[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP3034784A1 - Cooling means for flow engines - Google Patents

Cooling means for flow engines Download PDF

Info

Publication number
EP3034784A1
EP3034784A1 EP14199318.8A EP14199318A EP3034784A1 EP 3034784 A1 EP3034784 A1 EP 3034784A1 EP 14199318 A EP14199318 A EP 14199318A EP 3034784 A1 EP3034784 A1 EP 3034784A1
Authority
EP
European Patent Office
Prior art keywords
rotor
flow
flow channel
steam
turbomachine according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14199318.8A
Other languages
German (de)
French (fr)
Inventor
Christian Musch
Simon Hecker
Ralf Voss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP14199318.8A priority Critical patent/EP3034784A1/en
Priority to PCT/EP2015/078301 priority patent/WO2016096420A1/en
Publication of EP3034784A1 publication Critical patent/EP3034784A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • F01D5/145Means for influencing boundary layers or secondary circulations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/26Double casings; Measures against temperature strain in casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D3/00Machines or engines with axial-thrust balancing effected by working-fluid
    • F01D3/02Machines or engines with axial-thrust balancing effected by working-fluid characterised by having one fluid flow in one axial direction and another fluid flow in the opposite direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines

Definitions

  • the invention relates to a turbomachine, in particular a steam turbine, comprising a rotatably mounted rotor and a housing arranged around the rotor, wherein between the rotor and the housing a first flow channel pointing in a first direction and a second flow channel pointing in a second flow direction is arranged between the first and the second flow channel a labyrinth seal comprising a plurality of tips is arranged.
  • Turbomachines in the context of this invention are, for example, steam turbines, gas turbines or compressors, the invention preferably referring to steam turbines.
  • Turbomachines are characterized by a flow medium. Hydraulic turbines, steam and gas turbines, wind turbines, centrifugal pumps and centrifugal compressors as well as propellers are summarized under the collective term turbomachinery. All of these machines have in common that they serve the purpose of extracting energy from one fluid in order to drive another machine, or vice versa, to supply energy to a fluid in order to increase its pressure.
  • the energy conversion is indirect and preferably takes the path over the kinetic energy of the fluid.
  • turbomachines such. B. in steam turbines
  • a flow medium in a main flow direction, which corresponds substantially to the direction of the axis of rotation.
  • the flow medium should ideally only flow through a so-called flow channel, which has so-called guide vanes and rotor blades.
  • the flow channel is formed of different successively arranged guide and moving blades.
  • the flow medium passes through the flow channel past the vanes and blades, the kinetic energy into rotational energy is converted, which leads to a rotation of the rotor.
  • gaps can not be avoided, resulting in undesirable flow through the gaps.
  • a first approach is to place so-called sealing lips between the rotating and fixed components.
  • the sealing lips are arranged rotationally symmetrical and act as a kind of barrier to the secondary flow.
  • a secondary flow substantially flowing to the main flow is decelerated.
  • steam turbines known as an embodiment of a turbomachine having two floods.
  • a steam turbine has a first flow channel and is arranged opposite to a second flow channel.
  • Such steam turbines are characterized by two inflow regions. A first inflow region for the first flow channel and a second inflow region for the second flow channel.
  • a common rotor has a blading region for the first flow channel and a second blading region for the second flow channel.
  • a so-called intermediate floor is arranged, which has a surface which must be arranged as close as possible to a housing arranged around the rotor.
  • a gap between the intermediate bottom and the housing should be as small as possible, because a steam flowing in in the first inflow region can partially flow through this gap and into the second inflow region of the second flow channel can flow. Therefore, such gaps are performed with so-called labyrinth seals.
  • Labyrinth seals have so-called tips, which are arranged both on the surface of the rotor and on the inner surface of the housing. Labyrinth seals are known in the art and need not be further elaborated here.
  • rotors have so-called relief grooves in the inflow region.
  • relief grooves are characterized by a smaller radius.
  • the shaft temperatures in the relief groove are limiting for the life of the shaft.
  • the shaft temperature is also limiting for the transmissive power of the shaft. Therefore, great efforts are made to lower the temperature as much as possible.
  • the invention begins, whose task is to provide a further way to reduce the temperature in the relief groove.
  • a turbomachine in particular a steam turbine, comprising a rotatably mounted rotor and a housing arranged around the rotor, wherein between the rotor and the housing a first flow channel pointing in a first direction and a second flow channel pointing in a second flow direction are arranged , wherein between the first and the second flow channel a multi-tip labyrinth seal is arranged, seen in the second flow direction after a last tip a Umlenkleit worn is arranged, which is designed such that a flowing in the axial direction in the labyrinth seal leakage at least partially into Circumferential direction of the rotor is deflected.
  • a cooling option is offered which is comparatively inexpensive to manufacture and is characterized by a Umlenkleit issued.
  • the Umlenkleit issued generates a twist of the flowing leakage steam in Area of the relief groove and can further lower the temperature at the shaft surface in the relief groove.
  • the leakage steam flowing out of the labyrinth seal is deflected by the deflection guide into the shaft rotation direction.
  • the transmissible power through the relief groove can be increased. Furthermore, the achievable lower temperature in the relief groove may also result in a cooling action on a first blade groove. This would lead to a lower utilization and thereby to an improvement in the blade design.
  • the deflecting device has a plurality of deflecting elements distributed on the circumference. This enhances the effect by distributing an appropriate number of diverters around the circumference.
  • the Umlenkleit adopted has the task to redirect the flowing in the labyrinth seal leakage steam flow and thereby to generate a twist, which causes the leakage steam is deflected in a shaft rotation direction.
  • the number of deflecting elements should be chosen appropriately.
  • the deflecting elements are bent.
  • the bow can be a parabolic Contour. It is also conceivable a circular contour.
  • the deflection elements are initially designed to be directed in the axial direction, which points in the direction of rotation, and then the deflection elements have an arc which points in the circumferential direction.
  • the deflection elements are designed such that a deflection takes place by 90 °. This is to be understood as meaning that the leakage steam flow essentially flows in the axial direction and is deflected by 90 °, which essentially corresponds to the circumferential direction.
  • the deflecting elements can be formed profiled in an advantageous development. This means that the deflecting elements have a guide-blade-shaped contour.
  • the Leitschaufelförmige contour causes a flow is deflected and accelerated, resulting in the aforementioned effect of the cooling.
  • the deflection elements are designed as a stator blade stage.
  • the FIG. 1 shows a steam turbine as an embodiment of a turbomachine and has an outer housing 2, which is arranged around a rotor 3 which is rotatably mounted about a rotation axis 4. To the rotor 3, an inner housing 5 is arranged.
  • the steam turbine 1 has a high-pressure part 6 and a medium-pressure part 7.
  • the high-pressure part 6 has a high-pressure inflow region 8, through which a high-pressure fresh steam flows.
  • the high pressure fresh steam then flows through first flow channel 10 aligned in a first direction 9, which may also be referred to as a high pressure flow channel.
  • the thermal energy of the steam in the first flow channel 10 is converted into rotational energy of the rotor 3.
  • the steam then flows out of the high-pressure outflow region 11 and from there, if necessary, to a reheater (not shown). Thereafter, the vapor flows as Mittelchristeinströmdampf in a Mittelchristeinström Scheme 12. After flowing into the Mittelchristeinström Scheme 12, the steam flows in a pointing in a second direction 13 second flow channel 14. After the second flow channel 14, the steam flows through a Mittelbuchausström Scheme 15 out of the turbomachine.
  • the rotor 3 has in the region of the Hochbucheinströmrios 8 a Relief groove 16, which can be characterized in that the rotor 3 at this point in a certain axial region has a smaller radius than the area in front and behind.
  • the rotor 3 in the region of the medium-pressure inflow region 12, the rotor 3 likewise has a relief groove 17, which can likewise be characterized in that the rotor 3 has a smaller radius in a certain axial length than the rotor 3 before the relief groove 17 and behind the relief groove 17 in FIG the second direction 13 seen from.
  • a live steam flows in the Hochdruckeinström Scheme 8 and flows for the most part through the first flow channel 10, which is formed with guide and blades not shown.
  • An undesirably small part of the high pressure fresh steam flows through a gap between the inner housing 5 and the rotor 3 in a central region 18.
  • the rotor 3 In the central region 18, the rotor 3 has a radius of a certain length and forms a so-called large intermediate bottom 19.
  • the gap between the inner housing 5 and the large intermediate bottom 19 should be formed as vapor-tight as possible and therefore has, as in FIG. 2 shown, a labyrinth seal 25 on.
  • the labyrinth seal 25 comprises a plurality of labyrinth seal segments 20, which are resiliently arranged in labyrinth seal grooves 21.
  • the labyrinth seal segments 20 can thus be moved in a radial direction 34.
  • tips 22 are arranged on the surface of the large intermediate bottom 19, as is customary with labyrinth seals 25, so-called tips 22 are arranged.
  • the tips 22 are also referred to as sealing lips or the like.
  • a tip 23 or sealing lip is likewise arranged. In an axial direction 24, the tips 22 and 23 are formed sequentially, which is in the FIG. 3 again shown separately.
  • FIG. 3 shows an arrangement according to the invention.
  • the FIG. 2 shows an enlarged section FIG. 1 namely the part of the turbomachine 1 marked with the oval FIG. 1 represented, the Medium pressure steam from the Mitteltikeinström Scheme 8 pass through the gap through the labyrinth seal 25 to the Mitteltikeinström Scheme 12.
  • This leakage should be kept as small as possible.
  • the leakage current flowing into the relief groove 17 has a comparatively high temperature, which can lead to damage to the rotor 3 in the relief groove 17. According to the invention this is prevented here, as in FIG.
  • a Umlenkleit worn 26 is arranged after a last tip 27 and which is formed such that a flowing in the axial direction 24 leakage steam is at least partially deflected in the circumferential direction 28 of the rotor.
  • the Umlenkleit Vietnamese 26 has a plurality of arranged in the circumferential direction 28 deflecting elements 29. These deflecting elements 29 can be designed bent. This means that the deflecting elements 29 are initially designed to be straight in the axial direction 24 and then have an arc 30 which finally points in the circumferential direction 28 into an end region 31.
  • the deflection elements 29 are in this case designed such that the deflection takes place by 90 °, which means that the deflection elements 29 are first formed in the axial direction 24 parallel in an initial region 32 and are formed in the end region 31 parallel to the circumferential direction 28.
  • the end region 31 may not necessarily be formed parallel to the circumferential direction 28.
  • the end portion 31 and the circumferential direction 28 may be inclined by an angle ⁇ (where ⁇ is between 0 ° and 40 °) to each other.
  • the baffles 29 may be profiled, that is, in a cross-sectional view (not shown), the baffles have a vane shape and accelerate the flow that is between the baffles.
  • the deflected leakage vapor may be mixed with a medium pressure fresh steam flowing through the medium pressure inflow region 12.
  • the turbomachine 1 has a diagonal ring 33, which acts as a first guide blade stage and deflects the medium pressure fresh steam directly into the second flow region 14, without causing a vapor to the relief groove 17.
  • a so-called swirl cooling may be considered in the diagonal ring 33, which flows a vapor from the medium-pressure inflow region into the relief groove 17, which vapor has cooled by the swirl cooling.
  • the diagonal ring 33 has for this purpose a plurality of nozzles, which represents a fluidic connection between the Mitteldruckeinström Suite 12 and the relief groove 17.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)

