EP3022397A1 - Arrangement of cooling channels in a turbine blade - Google Patents
Arrangement of cooling channels in a turbine bladeInfo
- Publication number
- EP3022397A1 EP3022397A1 EP14772098.1A EP14772098A EP3022397A1 EP 3022397 A1 EP3022397 A1 EP 3022397A1 EP 14772098 A EP14772098 A EP 14772098A EP 3022397 A1 EP3022397 A1 EP 3022397A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cooling
- blade
- arrangement
- cooling channels
- turbine blade
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 118
- 239000012809 cooling fluid Substances 0.000 claims abstract description 41
- 239000000203 mixture Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/187—Convection cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/187—Convection cooling
- F01D5/188—Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/30—Application in turbines
- F05D2220/32—Application in turbines in gas turbines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/201—Heat transfer, e.g. cooling by impingement of a fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/202—Heat transfer, e.g. cooling by film cooling
Definitions
- the invention relates to an arrangement of cooling channels in a turbine blade.
- Turbine blades in particular blades of gas turbines, are highly stressed components. The rotation takes place during operation with a high number of revolutions. Therefore, a high mechanical load capacity is required. In addition, high temperatures occur especially in gas turbine blades during operation. It generally applies that higher temperatures of the turbine blades driving gas mixture have a favorable effect on the efficiency of the gas turbine. In order to prevent too high temperatures of the turbine blades, the turbine blades are cooled. For this purpose, cooling channels are often arranged inside the turbine blades. Sometimes the turbine blades are hit by
- US Pat. No. 6,382,914 B1 discloses an arrangement for distributing cooling fluid in a turbine blade.
- This arrangement provides a number of cooling channels, which extend in the interior of the turbine blade parallel to an inlet edge and paral ⁇ lel to a trailing edge of the turbine blade. At least some of the cooling channels are connected by a diagonal channel. This is to improve the cooling.
- Further cooling devices for turbine blades are known from JP S59 231103 A, FR 1 209.752 A, GB 827 289 A and US Pat. No. 3,014,693 A.
- 6,382,914 Bl may in some way contribute to the fact that, if the turbine blade is damaged and, consequently, a cooling channel is damaged, the cooling can be maintained to a certain extent. This is not mentioned in the documents and is actually only with knowledge of the invention described below to recognize.
- the object of the invention is to improve the cooling in case of damage to a cooling channel on.
- An arrangement of a plurality of cooling channels, that is to say at least two cooling channels, within a turbine blade for conveying cooling fluid is proposed.
- the cooling fluid is usually air.
- the cooling channels lead through the turbine blade to one or more cooling fluid outlets.
- the turbine blade regularly has a blade foot, an airfoil tip, an inlet edge and a trailing edge.
- the cooling channels are connected to one another at selected locations and are separated from one another in other areas such that, if the turbine blade is damaged in the region of a cooling channel, the cooling by the other cooling channels remains largely unimpaired.
- a cooling passage generally runs from the blade root to the blade tip along the leading edge.
- a leak caused by damage in this cooling channel causes the cooling fluid to escape there.
- This is problematic ⁇ table as lying in the downstream of the leak portion fails cooling.
- the cooling fluid from this cooling channel is to meander further through the turbine blade and should provide cooling. In the event of a leak, the cooling of the turbine blade then largely fails.
- cooling channels are connected to one another at selected locations and are separated from one another in other areas. Due to the connections at selected points, cooling fluid can pass from one cooling channel into another cooling channel. If a leak had occurred in the other cooling channel upstream of the connection, cooling would be lost without the connection downstream. Through the connection, the cooling can be largely maintained downstream of the connection. But it is also necessary to separate the cooling channels in other areas from each other. Without the separation cooling fluid could pass unhindered in the event of a leak to the leak, so that the cooling would in turn be more affected.
- At least one cooling channel in a region near the leading edge and near the sight ⁇ felfuß begins and as a diagonal channel through the Turbinenschau- fei in an area near the trailing edge and close to the
- Blade tip leads. It should be made clear that the diagonal canal does not have to start at the root of the blade and not at the entrance, but only in this area. A beginning at the blade root and at the leading edge but should not be excluded. The same applies to the end of the diagonal channel near the trailing edge and near the blade tip. The diagonal channel allows the cooling fluid to flow well into different areas of the turbine blade and provide efficient cooling everywhere.
- the cooling ducts are joined together so that at regular cooling fluid flows through flow ⁇ the arrangement of a cooling passage in a different cooling channel. It would also be conceivable to provide this only in the event of a leak. In terms of efficient flow, it has proven to be useful to provide this in normal operation.
- the cooling channels are separated from an inner wall of the turbine blade by a perforated plate or a device in the manner of a perforated plate, so that the cooling fluid can pass largely perpendicular to the inner wall of the turbine blade. This achieves so-called impingement cooling. This is efficient because the cooling fluid is swirled on the inner wall and after the heating as ⁇ flows.
- At least one cooling channel begins at the blade root in a region near the inlet ⁇ edge of the turbine blade.
- the inlet for the cooling fluid is, even with the arrangements known in the prior art, for structural reasons regularly at the blade root. Because at the leading edge that drives the turbine blade
- a cooling duct begins in the area of the leading edge.
- two cooling channels begin at the blade root in a region near the leading edge, which end in a region near the blade root and are connected to one another and to the diagonal channel. In this way, cooling fluid can pass from cooling fluid inlets on the display foot to the diagonal channel. If on one of the pre ⁇ called cooling passages due to a leak cooling fluid to escape, the diagonal channel can be supplied with cooling fluid through the other cooling channel continues.
- Diagonal channel further cooling channels from, in particular cooling ⁇ channels branch off in the direction of the trailing edge and / or branch off cooling channels in the direction of the blade tip. On In this way, the distribution of the cooling fluid in the entire area of the turbine blade can be further optimized.
- a cooling channel runs parallel to the blade tip, into which opening the above-mentioned cooling channels extending in the direction of the blade tip.
