EP3017247B1 - Once-through steam generator - Google Patents
Once-through steam generator Download PDFInfo
- Publication number
- EP3017247B1 EP3017247B1 EP14747568.5A EP14747568A EP3017247B1 EP 3017247 B1 EP3017247 B1 EP 3017247B1 EP 14747568 A EP14747568 A EP 14747568A EP 3017247 B1 EP3017247 B1 EP 3017247B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- tube groups
- heated tube
- steam generator
- control valve
- feed water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010438 heat treatment Methods 0.000 claims description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 8
- 238000011144 upstream manufacturing Methods 0.000 claims description 3
- 238000002485 combustion reaction Methods 0.000 description 28
- 238000013461 design Methods 0.000 description 12
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000006978 adaptation Effects 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000005293 physical law Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B29/00—Steam boilers of forced-flow type
- F22B29/06—Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
- F22B29/061—Construction of tube walls
- F22B29/062—Construction of tube walls involving vertically-disposed water tubes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B21/00—Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
- F22B21/34—Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes grouped in panel form surrounding the combustion chamber, i.e. radiation boilers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B21/00—Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
- F22B21/34—Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes grouped in panel form surrounding the combustion chamber, i.e. radiation boilers
- F22B21/341—Vertical radiation boilers with combustion in the lower part
- F22B21/343—Vertical radiation boilers with combustion in the lower part the vertical radiation combustion chamber being connected at its upper part to a sidewards convection chamber
- F22B21/345—Vertical radiation boilers with combustion in the lower part the vertical radiation combustion chamber being connected at its upper part to a sidewards convection chamber with a tube bundle between an upper and a lower drum in the convection pass
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B35/00—Control systems for steam boilers
- F22B35/06—Control systems for steam boilers for steam boilers of forced-flow type
- F22B35/10—Control systems for steam boilers for steam boilers of forced-flow type of once-through type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B35/00—Control systems for steam boilers
- F22B35/06—Control systems for steam boilers for steam boilers of forced-flow type
- F22B35/10—Control systems for steam boilers for steam boilers of forced-flow type of once-through type
- F22B35/104—Control systems by injecting water
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B35/00—Control systems for steam boilers
- F22B35/06—Control systems for steam boilers for steam boilers of forced-flow type
- F22B35/10—Control systems for steam boilers for steam boilers of forced-flow type of once-through type
- F22B35/108—Control systems for steam generators having multiple flow paths
Definitions
- the invention relates to a continuous steam generator according to the preamble of claim 1, and a method for operating such a continuous steam generator according to claim 5.
- a continuous steam generator is from the DE 19651678 known.
- the invention relates specifically to continuous flow or forced flow steam generators for power plants, with a rectangular in cross-section combustion chamber, each combustion chamber wall comprises substantially vertically arranged and via tube webs gas-tight connected evaporator tubes, which are flowed through by a flow medium from bottom to top.
- the heating of these, the combustion chamber walls forming evaporator tubes leads here to a complete evaporation of the flow medium in one pass.
- the evaporator tubes of the continuous steam generator can be arranged partially or over the entire length vertically or vertically and / or helically or spirally.
- Continuous steam generators can be designed as forced flow steam generator, wherein the passage of the flow medium is forced here by a feed pump.
- the object of the invention is therefore to provide an improved continuous steam generator and a corresponding method for operating such a continuous steam generator.
- the advantage of the present invention is that the fact that evaporator tubes of the combustion chamber walls are summarized according to their degree of heating by upstream inlet collector respectively to Guidebeauchten pipe groups and underheated pipe groups and in the region of the corresponding feed water supply at least one control valve for controlled throttling of the mass flow of the feedwater and thus the The evaporator tubes flowing through the flow medium is provided, and for determining a controlled variable for the at least one control valve in the range of downstream outlet collectors temperature measuring means are provided for measuring outlet temperatures of the flow medium from the evaporator tubes, so even with almost unchanged design of the continuous evaporator, temperature imbalances a perpendicular bored Combustion chamber in the entire load range of the power plant, with minimal effort effectively minimized.
- this is only an additional control valve to provide as a control valve and a corresponding control concept.
- the inventive method for operating such a continuous steam generator provides that the feedwater supply throttling of the at least one control valve is reduced to such an extent that the outlet temperatures of the reheated pipe groups are equal to those of the underheated pipe groups or are at a similar level.
- each of the more heated pipe groups and the lower heated pipe groups are respectively associated with one of the inlet header and one outlet header, and each of the outlet header includes one of the temperature measuring means.
- the temperature measuring means are installed in the outgoing from the outlet headers lines, since a mixing temperature is measured here.
- each of the four corner wall regions has its own feedwater supply line, each with its own control valve. Due to this expansion, which can also be modular if required, a further homogenization of the temperature distribution at the outlet of the vertical perforated evaporator wall of a continuous steam generator can be achieved. Under these circumstances, it is even conceivable that the continuous steam generator from the entrance to the ride in a complete run to bore, so that previously provided reversing collector can be omitted. The possibly necessary for dynamic stability pressure equalization could be realized here with a much cheaper pressure equalization collector.
- the present invention is based on the idea of segmenting in a combustion chamber 1 the mass flow distribution of the flow medium flowing through the evaporator tubes into reheated tube groups 10 and sub-heated tube groups 11 and then selectively manipulating their flow rates.