Abstract

Die Erfindung betrifft eine Umlenkleiteinrichtung (26) in der Labyrinthdichtung (25) im großen Zwischenboden (19), um den Leckagedampf in Umfangsrichtung (28) umzulenken, um dadurch eine Kühlung in der Entlastungsnut (16, 17) im Mitteldruck-einströmbereich (12) zu erreichen.The invention relates to a Umlenkleiteinrichtung (26) in the labyrinth seal (25) in the large intermediate bottom (19) to deflect the leakage vapor in the circumferential direction (28), thereby cooling in the relief groove (16, 17) in the medium-pressure inflow region (12). to reach.

Description

Die Erfindung betrifft eine Strömungsmaschine, insbesondere Dampfturbine, umfassend einen drehbar gelagerten Rotor und ein um den Rotor angeordnetes Gehäuse, wobei zwischen dem Rotor und dem Gehäuse ein in eine erste Richtung weisender erster Strömungskanal und ein in einer zweiten Strömungsrichtung weisender zweiter Strömungskanal angeordnet ist, wobei zwischend dem ersten und dem zweiten Strömungskanal eine mehrere Spitzen umfassende Labyrinthdichtung angeordnet ist.The invention relates to a turbomachine, in particular a steam turbine, comprising a rotatably mounted rotor and a housing arranged around the rotor, wherein between the rotor and the housing a first flow channel pointing in a first direction and a second flow channel pointing in a second flow direction is arranged between the first and the second flow channel a labyrinth seal comprising a plurality of tips is arranged.