- the blade tip ver ⁇ running parallel cooling channel can open into the same range as the diagonal channel.
- the branching toward the trailing edge cooling channels extend far ⁇ extent perpendicular to the trailing edge.
- the comparable towards the blade tip running cooling channels run largely parallel to the trailing edge. This also serves to further optimize the distribution of the cooling fluid. It is always important to keep in mind that a leak at one point should minimize the cooling of the turbine blade as little as possible.
- cooling fluid outlets are provided in the region of the outlet edge through which cooling fluid can pass from the region inside the turbine blade into an area outside the turbine blade. This can be achieved in the region of the trailing edge on an outer wall, a further cooling.
- the leaked cooling ⁇ fluid may optionally be used to drive a further Turbi ⁇ nencut.
- at least one cooling fluid outlet is provided on the blade root in the region of the outlet edge. The cooling fluid may leave from thedefluidein-, which is normally at the blade root in the area of an edge ⁇ occurs, flow through the turbine blade and flow back to the blade root in the region of the outlet edge.
- the exiting cooling fluid can be reused to cool additional turbine blades.
- the figure which shows schematically an arrangement of cooling channels, the invention will be illustrated below. Evident is an arrangement 1 of cooling channels in a gas turbine blade.
- a blade root 2 with which the turbine blade is attached to a rotor.
- On the left is an entrance edge 3 can be seen.
- the leading edge 3 is the area to which a gas mixture driving the turbine blade first impinges.
- Above a blade tip 4 can be seen.
- a trailing edge 5 is arranged.
- the turbine ⁇ blade is not flat, but curved. In this case, the leading edge 3 and the trailing edge 5 may be straight, but also curved.
- the blade 2 and the paddle blade tip go as curved and the rest of the shovel ⁇ area in any case.
- the curvature is due to an aerodynamic shape of the turbine blade.
- the turbine blade has a non-illustrated front wall, which runs trailing edge from the leading edge to the ver ⁇ and extending spaced therefrom rear wall, which leads back from the trailing edge to the leading edge.
- the distance between the front wall and the rear wall in the region of the leading edge 3 and the trailing edge 5 is very low and increases toward the blade center.
- a first cooling channel 6 begins at the blade root 2 and runs directly along the inlet edge 3.
- a further cooling channel 7 extends away from the blade root 2 and is separated from the cooling channel 6.
- the cooling channels 6 and 7 open into a region 8 which is close to the inlet edge 3 and near the blade root 2 is located.
- the cooling ⁇ channels 6 and 7 are interconnected.
- a diagonal channel 9 which leads into a region 10 near the trailing edge 5 and near the blade tip 4, also begins.
- a cooling passage 11 extends parallel to the scene ⁇ felfuß 2.
- the cooling channel 11 opens into a parallel to the off ⁇ takes edge 5 extending cooling channel 12. Following the Diago ⁇ nalkanal 9 from the area 8 near the leading edge 3 for loading ⁇ rich 10 near
- the outlet edge 5 branch off two cooling channels 13 and 14, which run parallel to the cooling channel 11 and open into the cooling channel 12.
- the arrangement 1 of the cooling channels 6, 7, 9, 11, 12, 13, 14, 15, 16, 17 can also be referred to as "fir tree design".
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
Beschreibung description
Anordnung von Kühlkanälen in einer Turbinenschaufel Die Erfindung betrifft eine Anordnung von Kühlkanälen in einer Turbinenschaufel. Arrangement of Cooling Channels in a Turbine Blade The invention relates to an arrangement of cooling channels in a turbine blade.
Turbinenschaufeln, insbesondere Schaufeln von Gasturbinen, sind hochbelastete Bauteile. Die Rotation erfolgt im Betrieb mit einer hohen Umdrehungszahl. Daher ist eine hohe mechanische Belastbarkeit erforderlich. Darüber hinaus treten vor allem bei Gasturbinenschaufeln im Betrieb hohe Temperaturen auf. Dabei gilt generell, dass höhere Temperaturen des die Turbinenschaufeln antreibenden Gasgemischs sich günstig auf den Wirkungsgrad der Gasturbine auswirken. Um dabei zu hohe Temperaturen der Turbinenschaufeln zu verhindern, werden die Turbinenschaufeln gekühlt. Dazu sind im Inneren der Turbinenschaufeln oft Kühlkanäle angeordnet. Bisweilen werden die Turbinenschaufeln durch auftreffendeTurbine blades, in particular blades of gas turbines, are highly stressed components. The rotation takes place during operation with a high number of revolutions. Therefore, a high mechanical load capacity is required. In addition, high temperatures occur especially in gas turbine blades during operation. It generally applies that higher temperatures of the turbine blades driving gas mixture have a favorable effect on the efficiency of the gas turbine. In order to prevent too high temperatures of the turbine blades, the turbine blades are cooled. For this purpose, cooling channels are often arranged inside the turbine blades. Sometimes the turbine blades are hit by
Fremdkörper beschädigt. Dies kann dazu führen, dass Luft aus den Kühlkanälen austritt und die Kühlung der Turbinenschaufel mitunter erheblich beeinträchtigt. Dies führt häufig dazu, dass die beschädigte Schaufel rasch ausgewechselt werden muss. Foreign body damaged. This can cause air to escape from the cooling channels and sometimes significantly affect cooling of the turbine blade. This often causes the damaged blade to be replaced quickly.