- the complete combustion chamber 1 divided into representative wall areas E1 to E4 and M1 to M4 with different heating zones. This is done here at least by segmentation of the evaporator tubes in tube groups 10 and 11 by means not shown inlet collector at the bottom of the (forced) continuous steam generator.
- FIG. 1 schematically represented cross section through the continuous steam generator of the combustion chamber 1 are twelve segmented pipe groups 10 and 11 can be seen.
- Each combustion chamber wall are assigned to two inlet collector segments at the corners and an inlet collector segment lying therebetween.
- Each of the inlet collector segments is assigned to a wall region with representative heating, in this case the less heated corner wall regions E1-E4 and the more heated middle wall regions M1-M4, wherein the corner wall regions E1-E4 are each assigned two inlet collector segments at the corner of two adjacent combustion chamber walls.
- Each Eckwand Scheme E1 to E4 is a feedwater supply line S1 to S4 for supplying feed water to the corresponding inlet headers.
- FIG. 1 represented branch out of a feedwater main supply line 20 and supply in each corner wall region in each case two pipe groups of adjacent combustion chamber walls via the corresponding inlet collector segments with feed water (in FIG. 1 indicated by arrows).
- the feedwater main supply line 20 and the feedwater supply lines S1 to S4 thereby form the feedwater supply to the tube groups 11 of the corner wall portions.
- a control valve R is provided in the feedwater main supply line 20, it can be adequately responded to different loads and to design uncertainties in the assumed heat distribution to the individual Eckwand Schemee E1 to E4, by controlled by opening or closing the control valve R, the evaporator tubes the pipe groups 11 of Eckwand Schemee E1 to E4 supplied feedwater mass flow, the current operating requirements is adjusted.
- the feed water supply 20 of the underheated pipe groups 11 is reduced by throttling the control valve R extent that match the outlet temperatures of the underheated pipe groups 11 of the reheated pipe groups 10 and thus the entire temperature profile at the outlet of the continuous steam generator uniformed. Inadmissibly high temperature imbalances can be prevented so effectively and without much effort, since depending on the measured temperatures, wall areas with low heat absorption now lower flow and wall areas with high heat absorption have a high flow.
- the temperature measuring means of the reheated tube groups 10 from the middle wall regions can be summarized as "high-heated” and the temperature measuring means of the underheated tube groups 11 from the corner wall regions as a “low-heated” system. If the measured temperature of the combined "high-heated" system is too large, so can be reduced by additional throttling of the control valve, the flow through the corner wall areas and reversed in the middle wall areas are raised, so that lower the mean temperature of the middle wall areas to the desired level leaves.
- the maximum number of individual collector segments and associated control valves should be limited as much as possible.
- the simplest system is, as in FIG. 1 It is assumed that the four corner wall portions E1 to E4 of the combustion chamber undergo almost the same heating to one another and so via the feedwater supply lines S1 to S4 and the feedwater main supply line 20 as a common tube group with a common feedwater supply can be summarized. Analogously, the remaining wall center regions M1 to M4 are combined by a corresponding, but not shown, feedwater supply to a common pipe group.
- each corner wall region E1 to E4 can be regulated independently of the other corner wall areas feed water be supplied.
- each of the four corner wall systems E1 to E4 has its own temperature measuring means.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Steam Boilers And Waste-Gas Boilers (AREA)
Description
Die Erfindung betrifft einen Durchlaufdampferzeuger gemäß dem Oberbegriff des Anspruchs 1, sowie ein Verfahren zum Betreiben eines solchen Durchlaufdampferzeugers gemäß Anspruch 5. Ein solcher Durchlaufdampferzeuger ist aus der
Die Erfindung bezieht sich konkret auf Durchlauf- bzw. Zwangdurchlaufdampferzeuger für Kraftwerksanlagen, mit einer im Querschnitt rechteckigen Brennkammer, deren jede Brennkammerwand im Wesentlichen vertikal angeordnete und über Rohrstege miteinander gasdicht verbundene Verdampferrohre umfasst, die von einem Strömungsmedium von unten nach oben durchströmbar sind. Die Beheizung dieser, die Brennkammerwände bildenden Verdampferrohre, führt hier zu einer vollständigen Verdampfung des Strömungsmediums in einem Durchgang. Prinzipiell können die Verdampferrohre des Durchlaufdampferzeugers dabei teilweise oder über die ganze Länge vertikal bzw. senkrecht und/oder schrauben- bzw. spiralförmig angeordnet sein. Durchlaufdampferzeuger können dabei als Zwangdurchlaufdampferzeuger ausgelegt sein, wobei der Durchlauf des Strömungsmediums hier von einer Speisepumpe erzwungen wird.The invention relates specifically to continuous flow or forced flow steam generators for power plants, with a rectangular in cross-section combustion chamber, each combustion chamber wall comprises substantially vertically arranged and via tube webs gas-tight connected evaporator tubes, which are flowed through by a flow medium from bottom to top. The heating of these, the combustion chamber walls forming evaporator tubes, leads here to a complete evaporation of the flow medium in one pass. In principle, the evaporator tubes of the continuous steam generator can be arranged partially or over the entire length vertically or vertically and / or helically or spirally. Continuous steam generators can be designed as forced flow steam generator, wherein the passage of the flow medium is forced here by a feed pump.
