[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP3008221A1 - Magnetic material, use thereof, and method for producing same - Google Patents

Magnetic material, use thereof, and method for producing same

Info

Publication number
EP3008221A1
EP3008221A1 EP14728593.6A EP14728593A EP3008221A1 EP 3008221 A1 EP3008221 A1 EP 3008221A1 EP 14728593 A EP14728593 A EP 14728593A EP 3008221 A1 EP3008221 A1 EP 3008221A1
Authority
EP
European Patent Office
Prior art keywords
magnetic material
atom
content
transition metal
material according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP14728593.6A
Other languages
German (de)
French (fr)
Other versions
EP3008221B1 (en
Inventor
Arne Huber
Jürgen OBERLE
Lars BOMMER
Friederike KÖPPEN
Gerhard Schneider
Dagmar GOLL
Roman KARIMI
Ralf Löffler
Roland Stein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3008221A1 publication Critical patent/EP3008221A1/en
Application granted granted Critical
Publication of EP3008221B1 publication Critical patent/EP3008221B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0273Magnetic circuits with PM for magnetic field generation
    • H01F7/0278Magnetic circuits with PM for magnetic field generation for generating uniform fields, focusing, deflecting electrically charged particles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • C22C38/105Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/0536Alloys characterised by their composition containing rare earth metals sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • H01F1/0593Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2 of tetragonal ThMn12-structure

Definitions

  • the present invention relates to a magnetic material, its use, as well as a method for producing the magnetic material.
  • Suitable magnetic materials include those with hard magnetic phases, which are characterized by a high remanent magnetization, a large coercive field and a large energy product. Due to the high power density of these magnetic materials, they are particularly well suited for use in space-reduced devices. High-performance, permanently stable and at the same time cost-intensive magnetic materials are therefore key components of electromobility.
  • magnetic materials have proven that at least one rare earth metal such as neodymium (Nd), praseodymium (Pr) and samarium (Sm), and at least one transition metal such as iron (Fe) or cobalt (Co) include. Often, such materials to optimize the microstructure and thus the intrinsic magnetic properties with interstitial additives, such as boron (B), carbon (C), nitrogen (N) or hydrogen (H), added.
  • interstitial additives such as boron (B), carbon (C), nitrogen (N) or hydrogen (H)
  • Nd 2 Fe 14 B Due to its limited chemical, mechanical and thermal long-term stability, however, a complete replacement of the conventional ferrites by Nd 2 Fei 4 B has not yet taken place. Another disadvantage of Nd 2 Fe 1 B are its high raw material and
  • TM transition metal
  • RE rare earth element
  • Total mass of the magnetic material is, and wherein the
  • Transition metal cobalt a highly efficient magnetic material is obtained, which is characterized by particularly good mechanical properties, and in particular by excellent magnetic characteristics. Due to the specific content of titanium, on the one hand, the lattice structure of the magnetic material is stabilized and, on the other hand, the development of the anisotropy is promoted. It has also been found that cobalt, especially in the o.g. Combination with titanium makes a significant contribution to improving the magnetic characteristics of the magnetic material according to the invention. In particular, by combining a transition metal, a
  • Element combination essential to the invention both the strength of the magnetic material and its demagnetization, so its
  • Coercive force and thus the power density of the magnetic material can be improved. Furthermore, this can effectively reduce the content of rare earth metal, which lowers the raw material costs of the magnetic material according to the invention and ensures a high availability of the raw materials. Thus supply shortages can be prevented and a limitation of the production quantities avoided. In addition, the addition of cobalt Temperature of the magnetic material significantly raised, causing the
  • Transition metal cobalt at a content of 1 atomic% to less than 50
  • the transition metal contains at least one of: iron
  • Main portion is preferably iron.
  • the transition metals mentioned here form with rare earth metals, titanium and cobalt particularly stable lattice structures and contribute more to the expression of the desired advantageous magnetic properties, ie in particular to saturation and increase of the magnetic
  • Anisotropy of the material according to the invention in. Furthermore, their availability in the market is high with relatively low raw material costs, which significantly reduces the material costs of the magnetic material according to the invention.
  • the preferred use of Fe among these metals is for its health and environmental safety and, moreover, for its compared to
  • the rare earth metal is selected from the group consisting of: neodymium (Nd), lanthanum (La), cerium (Ce), dysprosium (Dy), praseodymium (Pr), samarium (Sm), promethium ( Pm), yttrium (Y), scandium (Sc), gadolinium (Gd), holmium (Ho) and erbium (Er) and preferably Ce and / or La.
  • Nd neodymium
  • La lanthanum
  • Ce cerium
  • Dy dysprosium
  • Pr praseodymium
  • Sm samarium
  • Pm promethium
  • Pm yttrium
  • Y scandium
  • Sc gadolinium
  • Ho holmium
  • Er erbium
  • the content of transition metal is 79 to 89 atomic%, preferably 82 to 86 atomic%, and / or the content of rare earth metal 5 to 11 atomic%, preferably 7 to 9 atomic% and / or the content of titanium 5 to 11 atom %, preferably 7 to 9 atom%, in each case based on the total mass of the magnetic material.
  • This improves the power density and the mechanical properties of the magnetic material according to the invention.
  • the remanent magnetization and the coercive field strength of the magnetic material according to the invention are thus maximized with a reduced content of rare earth metal, and thus an optimized cost structure.
  • Tetragonal RE (TM, Ti) 12t magnetic material according to the invention which has a positive effect on the formation of anisotropic phases of the magnetic material according to the invention due to the advantageous electron structure and electron configuration, as well as the spin and orbit moments of the atoms.
  • a permanent magnet which comprises a magnetic material as described above.
  • the material according to the invention is preferably present in the permanent magnet according to the invention as a hard magnetic phase.
  • the permanent magnet according to the invention in addition to the magnetic material according to the invention further magnetic or non-magnetic phases, but can also only from the
  • the permanent magnet may be sintered or plastic bonded in the conventional sense.
  • a process for producing a magnetic material is described, said process being characterized by the steps of mixing at least one transition metal (TM), at least one
  • Rare earth metal and titanium, wherein the content of transition metal is 74 to 94 atom%, the content of rare earth metal is 2 to 20 atom% and the content of titanium is 3 to 15 atom%, based on the total mass of the magnetic material, and wherein the transition metal comprises cobalt and the melting of the resulting mixture is characterized.
  • the inventive method is a simple and inexpensive way a magnetic material with high power density, excellent remanent magnetization and coercive field strength, and large
  • the melting of the mixture of the elements essential to the invention can be carried out, for example, in an electric arc or in a vacuum oven. This procedure ensures that all elements are complete
  • Material can be produced by the method according to the invention.
  • a heat treatment is carried out at a temperature between 500 ° C and 1500 ° C, preferably between 700 ° C and 1100 ° C, for a period of 10 minutes to 2 weeks and preferably for 5 to 2 days.
  • the mixture obtained is ground after melting or after heat treatment in a subsequent step and / or subjected to nitridation. Milling the resulting mixture promotes its further processability, for example, to a sintered magnetic material. By nitriding, the magnetic properties of the material, and in particular its anisotropy, can be improved. Particularly advantageously, the resulting mixture is first ground and then nitrided, since in this way a uniform nitridation can be achieved even in the finest grain, whereby the magnetic
  • the present invention also relates to a plastic-bonded magnet containing a magnetic material as described above or a magnetic material produced by the above-described method.