Strömungsmaschinen im Sinne dieser Erfindung sind beispielsweise Dampfturbinen, Gasturbinen oder Verdichter, wobei sich die Erfindung vorzugsweise auf Dampfturbinen bezieht. Strömungsmaschinen zeichnen sich durch ein Strömungsmedium aus. Unter der Sammelbezeichnung Strömungsmaschinen werden Wasserturbinen, Dampf- und Gasturbinen, Windräder, Kreiselpumpen und Kreiselverdichter sowie Propeller zusammengefasst. Allen diesen Maschinen ist gemeinsam, dass sie dem Zweck dienen, einem Fluid Energie zu entziehen, um damit eine andere Maschine anzutreiben oder umgekehrt, einem Fluid Energie zuzuführen, um dessen Druck zu erhöhen. In Strömungsmaschinen ist die Energieumsetzung indirekt und nimmt vorzugsweise den Weg über die kinetische Energie des Fluids.Turbomachines in the context of this invention are, for example, steam turbines, gas turbines or compressors, the invention preferably referring to steam turbines. Turbomachines are characterized by a flow medium. Hydraulic turbines, steam and gas turbines, wind turbines, centrifugal pumps and centrifugal compressors as well as propellers are summarized under the collective term turbomachinery. All of these machines have in common that they serve the purpose of extracting energy from one fluid in order to drive another machine, or vice versa, to supply energy to a fluid in order to increase its pressure. In turbomachines, the energy conversion is indirect and preferably takes the path over the kinetic energy of the fluid.

In Strömungsmaschinen, wie z. B. in Dampfturbinen, strömt im Betrieb ein Strömungsmedium in einer Hauptströmungsrichtung, die im Wesentlichen der Richtung der Rotationsachse entspricht. Das Strömungsmedium soll idealerweise lediglich durch einen so genannten Strömungskanal strömen, der so genannte Leit- und Laufschaufeln aufweist. Üblicherweise wird der Strömungskanal aus verschiedenen hintereinander angeordneten Leit- und Laufschaufeln gebildet. Das Strömungsmedium strömt durch den Strömungskanal an den Leit- und Laufschaufeln vorbei, wobei die kinetische Energie in Rotationsenergie umgewandelt wird, was zu einer Rotation des Rotors führt. Da eine Bewegung des Rotors in einem Gehäuse stattfindet, sind Spalte zwischen dem Gehäuse und dem Rotor vorhanden, die so gering wie möglich ausgeführt werden sollten. Dennoch können Spalte nicht vermieden werden, was zu einer unerwünschten Strömung durch die Spalte führt. Die unerwünschte Strömung ergibt sich aus der Hauptströmung, wobei ein Teil aus der Hauptströmung abzweigt und durch den Spalt strömt. Diese Spaltströmung kann als Sekundärströmung bezeichnet werden, wobei es Ziel bei jeder Auslegung einer Strömungsmaschine ist, die Sekundärströmung so gering wie möglich zu halten. Daher existieren verschiedene Ansätze, um die Sekundärströmung zu minimieren. Ein erster Ansatz besteht darin, sogenannte Dichtlippen zwischen den rotierenden und den feststehenden Komponenten anzuordnen. Die Dichtlippen sind rotationssymmetrisch angeordnet und wirken sozusagen als Barriere für die Sekundärströmung. Somit wird eine im Wesentlichen zur Hauptströmung strömende Sekundärströmung abgebremst.In turbomachines, such. B. in steam turbines, flows during operation, a flow medium in a main flow direction, which corresponds substantially to the direction of the axis of rotation. The flow medium should ideally only flow through a so-called flow channel, which has so-called guide vanes and rotor blades. Usually, the flow channel is formed of different successively arranged guide and moving blades. The flow medium passes through the flow channel past the vanes and blades, the kinetic energy into rotational energy is converted, which leads to a rotation of the rotor. As movement of the rotor takes place in a housing, there are gaps between the housing and the rotor which should be made as small as possible. However, gaps can not be avoided, resulting in undesirable flow through the gaps. The undesirable flow results from the main flow, with a part branching off from the main flow and flowing through the gap. This gap flow can be referred to as secondary flow, wherein it is the goal in any design of a turbomachine to keep the secondary flow as low as possible. Therefore, various approaches exist to minimize secondary flow. A first approach is to place so-called sealing lips between the rotating and fixed components. The sealing lips are arranged rotationally symmetrical and act as a kind of barrier to the secondary flow. Thus, a secondary flow substantially flowing to the main flow is decelerated.

Es sind Dampfturbinen als Ausführungsform einer Strömungsmaschine bekannt, die zwei Fluten aufweist. Das bedeutet, dass eine solch ausgebildete Dampfturbine einen ersten Strömungskanal aufweist und entgegengesetzt zu einem zweiten Strömungskanal angeordnet ist. Solche Dampfturbinen zeichnen sich durch zwei Einströmungsbereiche auf. Einen ersten Einströmbereich für den ersten Strömungskanal und einen zweiten Einströmungsbereich für den zweiten Strömungskanal. Des Weiteren zeichnet sich eine solche Dampfturbine dadurch aus, dass ein gemeinsamer Rotor einen Beschaufelungsbereich für den ersten Strömungskanal und einen zweiten Beschaufelungsbereich für den zweiten Strömungskanal aufweist. Zwischen den Beschaufelungsbereichen ist ein sogenannter Zwischenboden angeordnet, der eine Oberfläche aufweist, die möglichst dicht an ein um den Rotor angeordnetes Gehäuse angeordnet werden muss. Ein Spalt zwischen dem Zwischenboden und dem Gehäuse sollte möglichst gering sein, weil ein im ersten Einströmbereich einströmender Dampf teilweise durch diesen Spalt strömen kann und in den zweiten Einströmungsbereich des zweiten Strömungskanals einströmen kann. Daher werden solche Spalte mit sogenannten Labyrinthdichtungen ausgeführt. Labyrinthdichtungen weisen sogenannte Spitzen auf, die sowohl auf der Oberfläche des Rotors als auch auf der Innenoberfläche des Gehäuses angeordnet sind. Labyrinthdichtungen sind im Stand der Technik bekannt und müssen hier nicht weiter ausgeführt werden.There are steam turbines known as an embodiment of a turbomachine having two floods. This means that such a steam turbine has a first flow channel and is arranged opposite to a second flow channel. Such steam turbines are characterized by two inflow regions. A first inflow region for the first flow channel and a second inflow region for the second flow channel. Furthermore, such a steam turbine is characterized in that a common rotor has a blading region for the first flow channel and a second blading region for the second flow channel. Between the Beschaufelungsbereichen a so-called intermediate floor is arranged, which has a surface which must be arranged as close as possible to a housing arranged around the rotor. A gap between the intermediate bottom and the housing should be as small as possible, because a steam flowing in in the first inflow region can partially flow through this gap and into the second inflow region of the second flow channel can flow. Therefore, such gaps are performed with so-called labyrinth seals. Labyrinth seals have so-called tips, which are arranged both on the surface of the rotor and on the inner surface of the housing. Labyrinth seals are known in the art and need not be further elaborated here.