Wesentliche Vorteile eines reinen vertikalen Verdampferrohrkonzeptes sind eine einfache Konstruktion der Brennkammeraufhängung, ein geringer Fertigungs- und Montageaufwand sowie eine größere Wartungsfreundlichkeit. Im Vergleich zu einer spiralförmig berohrten Brennkammerwand lassen sich auf diesem Weg die Investitionskosten erheblich reduzieren. Designbedingt sind aber die Temperaturschieflagen solcher senkrecht berohrten Verdampferrohrkonzepte im Vergleich zu spiralförmig berohrten Brennkammern wesentlich größer. Während die Verdampferrohre in einer Spiralwicklung nahezu sämtliche Beheizungszonen der Brennkammer durchlaufen und sich somit ein guter Beheizungsausgleich erzielen lässt, verbleiben die einzelnen Brennkammerrohre der Senkrechtberohrung vom vorgeschalteten Verdampfer-Eintrittssammler bis zum nachgeschalteten Verdampfer-Austrittssammler in der jeweiligen Beheizungszone. Somit erfahren Rohre in stark beheizten Brennkammerbereichen, z. B. in der Nähe der Brenner oder auch im Mittenwandbereich von Brennkammern mit rechteckigem Querschnitt, über der gesamten Rohrlänge eine kontinuierliche Mehrbeheizung. Rohre in schwach beheizten Brennkammerbereichen, insbesondere die Eckwandrohre der Brennkammer mit rechteckigem Querschnitt, erfahren dagegen über der gesamten Rohrlänge eine Minderbeheizung. Bei Konzepten mit spiralförmigen Verdampferrohren liegen die Mehr- und Minderbeizungen einzelner Rohre bzw. Rohrgruppen im niedrigen einstelligen Prozentbereich. Bei senkrecht berohrten Konzepten, sind hingegen bezogen auf die mittlere Wärmeaufnahme eines einzelnen Verdampferrohres, deutlich größere Mehr- und Minderbeheizungen bekannt. Die wesentliche Herausforderung bei senkrecht berohrten Brennkammerwänden liegt demnach in der Beherrschbarkeit dieser großen Beheizungsschieflagen zwischen einzelnen Verdampferrohren.Significant advantages of a pure vertical evaporator tube concept are a simple construction of the combustion chamber suspension, a low manufacturing and assembly costs and greater ease of maintenance. Compared to a spirally bored combustion chamber wall, the investment costs can be significantly reduced in this way. Due to the design, however, the temperature imbalances of such vertically drilled evaporator tube concepts are much greater in comparison to spirally bored combustion chambers. While the evaporator tubes in a spiral winding pass through almost all the heating zones of the combustion chamber and thus a good heat balance can be achieved, the individual combustion chamber tubes of the vertical bore remain from the upstream one Evaporator inlet collector to the downstream evaporator outlet collector in the respective heating zone. Thus, pipes in heavily heated combustion chamber areas, z. B. in the vicinity of the burner or in the middle wall region of combustion chambers with rectangular cross-section, over the entire length of the pipe continuous Mehrbeheizung. In contrast, pipes in weakly heated combustion chamber regions, in particular the corner wall pipes of the combustion chamber with a rectangular cross section, experience a lower heating over the entire pipe length. In concepts with spiral-shaped evaporator tubes, the excess and minor admixtures of individual tubes or tube groups are in the low single-digit percentage range. In the case of vertically bored concepts, on the other hand, with regard to the average heat absorption of a single evaporator tube, considerably greater increased and reduced heaters are known. The main challenge with vertically bored combustion chamber walls is therefore the controllability of these large heating imbalances between individual evaporator pipes.
Ein sehr wirksamer und bereits in der
Naheliegend wäre es die Massenstromverteilung auf einzelne Brennkammerwandbereiche und damit verschiedene Gruppen von Verdampferrohren aufzuteilen und diese dann gezielt zu manipulieren. Konkret bedeutet dies, dass in bevorzugter Art und Weise Wandbereiche mit einer hohen Beheizung vergleichsweise große Durchflussraten und Wandbereiche mit niedriger Beheizung entsprechend niedrigere Durchflussraten aufweisen sollten. Zu diesem Zweck muss die Brennkammer zur Berücksichtigung unterschiedlicher Beheizungszonen in repräsentative Wandbereiche unterteilt werden. Dies geschieht durch eine Segmentierung der Ein- und Austrittssammler. Jedes Sammlersegment ist dabei einem Wandbereich mit repräsentativer Beheizung zugeordnet. Im Eintrittsbereich wird jedes Sammlersegment mit einer eigenen Speisewasserzuführungsleitung versehen. Durch die Wahl einer geeigneten geometrischen Ausgestaltung dieser Zuführungsleitungen, bzw. durch die Installation zusätzlicher Drosselblenden im Bereich dieser Zuführungsleitungen, kann abhängig von der jeweiligen Beheizungssituation die Aufteilung des Gesamtspeisewassermassenstroms auf die einzelnen Sammlersegmente zielgerichtet vorgenommen werden.It would be obvious to divide the mass flow distribution over individual combustion chamber wall regions and thus different groups of evaporator tubes and then manipulate these in a targeted manner. Concretely, this means that in a preferred manner wall areas with a high heating should have comparatively large flow rates and wall areas with low heating correspondingly lower flow rates. For this purpose, the combustion chamber must be subdivided into representative wall areas to take account of different heating zones. This is done by segmenting the inlet and outlet collectors. Each collector segment is assigned to a wall area with representative heating. In the inlet area, each collector segment is provided with its own feedwater supply line. By selecting a suitable geometric configuration of these supply lines, or by installing additional orifices in the region of these supply lines, the distribution of the total feed water mass flow can be made targeted to the individual collector segments depending on the particular heating situation.
