte plusieurs lignes rayonnantes constituées d'un alignement d'éléments rayonnants tels que des dipôles, des patchs ou des fentes.
Selon un mode de réalisation, ladite platine rayonnante comporte plusieurs lignes rayonnantes comportant chacune un répartiteur à une entrée et plusieurs sorties correspondant au nombre d'éléments rayonnants de la ligne rayonnante.
Brève description des dessins On comprendra mieux l'invention à l'aide de la description, faite ci-après à titre purement explicatif, des modes de réalisation de l'invention, en référence aux Figures dans lesquelles :
• la Figure 1 illustre une antenne de télécommunications par satellite plate et mobile selon l'état de la technique ;
• la Figure 2 illustre une antenne de télécommunications par satellite plate partiellement représentée selon un mode de réalisation de l'invention ;
• la Figure 3 illustre le cornet mobile de l'antenne de la Figure 2 ;
• la Figure 4 illustre le circuit d'alimentation multicouches de l'antenne de la Figure 2 ;
• la Figure 5 illustre une voie du circuit d'alimentation multicouches selon un mode de réalisation dans une vue en perspective ;
• la Figure 6 illustre la voie de la Figure 5 dans une vue en coupe ;
• la Figure 7 illustre la première couche de lignes de transmission du circuit d'alimentation multicouches pour un exemple d'antenne comportant 49 lignes rayonnantes ;
• la Figure 8 illustre la deuxième couche de lignes de transmission du circuit d'alimentation multicouches pour l'exemple de la Figure 7 ; et
• la Figure 9 illustre la première et la deuxième couche de lignes de transmission du circuit d'alimentation multicouche pour l'exemple de la Figure 7 ;
Description détaillée des modes de réalisation de l'invention
La Figure 2 révèle une antenne plate 10 de télécommunications par satellite constituée d'une platine rayonnante 16 reliée à un moyen d'adaptation 1 1 apte à modifier les retards des champs émis ou reçus par la platine rayonnante 1 6.
La platine rayonnante 1 6 s'étend dans un plan xy et comporte plusieurs lignes rayonnantes 17 disposées suivant l'axe y à un pas voisin d'une demi longueur d'onde suivant l'axe x. Chaque ligne rayonnante 17 est constituée d'un alignement de N éléments rayonnants (non représentés), par exemple des dipôles, des patchs ou des fentes disposés à un pas inférieur à une longueur d'onde suivant l'axe des y et alimentés par un répartiteur comportant une entrée et N sorties.
Le moyen d'adaptation 1 1 est constitué d'un cornet 12 mobile en rotation entre deux plaques métalliques 13a et 13b parallèles à la platine rayonnante 1 6. Le cornet 12, représenté sur la Figure 3, est mobile en rotation autour de l'axe z' (parallèle ou confondu avec l'axe z) s'étendant dans une direction normale au plan xy. La mobilité du cornet 12 est assurée par un guide 20 commandé numériquement.
Le cornet 12 rayonne entre les deux plaques métalliques 13a, 13b une onde TEM (pour transverse électrique-magnétique) dont le champ électrique est perpendiculaires aux plaques métalliques 13a, 13b. Le moyen d'adaptation 1 1 comporte également un circuit d'alimentation 14 multicouches, représenté sur la Figure 4, reliant le cornet 12 à la platine rayonnante 1 6. Ce circuit d'alimentation 14 est constitué de cinq couches de circuit cuivre 13a, 20-23 séparées de quatre couches de diélectrique. L'ensemble est assemblé par collage. La première couche 13a est formée par la plaque métallique supérieure 13a. Une fente de couplage 27 pratiquée dans cette couche 13a donne un des capteurs du réseau de capteurs.
Les couches 13a, 20 et 21 forment une ligne de transmission de type triplaque dont la ligne conductrice est située sur la couche 20 et les plans de masse sur les couches 13a et 21 .
Les couches 21 ,22 et 23 forment une seconde ligne de transmission de type triplaque dont la ligne conductrice est située sur la couche 22 et les plans de masse sur les couches 21 et 23
Une traversée 28 permettant de connecter les lignes 25 des couches 20 et 22 est réalisée au moyen d'un trou métallisé traversant la couche conductrice 21 sans contact à travers une épargne ou pastille non métallisée. La couche 23 est munie d'une fente de couplage 26 permettant d'alimenter une ligne 17 de la platine rayonnante 1 6.