  • the magnetic material can also be produced by means of rapid solidification (melt spinning).
  • an electric machine in particular a generator, motor vehicle, starter, electric motor, loudspeaker or microelectromechanical system which comprises the magnetic material according to the invention or at least one permanent magnet or a magnetic material according to the invention
  • the electric machine has very good magnetic properties and high thermal stability with a moderate cost structure.
  • Figure 1 is a light micrograph of a section of the
  • FIG. 2 shows a light-microscopic photograph of a section of a cerium
  • Figure 3 is a diagram in which the saturation polarization J s of
  • Figure 4 is a diagram showing a first example of a
  • FIG. 6 shows a diagram in which the Curie temperature Tc of a
  • FIG. 1 shows a photomicrograph of a section of the
  • the material 10 according to an advantageous development in polarized light has the following composition: Fe 6 Co 2 .6 Ce 8 , o Ti 8 .o and is preferably present with a predominantly tetragonal Ce (Fe / Co, Ti) 12 (ThMn 12 ) structure.
  • the material 10 according to the invention has the following composition: Fe 6 Co 2 .6 Ce 8 , o Ti 8 .o and is preferably present with a predominantly tetragonal Ce (Fe / Co, Ti) 12 (ThMn 12 ) structure.
  • Composition was determined by EDX (energy dispersive
  • the magnetic material 10 according to the invention was obtained by mixing and melting the individual elements in the electric arc furnace.
  • the magnetic material 10 according to the invention from FIG. 1 is therefore in the form of a hard magnetic phase, which can be recognized by the so-called Kerr pattern, ie a rosette-like or striated pattern depending on the viewing angle, which indicates the presence of a strong hard magnetic phase
  • Ce (Fe / Co, Ti) 2 displays.
  • the terminal domains are relatively broad, which is reflected in a high anisotropy constant K1 of about 3.0 MJ / m 3 .
  • Anisotropy constant K1 can be determined as described in the following literature: R. Bodenberger, A. Hubert, Phys. Stat. Sol. (a) 44, K7-K11 (1977).
  • the magnetic material 10 according to the invention is thus characterized by a large energy product, a high Curie temperature, a high coercitive field strength, high remanent magnetization, and good, due to the homogeneous crystal structure, mechanical properties.
  • FIG. 2 shows a photomicrograph of a section of a cerium, iron and titanium-containing magnetic material 20.
  • the magnetic material 20 has the following composition: Fe 8 4 , 2 Ce 8,7 Ti 7,1 and preferably lies with a predominantly tetragonal Ce (Fe , Ti) 12 structure.
  • the composition was determined by EDX (energy dispersive X-ray spectroscopy) and the crystal structure by X-ray spectroscopy.
  • the magnetic material 20 was also obtained by mixing and melting the individual elements in the arc furnace. By thermal treatment at 1050 ° C for 230 hours under argon, a hard magnetic phase formed.
  • Magnetic material 20 also exhibits a Kerr pattern, but the termination domains are significantly narrower compared to the magnetic material of the present invention. This manifests itself in a lower
  • the thermal stability of the magnetic material 20 is low.
  • Figure 3 is a graph plotting the saturation polarization J s of the magnetic materials of Figures 1 and 2 at different temperatures. It can clearly be seen that the saturation polarization of the magnetic material 10 according to the invention increases compared with the non-inventive material 20 by the addition of cobalt, whereby the temperature stability is improved. Accordingly, the Curie temperature also increases with the addition of cobalt, which is especially important for applications where high temperatures prevail, such as in an electric motor.
  • FIG. 4 is a diagram illustrating a first example of a heat treatment according to an advantageous embodiment of the invention. As already stated, by a, for example, the melting of the elements essential to the invention to a magnetic material
  • FIGS. 5 and 6 show diagrams in which, on the one hand, the
  • the magnetic material had the following composition: 8 at.% Ti, 8 at.% Ce, Fe and Co, with Fe serving as a balance and varying the amount of Co.
  • the magnetic material was produced by mixing the respective elements and melting them in the arc.
  • Figure 5 can be seen two curves that were recorded at different temperatures (300 K and 400 K). Both curves show that the saturation polarization Js increases with increasing cobalt content. It can also be seen that the saturation polarization no longer decreases so much at the higher temperature (400 K).
  • the curve in FIG. 6 shows that the Curie temperature Tc increases with increasing cobalt content. This allows the magnetic material to be used particularly well in high temperature applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

The invention relates to a magnetic material which contains at least one transition metal (TM), at least one rare earth metal (RE), and titanium. The content of the transition metal equals 74 to 94 at%, the content of the rare earth metal equals 2 to 20 at%, and the content of titanium equals 7 to 9 at%, in each case based on the total mass of the magnetic material, and the transition metal comprises cobalt.

Description

Beschreibung  description
Titel title
Magnetisches Material, seine Verwendung und Verfahren zu dessen Herstellung Stand der Technik  Magnetic material, its use and process for its preparation. State of the art
Die vorliegende Erfindung betrifft ein magnetisches Material, seine Verwendung, wie auch ein Verfahren zur Herstellung des magnetischen Materials. The present invention relates to a magnetic material, its use, as well as a method for producing the magnetic material.
Durch den in jüngster Zeit vermehrten Einsatz von Elektromotoren, nicht zuletzt im Kraftfahrzeugbau, ist der Bedarf an hoch leistungsfähigen magnetischenDue to the recent increase in the use of electric motors, not least in the automotive industry, the need for high-performance magnetic
Materialien, und insbesondere an Dauermagneten, in den letzten Jahren stark gestiegen. Geeignete magnetische Materialien umfassen hierbei solche mit hartmagnetischen Phasen, die sich durch eine hohe remanente Magnetisierung, ein großes Koerzitivfeld und ein großes Energieprodukt auszeichnen. Durch die hohe Leistungsdichte dieser magnetischen Materialien sind sie besonders gut für den Einsatz in bauraumreduzierten Vorrichtungen geeignet. Hochleistungsfähige, dauerhaft stabile und dabei kostenextensive magnetische Materialien sind damit Schlüsselkomponenten der Elektromobilität. Als besonders leistungsfähig, also ein großes Energieprodukt aufweisend, haben sich magnetische Materialien erwiesen, die mindestens ein Seltenerdmetall wie Neodym (Nd), Praseodym (Pr) und Samarium (Sm), sowie mindestens ein Übergangsmetall wie Eisen (Fe) oder Kobalt (Co) umfassen. Oftmals werden solche Materialien zur Optimierung der Gefügestruktur und damit auch der intrinsischen Magneteigenschaften mit interstitiellen Additiven, wie beispielsweise Bor (B), Kohlenstoff (C), Stickstoff (N) oder Wasserstoff (H), versetzt. Als besonders leistungsstarkes magnetischesMaterials, and in particular permanent magnets, have risen sharply in recent years. Suitable magnetic materials include those with hard magnetic phases, which are characterized by a high remanent magnetization, a large coercive field and a large energy product. Due to the high power density of these magnetic materials, they are particularly well suited for use in space-reduced devices. High-performance, permanently stable and at the same time cost-intensive magnetic materials are therefore key components of electromobility. As particularly powerful, so having a large energy product, magnetic materials have proven that at least one rare earth metal such as neodymium (Nd), praseodymium (Pr) and samarium (Sm), and at least one transition metal such as iron (Fe) or cobalt (Co) include. Often, such materials to optimize the microstructure and thus the intrinsic magnetic properties with interstitial additives, such as boron (B), carbon (C), nitrogen (N) or hydrogen (H), added. As a particularly powerful magnetic
Material hat sich Nd2Fe14B herausgestellt. Aufgrund seiner begrenzten chemischen, mechanischen und thermischen Langzeitstabilität, ist jedoch ein vollständiger Ersatz der herkömmlichen Ferrite durch Nd2Fei4B noch nicht erfolgt. Weiter nachteilig an Nd2Fe1 B sind seine hohen Rohstoff- und Material has turned out to be Nd 2 Fe 14 B. Due to its limited chemical, mechanical and thermal long-term stability, however, a complete replacement of the conventional ferrites by Nd 2 Fei 4 B has not yet taken place. Another disadvantage of Nd 2 Fe 1 B are its high raw material and
Herstellkosten. Darüber hinaus ist die Verfügbarkeit von Seltenerdmetallen in so hohem Maße stark begrenzt, wodurch die Herstellmengen von Magneten auf Basis von hoch Seltenerdmetallhaltigen magnetischen Materialien, wie eben Nd2Fei4B, stark limitiert sind. Production costs. In addition, the availability of rare earth metals in such highly limited, whereby the production quantities of magnets based on highly rare earth metal-containing magnetic materials, such as just Nd 2 Fei 4 B, are severely limited.