Geometrisch aufeinander abgestimmte Zuführungsleitungen bzw. Drosselblenden haben aber den entscheidenden Nachteil, dass sich ihre Drosselleistung mit der Last verändert. Somit kann die Massenstromverteilung im Verdampfer und die damit verknüpften Temperaturschieflagen am Verdampferaustritt systembedingt nur für einen bestimmten Lastbereich optimiert werden. Darüber hinaus können sowohl die Zuführungsleitungen als auch die Drosselblenden nur bei genauer Kenntnis der Wärmeverteilung über dem Brennkammerumfang zielgerichtet ausgelegt und aufeinander abgestimmt werden. Weicht dann im Betrieb der Kraftwerksanlage die auftretende Wärmeverteilung von der in den Auslegungsberechnungen der Zuführungsleitungen bzw. Drosselblenden verwendeten Verteilung ab, so können im ungünstigsten Fall die Temperaturschieflagen sogar noch ansteigen. Die Idee das Design über die geometrische Anpassung der Zuführungsleitungen mit oder ohne Drosselblenden weiter abzusichern kehrt sich so unter Umständen sogar in das Gegenteil um.However, geometrically matched supply lines or throttle diaphragms have the decisive disadvantage that their throttle power changes with the load. Thus, the mass flow distribution in the evaporator and the associated temperature imbalances at the evaporator outlet system can be optimized only for a specific load range. In addition, both the supply lines and the orifices can be targeted and matched to one another only with precise knowledge of the heat distribution over the combustion chamber circumference. Then differs in the operation of the power plant, the occurring heat distribution of the in From the design calculations of the supply lines or orifices used distribution, so in the worst case, the temperature imbalances may even increase. The idea of further securing the design by means of the geometrical adaptation of the supply lines with or without restrictor orifices may even reverse the opposite.
Aufgabe der Erfindung ist es daher, einen verbesserten Durchlaufdampferzeuger sowie ein entsprechendes Verfahren zum Betreiben eines solchen Durchlaufdampferzeugers bereitzustellen.The object of the invention is therefore to provide an improved continuous steam generator and a corresponding method for operating such a continuous steam generator.
Diese Aufgabe wird mit dem Durchlaufdampferzeuger mit den Merkmalen des Anspruchs 1 sowie dem Verfahren mit den Merkmalen des Anspruchs 3 gelöst.This object is achieved with the continuous steam generator with the features of claim 1 and the method with the features of claim 3.
Der Vorteil der vorliegenden Erfindung besteht darin, dass dadurch, dass Verdampferrohre der Brennkammerwände entsprechend ihrem Beheizungsgrad durch stromaufwärts angeordnete Eintrittssammler jeweils zu mehrbeheizten Rohrgruppen und minderbeheizten Rohrgruppen zusammengefasst sind und im Bereich der entsprechenden Speisewasserzuführung zumindest ein Regelventil zum geregelten Drosseln des Massenstroms des Speisewassers und damit des die Verdampferrohre durchströmenden Strömungsmediums vorgesehen ist, und zum Bestimmen einer Regelgröße für das zumindest eine Regelventil im Bereich von stromabwärts angeordneten Austrittssammlern Temperaturmessmittel zum Messen von Austrittstemperaturen des Strömungsmediums aus den Verdampferrohren vorgesehen sind, können so auch bei nahezu unverändertem Design des Durchlaufverdampfers, Temperaturschieflagen einer senkrecht berohrten Brennkammer im gesamten Lastbereich der Kraftwerksanlage, mit geringem Aufwand effektiv minimiert werden. Im günstigsten Fall ist hierfür nur ein zusätzliches Regelventil als Regelarmatur und ein entsprechendes Regelkonzept vorzusehen. Das erfindungsgemäße Verfahren zum Betreiben eines solchen Durchlaufdampferzeugers sieht dabei vor, dass die Speisewasserzuführung der minderbeheizten Rohrgruppen durch Androsselung des zumindest einen Regelventils soweit reduziert wird, dass sich die Austrittstemperaturen der mehrbeheizten Rohrgruppen denen der minderbeheizten Rohrgruppen angleichen bzw. sich auf ähnlichem Niveau befinden.The advantage of the present invention is that the fact that evaporator tubes of the combustion chamber walls are summarized according to their degree of heating by upstream inlet collector respectively to mehrbeheizten pipe groups and underheated pipe groups and in the region of the corresponding feed water supply at least one control valve for controlled throttling of the mass flow of the feedwater and thus the The evaporator tubes flowing through the flow medium is provided, and for determining a controlled variable for the at least one control valve in the range of downstream outlet collectors temperature measuring means are provided for measuring outlet temperatures of the flow medium from the evaporator tubes, so even with almost unchanged design of the continuous evaporator, temperature imbalances a perpendicular bored Combustion chamber in the entire load range of the power plant, with minimal effort effectively minimized. In the best case, this is only an additional control valve to provide as a control valve and a corresponding control concept. The inventive method for operating such a continuous steam generator provides that the feedwater supply throttling of the at least one control valve is reduced to such an extent that the outlet temperatures of the reheated pipe groups are equal to those of the underheated pipe groups or are at a similar level.