Rotoren weisen des Weiteren im Einströmbereich sogenannte Entlastungsnuten auf. Solche Entlastungsnuten sind durch einen geringeren Radius charakterisiert. Für die vorgenannten Dampfturbinen sind die Wellentemperaturen in der Entlastungsnut begrenzend für die Lebensdauer der Welle. Des Weiteren ist die Wellentemperatur ebenfalls begrenzend für die durchleitbare Leistung der Welle. Daher werden große Anstrengungen unternommen, die Temperatur möglichst weit abzusenken. An dieser Stelle setzt die Erfindung an, deren Aufgabe es ist, eine weitere Möglichkeit anzugeben, die Temperatur in der Entlastungsnut zu verringern.Furthermore, rotors have so-called relief grooves in the inflow region. Such relief grooves are characterized by a smaller radius. For the aforementioned steam turbines, the shaft temperatures in the relief groove are limiting for the life of the shaft. Furthermore, the shaft temperature is also limiting for the transmissive power of the shaft. Therefore, great efforts are made to lower the temperature as much as possible. At this point, the invention begins, whose task is to provide a further way to reduce the temperature in the relief groove.

Gelöst wird diese Aufgabe durch eine Strömungsmaschine, insbesondere Dampfturbine, umfassend einen drehbar gelagerten Rotor und ein um den Rotor angeordnetes Gehäuse, wobei zwischen dem Rotor und dem Gehäuse ein in eine erste Richtung weisender erster Strömungskanal und ein in einer zweiten Strömungsrichtung weisender zweiter Strömungskanal angeordnet ist, wobei zwischen dem ersten und dem zweiten Strömungskanal eine mehrere Spitzen umfassende Labyrinthdichtung angeordnet ist, wobei in der zweiten Strömungsrichtung gesehen nach einer letzten Spitze eine Umlenkleiteinrichtung angeordnet ist, die derart ausgebildet ist, dass ein in axialer Richtung in der Labyrinthdichtung strömender Leckdampf zumindest teilweise in Umfangsrichtung des Rotors ablenkbar ist.This problem is solved by a turbomachine, in particular a steam turbine, comprising a rotatably mounted rotor and a housing arranged around the rotor, wherein between the rotor and the housing a first flow channel pointing in a first direction and a second flow channel pointing in a second flow direction are arranged , wherein between the first and the second flow channel a multi-tip labyrinth seal is arranged, seen in the second flow direction after a last tip a Umlenkleiteinrichtung is arranged, which is designed such that a flowing in the axial direction in the labyrinth seal leakage at least partially into Circumferential direction of the rotor is deflected.

Mit der Erfindung wird somit eine Abkühlmöglichkeit angeboten, die vergleichsweise günstig herstellbar ist und sich durch eine Umlenkleiteinrichtung auszeichnet. Die Umlenkleiteinrichtung erzeugt einen Drall des strömenden Leckdampfes im Bereich der Entlastungsnut und kann die Temperatur an der Wellenoberfläche in der Entlastungsnut weiter absenken. Hierbei wird der aus der Labyrinthdichtung ausströmende Leckdampf durch die Umlenkleiteinrichtung in die Wellenrotationsrichtung umgelenkt.With the invention, therefore, a cooling option is offered which is comparatively inexpensive to manufacture and is characterized by a Umlenkleiteinrichtung. The Umlenkleiteinrichtung generates a twist of the flowing leakage steam in Area of the relief groove and can further lower the temperature at the shaft surface in the relief groove. In this case, the leakage steam flowing out of the labyrinth seal is deflected by the deflection guide into the shaft rotation direction.

Mit der Erfindung wird somit eine hohe kinetische Energie des Leckdampfes am Austritt der Labyrinthdichtung eines großen Zwischenbodens ausgenutzt und diese zu Kühlmöglichkeiten ausgenutzt.Thus, with the invention, a high kinetic energy of the leakage steam at the outlet of the labyrinth seal of a large intermediate floor is utilized and utilized for cooling possibilities.

Durch die Verringerung der Wellentemperatur an der Oberfläche der Entlastungsnut kann die durchleitbare Leistung durch die Entlastungsnut erhöht werden. Des Weiteren kann die erreichbare geringere Temperatur in der Entlastungsnut auch für eine Kühlwirkung an einer ersten Laufschaufelnut führen. Dies würde zu einer geringeren Auslastung und dadurch zu einer Verbesserung in der Schaufelauslegung führen.By reducing the shaft temperature at the surface of the relief groove, the transmissible power through the relief groove can be increased. Furthermore, the achievable lower temperature in the relief groove may also result in a cooling action on a first blade groove. This would lead to a lower utilization and thereby to an improvement in the blade design.

Vorteilhafte Weiterbildungen sind in den Unteransprüchen angegeben.Advantageous developments are specified in the subclaims.

In einer ersten vorteilhaften Weiterbildung weist die Umlenkleiteinrichtung mehrere auf dem Umfang verteilte Umlenkelemente auf. Dadurch wird der Effekt verstärkt, indem eine passende Anzahl von Umlenkelementen auf dem Umfang verteilt wird. Die Umlenkleiteinrichtung hat die Aufgabe, die in der Labyrinthdichtung strömende Leckdampfströmung umzulenken und dadurch einen Drall zu erzeugen, der dazu führt, dass der Leckdampf in eine Wellenrotationsrichtung umgelenkt wird. Die Anzahl der Umlenkelemente sollte passend gewählt werden.In a first advantageous development, the deflecting device has a plurality of deflecting elements distributed on the circumference. This enhances the effect by distributing an appropriate number of diverters around the circumference. The Umlenkleiteinrichtung has the task to redirect the flowing in the labyrinth seal leakage steam flow and thereby to generate a twist, which causes the leakage steam is deflected in a shaft rotation direction. The number of deflecting elements should be chosen appropriately.

In einer weiteren vorteilhaften Weiterbildung sind die Umlenkelemente gebogen ausgeführt. Aus strömungstechnischen Gründen ist es vorteilhaft, eine Biegung der Umlenkelemente zu berücksichtigen, um dadurch möglichst geringe Strömungsverluste zu haben. Dabei kann der Bogen eine parabelförmige Kontur aufweisen. Es ist auch eine kreisförmige Kontur denkbar.In a further advantageous embodiment, the deflecting elements are bent. For flow-related reasons, it is advantageous to take into account a bending of the deflecting elements in order thereby to have the lowest possible flow losses. The bow can be a parabolic Contour. It is also conceivable a circular contour.