Offenbarung der Erfindung Disclosure of the invention
Das erfindungsgemäße magnetische Material zeichnet sich durch The magnetic material according to the invention is characterized
ausgezeichnete magnetische Eigenschaften, und damit eine hohe remanente Magnetisierung, eine hohe Koerzitivfeldstärke, sowie ein großes Energieprodukt aus. Seine mechanische, magnetische, sowie thermische Stabilität ist hoch, was es für den Einsatz in stark beanspruchten, also beispielsweise beweglichenexcellent magnetic properties, and thus a high remanent magnetization, a high coercive force, as well as a large energy product. Its mechanical, magnetic, and thermal stability is high, which makes it suitable for use in heavy-duty, so for example, moving
Vorrichtungen, wie Kraftfahrzeugen und mobilen elektronischen Geräten, prädestiniert. Durch die Verwendung mindestens eines Übergangsmetalls (TM), mindestens eines Seltenerdmetalls (RE) und Titan, wobei der Gehalt an Devices, such as motor vehicles and mobile electronic devices, predestined. By using at least one transition metal (TM), at least one rare earth element (RE) and titanium, the content of
Übergangsmetall 74 bis 94 Atom%, der Gehalt an Seltenerdmetall (RE) 2 bis 20 Atom% und der Gehalt an Titan 3 bis 15 Atom%, jeweils bezogen auf dieTransition metal 74 to 94 atom%, the content of rare earth metal (RE) 2 to 20 atom% and the content of titanium 3 to 15 atom%, in each case based on
Gesamtmasse des magnetischen Materials, beträgt, und wobei das Total mass of the magnetic material is, and wherein the
Übergangsmetall Kobalt umfasst, wird ein hoch effizientes magnetisches Material erhalten, das sich durch besonders gute mechanische Eigenschaften, und insbesondere durch hervorragende magnetische Kennwerte, auszeichnet. Durch den spezifischen Gehalt an Titan wird zum einen das Gittergefüge des magnetischen Materials stabilisiert und zum anderen die Ausprägung der Anisotropie gefördert. Ferner wurde gefunden, dass Kobalt, gerade in der o.g. Kombination mit Titan einen wesentlichen Beitrag zur Verbesserung der magnetischen Kennwerte des erfindungsgemäßen magnetischen Materials beiträgt. Insbesondere wird durch Kombination eines Übergangsmetalls, einesTransition metal cobalt, a highly efficient magnetic material is obtained, which is characterized by particularly good mechanical properties, and in particular by excellent magnetic characteristics. Due to the specific content of titanium, on the one hand, the lattice structure of the magnetic material is stabilized and, on the other hand, the development of the anisotropy is promoted. It has also been found that cobalt, especially in the o.g. Combination with titanium makes a significant contribution to improving the magnetic characteristics of the magnetic material according to the invention. In particular, by combining a transition metal, a
Seltenerdmetalls und Titan mit Kobalt die Anisotropiekonstante und Rare earth metal and titanium with cobalt the anisotropy constant and
Sättigungspolarisation erhöht. Dies bedeutet, dass durch die Saturation polarization increased. This means that through the
erfindungswesentliche Elementkombination sowohl die Stärke des magnetischen Materials als auch dessen Entmagnetisierfestigkeit, also seine Element combination essential to the invention both the strength of the magnetic material and its demagnetization, so its
Koerzitivfeldstärke, und damit die Leistungsdichte des magnetischen Materials verbessert werden. Ferner kann hierdurch der Gehalt an Seltenerdmetall effektiv reduziert werden, was die Rohstoffkosten des erfindungsgemäßen magnetischen Materials senkt und eine hohe Verfügbarkeit der Rohstoffe sichert. So kann Versorgungsengpässe vorgebeugt und eine Limitierung der Herstellmengen umgangen werden. Zudem wird durch den Zusatz von Kobalt die Curie- Temperatur des magnetischen Materials deutlich angehoben, was die Coercive force, and thus the power density of the magnetic material can be improved. Furthermore, this can effectively reduce the content of rare earth metal, which lowers the raw material costs of the magnetic material according to the invention and ensures a high availability of the raw materials. Thus supply shortages can be prevented and a limitation of the production quantities avoided. In addition, the addition of cobalt Temperature of the magnetic material significantly raised, causing the
Anwendung des magnetischen Materials besonders dort fördert, wo sehr hohe Temperaturen auftreten, wie beispielsweise in Elektromotoren und Generatoren. Durch Verwendung des erfindungsgemäßen magnetischen Materials eröffnen sich folglich vielfache Anwendungsmöglichkeiten auch in Niedrigpreisprodukten, ohne deren qualitative Eigenschaften nachteilig zu beeinflussen. Application of the magnetic material promotes especially where very high temperatures occur, such as in electric motors and generators. Consequently, the use of the magnetic material according to the invention opens up many possible applications, even in low-price products, without having a detrimental effect on their qualitative properties.
Die Unteransprüche zeigen bevorzugte Weiterbildungen der Erfindung. The dependent claims show preferred developments of the invention.