Vorzugsweise sind jeder der mehrbeheizten Rohrgruppen und minderbeheizten Rohrgruppen jeweils einer der Eintrittssammler und ein Austrittssammler zugeordnet, und jeder der Austrittssammler weist eines der Temperaturmessmittel auf. Bevorzugt sind die Temperaturmessmittel dabei in den von den Austrittssammlern abgehenden Leitungen installiert, da hier eine Mischtemperatur gemessen wird.Preferably, each of the more heated pipe groups and the lower heated pipe groups are respectively associated with one of the inlet header and one outlet header, and each of the outlet header includes one of the temperature measuring means. Preferably, the temperature measuring means are installed in the outgoing from the outlet headers lines, since a mixing temperature is measured here.
Gerade bei im Wesentlichen rechteckigen Brennkammern, die ausgeprägte minderbeheizte Rohrgruppen in den Eckwandbereichen aufweisen, kann es vorteilhaft sein, wenn jeder der vier Eckwandbereiche eine eigene Speisewasserzuführungsleitung mit jeweils einem eigenen Regelventil aufweist. Durch diese Erweiterung, die im Bedarfsfall auch modular erfolgen kann, kann eine weitere Vergleichmäßigung der Temperaturverteilung am Austritt der senkrechtberohrten Verdampferwand eines Durchlaufdampferzeugers erreicht werden. Unter diesen Umständen ist es sogar denkbar den Durchlaufdampferzeuger vom Eintritt bis zum Ausritt in einem kompletten Durchlauf zu berohren, so dass bislang noch vorgesehene Umkehrsammler entfallen können. Der für die dynamische Stabilität gegebenenfalls erforderliche Druckausgleich könnte hier mit einem weitaus kostengünstigeren Druckausgleichsammler realisiert werden.Especially in the case of essentially rectangular combustion chambers, which have pronounced, less heated tube groups in the corner wall regions, it can be advantageous if each of the four corner wall regions has its own feedwater supply line, each with its own control valve. Due to this expansion, which can also be modular if required, a further homogenization of the temperature distribution at the outlet of the vertical perforated evaporator wall of a continuous steam generator can be achieved. Under these circumstances, it is even conceivable that the continuous steam generator from the entrance to the ride in a complete run to bore, so that previously provided reversing collector can be omitted. The possibly necessary for dynamic stability pressure equalization could be realized here with a much cheaper pressure equalization collector.
Weitere vorteilhafte Weiterbildungen des erfindungsgemäßen Durchlaufdampferzeugers bzw. des zwangdurchströmten Durchlaufdampferzeugers sind den weiteren Unteransprüchen zu entnehmen.Further advantageous developments of the continuous steam generator according to the invention or of the forced flow continuous steam generator can be found in the further subclaims.
Die Erfindung soll nun anhand der nachfolgenden Figuren beispielhaft erläutert werden. Es zeigen:
- FIG 1
- schematisch im Querschnitt eine erfindungsgemäße Ausbildung eines Durchlaufdampferzeugers mit rechteckiger Brennkammer,
- FIG 2
- schematisch eine zweite erfindungsgemäße Ausbildung.
- FIG. 1
- schematically in cross-section an inventive design of a continuous steam generator with a rectangular combustion chamber,
- FIG. 2
- schematically a second embodiment of the invention.
Die vorliegende Erfindung beruht auf der Idee in einer Brennkammer 1 die Massenstromverteilung des die Verdampferrohre durchströmenden Strömungsmediums in mehrbeheizte Rohrgruppen 10 und minderbeheizte Rohrgruppen 11 zu segmentieren und deren Durchflussraten dann gezielt zu manipulieren. Konkret bedeutet dies, dass Wandbereiche mit hoher Beheizung vergleichsweise große Durchflussraten und Wandbereiche mit niedriger Beheizung entsprechend niedrigere Durchflussraten aufweisen sollten. Zu diesem Zweck wird - wie in
In dem in
Mittels im Bereich von stromabwärts angeordneten Austrittssammlern vorgesehenen Temperaturmessmitteln zum Messen der Austrittstemperaturen des Strömungsmediums kann die Speisewasserzuführung 20 der minderbeheizten Rohrgruppen 11 durch Androsselung des Regelventils R soweit reduziert wird, dass sich die Austrittstemperaturen der minderbeheizten Rohrgruppen 11 denen der mehrbeheizten Rohrgruppen 10 angleichen und somit sich das gesamte Temperaturprofil am Austritt des Durchlaufdampferzeugers vergleichmäßigt. Unzulässig hohe Temperaturschieflagen können so effektiv und ohne großen Aufwand verhindert werden, da in Abhängigkeit der gemessenen Temperaturen, Wandbereiche mit geringer Wärmeaufnahme nun geringere Durchströmungen und Wandbereiche mit großer Wärmeaufnahme eine hohe Durchströmung aufweisen.By means provided in the region of downstream outlet headers temperature measuring means for measuring the outlet temperatures of the flow medium, the
Vorzugsweise können dabei am Verdampferaustritt die Temperaturmessmittel der mehrbeheizten Rohrgruppen 10 aus den Mittenwandbereichen als "hoch beheiztes" und die Temperaturmessmittel der minderbeheizten Rohrgruppen 11 aus den Eckwandbereichen als "niedrig beheiztes" System zusammengefasst werden. Ist die gemessene Temperatur des als "hoch beheizten" zusammengefassten Systems zu groß, so kann durch zusätzliche Androsselung des Regelventils der Durchfluss durch die Eckwandbereiche reduziert und im Umkehrschluss in den Mittenwandbereichen angehoben werden, so dass sich die mittlere Temperatur der Mittenwandbereiche auf das gewünschte Niveau absenken lässt.Preferably, at the evaporator outlet, the temperature measuring means of the reheated