In einer weiteren vorteilhaften Weiterbildung sind die Umlenkelemente zunächst in axialer Richtung, die in die Rotationsrichtung zeigt, gerichtet ausgebildet und anschließend weisen die Umlenkelemente einen Bogen auf, der in die Umfangsrichtung zeigt.In a further advantageous development, the deflection elements are initially designed to be directed in the axial direction, which points in the direction of rotation, and then the deflection elements have an arc which points in the circumferential direction.

Somit sind in einer vorteilhaften Weiterbildung die Umlenkelemente derart ausgebildet, dass eine Umlenkung um 90° erfolgt. Darunter ist zu verstehen, dass der Leckdampfstrom im Wesentlichen in axialer Richtung strömt und dazu um 90° umgelenkt wird, was im Wesentlich der Umfangsrichtung entspricht.Thus, in an advantageous development, the deflection elements are designed such that a deflection takes place by 90 °. This is to be understood as meaning that the leakage steam flow essentially flows in the axial direction and is deflected by 90 °, which essentially corresponds to the circumferential direction.

Die Umlenkelemente können in einer vorteilhaften Weiterbildung profiliert ausgebildet sein. Das bedeutet, dass die Umlenkelemente eine leitschaufelförmige Kontur aufweisen. Die leitschaufelförmige Kontur führt dazu, dass eine Strömung umgelenkt und beschleunigt wird, was zu dem vorgenannten Effekt der Abkühlung führt.The deflecting elements can be formed profiled in an advantageous development. This means that the deflecting elements have a guide-blade-shaped contour. The Leitschaufelförmige contour causes a flow is deflected and accelerated, resulting in the aforementioned effect of the cooling.

In vorteilhafter Weiterbildung sind die Umlenkelemente als eine Leitschaufelstufe ausgebildet.In an advantageous embodiment, the deflection elements are designed as a stator blade stage.

Die oben beschriebenen Eigenschaften, Merkmal und Vorteile dieser Erfindung sowie die Art und Weise, wie diese erreicht werden, werden klarer und deutlicher verständlich im Zusammenhang mit der folgenden Beschreibung der Ausführungsbeispiele, die im Zusammenhang mit den Zeichnungen näher erläutert werden.The above-described characteristics, features and advantages of this invention, as well as the manner in which they will be achieved, will become clearer and more clearly understood in connection with the following description of the embodiments which will be described in connection with the drawings.

Ausführungsbeispiele der Erfindung werden nachfolgend anhand der Zeichnung beschrieben.Embodiments of the invention are described below with reference to the drawing.

Diese soll die Ausführungsbeispiele nicht maßgeblich darstellen, vielmehr ist die Zeichnung, wo zur Erläuterung dienlich, in schematisierter und/oder leicht verzerrter Form ausgeführt. Im Hinblick auf Ergänzungen der in der Zeichnung unmittelbar erkennbaren Lehren wird auf den einschlägigen Stand der Technik verwiesen.This is not intended to represent the embodiments significantly, but the drawing, where appropriate for explanation, executed in a schematized and / or slightly distorted form. With regard to additions to the teachings directly recognizable in the drawing reference is made to the relevant prior art.

Es zeigen:

Figur 1
eine Querschnittsansicht einer Strömungsmaschine,
Figur 2
eine Querschnittsansicht eines vergrößerten Teils aus Figur 1,
Figur 3
eine Querschnittsansicht einer erfindungsgemäßen Anordnung,
Figur 4
eine Draufsicht auf die erfindungsgemäße Anordnung.
Show it:
FIG. 1
a cross-sectional view of a turbomachine,
FIG. 2
a cross-sectional view of an enlarged part FIG. 1 .
FIG. 3
a cross-sectional view of an arrangement according to the invention,
FIG. 4
a plan view of the inventive arrangement.