Aus der US 6,382,914 Bl ist eine Anordnung zur Verteilung von Kühlfluid in einer Turbinenschaufel bekannt. Diese Anordnung sieht eine Reihe von Kühlkanälen vor, die im Innenraum der Turbinenschaufel parallel zu einer Eintrittskante und paral¬ lel zu einer Austrittskante der Turbinenschaufel verlaufen. Zumindest manche der Kühlkanäle sind durch einen diagonalen Kanal verbunden. Damit soll die Kühlung verbessert werden. Weitere Kühleinrichtungen für Turbinenschaufeln sind aus den Schriften JP S59 231103 A, aus der FR 1 209,752 A, der GB 827 289 A und der US 3,014,693 A bekannt. Die Anordnungen gemäß den vorgenannten Schriften, insbesondere der US 6,382,914 Bl, mögen in gewisser Weise dazu beitragen, dass bei Beschädigung der Turbinenschaufel und damit einhergehend eines Kühlkanals die Kühlung in gewissem Umfang aufrechterhalten werden kann. Dies ist in den Schriften nicht genannt und ist eigentlich erst in Kenntnis der nachfolgend beschriebenen Erfindung zu erkennen. US Pat. No. 6,382,914 B1 discloses an arrangement for distributing cooling fluid in a turbine blade. This arrangement provides a number of cooling channels, which extend in the interior of the turbine blade parallel to an inlet edge and paral ¬ lel to a trailing edge of the turbine blade. At least some of the cooling channels are connected by a diagonal channel. This is to improve the cooling. Further cooling devices for turbine blades are known from JP S59 231103 A, FR 1 209.752 A, GB 827 289 A and US Pat. No. 3,014,693 A. The arrangements according to the aforementioned documents, in particular US Pat. No. 6,382,914 Bl, may in some way contribute to the fact that, if the turbine blade is damaged and, consequently, a cooling channel is damaged, the cooling can be maintained to a certain extent. This is not mentioned in the documents and is actually only with knowledge of the invention described below to recognize.
Aufgabe der Erfindung ist es die Kühlung im bei Beschädigung eines Kühlkanals weiter zu verbessern. The object of the invention is to improve the cooling in case of damage to a cooling channel on.
Diese Aufgabe wird durch den unabhängigen Anspruch gelöst. Vorteilhafte Ausgestaltungen finden sich in den Unteransprüchen . This object is solved by the independent claim. Advantageous embodiments can be found in the subclaims.
Es wird eine Anordnung von mehreren Kühlkanälen, das heißt mindestens zwei Kühlkanälen, innerhalb einer Turbinenschaufel zur Förderung von Kühlfluid vorgeschlagen. Beim Kühlfluid handelt es sich im Regelfall um Luft. An arrangement of a plurality of cooling channels, that is to say at least two cooling channels, within a turbine blade for conveying cooling fluid is proposed. The cooling fluid is usually air.
Die Kühlkanäle führen durch die Turbinenschaufel zu einem oder mehreren Kühlfluidauslässen . The cooling channels lead through the turbine blade to one or more cooling fluid outlets.
Die Turbinenschaufel weist dabei regelmäßig einen Schaufel¬ fuß, eine Schaufelblattspitze, eine Eintrittskante und eine Austrittskante auf. The turbine blade regularly has a blade foot, an airfoil tip, an inlet edge and a trailing edge.
Die Kühlkanäle sind dabei an ausgewählten Stellen so miteinander verbunden und verlaufen in anderen Bereichen so voneinander getrennt, dass bei einer Beschädigung der Turbinen- schaufei im Bereich eines Kühlkanals die Kühlung durch die anderen Kühlkanäle weitgehend unbeeinträchtigt bleibt. The cooling channels are connected to one another at selected locations and are separated from one another in other areas such that, if the turbine blade is damaged in the region of a cooling channel, the cooling by the other cooling channels remains largely unimpaired.
Im Stand der Technik verläuft in der Regel ein Kühlkanal vom Schaufelfuß zur Schaufelblattspitze längs der Eintrittskante. Ein Leck durch eine Beschädigung in diesem Kühlkanal hat zur Folge, dass das Kühlfluid dort austritt. Dies ist problema¬ tisch, da im stromabwärts des Lecks liegenden Bereichs die Kühlung ausfällt. Besonders problematisch wird es allerdings, wenn das Kühl- fluid aus diesem Kühlkanal weiter durch die Turbinenschaufel mäandrieren soll und für Kühlung sorgen soll. Im Falle eines Lecks fällt die Kühlung der Turbinenschaufel dann weitgehend aus . In the prior art, a cooling passage generally runs from the blade root to the blade tip along the leading edge. A leak caused by damage in this cooling channel causes the cooling fluid to escape there. This is problematic ¬ table as lying in the downstream of the leak portion fails cooling. However, it is particularly problematic if the cooling fluid from this cooling channel is to meander further through the turbine blade and should provide cooling. In the event of a leak, the cooling of the turbine blade then largely fails.
Durch das oben vorgestellte Konzept, wonach die Kühlkanäle an ausgewählten Stellen miteinander verbunden sind und in ande- ren Bereichen voneinander getrennt sind, kann dieses Problem reduziert werden. Durch die Verbindungen an ausgewählten Stellen, kann Kühlfluid von einem Kühlkanal in einen anderen Kühlkanal gelangen. Sollte im anderen Kühlkanal stromaufwärts der Verbindung ein Leck aufgetreten sein, würde ohne die Ver- bindung stromabwärts die Kühlung ausfallen. Durch die Verbindung kann stromabwärts der Verbindung die Kühlung weitgehend aufrechterhalten werden. Es ist aber auch notwendig die Kühlkanäle in anderen Bereichen voneinander zu trennen. Ohne die Trennung könnte Kühlfluid im Falle eines Lecks ungehindert zum Leck gelangen, so dass die Kühlung wiederum stärker beeinträchtigt würde. Vor allem aber ist auch im Normalfall, also bei fehlendem Leck, eine Kanalstruktur, das heißt auch eine Trennung der Kühlkanäle, erforderlich, um das Kühlfluid tatsächlich durch die ganze Turbinenschaufel zu leiten. Ande- renfalls würde das Kühlfluid von einem Kühlfluideinlass auf kurzem Wege zu einem Kühlfluidauslass strömen. Es ist also stets ein vernünftiger Kompromiss zwischen Verbindungen der Kühlkanäle und abgetrennten Bereichen zu schaffen. Unter Berücksichtigung der obigen Ausführungen kann der Fachmann eine Vielzahl von verschiedenen Anordnungen schaffen. This problem can be reduced by the concept presented above, according to which the cooling channels are connected to one another at selected locations and are separated from one another in other areas. Due to the connections at selected points, cooling fluid can pass from one cooling channel into another cooling channel. If a leak had occurred in the other cooling channel upstream of the connection, cooling would be lost without the connection downstream. Through the connection, the cooling can be largely maintained downstream of the connection. But it is also necessary to separate the cooling channels in other areas from each other. Without the separation cooling fluid could pass unhindered in the event of a leak to the leak, so that the cooling would in turn be more affected. Above all, however, in the normal case, that is, in the absence of a leak, a channel structure, that is, a separation of the cooling channels, required to actually direct the cooling fluid through the entire turbine blade. Otherwise, the cooling fluid would flow from a cooling fluid inlet a short distance to a cooling fluid outlet. It is therefore always a reasonable compromise between connections of the cooling channels and separate areas to create. In view of the above, those skilled in the art can provide a variety of different arrangements.