Um die zusätzlichen Kosten sowie den regelungstechnischen Aufwand überschaubar zu halten bzw. zu begrenzen, sollte die maximale Anzahl der einzelnen Sammlersegmente samt zugehöriger Regelventile möglichst limitiert werden. Das einfachste System besteht dabei, wie in
Sollen auch Schieflagen zwischen den einzelnen Eckwandbereichen E1 bis E4 (und ggf. zusätzlich auch zwischen den einzelnen Mittenwandbereichen M1 bis M4) untereinander berücksichtigt und ausgeglichen werden, sind - so wie in
Kombinationen der zuvor beschriebenen Ausführungsbeispiele sowie weitere Ergänzungen sind vor dem Hintergrund von zunehmenden Anforderungen an die Flexibilität während des Betriebs einer Kraftwerkanlage denkbar und sind von der Erfindung mit umfasst. So können zusätzlich auch Schieflagen der einzelnen Mittenwandbereiche M1 bis M4 untereinander und in Bezug zu den Eckwandbereiche E1 bis E4 berücksichtigt und ausgeglichen werden, wenn entsprechende Speisewasserzuführungsleitungen und Regelventile zur Androsselung dieser hoch beheizten Mittenwandbereiche vorgesehen werden. Würde man gleichzeitig auf eigene Regelventile in den Zuführungsleitungen der Rohrgruppen der Eckwandbereiche E1 bis E4 verzichten, so wäre in diesem speziellen Fall im Vorfeld der Durchfluss durch die Eckwandbereiche beispielsweise mittels fest installierter Drosseln soweit zu begrenzen, dass eine Regelung des Speisewassermassenstroms der Mittenwandbereiche überhaupt erst ermöglicht wird. Nur unter diesen Umständen wäre bei voll geöffneter Regelarmatur in den Zuführungsleitungen der hoch beheizten Mittenwandsysteme deren Durchsatz so groß, dass trotz höherer Beheizung die Mittenwandsysteme im Vergleich zu den Eckrohrsystemen geringere Austrittstemperaturen hätten. Durch eine zusätzliche Androsselung der Regelventile der Mittenwandsysteme, könnte der nun zu groß geratene Durchsatz durch die Mittenwandsysteme wieder reduziert werden, um die Austrittstemperaturen aller Systeme zu vergleichmäßigen.Combinations of the embodiments described above and other additions are conceivable against the background of increasing demands on the flexibility during the operation of a power plant and are included in the invention. Thus, in addition, inclinations of the individual center wall regions M1 to M4 can also be taken into account and compensated for one another with respect to the corner wall regions E1 to E4 if corresponding feedwater supply lines and control valves for throttling these highly heated central wall regions are provided. If at the same time one would do without separate control valves in the supply lines of the tube groups of the corner wall regions E1 to E4, the flow through the corner wall regions, for example by means of permanently installed throttles, would have to be limited to such an extent in the first instance that regulation of the feedwater mass flow of the central wall regions would be possible in the first place becomes. Only in these circumstances would be at full open control valve in the supply lines of the highly heated central wall systems whose throughput so large that despite higher heating, the center wall systems would have lower outlet temperatures compared to the Eckrohrsystemen. By an additional throttling of the control valves of the center wall systems, the now too large throughput through the center wall systems could be reduced again to even out the outlet temperatures of all systems.
Neben der projektierten Auslegung des Durchlaufdampferzeugers zur Kompensation von Temperaturschieflagen können mit der erfindungsgemäßen Auslegung des Durchlaufdampferzeugers und dem erfindungsgemäßen Verfahren aber auch Fehlauslegungen des Verteilersystems der Speisewasserzuführung komfortabel abgefedert werden. Zudem sind Beheizungsschieflagen, die bei der Auslegung der Brennkammer nicht berücksichtigt wurden, durch die vorliegende Erfindung ohne negative Folgeerscheinungen sicher handhabbar. Zusätzlich können unter Umständen Brennstoffkombinationen gefahren werden, die vorher nicht möglich waren, weil flexibel auf Beheizungsschieflagen reagiert werden kann. Alles in allem erhöht die vorliegende Erfindung die Verfügbarkeit des Durchlaufdampferzeugers und damit der gesamten Kraftwerksanlage.In addition to the projected design of the continuous steam generator for the compensation of temperature imbalances can be cushioned comfortably with the inventive design of the continuous steam generator and the method according to the invention but also misinterpretations of the distribution system of the feedwater supply. In addition, heating imbalances that were not taken into account in the design of the combustion chamber, by the present invention safely handled without negative consequences. In addition, under certain circumstances fuel combinations can be run that were previously not possible, because it can respond flexibly to heating imbalances. All in all, the present invention increases the availability of the continuous steam generator and thus the entire power plant.