Gemäß einer vorteilhaften Ausführungsform der Erfindung umfasst das According to an advantageous embodiment of the invention that includes
Übergangsmetall Kobalt mit einem Gehalt von 1 Atom% bis weniger als 50Transition metal cobalt at a content of 1 atomic% to less than 50
Atom%, vorzugsweise 3 bis 30 Atom% und insbesondere 8 bis 20 Atom%, bezogen auf den Gesamtgeha!t in Atom% an Übergangsmetall. Hierdurch wird ein optimaler Kompromiss zwischen sehr guten magnetischen Eigenschaften und moderater Kostenstruktur des magnetischen Materials erzielt. Weiter vorteilhaft enthält das Übergangsmetall mindestens eines aus: EisenAtom%, preferably 3 to 30 atom% and in particular 8 to 20 atom%, based on the Gesamtgeha! T in atom% of transition metal. This achieves an optimum compromise between very good magnetic properties and a moderate cost structure of the magnetic material. Further advantageously, the transition metal contains at least one of: iron
( Fe), Nickel (Ni) und Mangan (Mn) oder Mischungen daraus, wobei der (Fe), nickel (Ni) and manganese (Mn) or mixtures thereof, wherein the
Hauptanteil vorzugsweise Eisen ist. Die hier genannten Übergangsmetalle bilden mit Seltenerdmetallen, Titan und Kobalt besonders stabile Gitterstrukturen und tragen verstärkt zur Ausprägung der gewünschten vorteilhaften magnetischen Eigenschaften, also insbesondere zur Sättigung und Erhöhung der magnetischenMain portion is preferably iron. The transition metals mentioned here form with rare earth metals, titanium and cobalt particularly stable lattice structures and contribute more to the expression of the desired advantageous magnetic properties, ie in particular to saturation and increase of the magnetic
Anisotropie des erfindungsgemäßen Materials, bei. Ferner ist ihre Verfügbarkeit am Markt bei relativ niedrigen Rohstoffkosten hoch, was die Materialkosten des erfindungsgemäßen magnetischen Materials deutlich reduziert. Die unter diesen Metallen bevorzugte Verwendung von Fe ist auf seine gesundheitliche, sowie ökologische Unbedenklichkeit und darüber hinaus auch auf seine im Vergleich zuAnisotropy of the material according to the invention, in. Furthermore, their availability in the market is high with relatively low raw material costs, which significantly reduces the material costs of the magnetic material according to the invention. The preferred use of Fe among these metals is for its health and environmental safety and, moreover, for its compared to
Ni und Mn noch einmal deutlich reduzierten Rohstoffkosten zurückzuführen. Ni and Mn once again significantly reduced raw material costs.
Eine weitere vorteilhafte Weiterbildung sieht vor, dass das Seltenerdmetall ausgewählt aus der Gruppe bestehend aus: Neodym (Nd), Lanthan (La), Cer (Ce), Dysprosium (Dy), , Praseodym (Pr), Samarium (Sm), Promethium (Pm), Yttrium (Y), Scandium (Sc), Gadolinium (Gd), Holmium (Ho) und Erbium (Er) und vorzugsweise Ce und/oder La ist. Die angeführten Seltenerdmetalle Nd, La, Ce, Dy, Pr, Sm, Pm, Y, Sc, Gd, Ho und Er, haben sich als besonders gut kompatibel mit den übrigen erfindungswesentlichen Komponenten erwiesen, und fördern ihrerseits die Bildung dauerhaft stabiler Kristallgitterstrukturen mit hoher A further advantageous development provides that the rare earth metal is selected from the group consisting of: neodymium (Nd), lanthanum (La), cerium (Ce), dysprosium (Dy), praseodymium (Pr), samarium (Sm), promethium ( Pm), yttrium (Y), scandium (Sc), gadolinium (Gd), holmium (Ho) and erbium (Er) and preferably Ce and / or La. The listed rare earth metals Nd, La, Ce, Dy, Pr, Sm, Pm, Y, Sc, Gd, Ho and Er, have been found to be particularly compatible with the other components essential to the invention, and promote in turn, the formation of permanently stable crystal lattice structures with high
Anisotropie, wodurch die magnetischen Eigenschaften des erfindungsgemäßen magnetischen Materials verbessert werden. Aufgrund der besonders hohen Verfügbarkeit und relativ niedrigen Rohstoffkosten ist die Verwendung der Elemente La und Ce besonders vorteilhaft. Anisotropy, whereby the magnetic properties of the magnetic material according to the invention are improved. Due to the particularly high availability and relatively low raw material costs, the use of the elements La and Ce is particularly advantageous.
Weiter vorteilhaft beträgt der Gehalt an Übergangsmetall 79 bis 89 Atom%, vorzugsweise 82 bis 86 Atom%, und/oder der Gehalt an Seltenerdmetall 5 bis 11 Atom%, vorzugsweise 7 bis 9 Atom% und/oder der Gehalt an Titan 5 bis 11 Atom%, vorzugsweise 7 bis 9 Atom%, jeweils bezogen auf die Gesamtmasse des magnetischen Materials. Hierdurch werden die Leistungsdichte und die mechanischen Eigenschaften des erfindungsgemäßen magnetischen Materials verbessert. Insbesondere werden somit die remanente Magnetisierung und die Koerzitivfeldstärke des erfindungsgemäßen magnetischen Materials bei reduziertem Gehalt an Seltenerdmetall, und damit optimierter Kostenstruktur, maximiert. Further advantageously, the content of transition metal is 79 to 89 atomic%, preferably 82 to 86 atomic%, and / or the content of rare earth metal 5 to 11 atomic%, preferably 7 to 9 atomic% and / or the content of titanium 5 to 11 atom %, preferably 7 to 9 atom%, in each case based on the total mass of the magnetic material. This improves the power density and the mechanical properties of the magnetic material according to the invention. In particular, the remanent magnetization and the coercive field strength of the magnetic material according to the invention are thus maximized with a reduced content of rare earth metal, and thus an optimized cost structure.
Gemäß einer weiteren vorteilhaften Weiterbildung ist die Struktur des According to a further advantageous development, the structure of
erfindungsgemäßen magnetischen Materials tetragonales RE(TM,Ti)12t was sich aufgrund der vorteilhaften Elektronenstruktur und Elektronenkonfiguration, sowie der Spin- und Bahnmomente der Atome positiv auf die Ausbildung anisotroper Phasen des erfindungsgemäßen magnetischen Materials auswirkt. Tetragonal RE (TM, Ti) 12t magnetic material according to the invention which has a positive effect on the formation of anisotropic phases of the magnetic material according to the invention due to the advantageous electron structure and electron configuration, as well as the spin and orbit moments of the atoms.
Weiter erfindungsgemäß wird auch ein Dauermagnet beschrieben, der ein wie oben beschriebenes magnetisches Material umfasst. Das erfindungsgemäße Material liegt in dem erfindungsgemäßen Dauermagneten vorzugsweise als hartmagnetische Phase vor. Der erfindungsgemäße Dauermagnet kann neben dem erfindungsgemäßen magnetischen Material weitere magnetische oder nichtmagnetische Phasen aufweisen, kann aber auch nur aus dem Further according to the invention, a permanent magnet is described which comprises a magnetic material as described above. The material according to the invention is preferably present in the permanent magnet according to the invention as a hard magnetic phase. The permanent magnet according to the invention, in addition to the magnetic material according to the invention further magnetic or non-magnetic phases, but can also only from the
erfindungsgemäßen magnetischen Material bestehen. Der Dauermagnet kann beispielsweise in herkömmlichem Sinne gesintert oder kunststoffgebunden sein. consist of magnetic material according to the invention. For example, the permanent magnet may be sintered or plastic bonded in the conventional sense.