Die Figur 1 zeigt eine Dampfturbine als Ausführungsform einer Strömungsmaschine und weist ein Außengehäuse 2 auf, das um einen Rotor 3 angeordnet ist, der drehbar um eine Rotationsachse 4 gelagert ist. Um den Rotor 3 ist ein Innengehäuse 5 angeordnet. Die Dampfturbine 1 weist einen Hochdruckteil 6 und einen Mitteldruckteil 7 auf. Der Hochdruckteil 6 weist einen Hochdruckeinströmbereich 8 auf, durch den ein Hochdruckfrischdampf einströmt. Der Hochdruckfrischdampf strömt anschließend durch in einer ersten Richtung 9 ausgerichteten ersten Strömungskanal 10, der auch als Hochdruckströmungskanal bezeichnet werden kann. Die thermische Energie des Dampfes im ersten Strömungskanal 10 wird in Rotationsenergie des Rotors 3 umgewandelt. Der Dampf strömt anschließend aus dem Hochdruckausströmbereich 11 und von dort ggf. zu einem Zwischenüberhitzer (nicht dargestellt). Danach strömt der Dampf als Mitteldruckeinströmdampf in einen Mitteldruckeinströmbereich 12. Nach dem Einströmen in den Mitteldruckeinströmbereich 12 strömt der Dampf in einen in eine zweite Richtung 13 weisenden zweiten Strömungskanal 14. Nach dem zweiten Strömungskanal 14 strömt der Dampf über einen Mitteldruckausströmbereich 15 aus der Strömungsmaschine heraus. Der Rotor 3 weist im Bereich des Hochdruckeinströmbereichs 8 eine Entlastungsnut 16 auf, die dadurch charakterisiert werden kann, dass der Rotor 3 an dieser Stelle in einem bestimmten axialen Bereich einen geringeren Radius aufweist als der Bereich davor und dahinter. Ebenso weist im Bereich des Mitteldruckeinströmbereichs 12 der Rotor 3 ebenfalls eine Entlastungsnut 17 auf, die ebenfalls dadurch charakterisiert werden kann, dass der Rotor 3 in einer gewissen axialen Länge einen geringeren Radius aufweist als der Rotor 3 vor der Entlastungsnut 17 und hinter der Entlastungsnut 17 in der zweiten Richtung 13 aus gesehen. Im Betrieb strömt ein Frischdampf im Hochdruckeinströmbereich 8 herein und strömt zum größten Teil durch den ersten Strömungskanal 10, der mit nicht näher dargestellten Leit- und Laufschaufeln ausgebildet ist. Ein unerwünscht geringer Teil des Hochdruckfrischdampfes strömt durch einen Spalt zwischen dem Innengehäuse 5 und dem Rotor 3 in einen mittleren Bereich 18. Im mittleren Bereich 18 weist der Rotor 3 einen Radius bestimmter Länge auf und bildet einen sogenannten großen Zwischenboden 19. Der Spalt zwischen dem Innengehäuse 5 und dem großen Zwischenboden 19 sollte möglichst dampfdicht ausgebildet sein und weist daher, wie in Figur 2 dargestellt, eine Labyrinthdichtung 25 auf. Die Labyrinthdichtung 25 umfasst mehrere Labyrinthdichtungssegmente 20 auf, die federnd in Labyrinthdichtungsnuten 21 angeordnet sind. Die Labyrinthdichtungssegmente 20 können somit in einer radialen Richtung 34 bewegt werden. Auf der Oberfläche des großen Zwischenbodens 19 sind, wie bei Labyrinthdichtungen 25 üblich, sogenannte Spitzen 22 angeordnet. Die Spitzen 22 werden auch als Dichtlippen bezeichnet oder ähnlich. Im Labyrinthdichtungssegment 20 hingegen ist ebenfalls eine Spitze 23 bzw. Dichtlippe angeordnet. In einer axialen Richtung 24 sind die Spitzen 22 und 23 nacheinander ausgebildet, was in der Figur 3 nochmal gesondert dargestellt ist.The FIG. 1 shows a steam turbine as an embodiment of a turbomachine and has an outer housing 2, which is arranged around a rotor 3 which is rotatably mounted about a rotation axis 4. To the rotor 3, an inner housing 5 is arranged. The steam turbine 1 has a high-pressure part 6 and a medium-pressure part 7. The high-pressure part 6 has a high-pressure inflow region 8, through which a high-pressure fresh steam flows. The high pressure fresh steam then flows through first flow channel 10 aligned in a first direction 9, which may also be referred to as a high pressure flow channel. The thermal energy of the steam in the first flow channel 10 is converted into rotational energy of the rotor 3. The steam then flows out of the high-pressure outflow region 11 and from there, if necessary, to a reheater (not shown). Thereafter, the vapor flows as Mitteldruckeinströmdampf in a Mitteldruckeinströmbereich 12. After flowing into the Mitteldruckeinströmbereich 12, the steam flows in a pointing in a second direction 13 second flow channel 14. After the second flow channel 14, the steam flows through a Mitteldruckausströmbereich 15 out of the turbomachine. The rotor 3 has in the region of the Hochdruckeinströmbereichs 8 a Relief groove 16, which can be characterized in that the rotor 3 at this point in a certain axial region has a smaller radius than the area in front and behind. Likewise, in the region of the medium-pressure inflow region 12, the rotor 3 likewise has a relief groove 17, which can likewise be characterized in that the rotor 3 has a smaller radius in a certain axial length than the rotor 3 before the relief groove 17 and behind the relief groove 17 in FIG the second direction 13 seen from. In operation, a live steam flows in the Hochdruckeinströmbereich 8 and flows for the most part through the first flow channel 10, which is formed with guide and blades not shown. An undesirably small part of the high pressure fresh steam flows through a gap between the inner housing 5 and the rotor 3 in a central region 18. In the central region 18, the rotor 3 has a radius of a certain length and forms a so-called large intermediate bottom 19. The gap between the inner housing 5 and the large intermediate bottom 19 should be formed as vapor-tight as possible and therefore has, as in FIG. 2 shown, a labyrinth seal 25 on. The labyrinth seal 25 comprises a plurality of labyrinth seal segments 20, which are resiliently arranged in labyrinth seal grooves 21. The labyrinth seal segments 20 can thus be moved in a radial direction 34. On the surface of the large intermediate bottom 19, as is customary with labyrinth seals 25, so-called tips 22 are arranged. The tips 22 are also referred to as sealing lips or the like. In contrast, in the labyrinth seal segment 20, a tip 23 or sealing lip is likewise arranged. In an axial direction 24, the tips 22 and 23 are formed sequentially, which is in the FIG. 3 again shown separately.

Die Figur 3 zeigt eine erfindungsgemäße Anordnung. Die Figur 2 hingegen zeigt einen vergrößerten Ausschnitt aus Figur 1 und zwar den mit dem Oval gekennzeichneten Teil der Strömungsmaschine 1. Wie nun in Figur 1 dargestellt, kann der Mitteldruckdampf aus dem Mitteldruckeinströmbereich 8 durch den Spalt durch die Labyrinthdichtung 25 zum Mitteldruckeinströmbereich 12 gelangen. Dieser Leckstrom sollte möglichst klein gehalten werden. Jedenfalls weist der in die Entlastungsnut 17 ausströmende Leckstrom eine vergleichsweise hohe Temperatur auf, die zu einer Schädigung des Rotors 3 in der Entlastungsnut 17 führen kann. Erfindungsgemäß wird dies hier verhindert, indem wie in Figur 3 ersichtlich, eine Umlenkleiteinrichtung 26 nach einer letzten Spitze 27 angeordnet ist und die derart ausgebildet ist, dass ein in der axialen Richtung 24 strömender Leckdampf zumindest teilweise in Umfangsrichtung 28 des Rotors umgelenkt wird. Die Umlenkleiteinrichtung 26 weist mehrere in der Umfangsrichtung 28 angeordnete Umlenkelemente 29 auf. Diese Umlenkelemente 29 können gebogen ausgeführt sein. Das bedeutet, dass die Umlenkelemente 29 zunächst in der axialen Richtung 24 gerichtet gerade ausgebildet sind und anschließend einen Bogen 30 aufweisen, der in die Umfangsrichtung 28 schließlich in einen Endbereich 31 zeigt. Die Umlenkelemente 29 sind hierbei derart ausgebildet, dass die Umlenkung um 90° erfolgt, das bedeutet, dass die Umlenkelemente 29 zunächst in axialer Richtung 24 parallel in einem Anfangsbereich 32 ausgebildet sind und im Endbereich 31 parallel zur Umfangsrichtung 28 ausgebildet sind. Dabei kann in alternativen Ausführungsformen der Endbereich 31 nicht zwingend parallel zur Umfangsrichtung 28 ausgebildet sein. Der Endbereich 31 und die Umfangsrichtung 28 können um einen Winkel α (wobei α zwischen 0° und 40° liegt) zueinander geneigt sein.The FIG. 3 shows an arrangement according to the invention. The FIG. 2 however, shows an enlarged section FIG. 1 namely the part of the turbomachine 1 marked with the oval FIG. 1 represented, the Medium pressure steam from the Mitteldruckeinströmbereich 8 pass through the gap through the labyrinth seal 25 to the Mitteldruckeinströmbereich 12. This leakage should be kept as small as possible. In any case, the leakage current flowing into the relief groove 17 has a comparatively high temperature, which can lead to damage to the rotor 3 in the relief groove 17. According to the invention this is prevented here, as in FIG. 3 can be seen, a Umlenkleiteinrichtung 26 is arranged after a last tip 27 and which is formed such that a flowing in the axial direction 24 leakage steam is at least partially deflected in the circumferential direction 28 of the rotor. The Umlenkleiteinrichtung 26 has a plurality of arranged in the circumferential direction 28 deflecting elements 29. These deflecting elements 29 can be designed bent. This means that the deflecting elements 29 are initially designed to be straight in the axial direction 24 and then have an arc 30 which finally points in the circumferential direction 28 into an end region 31. The deflection elements 29 are in this case designed such that the deflection takes place by 90 °, which means that the deflection elements 29 are first formed in the axial direction 24 parallel in an initial region 32 and are formed in the end region 31 parallel to the circumferential direction 28. In this case, in alternative embodiments, the end region 31 may not necessarily be formed parallel to the circumferential direction 28. The end portion 31 and the circumferential direction 28 may be inclined by an angle α (where α is between 0 ° and 40 °) to each other.