Claims (5)
- Once-through steam generator, in particular forced-flow steam generator, having a burning chamber (1) of substantially rectangular cross section, the burning chamber walls of which comprise substantially vertically arranged evaporator tubes of the once-through steam generator which are connected to one another in a gastight manner via tube webs and can be flowed through by a flow medium from the bottom to the top, the evaporator tubes of the burning chamber walls being combined in accordance with their degree of heating by inlet headers which are arranged upstream in each case to form more heated tube groups (10) and less heated tube groups (11), and the respective inlet headers being assigned a feed water supply (20, S1, S2, S3, S4), and at least one control valve (R, R1, R2, R3, R4) being provided in the region of the feed water supply (20, S1, S2, S3, S4) for the controlled throttling of the mass flow of the flow medium in the evaporator tubes, and temperature measuring means for measuring outlet temperatures of the flow medium from the evaporator tubes being provided in the region of outlet headers which are arranged downstream in order to determine a control variable for the at least one control valve (R, R1, R2, R3, R4), and each of the more heated tube groups (10) and less heated tube groups (11) being assigned in each case to one of the inlet headers and an outlet header, and each of the outlet headers having one of the temperature measuring means and the less heated tube groups (11) being corner wall regions (E1, E2, E3, E4) of the substantially rectangular burning chamber (1), and each of the four corner wall regions (E1, E2, E3, E4) having a dedicated feed water supply line (S1, S2, S3, S4) with in each case one control valve (R1, R2, R3, R4)
- Once-through steam generator according to Claim 1, characterized in that the more heated tube groups (10) are middle wall regions (M1, M2, M3, M4) of the substantially rectangular burning chamber (1), and each of the four middle wall regions (M1, M2, M3, M4) has a dedicated feed water supply with in each case one control valve.
- Method for operating a once-through steam generator which is configured according to one of Claims 1 to 2, characterized in that the feed water supply (20, S1, S2, S3, S4) of the less heated tube groups (11) is reduced by way of throttling of the at least one control valve (R, R1, R2, R3, R4) to such an extent that outlet temperatures of the more heated tube groups (10) are equalized to those of the less heated tube groups (11).
- Method according to Claim 3, characterized in that the feed water supply of the more heated tube groups (10) is reduced by way of throttling of the at least one control valve to such an extent that the outlet temperatures of the more heated tube groups (10) are equalized to those of the less heated tube groups (11).
- Method according to Claim 3 or 4, characterized in that an equalization of the outlet temperatures is established between the more heated (10) and less heated (11) tube groups.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102013215456.9A DE102013215456A1 (en) | 2013-08-06 | 2013-08-06 | Through steam generator |
PCT/EP2014/066220 WO2015018686A1 (en) | 2013-08-06 | 2014-07-29 | Once-through steam generator |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3017247A1 EP3017247A1 (en) | 2016-05-11 |
EP3017247B1 true EP3017247B1 (en) | 2017-05-31 |
Family
ID=51266294
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14747568.5A Active EP3017247B1 (en) | 2013-08-06 | 2014-07-29 | Once-through steam generator |
Country Status (7)
Country | Link |
---|---|
US (1) | US9574766B2 (en) |
EP (1) | EP3017247B1 (en) |
JP (1) | JP6286548B2 (en) |
KR (1) | KR101795978B1 (en) |
CN (1) | CN105452767B (en) |
DE (1) | DE102013215456A1 (en) |
WO (1) | WO2015018686A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114484396B (en) * | 2020-11-13 | 2024-05-28 | 广东美的生活电器制造有限公司 | Steam generator, control method thereof and household appliance |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE639975A (en) * | 1962-11-15 | |||
NL130376C (en) * | 1963-03-25 | |||
US3297004A (en) * | 1965-08-26 | 1967-01-10 | Riley Stoker Corp | Supercritical pressure recirculating boiler |
US3344777A (en) * | 1965-10-22 | 1967-10-03 | Foster Wheeler Corp | Once-through vapor generator furnace buffer circuit |
US3548788A (en) * | 1969-01-23 | 1970-12-22 | Foster Wheeler Corp | Once-through vapor generator with division wall |
DE2132454B2 (en) | 1971-06-30 | 1979-04-12 | Kraftwerk Union Ag, 4330 Muelheim | Large steam generator to be operated with pulverized coal combustion |
US3818872A (en) * | 1973-06-29 | 1974-06-25 | Combustion Eng | Economizer bypass for increased furnace wall protection |
US4178881A (en) * | 1977-12-16 | 1979-12-18 | Foster Wheeler Energy Corporation | Vapor generating system utilizing angularly arranged bifurcated furnace boundary wall fluid flow tubes |
US4290389A (en) * | 1979-09-21 | 1981-09-22 | Combustion Engineering, Inc. | Once through sliding pressure steam generator |
US4473035A (en) * | 1982-08-18 | 1984-09-25 | Foster Wheeler Energy Corporation | Splitter-bifurcate arrangement for a vapor generating system utilizing angularly arranged furnace boundary wall fluid flow tubes |
JPS5984001A (en) * | 1982-11-08 | 1984-05-15 | バブコツク日立株式会社 | Boiler device |
JPS5986802A (en) * | 1982-11-09 | 1984-05-19 | バブコツク日立株式会社 | Boiler device |
JP3046890B2 (en) * | 1993-03-26 | 2000-05-29 | キヤノン株式会社 | Electrophotographic photoreceptor and electrophotographic apparatus provided with the electrophotographic photoreceptor |
US5560322A (en) * | 1994-08-11 | 1996-10-01 | Foster Wheeler Energy Corporation | Continuous vertical-to-angular tube transitions |
DE4431185A1 (en) | 1994-09-01 | 1996-03-07 | Siemens Ag | Continuous steam generator |
DE19528438C2 (en) * | 1995-08-02 | 1998-01-22 | Siemens Ag | Method and system for starting a once-through steam generator |
DE19651678A1 (en) * | 1996-12-12 | 1998-06-25 | Siemens Ag | Steam generator |
DE19858780C2 (en) | 1998-12-18 | 2001-07-05 | Siemens Ag | Fossil-heated continuous steam generator |
EP1927809A2 (en) * | 2006-03-31 | 2008-06-04 | ALSTOM Technology Ltd | Steam generator |