Ein wichtiger Aspekt dabei ist, dass mindestens ein Kühlkanal in einem Bereich nahe der Eintrittskante und nahe dem Schau¬ felfuß beginnt und als Diagonalkanal durch die Turbinenschau- fei in einen Bereich nahe der Austrittskante und nahe derAn important aspect is that at least one cooling channel in a region near the leading edge and near the sight ¬ felfuß begins and as a diagonal channel through the Turbinenschau- fei in an area near the trailing edge and close to the
Schaufelblattspitze führt. Es ist dabei klarzustellen, dass der Diagonalkanal nicht am Schaufelfuß und nicht an der Ein- trittskannte beginnen muss, sondern nur in diesem Bereich. Ein Beginn am Schaufelfuß und an der Eintrittskante soll aber nicht ausgeschlossen werden. Für das Ende des Diagonalkanals nahe der Austrittskante und nahe der Schaufelblattspitze gilt das Entsprechende. Der Diagonalkanal ermöglicht das Kühlfluid gut in verschiedene Bereiche der Turbinenschaufel zu führen und überall für eine effiziente Kühlung zu sorgen. Blade tip leads. It should be made clear that the diagonal canal does not have to start at the root of the blade and not at the entrance, but only in this area. A beginning at the blade root and at the leading edge but should not be excluded. The same applies to the end of the diagonal channel near the trailing edge and near the blade tip. The diagonal channel allows the cooling fluid to flow well into different areas of the turbine blade and provide efficient cooling everywhere.
Auch mit der oben beschriebenen Anordnung ist im Falle eines Lecks nicht zu vermeiden, dass die Kühlung beeinträchtigt wird und in einzelnen Bereichen auch ausfällt. Insgesamt aber wird der Kühlfluidverlust deutlich reduziert und im intakten Schaufelbereich ist die Kühlung überwiegend gewährleistet. Damit bleiben die mechanische Stabilität und die Festigkeit weitgehend unbeeinträchtigt. Damit kann die beschädigte Tur- binenschaufel weiter betrieben werden. Even with the arrangement described above, in the case of a leak can not be avoided that the cooling is impaired and in some areas also fails. Overall, however, the cooling fluid loss is significantly reduced and in the intact blade area, the cooling is predominantly ensured. Thus, the mechanical stability and strength remain largely unaffected. This allows the damaged turbine blade to continue to operate.
Auch wenn es langfristig notwendig bleiben sollte, die Turbi¬ nenschaufel auszutauschen, ist es ein großer Vorteil, wenn dies erst bei der nächsten regulären größeren Wartung der Turbine erfolgen muss. Die erhöhte Temperatur führt oft nicht sofort zu einer nicht mehr hinnehmbaren Beschädigung der Turbinenschaufel sondern erst nach längerem Betrieb bei Überhit¬ zung . Wenngleich die Darstellung vor allem in Hinblick auf die Kühlung von Laufschaufein, die mit dem Schaufelfuß an einem Rotor befestigt sind, gewählt worden ist, ist das vorge¬ stellte Kühlkonzept auch für Leitschaufeln grundsätzlich anwendbar . Even if it should be necessary in the long term to replace the turbine blade, it is a great advantage if this must be done until the next regular major maintenance of the turbine. The elevated temperature often does not immediately lead to unacceptable damage to the turbine blade but only after prolonged operation in Überhit ¬ tion. Although the illustration has been chosen primarily in terms of the cooling of rotor blades that are attached to the blade on a rotor, the cooling concept pre ¬ presented is generally applicable to the vanes.