Die für das erfindungsgemäße magnetische Material beschriebenen vorteilhaften Effekte, Vorteile und Weiterbildungen finden auch Anwendung auf den erfindungsgemäßen Dauermagneten. Ebenfalls erfindungsgemäß wird auch ein Verfahren zum Herstellen eines magnetischen Materials beschrieben, wobei das Verfahren durch die Schritte des Mischens mindestens eines Übergangsmetalls (TM), mindestens eines The advantageous effects, advantages and developments described for the magnetic material according to the invention also find application to the permanent magnet according to the invention. Also according to the invention, a process for producing a magnetic material is described, said process being characterized by the steps of mixing at least one transition metal (TM), at least one
Seltenerdmetalls (RE) und Titan, wobei der Gehalt an Übergangsmetall 74 bis 94 Atom%, der Gehalt an Seltenerdmetall 2 bis 20 Atom% und der Gehalt an Titan 3 bis 15 Atom%, jeweils bezogen auf die Gesamtmasse des magnetischen Materials, beträgt und wobei das Übergangsmetall Kobalt umfasst und des Schmelzens der erhaltenen Mischung, gekennzeichnet ist. Durch das Rare earth metal (RE) and titanium, wherein the content of transition metal is 74 to 94 atom%, the content of rare earth metal is 2 to 20 atom% and the content of titanium is 3 to 15 atom%, based on the total mass of the magnetic material, and wherein the transition metal comprises cobalt and the melting of the resulting mixture is characterized. By the
erfindungsgemäße Verfahren wird auf einfache und kostengünstige Weise ein magnetisches Material mit hoher Leistungsdichte, einer ausgezeichneten remanenten Magnetisierung und Koerzitivfeldstärke, sowie großem The inventive method is a simple and inexpensive way a magnetic material with high power density, excellent remanent magnetization and coercive field strength, and large
Energieprodukt bereitgestellt, das ferner eine sehr gute mechanische Stabilität aufweist. Provided energy product, which also has a very good mechanical stability.
Das Schmelzen der Mischung aus den erfindungswesentlichen Elementen kann beispielsweise im Lichtbogen oder im Vakuumofen erfolgen. Durch diese Verfahrensführung wird gewährleistet, dass alle Elemente vollständig The melting of the mixture of the elements essential to the invention can be carried out, for example, in an electric arc or in a vacuum oven. This procedure ensures that all elements are complete
aufgeschmolzen werden, ohne dass es dabei zu Oxidation des Materials kommt, so dass ein homogenes Kristaligefüge gebildet wird, was nich nur die mechanische Stabilität des sich bildenden magnetischen Materials vorteilhaft beeinflusst, sondern in erheblichem Maße auch die gewünschten magnetischen Eigenschaften prägt. be melted without causing oxidation of the material, so that a homogeneous crystal structure is formed, which not only the mechanical stability of the forming magnetic material advantageously influenced, but also significantly characterizes the desired magnetic properties.
Die für das erfindungsgemäße magnetische Material beschriebenen vorteilhaften Eigenschaften, Effekte und Weiterbildungen finden auch Anwendung auf das erfindungsgemäße Verfahren zum Herstellen eines solchen magnetischen Materials. Ferner sei ausgeführt, dass sich das oben beschriebene magnetischeThe advantageous properties, effects and developments described for the magnetic material according to the invention are also applicable to the method according to the invention for producing such a magnetic material. It should also be noted that the above-described magnetic
Material durch das erfindungsgemäße Verfahren herstellen lässt. Material can be produced by the method according to the invention.
Entsprechend einer weiteren vorteilhaften Ausführungsform erfolgt in einem sich an das Schmelzen anschließenden Schritt eine Wärmebehandlung bei einer Temperatur zwischen 500 °C und 1500 °C, vorzugsweise zwischen 700 °C und 1100 °C, für eine Dauer von 10 min bis zu 2 Wochen und vorzugsweise für 5 bis 2 Tage. Durch diese Wärmebehandlung, die vorzugsweise unter According to a further advantageous embodiment, in a step subsequent to the melting, a heat treatment is carried out at a temperature between 500 ° C and 1500 ° C, preferably between 700 ° C and 1100 ° C, for a period of 10 minutes to 2 weeks and preferably for 5 to 2 days. By this heat treatment, preferably under
Schutzgasatmosphäre, und insbesondere unter Argon, ausgeführt wird, wird die vollständige Ausbildung des magnetischen Materials, vorzugsweise als hartmagnetische Phase, begünstigt. Gemäß einer weiteren vorteilhaften Ausführungsform des erfindungsgemäßen Verfahrens wird die erhaltene Mischung nach dem Schmelzen oder nach erfolgter Wärmebehandlung in einem sich anschließenden Schritt gemahlen und/oder einer Nitridierung unterzogen. Das Mahlen der erhaltenen Mischung fördert seine weitere Verarbeitbarkeit, beispielsweise zu einem gesinterten magnetischen Material. Durch eine Nitridierung können die magnetischen Eigenschaften des Materials, und insbesondere seine Anisotropie, verbessert werden. Besonders vorteilhaft wird die erhaltene Mischung zunächst gemahlen und anschließend nitridiert, da auf diese Weise eine gleichmäßige Nitridierung auch bis ins feinste Korn erzielt werden kann, wodurch die magnetischenProtective gas atmosphere, and in particular under argon, is carried out, the full formation of the magnetic material, preferably as a hard magnetic phase, favored. According to a further advantageous embodiment of the method according to the invention, the mixture obtained is ground after melting or after heat treatment in a subsequent step and / or subjected to nitridation. Milling the resulting mixture promotes its further processability, for example, to a sintered magnetic material. By nitriding, the magnetic properties of the material, and in particular its anisotropy, can be improved. Particularly advantageously, the resulting mixture is first ground and then nitrided, since in this way a uniform nitridation can be achieved even in the finest grain, whereby the magnetic
Eigenschaften des resultierenden Materials besonders stark verbessert werden. Properties of the resulting material are particularly improved.
Die vorliegende Erfindung betrifft auch einen kunststoffgebundenen Magnet, der ein wie vorstehend beschriebenes magnetisches Material oder ein durch das vorstehend beschriebene Verfahren hergestelltes magnetisches Material enthält. Das magnetische Material kann dabei auch mittels Rascherstarrung (melt- spinning) hergestellt sein. The present invention also relates to a plastic-bonded magnet containing a magnetic material as described above or a magnetic material produced by the above-described method. The magnetic material can also be produced by means of rapid solidification (melt spinning).
Weiter erfindungsgemäß wird auch die Verwendung eines wie oben Further according to the invention, the use of a as above
ausgeführten magnetischen Materials vorzugsweise in Windkraftanlagen, PKW, NKW, Startern, Elektromotoren, Lautsprechern und mikroelektromechanischen Systemen, beschrieben. Aufgrund der herausragenden magnetischen designed magnetic material, preferably in wind turbines, cars, commercial vehicles, starters, electric motors, speakers and microelectromechanical systems described. Due to the outstanding magnetic
Eigenschaften des erfindungsgemäßen magnetischen Materials, sowie seiner ausgezeichneten Stabilität, und damit auch seiner vorteilhaften Einsatzfähigkeit in bauraumreduzierten Anwendungen und Anwendungen unter hohen  Characteristics of the magnetic material according to the invention, as well as its excellent stability, and thus also its advantageous usability in space-reduced applications and applications under high
Temperaturen, ist die Verwendung in den genannten Vorrichtungen von besonderem Vorteil. Temperatures, the use in the devices mentioned is of particular advantage.