In alternativen Ausführungsformen können die Umlenkelemente 29 profiliert ausgebildet sein, das bedeutet, dass in einer Querschnittsansicht (nicht dargestellt) die Umlenkelemente eine Leitschaufelform aufweisen und die Strömung, die zwischen den Umlenkelementen sich befindet, beschleunigt.In alternative embodiments, the baffles 29 may be profiled, that is, in a cross-sectional view (not shown), the baffles have a vane shape and accelerate the flow that is between the baffles.

Durch die Beschleunigung des Leckagedampfes erhöht sich die kinetische Energie und die Temperatur sinkt. Somit wird die Temperatur in der Entlastungsnut 17 verringert. In einer ersten Ausführungsform kann der umgelenkte Leckagedampf mit einem Mitteldruckfrischdampf, der durch den Mitteldruckeinströmbereich 12 strömt, vermischt werden. In weiteren Ausführungsformen weist die Strömungsmaschine 1 einen Diagonalring 33 auf, der als erste Leitschaufelstufe wirkt und den Mitteldruckfrischdampf direkt in den zweiten Strömungsbereich 14 umlenkt, ohne dass dabei ein Dampf zur Entlastungsnut 17 gelangt. In einer alternativen Ausführungsform kann eine sogenannte Drallkühlung in dem Diagonalring 33 berücksichtigt werden, die einen Dampf aus dem Mitteldruckeinströmbereich in die Entlastungsnut 17 strömt, wobei dieser Dampf durch die Drallkühlung abgekühlt ist. Der Diagonalring 33 weist hierzu mehrere Düsen auf, die eine strömungstechnische Verbindung zwischen dem Mitteldruckeinströmbereich 12 und der Entlastungsnut 17 darstellt.By accelerating the leakage steam, the kinetic energy increases and the temperature drops. Thus, the temperature in the relief groove 17 is reduced. In a first Embodiment, the deflected leakage vapor may be mixed with a medium pressure fresh steam flowing through the medium pressure inflow region 12. In further embodiments, the turbomachine 1 has a diagonal ring 33, which acts as a first guide blade stage and deflects the medium pressure fresh steam directly into the second flow region 14, without causing a vapor to the relief groove 17. In an alternative embodiment, a so-called swirl cooling may be considered in the diagonal ring 33, which flows a vapor from the medium-pressure inflow region into the relief groove 17, which vapor has cooled by the swirl cooling. The diagonal ring 33 has for this purpose a plurality of nozzles, which represents a fluidic connection between the Mitteldruckeinströmbereich 12 and the relief groove 17.

Obwohl die Erfindung im Detail durch das bevorzugte Ausführungsbeispiel näher illustriert und beschrieben wurde, so ist die Erfindung nicht durch die offenbarten Beispiele eingeschränkt und andere Variationen können vom Fachmann hieraus abgeleitet werden, ohne den Schutzumfang der Erfindung zu verlassen.Although the invention has been further illustrated and described in detail by the preferred embodiment, the invention is not limited by the disclosed examples, and other variations can be derived therefrom by those skilled in the art without departing from the scope of the invention.

Claims (8)

Strömungsmaschine, insbesondere Dampfturbine (1), umfassend einen drehbar gelagerten Rotor (3) und ein um den Rotor (3) angeordnetes Gehäuse (2, 5),
wobei zwischen dem Rotor (3) und dem Gehäuse (2, 5) ein in eine erste Richtung (9) weisender erster Strömungskanal (10) und ein in einer zweiten Richtung (13) weisender zweiter Strömungskanal (14) angeordnet sind,
wobei zwischen dem ersten (10) und zweiten (14) Strömungskanal eine mehrere Spitzen (22, 23) umfassende Labyrinthdichtung (25) angeordnet ist,
dadurch gekennzeichnet, dass
in der zweiten Strömungsrichtung (13) gesehen nach einer letzten Spitze (27) eine Umlenkleiteinrichtung (26) angeordnet ist, die derart ausgebildet ist, dass ein in axialer Richtung (24) in der Labyrinthdichtung (25) strömender Leckdampf zumindest teilweise in Umfangsrichtung (28) des Rotors (3) ablenkbar ist.
Turbomachine, in particular a steam turbine (1), comprising a rotatably mounted rotor (3) and a housing (2, 5) arranged around the rotor (3),
wherein a first flow channel (10) pointing in a first direction (9) and a second flow channel (14) pointing in a second direction (13) are arranged between the rotor (3) and the housing (2, 5),
wherein between the first (10) and second (14) flow channel a labyrinth seal (25) comprising a plurality of tips (22, 23) is arranged,
characterized in that
In the second flow direction (13), after a last tip (27), a deflecting guide (26) is arranged, which is designed so that a leakage steam flowing in the labyrinth seal (25) in the axial direction (24) at least partially in the circumferential direction (28 ) of the rotor (3) is deflectable.
Strömungsmaschine nach Anspruch 1,
wobei die Umlenkleiteinrichtung (26) mehrere auf dem Umfang verteilte Umlenkelemente (29) aufweist.
Turbomachine according to claim 1,
wherein the Umlenkleiteinrichtung (26) has a plurality of circumferentially distributed deflecting elements (29).
Strömungsmaschine nach Anspruch 2,
wobei die Umlenkelemente (29) gebogen ausgeführt sind.
Turbomachine according to claim 2,
wherein the deflection elements (29) are designed bent.
Strömungsmaschine nach Anspruch 2 oder 3,
wobei die Umlenkelemente (29) zunächst in axialer Richtung (24) gerichtet ausgebildet sind und anschließend einen Bogen aufweisen, der in die Umfangsrichtung (28) zeigt.
Turbomachine according to claim 2 or 3,
wherein the deflecting elements (29) are initially directed in the axial direction (24) and then have an arc pointing in the circumferential direction (28).
Strömungsmaschine nach einem der Ansprüche 2 bis 4,
wobei die Umlenkelemente (29) derart ausgebildet sind, dass eine Umlenkung um 90° erfolgt.
Turbomachine according to one of claims 2 to 4,
wherein the deflection elements (29) are formed such that a deflection takes place by 90 °.
Strömungsmaschine nach einem der vorhergehenden Ansprüche,
wobei die Umlenkelemente (29) profiliert ausgebildet sind.
Turbomachine according to one of the preceding claims,
wherein the deflection elements (29) are formed profiled.
Strömungsmaschine nach Anspruch 6,
wobei Umlenkelemente (29) derart profiliert sind, dass eine Strömung umgelenkt und beschleunigt wird.
Turbomachine according to claim 6,
wherein deflecting elements (29) are profiled in such a way that a flow is deflected and accelerated.
Strömungsmaschine nach Anspruch 7,
wobei die Umlenkelemente (29) eine Leitschaufelstufe bilden.
Turbomachine according to claim 7,
wherein the deflecting elements (29) form a vane stage.
EP14199318.8A 2014-12-19 2014-12-19 Cooling means for flow engines Withdrawn EP3034784A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14199318.8A EP3034784A1 (en) 2014-12-19 2014-12-19 Cooling means for flow engines
PCT/EP2015/078301 WO2016096420A1 (en) 2014-12-19 2015-12-02 Cooling possibility for hydrodynamic machines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP14199318.8A EP3034784A1 (en) 2014-12-19 2014-12-19 Cooling means for flow engines