In einer Ausführungsform der Erfindung ist vorgesehen, dass die Kühlkanäle so miteinander verbunden sind, dass bei Durch¬ strömung der Anordnung regelmäßig Kühlfluid von einem Kühlkanal in einen anderen Kühlkanal strömt. Es wäre zwar auch denkbar, dies nur im Falle eines Lecks vorzusehen. Im Sinne einer effizienten Durchströmung hat es sich als sinnvoll herausgestellt dies auch im Normalbetrieb vorzusehen. In einer Ausführungsform der Erfindung sind die Kühlkanäle von einer Innenwand der Turbinenschaufel durch ein Lochblech oder eine Vorrichtung nach Art eines Lochblechs getrennt, so dass das Kühlfluid weitgehend senkrecht auf die Innenwand der Turbinenschaufel gelangen kann. Damit wird eine sogenannte Prallkühlung erreicht. Diese ist effizient, da das Kühlfluid an der Innenwand verwirbelt wird und nach der Erwärmung wie¬ der abströmt. Würde das Kühlfluid nur an der Innenwand der Turbinenschaufel vorbeiströmen, könnte sich ein unmittelbar an der Wand anliegender Film ausbilden, in dem die Strömung vergleichsweise schwach ist. Zudem würde in einem Bereich ge¬ rade erwärmtes Kühlfluid zur Kühlung anderer Bereiche ge¬ nutzt . In einer Ausführungsform der Erfindung beginnt mindestens ein Kühlkanal am Schaufelfuß in einem Bereich nahe der Eintritts¬ kante der Turbinenschaufel. Der Einlass für das Kühlfluid liegt, auch bei den im Stand der Technik bekannten Anordnungen, aus konstruktiven Gründen regelmäßig am Schaufelfuß. Da an der Eintrittskante das die Turbinenschaufel antreibendeIn one embodiment of the invention it is provided that the cooling ducts are joined together so that at regular cooling fluid flows through flow ¬ the arrangement of a cooling passage in a different cooling channel. It would also be conceivable to provide this only in the event of a leak. In terms of efficient flow, it has proven to be useful to provide this in normal operation. In one embodiment of the invention, the cooling channels are separated from an inner wall of the turbine blade by a perforated plate or a device in the manner of a perforated plate, so that the cooling fluid can pass largely perpendicular to the inner wall of the turbine blade. This achieves so-called impingement cooling. This is efficient because the cooling fluid is swirled on the inner wall and after the heating as ¬ flows. If the cooling fluid only flow past the inner wall of the turbine blade, a film lying directly against the wall could form, in which the flow is comparatively weak. In addition, ge ¬ rade in a region heated cooling fluid would ge ¬ uses for cooling other areas. In one embodiment of the invention, at least one cooling channel begins at the blade root in a region near the inlet ¬ edge of the turbine blade. The inlet for the cooling fluid is, even with the arrangements known in the prior art, for structural reasons regularly at the blade root. Because at the leading edge that drives the turbine blade
Gasgemisch am heißesten ist, ist die thermische Belastung der Turbinenschaufel dort am höchsten. Daher ist es sinnvoll, dass ein Kühlkanal im Bereich der Eintrittskante beginnt. In einer weiteren Ausführungsform der Erfindung beginnen am Schaufelfuß in einem Bereich nahe der Eintrittskante zwei Kühlkanäle, die in einem Bereich nahe des Schaufelfußes enden und dort miteinander und mit dem Diagonalkanal verbunden sind. Damit kann Kühlfluid von Kühlfluideinlässen am Schau- feifuß zum Diagonalkanal gelangen. Sollte an einem der vorge¬ nannten Kühlkanäle aufgrund eines Lecks Kühlfluid austreten, kann durch den anderen Kühlkanal der Diagonalkanal weiterhin mit Kühlfluid versorgt werden. In einer weiteren Ausführungsform der Erfindung zweigen vomGas mixture is hottest, the thermal load of the turbine blade is highest there. Therefore, it makes sense that a cooling duct begins in the area of the leading edge. In a further embodiment of the invention, two cooling channels begin at the blade root in a region near the leading edge, which end in a region near the blade root and are connected to one another and to the diagonal channel. In this way, cooling fluid can pass from cooling fluid inlets on the display foot to the diagonal channel. If on one of the pre ¬ called cooling passages due to a leak cooling fluid to escape, the diagonal channel can be supplied with cooling fluid through the other cooling channel continues. In a further embodiment of the invention branch of
Diagonalkanal weitere Kühlkanäle ab, wobei insbesondere Kühl¬ kanäle in Richtung der Austrittskante abzweigen und/oder Kühlkanäle in Richtung der Schaufelblattspitze abzweigen. Auf diese Weise kann die Verteilung des Kühlfluids im gesamten Bereich der Turbinenschaufel weiter optimiert werden. Diagonal channel further cooling channels from, in particular cooling ¬ channels branch off in the direction of the trailing edge and / or branch off cooling channels in the direction of the blade tip. On In this way, the distribution of the cooling fluid in the entire area of the turbine blade can be further optimized.
In einer weiteren Ausführungsform der Erfindung verläuft parallel zur Schaufelblattspitze ein Kühlkanal, in den die in Richtung der Schaufelblattspitze verlaufenden oben erwähnten Kühlkanäle münden. Der parallel zur Schaufelblattspitze ver¬ laufende Kühlkanal kann dabei in denselben Bereich münden wie der Diagonalkanal. In a further embodiment of the invention, a cooling channel runs parallel to the blade tip, into which opening the above-mentioned cooling channels extending in the direction of the blade tip. Of the blade tip ver ¬ running parallel cooling channel can open into the same range as the diagonal channel.
In einer weiteren Ausführungsform der Erfindung verlaufen die in Richtung der Austrittskante abzweigenden Kühlkanäle weit¬ gehend senkrecht zur Austrittskante. Alternativ oder ergän¬ zend verlaufen die in Richtung der Schaufelblattspitze ver- laufenden Kühlkanäle weitgehend parallel zur Austrittskante. Auch dies dient der weiteren Optimierung der Verteilung des Kühlfluids. Immer ist dabei im Blick, dass ein Leck an einer Stelle die Kühlung der Turbinenschaufel möglichst wenig be¬ einträchtigen soll. In a further embodiment of the invention, the branching toward the trailing edge cooling channels extend far ¬ extent perpendicular to the trailing edge. Alternatively or comple ¬ zend the comparable towards the blade tip running cooling channels run largely parallel to the trailing edge. This also serves to further optimize the distribution of the cooling fluid. It is always important to keep in mind that a leak at one point should minimize the cooling of the turbine blade as little as possible.