US9273865B2 (en) * | 2010-03-31 | 2016-03-01 | Alstom Technology Ltd | Once-through vertical evaporators for wide range of operating temperatures |
DE102010038883C5 (en) * | 2010-08-04 | 2021-05-20 | Siemens Energy Global GmbH & Co. KG | Forced once-through steam generator |
-
2013
- 2013-08-06 DE DE102013215456.9A patent/DE102013215456A1/en not_active Ceased
-
2014
- 2014-07-29 EP EP14747568.5A patent/EP3017247B1/en active Active
- 2014-07-29 KR KR1020167005852A patent/KR101795978B1/en active IP Right Grant
- 2014-07-29 CN CN201480044832.1A patent/CN105452767B/en not_active Expired - Fee Related
- 2014-07-29 WO PCT/EP2014/066220 patent/WO2015018686A1/en active Application Filing
- 2014-07-29 US US14/909,585 patent/US9574766B2/en active Active
- 2014-07-29 JP JP2016532313A patent/JP6286548B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
EP3017247A1 (en) | 2016-05-11 |
US9574766B2 (en) | 2017-02-21 |
DE102013215456A1 (en) | 2015-02-12 |
JP6286548B2 (en) | 2018-02-28 |
CN105452767B (en) | 2017-12-19 |
WO2015018686A1 (en) | 2015-02-12 |
KR101795978B1 (en) | 2017-11-08 |
JP2016530474A (en) | 2016-09-29 |
US20160178190A1 (en) | 2016-06-23 |
KR20160040683A (en) | 2016-04-14 |
CN105452767A (en) | 2016-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2808213C2 (en) | Recuperative coke oven and method for operating the same | |
EP1848925B1 (en) | Horizontally positioned steam generator | |
DE102009004319A1 (en) | Method for performing hydraulic balance of heat exchanger of circulatory composite system in building, involves detecting return temperature at heat exchanger and controlling volumetric flow rate by heat exchanger as function of temperature | |
WO2015114105A2 (en) | Flow device and a method for guiding a fluid flow | |
EP2324285B1 (en) | Heat recovery steam generator | |
WO2007031087A1 (en) | Heat exchanger and method for regulating a heat exchanger | |
WO1995022730A1 (en) | Peripherally drilled roller for treating web material | |
EP3017247B1 (en) | Once-through steam generator | |
DE102005035080A1 (en) | Solar radiation receiver and method for controlling and / or regulating the mass flow distribution and / or for temperature compensation on a solar radiation receiver | |
EP2636958B1 (en) | Heating circuit distributor with integrated hydraulic separator | |
DE4430648A1 (en) | Recuperator control, suitable for heat recovery at constant temp., from flues or dryers; avoids | |
EP1512905A1 (en) | Once-through steam generator and method of operating said once-through steam generator | |
DE10244256B4 (en) | Heating system and / or cooling system with at least one heat source | |
WO2010102864A2 (en) | Continuous evaporator | |
EP2601441B1 (en) | Forced-flow steam generator | |
DE2054608C3 (en) | Burner arrangement in heating furnaces, especially soaking ovens | |
DE112015003273T5 (en) | turbocharger | |
DE112018007168T5 (en) | Storage type hot water heater with vortex guide part | |
DE102010039813A1 (en) | Expansion system of the heat transfer medium circuit of a solar thermal power plant | |
EP3914872A1 (en) | Heat exchanger module, heat exchanger system and method for producing the heat exchanger system | |
DE2360642C2 (en) | Gas-heated boiler system | |
DE10247609B4 (en) | Heating device for motor vehicles with a cabin heating circuit | |
DE10311532B4 (en) | Heat spreader module | |
DE29820047U1 (en) | Buffer storage | |
DE10303570B4 (en) | Heat exchanger device for generating hot or hot water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20160201 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20161220 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 897840 Country of ref document: AT Kind code of ref document: T Effective date: 20170615 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502014004034 Country of ref document: DE |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: SIEMENS AKTIENGESELLSCHAFT |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: SIEMENS SCHWEIZ AG, CH Ref country code: CH Ref legal event code: PCOW Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE) |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20170531 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170531 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170831 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170901 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170531 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170930 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170831 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170531 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170531 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170531 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170531 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170531 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170531 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170531 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170531 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170531 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502014004034 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20180330 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170731 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170731 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20170731 |
|
26N | No opposition filed |
Effective date: 20180301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170531 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170531 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20140729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170531 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 897840 Country of ref document: AT Kind code of ref document: T Effective date: 20190729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190729 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502014004034 Country of ref document: DE Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20220901 AND 20220907 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240730 Year of fee payment: 11 Ref country code: FI Payment date: 20240725 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240724 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240722 Year of fee payment: 11 |