Weiter erfindungsgemäß wird eine elektrische Maschine beschrieben, insbesondere ein Generator, Kraftfahrzeug, Starter, Elektromotor, Lautsprecher oder mikroelektromechantsches System beschrieben, die das erfindungsgemäße magnetische Material oder mindestens einen erfindungsgemäßen Dauermagnet oder ein magnetisches Material, das nach dem vorstehenden In accordance with the invention, an electric machine is described, in particular a generator, motor vehicle, starter, electric motor, loudspeaker or microelectromechanical system which comprises the magnetic material according to the invention or at least one permanent magnet or a magnetic material according to the invention
erfindungsgemäßen Verfahren hergestellt wurde, enthält. Die elektrische Maschine weist sehr gute magnetische Eigenschaften und eine hohe thermische Stabilität bei moderater Kostenstruktur auf. Die für das erfindungsgemäße magnetische Material, sowie das has been prepared according to the invention contains. The electric machine has very good magnetic properties and high thermal stability with a moderate cost structure. The magnetic material according to the invention, as well as the
erfindungsgemäße Verfahren beschriebenen Vorteile, vorteilhaften Effekte und bevorzugten Weiterbildungen finden auch Anwendung auf den Advantages described according to the invention, advantageous effects and preferred developments are also applied to the
kunststoffgebundenen Magnet sowie die erfindungsgemäße elektrische plastic-bonded magnet and the inventive electrical
Maschine. Machine.
Kurze Beschreibung der Zeichnung(en) Short description of the drawing (s)
Nachfolgend werden Ausführungsbeispiele der Erfindung unter Bezugnahme auf die begleitende Zeichnung im Detail beschrieben. In der Zeichnung ist: Hereinafter, embodiments of the invention will be described in detail with reference to the accompanying drawings. In the drawing is:
Figur 1 eine lichtmikroskopische Aufnahme eines Schliffes des Figure 1 is a light micrograph of a section of the
magnetischen Materials gemäß einer vorteilhaften  magnetic material according to an advantageous
Weiterbildung im polarisierten Licht,  Training in polarized light,
Figur 2 eine lichtmikroskopische Aufnahme eines Schliffes eines Cer-, FIG. 2 shows a light-microscopic photograph of a section of a cerium,
Eisen- und Titanhaitigen magnetischen Materials im  Iron- and titanium-containing magnetic material in the
polarisierten Licht, Figur 3 ein Diagramm, in dem die Sättigungspolarisation Js der polarized light, Figure 3 is a diagram in which the saturation polarization J s of
magnetischen Materialien aus den Figuren 1 und 2 bei unterschiedlichen Temperaturen aufgetragen sind,  magnetic materials of Figures 1 and 2 are applied at different temperatures,
Figur 4 ein Diagramm, das ein erstes Beispiel für eine Figure 4 is a diagram showing a first example of a
Wärmebehandlung gemäß einer vorteilhaften Weiterbildung der Heat treatment according to an advantageous embodiment of
Erfindung darstellt, Invention represents
Figur 5 ein Diagramm, in dem die Sättigungspolarisation Js eines 5 shows a diagram in which the saturation polarization Js of a
magnetischen Materials gemäß einer ersten vorteilhaften Weiterbildung der Erfindung gegen den Kobaltanteil aufgetragen ist und  magnetic material is applied according to a first advantageous embodiment of the invention against the cobalt content and
Figur 6 ein Diagramm, in dem die Curie-Temperatur Tc eines FIG. 6 shows a diagram in which the Curie temperature Tc of a
magnetischen Materials gemäß einer ersten vorteilhaften Weiterbildung der Erfindung gegen den Kobaltanteil aufgetragen ist. Ausführungsformen der Erfindung magnetic material is applied according to a first advantageous embodiment of the invention against the cobalt content. Embodiments of the invention
Figur 1 zeigt eine lichtmikroskopische Aufnahme eines Schliffes des FIG. 1 shows a photomicrograph of a section of the
erfindungsgemäßen magnetischen Materials 10 gemäß einer vorteilhaften Weiterbildung im polarisierten Licht. Das erfindungsgemäße Material 10 hat folgende Zusammensetzung: Fe6 Co2,6Ce8,oTi8.o und liegt vorzugsweise mit einer überwiegend tetragonalen Ce(Fe/Co,Ti)12 (ThMn12-) Struktur vor. Die Inventive magnetic material 10 according to an advantageous development in polarized light. The material 10 according to the invention has the following composition: Fe 6 Co 2 .6 Ce 8 , o Ti 8 .o and is preferably present with a predominantly tetragonal Ce (Fe / Co, Ti) 12 (ThMn 12 ) structure. The
Zusammensetzung wurde mittels EDX (Energiedispersiver Composition was determined by EDX (energy dispersive
Röntgenspektroskopie) und die Kristallstruktur mittels Röntgenspektroskopie bestimmt. X-ray spectroscopy) and the crystal structure determined by X-ray spectroscopy.
Das erfindungsgemäße magnetische Material 10 wurde durch Mischen und Schmelzen der einzelnen Elemente im Lichtbogenofen erhalten. Durch The magnetic material 10 according to the invention was obtained by mixing and melting the individual elements in the electric arc furnace. By
Temperaturbehandlung bei 1050 °C für 230 Stunden unter Argon, bildete sich eine hartmagnetische Phase aus. Temperature treatment at 1050 ° C for 230 hours under argon, formed a hard magnetic phase.
Das erfindungsgemäße magnetische Material 10 aus Figur 1 liegt somit als hartmagnetische Phase vor, was an dem so genannten Kerr-Muster, also einem -je nach Betrachtungswinkel rosettenartigen oder streifigen Muster, zu erkennen ist, das das Vorhandensein einer starken hartmagnetischen Phase aus The magnetic material 10 according to the invention from FIG. 1 is therefore in the form of a hard magnetic phase, which can be recognized by the so-called Kerr pattern, ie a rosette-like or striated pattern depending on the viewing angle, which indicates the presence of a strong hard magnetic phase
Ce(Fe/Co,Ti) 2 anzeigt. Die Abschlussdomänen sind relativ breit, was sich in einer hohen Anisotropiekonstante K1 von ca. 3,0 MJ/m3 widerspiegelt. Die Ce (Fe / Co, Ti) 2 displays. The terminal domains are relatively broad, which is reflected in a high anisotropy constant K1 of about 3.0 MJ / m 3 . The
Anisotropiekonstante K1 kann wie in folgender Literatur beschrieben, ermittelt werden: R. Bodenberger, A. Hubert, Phys. Stat. Sol. (a) 44, K7-K11 (1977). Das erfindungsgemäße magnetische Material 10 zeichnet sich somit durch ein großes Energieprodukt, eine hohe Curie-Temperatur, eine hohe Koerzitivfeldstärke, hohe remanente Magnetisierung, sowie gute, durch die homogene Kristallstruktur bedingte, mechanische Eigenschaften aus. Anisotropy constant K1 can be determined as described in the following literature: R. Bodenberger, A. Hubert, Phys. Stat. Sol. (a) 44, K7-K11 (1977). The magnetic material 10 according to the invention is thus characterized by a large energy product, a high Curie temperature, a high coercitive field strength, high remanent magnetization, and good, due to the homogeneous crystal structure, mechanical properties.