In einer weiteren Ausführungsform der Erfindung sind im Bereich der Austrittskante Kühlfluidauslässe vorhanden, durch die Kühlfluid vom Bereich innerhalb der Turbinenschaufel in einen Bereich außerhalb der Turbinenschaufel gelangen kann. Damit kann im Bereich der Austrittskante auf einer Außenwand eine weitere Kühlung erreicht werden. Das ausgetretene Kühl¬ fluid kann gegebenenfalls zum Antrieb einer weiteren Turbi¬ nenstufe genutzt werden. In einer weiteren Ausführungsform der Erfindung ist am Schaufelfuß im Bereich der Austrittskante mindestens ein Kühl- fluidauslass vorhanden. Das Kühlfluid kann vom Kühlfluidein- lass, der normalerweise am Schaufelfuß im Bereich der Ein¬ trittskante liegt, durch die Turbinenschaufel fließen und im Bereich der Austrittskante wieder zum Schaufelfuß strömen.In a further embodiment of the invention, cooling fluid outlets are provided in the region of the outlet edge through which cooling fluid can pass from the region inside the turbine blade into an area outside the turbine blade. This can be achieved in the region of the trailing edge on an outer wall, a further cooling. The leaked cooling ¬ fluid may optionally be used to drive a further Turbi ¬ nenstufe. In a further embodiment of the invention, at least one cooling fluid outlet is provided on the blade root in the region of the outlet edge. The cooling fluid may leave from the Kühlfluidein-, which is normally at the blade root in the area of an edge ¬ occurs, flow through the turbine blade and flow back to the blade root in the region of the outlet edge.
Das austretende Kühlfluid kann zur Kühlung weiterer Turbinenschaufeln wieder verwendet werden. Anhand der Figur, die schematisch eine Anordnung von Kühlkanälen zeigt, soll die Erfindung nachfolgend anschaulicher dargestellt werden. Zu erkennen ist eine Anordnung 1 von Kühlkanälen in einer Gasturbinenschaufel. Wenngleich in der gewählten Ansicht aus Gründen der Übersichtlichkeit im The exiting cooling fluid can be reused to cool additional turbine blades. With reference to the figure, which shows schematically an arrangement of cooling channels, the invention will be illustrated below. Evident is an arrangement 1 of cooling channels in a gas turbine blade. Although in the chosen view for the sake of clarity in the
Wesentlichen nur die Kühlkanäle zu erkennen sind, soll dennoch zunächst die Geometrie der Turbinenschaufel dargestellt werden, um den Verlauf der Kühlkanäle besser erläutern zu können . Essentially, only the cooling channels can be seen, yet the geometry of the turbine blade is still to be displayed first in order to better explain the course of the cooling channels.
Unten liegt ein Schaufelfuß 2, mit dem die Turbinenschaufel an einem Rotor befestigt ist. Links ist eine Eintrittskante 3 zu erkennen. Die Eintrittskante 3 ist der Bereich, auf den ein die Turbinenschaufel antreibendes Gasgemisch zunächst auftrifft. Oben ist eine Schaufelblattspitze 4 zu erkennen. Rechts ist eine Austrittskante 5 angeordnet. Die Turbinen¬ schaufel ist nicht eben, sondern gekrümmt. Dabei können die Eintrittskante 3 und die Austrittskante 5 gerade sein, aber auch gekrümmt verlaufen. Der Schaufelfuß 2 und die Schaufel- blattspitze hingegen verlaufen wie auch der übrige Schaufel¬ bereich in jedem Fall gekrümmt. Die Krümmung ist einer aerodynamischen Form der Turbinenschaufel geschuldet. Below is a blade root 2, with which the turbine blade is attached to a rotor. On the left is an entrance edge 3 can be seen. The leading edge 3 is the area to which a gas mixture driving the turbine blade first impinges. Above a blade tip 4 can be seen. Right is a trailing edge 5 is arranged. The turbine ¬ blade is not flat, but curved. In this case, the leading edge 3 and the trailing edge 5 may be straight, but also curved. The blade 2 and the paddle blade tip, however, go as curved and the rest of the shovel ¬ area in any case. The curvature is due to an aerodynamic shape of the turbine blade.
Die Turbinenschaufel weist eine nicht dargestellte vordere Wand auf, die von der Eintrittskante zur Austrittskante ver¬ läuft und eine im Abstand davon verlaufende hintere Wand, welche wieder von der Austrittskante zur Eintrittskante führt. Im Allgemeinen ist der Abstand zwischen vorderer Wand und hinterer Wand im Bereich der Eintrittskante 3 und der Austrittskante 5 sehr niedrig und nimmt zur Schaufelmitte hin zu . The turbine blade has a non-illustrated front wall, which runs trailing edge from the leading edge to the ver ¬ and extending spaced therefrom rear wall, which leads back from the trailing edge to the leading edge. In general, the distance between the front wall and the rear wall in the region of the leading edge 3 and the trailing edge 5 is very low and increases toward the blade center.
Nun zur Anordnung der Kühlkanäle. Ein erster Kühlkanal 6 beginnt am Schaufelfuß 2 und verläuft direkt entlang der Ein- trittskante 3. Auf der der Eintrittskante 3 abgewandten Seite des Kühlkanals 6 verläuft vom Schaufelfuß 2 weg ein weiterer Kühlkanal 7, der vom Kühlkanal 6 getrennt ist. Die Kühlkanäle 6 und 7 münden in einen Bereich 8, der nahe der Eintritts- kante 3 und nahe dem Schaufelfuß 2 liegt. Dort sind die Kühl¬ kanäle 6 und 7 miteinander verbunden. Im Bereich 8 beginnt ferner ein Diagonalkanal 9, der in einen Bereich 10 nahe der Austrittskante 5 und nahe der Schaufelblattspitze 4 führt. Vom Bereich 8 verläuft ein Kühlkanal 11 parallel zum Schau¬ felfuß 2. Der Kühlkanal 11 mündet in einen parallel zur Aus¬ trittskante 5 verlaufenden Kühlkanal 12. Folgt man dem Diago¬ nalkanal 9 vom Bereich 8 nahe der Eintrittskante 3 zum Be¬ reich 10 nahe der Austrittskante 5 zweigen zwei Kühlkanäle 13 und 14 ab, die parallel zum Kühlkanal 11 verlaufen und in den Kühlkanal 12 münden. Now for the arrangement of the cooling channels. A first cooling channel 6 begins at the blade root 2 and runs directly along the inlet edge 3. On the side of the cooling channel 6 facing away from the inlet edge 3, a further cooling channel 7 extends away from the blade root 2 and is separated from the cooling channel 6. The cooling channels 6 and 7 open into a region 8 which is close to the inlet edge 3 and near the blade root 2 is located. There, the cooling ¬ channels 6 and 7 are interconnected. In the region 8, a diagonal channel 9, which leads into a region 10 near the trailing edge 5 and near the blade tip 4, also begins. From the area 8, a cooling passage 11 extends parallel to the scene ¬ felfuß 2. The cooling channel 11 opens into a parallel to the off ¬ takes edge 5 extending cooling channel 12. Following the Diago ¬ nalkanal 9 from the area 8 near the leading edge 3 for loading ¬ rich 10 near The outlet edge 5 branch off two cooling channels 13 and 14, which run parallel to the cooling channel 11 and open into the cooling channel 12.