Cette structure permet d'obtenir un coefficient de transmission entre la fente de couplage 27 et la platine rayonnante 1 6 de module sensiblement égal à un et de retard facilement contrôlable en ajustant la longueur des lignes 25 des couches 20 et 22. Ces lignes induisent également un retard supplémentaire permettant d'obtenir un pointage fixe initial de telle sorte que le pointage total varie de 0° à 60° pour un déplacement symétrique du cornet 12 de ± 30° environ.
Les Figures 5 et 6 représentent un exemple de réalisation du moyen d'adaptation 1 1 pour une voie. Le moyen d'adaptation 1 1 est constitué des plaques métalliques 13a, 13b disposées autour du cornet 12 (non représenté). La propagation des ondes émises et reçues par le cornet 12 sont transmises au circuit d'alimentation 14 multicouches par une fente de couplage 27. La propagation est fermée entre les plaques métalliques 13a et 13b à l'arrière de la fente 27 par une pièce métallique 30 dont le profil permet l'adaptation de la transmission.
Le circuit d'alimentation 14 est constitué de quatre couches de circuit imprimé assemblées par collage. Le matériau utilisé peut être par exemple du Rogers RT/duroid 5880 d'épaisseur 0.508mm.
Les couches 13a et 21 sont connectées au voisinage de la fente 27 par des trous métallisées permettant d'éviter la propagation de modes indésirables dans le circuit. L'énergie prélevée par la fente 27 circule dans la ligne 25a puis dans la ligne 25b après changement de couche réalisé au moyen de la traversée 28. Les couches 13a, 21 et 23 sont connectées au voisinage de la traversée par des trous métallisées permettant d'éviter la propagation de modes indésirables dans le circuit. La traversée est réalisée par un trou métallisé reliant les couches 20 et 22. Il traverse la couche 21 sans contact à travers une pastille non métallisée.
Le couplage à l'entrée d'une ligne de la platine rayonnante 1 6 est réalisé par la fente 26. Les couches 21 et 23 sont connectées au voisinage de la fente 26 par des trous métallisées permettant d'éviter la propagation de modes indésirables dans le circuit.
L'entrée de la ligne de la platine rayonnante 1 6 est également réalisée en technologie triplaque entre la ligne rayonnante 17 et les plans de masse 36 et 37. Elle est encastrée dans une pièce métallique 40 assurant un positionnement précis et de faibles impédances entre les différentes couches métalliques 23 ,36 et 37. Le couplage entre la ligne rayonnante 17 et la ligne 25b est obtenu grâce à la fente 26 et à la connexion de la ligne rayonnante 17 au plan de masse 37 par le trou métallisé 41 . Les couches 36 et 37 sont connectées par des trous métallisées 42 permettant d'éviter la propagation de modes indésirables dans le circuit.
Les figures 7, 8 et 9 donnent l'allure du circuit complet pour un exemple d'antenne comportant 49 lignes rayonnantes. Les fentes de couplage avec les lignes rayonnantes 26 sont alignées à un pas voisin d'une demi-longueur d'onde (5 mm à 30 GHz). Les fentes 27 en liaison avec le cornet 12 sont disposées sur la courbe de sortie (voisine d'un arc de cercle) à un pas également voisin d'une demi-longueur d'onde. La longueur des lignes 25a, 25b ajustée au moyen de la position des traversées 28 donne le retard nécessaire à la focalisation et au pointage initial du faisceau vers 30° (cornet en position centrale).
Ce mode de réalisation permet de limiter l'encombrement du circuit d'alimentation 14 pour relier le cornet 12 aux lignes rayonnantes 17.
L'invention permet également de pointer toutes les directions contenues dans le cône de demi-angle 60° centré sur l'axe z par l'intermédiaire d'une rotation du cornet 12 de ±30° environ autour de l'axe z' et d'une rotation de l'ensemble antenne de 360° autour de l'axe z. Cette structure d'antenne fonctionne dans une très large bande de fréquences car le cornet mobile 12 permet d'obtenir un pointage indépendant de la fréquence.