Figur 2 zeigt eine lichtmikroskopische Aufnahme eines Schliffes eines Cer, Eisen und Titan haltigen magnetischen Materials 20. Das magnetische Material 20 hat folgende Zusammensetzung: Fe84,2Ce8,7Ti7,1 und liegt vorzugsweise mit einer überwiegend tetragonalen Ce(Fe,Ti)12 Struktur vor. Die Zusammensetzung wurde mittels EDX (Energiedispersiver Röntgenspektroskopie) und die Kristallstruktur mittels Röntgenspektroskopie bestimmt. Das magnetische Material 20 wurde ebenfalls durch Mischen und Schmelzen der einzelnen Elemente im Lichtbogenofen erhalten. Durch Temperaturbehandlung bei 1050 °C für 230 Stunden unter Argon, bildete sich eine hartmagnetische Phase aus. FIG. 2 shows a photomicrograph of a section of a cerium, iron and titanium-containing magnetic material 20. The magnetic material 20 has the following composition: Fe 8 4 , 2 Ce 8,7 Ti 7,1 and preferably lies with a predominantly tetragonal Ce (Fe , Ti) 12 structure. The composition was determined by EDX (energy dispersive X-ray spectroscopy) and the crystal structure by X-ray spectroscopy. The magnetic material 20 was also obtained by mixing and melting the individual elements in the arc furnace. By thermal treatment at 1050 ° C for 230 hours under argon, a hard magnetic phase formed.
Das magnetische Material 20 zeigt ebenfalls ein Kerr-Muster, jedoch sind die Abschlussdomänen im Vergleich zu dem erfindungsgemäßen magnetischen Material deutlich schmaler. Dies äußert sich in einer niedrigeren Magnetic material 20 also exhibits a Kerr pattern, but the termination domains are significantly narrower compared to the magnetic material of the present invention. This manifests itself in a lower
Anisotropiekonstante von ca. 2.5 MJ/m3 und damit schlechteren magnetischen Kennwerten. Durch die Abwesenheit von Kobalt ist zudem die thermische Stabilität des magnetischen Materials 20 gering. Anisotropiekonstante of about 2.5 MJ / m 3 and thus poorer magnetic characteristics. In addition, due to the absence of cobalt, the thermal stability of the magnetic material 20 is low.
Figur 3 ist ein Diagramm, in dem die Sättigungspolarisation Js der magnetischen Materialien aus den Figuren 1 und 2 bei unterschiedlichen Temperaturen aufgetragen sind. Deutlich erkennbar ist, dass die Sättigungspolarisation des erfindungsgemäßen magnetischen Materials 10 gegenüber dem nicht erfindungsgemäßen Material 20 durch die Zugabe von Kobalt ansteigt, wodurch auch die Temperaturstabilität verbessert wird. Entsprechend nimmt auch die Curie-Temperatur durch die Zugabe von Kobalt zu, was vor allen Dingen für Anwendungen, in denen hohe Temperaturen vorherrschen, wie z.B. in einem Elektromotor, wichtig ist. Figure 3 is a graph plotting the saturation polarization J s of the magnetic materials of Figures 1 and 2 at different temperatures. It can clearly be seen that the saturation polarization of the magnetic material 10 according to the invention increases compared with the non-inventive material 20 by the addition of cobalt, whereby the temperature stability is improved. Accordingly, the Curie temperature also increases with the addition of cobalt, which is especially important for applications where high temperatures prevail, such as in an electric motor.
Figur 4 zeigt ein Diagramm, das ein erstes Beispiel für eine Wärmebehandlung gemäß einer vorteilhaften Ausführungsform der Erfindung darstellt. Wie bereits ausgeführt, wird durch eine sich beispielsweise an das Schmelzen der erfindungswesentlichen Elemente zu einem magnetischen Material FIG. 4 is a diagram illustrating a first example of a heat treatment according to an advantageous embodiment of the invention. As already stated, by a, for example, the melting of the elements essential to the invention to a magnetic material
anschließende Wärmebehandlung, vorteilhafterweise unter Schutzgas, die vollständige Ausprägung einer hartmagnetischen Phase sichergestellt. In einem ersten Schritt wird hierzu das aufgeschmolzene Material nach Abkühlung innerhalb von etwa 5 Stunden im Vakuumofen auf 1050 °C erhitzt, für etwa 235 Stunde auf etwa 1050 °C gehalten, dann innerhalb von etwa 5 Stunden auf Raumtemperatur (etwa 20 °C) abgekühlt. Hierdurch wird ein magnetisches Material mit exzellenten magnetischen Eigenschaften, also ein magnetisches Material mit einer vollständig ausgeprägten hartmagnetischen Phase, das insbesondere aus Hartmagnetkörnern besteht, gebildet, das sich ferner durch hervorragende mechanische und thermische Stabilität auszeichnet. Figuren 5 und 6 zeigen Diagramme, in denen zum einen die subsequent heat treatment, advantageously under inert gas, the complete expression of a hard magnetic phase ensured. In a first step, the molten material after cooling within about 5 hours in a vacuum oven heated to 1050 ° C, held for about 235 hours at about 1050 ° C, then cooled to room temperature (about 20 ° C) within about 5 hours , As a result, a magnetic material having excellent magnetic properties, that is, a magnetic material having a fully-developed hard magnetic phase composed particularly of hard magnetic grains, is further formed, which is further excellent in mechanical and thermal stability. FIGS. 5 and 6 show diagrams in which, on the one hand, the
Sättigungspolarisation Js in Tesla des erfindungsgemäßen magnetischen Materials gegen den Kobaltanteil in Atomprozent (At.%) und zum anderen die Curie-Temperatur Tc in °C gegen den Kobaltanteil in Atomprozent aufgetragen ist. Das magnetische Material hatte folgende Zusammensetzung: 8 Atom-% Ti, 8 Atom-% Ce, Fe und Co, wobei Fe als Ausgleich diente und die Menge an Co variiert wurde. Das magnetische Material wurde durch Mischen der jeweiligen Elemente und Schmelzen derselben im Lichtbogen hergesteilt. Saturation polarization Js in Tesla of the magnetic material according to the invention is plotted against the cobalt content in atomic percent (At.%) And the Curie temperature Tc in ° C against the cobalt content in atomic percent. The magnetic material had the following composition: 8 at.% Ti, 8 at.% Ce, Fe and Co, with Fe serving as a balance and varying the amount of Co. The magnetic material was produced by mixing the respective elements and melting them in the arc.
Im Detail sind Figur 5 zwei Kurven zu entnehmen, die bei unterschiedlichen Temperaturen (300 K und 400 K) aufgenommen wurden. Beide Kurven zeigen, dass die Sättigungspolarisation Js mit steigendem Kobaltanteil zunimmt. Ferner ist zu erkennen, dass die Sättigungspolarisation bei der höheren Temperatur (400 K) nicht mehr so stark abfällt. In detail, Figure 5 can be seen two curves that were recorded at different temperatures (300 K and 400 K). Both curves show that the saturation polarization Js increases with increasing cobalt content. It can also be seen that the saturation polarization no longer decreases so much at the higher temperature (400 K).
Die Kurve in Figur 6 zeigt, dass mit zunehmendem Kobaltanteil die Curie- Temperatur Tc ansteigt. Dadurch kann das magnetische Material besonderes gut in Hochtemperaturanwendungen verwendet werden. The curve in FIG. 6 shows that the Curie temperature Tc increases with increasing cobalt content. This allows the magnetic material to be used particularly well in high temperature applications.