Weiterhin zweigen zwei parallel zur Eintrittskante 3 verlau¬ fende Kühlkanäle 15 und 16 vom Diagonalkanal 8 ab. Diese mün- den in einen Kühlkanal 17, der in der Nähe der Schaufelblatt¬ spitze 4 parallel zur Schaufelblattspitze 4 verläuft und in den Bereich 10 mündet und dort mit dem Diagonalkanal 9 ver¬ bunden ist. Der Bereich 10 ist darüber hinaus mit dem entlang der Austrittskante 5 verlaufenden Kühlkanal 12 verbunden. Der Kühlkanal 12 mündet im Schaufelfuß 2 in einen Kühlfluidaus- lass 18. Darüber hinaus sind Kühlfluidauslässe 19a bis 19g an der Austrittskante 5 vorhanden. Furthermore, two parallel to the leading edge 3 durau ¬ fende cooling channels 15 and 16 branch off from the diagonal channel 8. This Munich in the one cooling channel 17, which runs parallel to the airfoil tip 4 in the vicinity of the blade tip ¬ 4 and flows into the region 10 and is ver ¬ connected there with the diagonal pin 9. The region 10 is also connected to the cooling channel 12 running along the trailing edge 5. The cooling channel 12 opens into the blade root 2 into a cooling fluid outlet 18. In addition, cooling fluid outlets 19 a to 19 g are present at the outlet edge 5.
Die Anordnung 1 der Kühlkanäle 6, 7, 9, 11, 12, 13, 14, 15, 16, 17 kann anschaulich auch als „Tannenbaumdesign" bezeichnet werden. The arrangement 1 of the cooling channels 6, 7, 9, 11, 12, 13, 14, 15, 16, 17 can also be referred to as "fir tree design".
Die Richtung der Strömung im Normalbetrieb, also bei Kühlung ohne dass ein Leck besteht, ist durch Pfeile dargestellt. Es wird deutlich, dass ein Leck an einem der vielen Kühlkanäle in aller Regel nur zu einer Einschränkung der Kühlung, nicht aber zum Ausfall der Kühlung führt. The direction of the flow in normal operation, ie cooling without a leak is shown by arrows. It becomes clear that a leak at one of the many cooling channels usually only leads to a restriction of the cooling, but not to the failure of the cooling.
Obwohl die Erfindung im Detail durch das bevorzugte Ausfüh- rungsbeispiel näher illustriert und beschrieben wurde, so ist die Erfindung nicht durch die offenbarten Beispiele einge¬ schränkt und andere Variationen können vom Fachmann hieraus abgeleitet werden, ohne den Schutzumfang der Erfindung zu verlassen . Although the invention in detail by the preferred execution illustrated insurance for closer and described, the invention is not limited ¬ by the disclosed examples and other variations can by a specialist from this can be derived without departing from the scope of the invention.
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14772098.1A EP3022397A1 (en) | 2013-09-25 | 2014-09-17 | Arrangement of cooling channels in a turbine blade |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13185944.9A EP2853689A1 (en) | 2013-09-25 | 2013-09-25 | Arrangement of cooling channels in a turbine blade |
PCT/EP2014/069747 WO2015044007A1 (en) | 2013-09-25 | 2014-09-17 | Arrangement of cooling channels in a turbine blade |
EP14772098.1A EP3022397A1 (en) | 2013-09-25 | 2014-09-17 | Arrangement of cooling channels in a turbine blade |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3022397A1 true EP3022397A1 (en) | 2016-05-25 |
Family
ID=49303737
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13185944.9A Withdrawn EP2853689A1 (en) | 2013-09-25 | 2013-09-25 | Arrangement of cooling channels in a turbine blade |
EP14772098.1A Withdrawn EP3022397A1 (en) | 2013-09-25 | 2014-09-17 | Arrangement of cooling channels in a turbine blade |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13185944.9A Withdrawn EP2853689A1 (en) | 2013-09-25 | 2013-09-25 | Arrangement of cooling channels in a turbine blade |
Country Status (5)
Country | Link |
---|---|
US (1) | US20160208622A1 (en) |
EP (2) | EP2853689A1 (en) |
JP (1) | JP2016533446A (en) |
CN (1) | CN105593471A (en) |
WO (1) | WO2015044007A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3037830B1 (en) * | 2015-06-29 | 2024-02-16 | Snecma | MOLDING ASSEMBLY FOR A TURBOMACHINE BLADE, INCLUDING A LARGE SECTION RELIEF PORTION |
US10544684B2 (en) * | 2016-06-29 | 2020-01-28 | General Electric Company | Interior cooling configurations for turbine rotor blades |
FR3057906B1 (en) * | 2016-10-20 | 2019-03-15 | Safran Aircraft Engines | OPTIMIZED COOLING TURBINE TANK |
US10422229B2 (en) * | 2017-03-21 | 2019-09-24 | United Technologies Corporation | Airfoil cooling |
US10697301B2 (en) * | 2017-04-07 | 2020-06-30 | General Electric Company | Turbine engine airfoil having a cooling circuit |
US11644046B2 (en) * | 2018-01-05 | 2023-05-09 | Aurora Flight Sciences Corporation | Composite fan blades with integral attachment mechanism |