Claims

REVENDICATIONS
1 . Antenne plate (10) de télécommunication par satellite comprenant :
- une platine rayonnante (1 6) comprenant au moins une ligne rayonnante (17), et
- un moyen d'adaptation (1 1 ) apte à modifier le retard des champs émis ou reçu par l'au moins une ligne rayonnante (17),
caractérisée en ce que ledit un moyen d'adaptation (1 1 ) comporte :
- un cornet (12) mobile en rotation entre les deux plaques métalliques (13a, 13b), et
- un circuit d'alimentation (14) multicouches (13a, 20-23) dont une première couche (13a) est formée par l'au moins une plaque métallique (13a, 13b) contenant un réseau de capteurs de type fente et une dernière couche (23) est munie d'au moins une fente de couplage connectée à l'au moins une ligne rayonnante (17),
- la première couche (13a) et la dernière couche (23) étant reliées par au moins une ligne de transmission (25),
- la longueur de l'au moins une ligne de transmission (25) étant adaptée pour introduire un retard nécessaire à la focalisation de l'onde rayonnée par la ligne rayonnante (17).
2. Antenne plate selon la revendication 1 , caractérisée en ce que le cornet (12) est apte à transmettre entre les plaques métalliques (13a, 13b) une onde dont le champ électrique est perpendiculaire aux plaques métalliques (13a, 13b).
3. Antenne plate selon la revendication 1 ou 2, caractérisée en ce que la longueur de l'au moins l'au moins une ligne de transmission (25) est adaptée pour introduire un retard supplémentaire permettant d'obtenir un pointage fixe initial de telle sorte que le pointage total varie de 0° à 60° pour un déplacement symétrique du cornet (12) de ± 30° environ.
4. Antenne plate selon l'une des revendications 1 à 3, caractérisée en ce que le circuit d'alimentation (14) est constitué de cinq couches (13a, 20-23) de circuits métalliques séparées de quatre couches de diélectrique.
5. Antenne plate selon l'une des revendications 1 à 4, caractérisée en ce que deux couches (20, 22) du circuit d'alimentation (14) sont reliées par au moins un trou métallisé traversant une couche conductrice sans contact à travers une pastille non métallisée.
6. Antenne plate selon l'une des revendications 1 à 5, caractérisée en ce que le circuit d'alimentation (14) est assemblé par collage.
7. Antenne plate selon l'une des revendications 1 à 6, caractérisée en ce que les deux plaques métalliques (13a, 13b) contenant le réseau de capteurs de type fente sont fixées sur un plan parallèle au plan de ladite platine rayonnante (1 6).
8. Antenne plate selon l'une des revendications 1 à 7, caractérisée en ce que ladite platine rayonnante (1 6) comporte plusieurs lignes rayonnantes (17) espacées d'une demi-longueur d'onde.
9. Antenne plate selon l'une des revendications 1 à 8, caractérisée en ce que ladite platine rayonnante (1 6) comporte plusieurs lignes rayonnantes (17) constituées d'un alignement d'éléments rayonnants tels que des dipôles, des patchs ou des fentes.
10. Antenne plate selon l'une des revendications 1 à 9, caractérisée en ce que ladite platine rayonnante (1 6) comporte plusieurs lignes rayonnantes (17) comportant chacune un répartiteur à une entrée et plusieurs sorties correspondant au nombre d'éléments rayonnants de la ligne rayonnante.
EP15729390.3A 2014-06-13 2015-06-08 Antenne plate de telecommunication par satellite Active EP3155690B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1455393A FR3022405B1 (fr) 2014-06-13 2014-06-13 Antenne plate de telecommunication par satellite
PCT/EP2015/062683 WO2015189136A1 (fr) 2014-06-13 2015-06-08 Antenne plate de telecommunication par satellite

Publications (2)

Publication Number Publication Date
EP3155690A1 true EP3155690A1 (fr) 2017-04-19
EP3155690B1 EP3155690B1 (fr) 2018-08-29

Family

ID=51905227

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15729390.3A Active EP3155690B1 (fr) 2014-06-13 2015-06-08 Antenne plate de telecommunication par satellite

Country Status (5)

Country Link
US (1) US10038244B2 (fr)
EP (1) EP3155690B1 (fr)
ES (1) ES2690578T3 (fr)
FR (1) FR3022405B1 (fr)
WO (1) WO2015189136A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10218069B2 (en) * 2015-07-02 2019-02-26 Facebook, Inc. Traces between phase array antenna and radio frequency integrated circuit in mm wave systems