Publications (1)

Publication Number Publication Date
EP3034784A1 true EP3034784A1 (en) 2016-06-22

Family

ID=52146258

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14199318.8A Withdrawn EP3034784A1 (en) 2014-12-19 2014-12-19 Cooling means for flow engines

Country Status (2)

Country Link
EP (1) EP3034784A1 (en)
WO (1) WO2016096420A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108119189A (en) * 2016-11-30 2018-06-05 通用电气公司 Blade, rotating machinery and its assemble method
US11408299B1 (en) 2021-02-16 2022-08-09 Hamilton Sundstrand Corporation Erosion mitigating labyrinth seal mating ring

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111878451A (en) * 2020-08-11 2020-11-03 新奥能源动力科技(上海)有限公司 Axial compressor sealing device, axial compressor and gas turbine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004113770A2 (en) * 2003-06-20 2004-12-29 Elliott Company Swirl-reversal abradable labyrinth seal
US20060269399A1 (en) * 2005-05-31 2006-11-30 Pratt & Whitney Canada Corp. Deflectors for controlling entry of fluid leakage into the working fluid flowpath of a gas turbine engine
WO2014087512A1 (en) * 2012-12-06 2014-06-12 三菱重工コンプレッサ株式会社 Sealing device and rotating machine
EP2775096A2 (en) * 2013-03-08 2014-09-10 Siemens Aktiengesellschaft Diffuser assembly for an exhaust housing of a steam turbine, and steam turbine with the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004113770A2 (en) * 2003-06-20 2004-12-29 Elliott Company Swirl-reversal abradable labyrinth seal
US20060269399A1 (en) * 2005-05-31 2006-11-30 Pratt & Whitney Canada Corp. Deflectors for controlling entry of fluid leakage into the working fluid flowpath of a gas turbine engine
WO2014087512A1 (en) * 2012-12-06 2014-06-12 三菱重工コンプレッサ株式会社 Sealing device and rotating machine
EP2775096A2 (en) * 2013-03-08 2014-09-10 Siemens Aktiengesellschaft Diffuser assembly for an exhaust housing of a steam turbine, and steam turbine with the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108119189A (en) * 2016-11-30 2018-06-05 通用电气公司 Blade, rotating machinery and its assemble method
EP3330491A1 (en) * 2016-11-30 2018-06-06 General Electric Company Fixed blade for a rotary machine, corresponding rotary machine and method of assembling a rotary machine
US10822977B2 (en) 2016-11-30 2020-11-03 General Electric Company Guide vane assembly for a rotary machine and methods of assembling the same
US11408299B1 (en) 2021-02-16 2022-08-09 Hamilton Sundstrand Corporation Erosion mitigating labyrinth seal mating ring

Also Published As

Publication number Publication date
WO2016096420A1 (en) 2016-06-23

Similar Documents

Publication Publication Date Title
EP1659293B1 (en) Turbomachine
EP2108784B1 (en) Flow machine with fluid injector component group
EP2824282A1 (en) Gas turbine with high pressure turbine cooling system
DE102008044471A1 (en) Compression labyrinth seal and turbine with this
EP2302174A2 (en) Gas turbine shroud labyrinth seal
CH702000B1 (en) Device with swirl chambers to the gap flow control in a turbine stage.
DE102015219556A1 (en) Diffuser for radial compressor, centrifugal compressor and turbo machine with centrifugal compressor
DE102015122928A1 (en) Gas turbine seal
EP3064706A1 (en) Guide blade assembly for a flow engine with axial flow
EP2344723B1 (en) Gas turbine with seal plates on the turbine disk
DE102016124806A1 (en) A turbine blade assembly for a gas turbine and method of providing sealing air in a turbine blade assembly
EP3034784A1 (en) Cooling means for flow engines
EP3561228B1 (en) Turbomachine and blade, blade segment and assembly for a turbomachine
WO2018166716A1 (en) Backfeed stage and radial turbo fluid energy machine
DE102019211669A1 (en) SEALING DEVICE AND TURBO MACHINE
EP1734292A1 (en) Sealing means for a turbomachine
DE102017222817A1 (en) TURBINE MODULE FOR A FLOW MACHINE
EP1715224A1 (en) Sealing for a turbomachine
EP3109407A1 (en) Stator device for a turbo engine with a housing device and multiple guide vanes
EP2614222B1 (en) Anti-swirl device in a leakage flow of a turbomachine
WO2015055422A1 (en) Turbine blade, ring segment, associated turbine blade arrangement, stator, rotor, turbine and power plant system
WO2024188476A1 (en) Sealing segment for a turbomachine
EP3445948B1 (en) Steam turbine
EP3536913A1 (en) Inner ring for a turbomachine and method for producing said inner ring
EP3043022B1 (en) Turbomachine with ring room extension and blade

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20161223