EP3832069A1 (en) * | 2019-12-06 | 2021-06-09 | Siemens Aktiengesellschaft | Turbine blade for a stationary gas turbine |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2641439A (en) * | 1947-10-01 | 1953-06-09 | Chrysler Corp | Cooled turbine or compressor blade |
US2687278A (en) * | 1948-05-26 | 1954-08-24 | Chrysler Corp | Article with passages |
GB827289A (en) * | 1955-10-26 | 1960-02-03 | Wiggin & Co Ltd Henry | Improvements relating to hollow turbine or compressor blades |
DE1097212B (en) * | 1956-10-22 | 1961-01-12 | Her Majesty The Queen In The R | Blade provided with cooling ducts, especially for gas turbines |
US3017159A (en) * | 1956-11-23 | 1962-01-16 | Curtiss Wright Corp | Hollow blade construction |
NL104493C (en) * | 1957-06-07 | |||
BE571212A (en) * | 1958-09-10 | |||
US3171631A (en) * | 1962-12-05 | 1965-03-02 | Gen Motors Corp | Turbine blade |
US3554663A (en) * | 1968-09-25 | 1971-01-12 | Gen Motors Corp | Cooled blade |
JPS59231103A (en) * | 1983-06-14 | 1984-12-25 | Toshiba Corp | Cooled blade of gas turbine |
JPS6285102A (en) * | 1985-10-11 | 1987-04-18 | Hitachi Ltd | Gas turbine cooling blade |
US5536143A (en) * | 1995-03-31 | 1996-07-16 | General Electric Co. | Closed circuit steam cooled bucket |
JP2851575B2 (en) * | 1996-01-29 | 1999-01-27 | 三菱重工業株式会社 | Steam cooling wings |
JPH11241602A (en) * | 1998-02-26 | 1999-09-07 | Toshiba Corp | Gas turbine blades |
US6382914B1 (en) * | 2001-02-23 | 2002-05-07 | General Electric Company | Cooling medium transfer passageways in radial cooled turbine blades |
EP1471210A1 (en) * | 2003-04-24 | 2004-10-27 | Siemens Aktiengesellschaft | Turbine component with impingement cooling plate |
US7104757B2 (en) * | 2003-07-29 | 2006-09-12 | Siemens Aktiengesellschaft | Cooled turbine blade |
EP2378073A1 (en) * | 2010-04-14 | 2011-10-19 | Siemens Aktiengesellschaft | Blade or vane for a turbomachine |
CN201991570U (en) * | 2011-03-11 | 2011-09-28 | 北京华清燃气轮机与煤气化联合循环工程技术有限公司 | Turbine rotor blade of gas turbine |
US9528379B2 (en) * | 2013-10-23 | 2016-12-27 | General Electric Company | Turbine bucket having serpentine core |
-
2013
- 2013-09-25 EP EP13185944.9A patent/EP2853689A1/en not_active Withdrawn
-
2014
- 2014-09-17 CN CN201480052859.5A patent/CN105593471A/en active Pending
- 2014-09-17 EP EP14772098.1A patent/EP3022397A1/en not_active Withdrawn
- 2014-09-17 JP JP2016516886A patent/JP2016533446A/en active Pending
- 2014-09-17 US US15/023,392 patent/US20160208622A1/en not_active Abandoned
- 2014-09-17 WO PCT/EP2014/069747 patent/WO2015044007A1/en active Application Filing
Non-Patent Citations (1)
Title |
---|
See references of WO2015044007A1 * |
Also Published As
Publication number | Publication date |
---|---|
CN105593471A (en) | 2016-05-18 |
JP2016533446A (en) | 2016-10-27 |
EP2853689A1 (en) | 2015-04-01 |
US20160208622A1 (en) | 2016-07-21 |
WO2015044007A1 (en) | 2015-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3022397A1 (en) | Arrangement of cooling channels in a turbine blade | |
DE19940020C2 (en) | extractor | |
DE102004054294B4 (en) | Cooling system for platform edges of stator segments | |
EP0902167B1 (en) | Cooling device for gas turbine components | |
DE60018817T2 (en) | Chilled gas turbine blade | |
EP2307670B1 (en) | Integrally bladed rotor disk for a turbine | |
DE102015213090A1 (en) | Blade for a turbomachine and method for its production | |
CH701041A2 (en) | A turbine with sidewall cooling plenum. | |
DE102012200883B4 (en) | Dynamic-seal assembly | |
EP2252771A1 (en) | Vane for a gas turbine | |
DE602005000796T2 (en) | Cooled rotor blade | |
CH705838A1 (en) | Exhaust frame for a gas turbine and gas turbine with an exhaust housing. | |
DE102015203871A1 (en) | Rotor of a turbine of a gas turbine with improved cooling air flow | |
EP2084368A1 (en) | Turbine blade | |
EP1292760B1 (en) | Configuration of a coolable turbine blade | |
WO2003054356A1 (en) | Thermally loaded component | |
EP1709298A1 (en) | Cooled blade for a gas turbine | |
CH710576A2 (en) | Turbine blade having a plurality of cooling channels. | |
CH706962A2 (en) | Serpentine cooling Leitschaufelendwand. | |
DE102010044819B4 (en) | Axial flow turbine and method of removing flow from an axial flow turbine | |
EP3039246A1 (en) | Turbine blade with a central blowout at the trailing edge | |
WO2005005785A1 (en) | Cooled blade for a gas turbine | |
EP3232001A1 (en) | Rotor blade for a turbine | |
EP3581760A1 (en) | Turbine blade for a flow engine | |
EP2863013A1 (en) | Arrangement of cooling channels in a turbine blade in a bowed structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20160217 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Effective date: 20161028 |