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2566703A (en) * 1947-05-14 1951-09-04 Rca Corp Radio wave focusing device
US3170158A (en) 1963-05-08 1965-02-16 Rotman Walter Multiple beam radar antenna system
GB8531806D0 (en) * 1985-12-24 1986-02-05 Plessey Co Plc Microwave beamforming lens
US6130653A (en) * 1998-09-29 2000-10-10 Raytheon Company Compact stripline Rotman lens
GB2398172A (en) * 2003-02-04 2004-08-11 Thales Plc A multi-phase shifter for use with an antenna array
GB0701087D0 (en) 2007-01-19 2007-02-28 Plasma Antennas Ltd A displaced feed parallel plate antenna

Also Published As

Publication number Publication date
FR3022405B1 (fr) 2017-11-24
ES2690578T3 (es) 2018-11-21
US20170187115A1 (en) 2017-06-29
WO2015189136A1 (fr) 2015-12-17
EP3155690B1 (fr) 2018-08-29
US10038244B2 (en) 2018-07-31
FR3022405A1 (fr) 2015-12-18

Similar Documents

Publication Publication Date Title
EP2532050B1 (fr) Antenne plane directive embarquée, véhicule comportant une telle antenne et système de télécommunication par satellite comportant un tel véhicule
EP0714151B1 (fr) Antenne large bande monopôle en technologie imprimée uniplanaire et dispositif d'émission et/ou de réception incorporant une telle antenne
EP2532046B1 (fr) Antenne plane à balayage pour application mobile terrestre, véhicule comportant une telle antenne et système de télécommunication par satellite comportant un tel véhicule
FR2810163A1 (fr) Perfectionnement aux antennes-sources d'emission/reception d'ondes electromagnetiques
EP0012055B1 (fr) Source primaire monopulse imprimée et antenne comportant une telle source
EP2710676B1 (fr) Element rayonnant pour antenne reseau active constituee de tuiles elementaires
FR2640431A1 (fr) Dispositif rayonnant multifrequence
EP0899814A1 (fr) Structure rayonnante
EP3843202A1 (fr) Cornet pour antenne satellite bi-bande ka a polarisation circulaire
FR3069713B1 (fr) Antenne integrant des lentilles a retard a l'interieur d'un repartiteur a base de diviseurs a guide d'ondes a plaques paralleles
EP3155690B1 (fr) Antenne plate de telecommunication par satellite
EP3175509B1 (fr) Antenne log-periodique a large bande de frequences
EP1188202B1 (fr) Dispositif d'emission et/ou de reception de signaux
EP0520908B1 (fr) Antenne réseau linéaire
EP0020196B1 (fr) Antenne réseau hyperfréquence du type disque avec son dispositif d'alimentation, et application aux radars d'écartométrie
EP0463263A1 (fr) Antenne omnidirective en polarisation circulaire transversale à maximum de gain sous l'horizon
FR2552273A1 (fr) Antenne hyperfrequence omnidirectionnelle
EP3155689B1 (fr) Antenne plate de telecommunication par satellite
EP4046241B1 (fr) Antenne-reseau
CA2808511A1 (fr) Antenne plane pour terminal fonctionnant en double polarisation circulaire, terminal aeroporte et systeme de telecommunication par satellite comportant au moins une telle antenne
EP0477102A1 (fr) Réseau directif pour radiocommunications, à éléments rayonnants adjacents et ensemble de tels réseaux directifs
EP3506429A1 (fr) Formateur de faisceaux quasi-optique, antenne elementaire, systeme antennaire, plateforme et procede de telecommunications associes
EP0088681B1 (fr) Antenne à double réflecteur à transformateur de polarisation incorporé
FR3042917A1 (fr) Dispositif d'antenne d'aide a l'acquisition et systeme d'antenne pour le suivi d'une cible en mouvement associe
WO2023218008A1 (fr) Antenne faible profil à balayage electronique bidimensionnel

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161130

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180504

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1036245

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015015587

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2690578

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20181121

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181130

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181229

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181129

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181129

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1036245

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015015587

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150608

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230706

Year of fee payment: 9

Ref country code: CH

Payment date: 20230705

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240628

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240529

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240611

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240712

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240729

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20240628

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240805

Year of fee payment: 10

Ref country code: ES

Payment date: 20240712

Year of fee payment: 10