Claims

Ansprüche claims
1. Magnetisches Material enthaltend mindestens ein Übergangsmetall (TM), mindestens ein Seltenerdmetall (RE) und Titan, wobei der Gehalt an Übergangsmetall 74 bis 94 Atom%, der Gehalt an Seltenerdmetall 2 bis 20 Atom% und der Gehalt an Titan 7 bis 9 Atom%, jeweils bezogen auf die Gesamtmasse des magnetischen Materials, beträgt und wobei das Übergangsmetall Kobalt umfasst. 1. A magnetic material containing at least one transition metal (TM), at least one rare earth element (RE) and titanium, wherein the content of transition metal 74 to 94 atom%, the content of rare earth metal 2 to 20 atom% and the content of titanium 7 to 9 atom %, in each case based on the total mass of the magnetic material, and wherein the transition metal comprises cobalt.
2. Magnetisches Material nach Anspruch 1 , wobei das Übergangsmetall Kobalt mit einem Gehalt von 1 Atom% bis weniger als 50 Atom%, vorzugsweise 3 bis 30 Atom%, insbesondere 8 bis 20 Atom%, bezogen auf den Gesamtgehalt in Atom% an Übergangsmetall, umfasst. 2. Magnetic material according to claim 1, wherein the transition metal cobalt containing from 1 atom% to less than 50 atom%, preferably 3 to 30 atom%, in particular 8 to 20 atom%, based on the total content in atomic% of transition metal, includes.
3. Magnetisches Material nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Übergangsmetall mindestens eines aus: Fe, Ni und Mn oder Mischungen daraus, vorzugsweise Fe, enthält. 3. Magnetic material according to claim 1 or 2, characterized in that the transition metal contains at least one of: Fe, Ni and Mn or mixtures thereof, preferably Fe.
4. Magnetisches Material nach einem der vorhergehenden Ansprüche, 4. Magnetic material according to one of the preceding claims,
dadurch gekennzeichnet, dass das Seltenerdmetall ausgewählt ist aus der Gruppe bestehend aus: Nd, La, Ce, Dy, Pr, Sm, Pm, Y, Sc, Gd, Ho, Er und Mischungen daraus, und vorzugsweise Ce und/oder La ist.  characterized in that the rare earth metal is selected from the group consisting of: Nd, La, Ce, Dy, Pr, Sm, Pm, Y, Sc, Gd, Ho, Er and mixtures thereof, and preferably Ce and / or La.
5. Magnetisches Material nach einem der vorhergehenden Ansprüche, 5. Magnetic material according to one of the preceding claims,
dadurch gekennzeichnet, dass der Gehalt an Übergangsmetall 79 bis 89 Atom%, vorzugsweise 82 bis 86 Atom%, und/oder der Gehalt an  characterized in that the content of transition metal 79 to 89 atom%, preferably 82 to 86 atom%, and / or the content of
Seltenerdmetall 5 bis 11 Atom%, vorzugsweise 7 bis 9 Atom%, jeweils bezogen auf die Gesamtmasse des magnetischen Materials, beträgt.  Rare earth metal 5 to 11 atom%, preferably 7 to 9 atom%, in each case based on the total mass of the magnetic material.
6. Magnetisches Material nach einem der vorhergehenden Ansprüche, 6. Magnetic material according to one of the preceding claims,
dadurch gekennzeichnet, dass die Struktur des magnetischen Materials tetragonales RE(TM,Ti)i2 mit einer ThMn12-Struktur ist. Dauermagnet umfassend mindestens ein magnetisches Material nach einem der Ansprüche 1 bis 6. characterized in that the structure of the magnetic material is tetragonal RE (TM, Ti) i 2 having a ThMn 12 structure. Permanent magnet comprising at least one magnetic material according to one of claims 1 to 6.
Verfahren zum Herstellen eines magnetischen Materials durch A method of producing a magnetic material
- Mischen mindestens eines Übergangsmetalls (TM), mindestens eines Seltenerdmetalls (RE) und Titan, wobei der Gehalt an Übergangsmetall 74 bis 94 Atom%, der Gehalt an Seltenerdmetall 2 bis 20 Atom% und der Gehalt an Titan 7 bis 9 Atom%, jeweils bezogen auf die Mixing at least one transition metal (TM), at least one rare earth element (RE) and titanium, wherein the content of transition metal is 74 to 94 atom%, the content of rare earth metal is 2 to 20 atom% and the content of titanium is 7 to 9 atom%, respectively based on the
Gesamtmasse des magnetischen Materials, beträgt und wobei das Übergangsmetall Kobalt umfasst und  Total mass of the magnetic material, and wherein the transition metal comprises cobalt and
- Schmelzen der erhaltenen Mischung bis ein homogenes Gemisch entsteht. - Melting of the resulting mixture until a homogeneous mixture is formed.
Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass in einem sich an das Schmelzen anschließenden Schritt eine Wärmebehandlung bei einer Temperatur zwischen 500 °C und 1500 °C, vorzugsweise zwischen 700 °C und 1 00 °C für eine Dauer von 10 min bis zu 2 Wochen und vorzugsweise für 5 bis 12 Tage, erfolgt. A method according to claim 8, characterized in that in a step subsequent to the melting, a heat treatment at a temperature between 500 ° C and 1500 ° C, preferably between 700 ° C and 1 00 ° C for a period of 10 min up to 2 Weeks and preferably for 5 to 12 days.
Verfahren nach einem der Ansprüche 8 oder 9, dadurch gekennzeichnet, dass die erhaltene Mischung in einem weiteren Schritt gemahlen und/oder einer Nitridierung unterzogen wird. Method according to one of claims 8 or 9, characterized in that the obtained mixture is ground in a further step and / or subjected to a nitridation.
Kunststoffgebundener Magnet, enthaltend Plastic-bonded magnet, containing
- ein magnetisches Material nach einem der Ansprüche 1 bis 6 oder - A magnetic material according to any one of claims 1 to 6 or
- ein nach einem der Ansprüche 8 bis 10 hergestelltes magnetisches Material oder - A produced according to one of claims 8 to 10 magnetic material or
- ein magnetisches Material nach einem der Ansprüche 1 bis 6, das über Rascherstarrung hergestellt wurde. - A magnetic material according to any one of claims 1 to 6, which has been prepared via rapid solidification.
Verwendung eines magnetischen Materials nach einem der Ansprüche 1 bis 6 oder mindestens eines Dauermagneten nach Anspruch 7, in Use of a magnetic material according to any one of claims 1 to 6 or at least one permanent magnet according to claim 7, in
Windkraftanlagen, PKW, NKW, Startern, Elektromotoren, Lautsprechern und mikroelektromechanischen Systemen. 13. Elektrische Maschine, insbesondere Generator, Kraftfahrzeug, Starter, Elektromotor, Lautsprecher oder mikroelektromechanisches System, enthaltend ein magnetisches Material nach einem der Ansprüche 1 bis 6 oder enthaltend mindestens einen Dauermagneten nach Anspruch 7. Wind turbines, cars, commercial vehicles, starters, electric motors, loudspeakers and microelectromechanical systems. 13. Electrical machine, in particular generator, motor vehicle, starter, electric motor, loudspeaker or microelectromechanical system, comprising a magnetic material according to one of claims 1 to 6 or containing at least one permanent magnet according to claim 7.
EP14728593.6A 2013-06-13 2014-06-10 Magnetic material, use thereof, and method for producing same Active EP3008221B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013009940.4A DE102013009940A1 (en) 2013-06-13 2013-06-13 Magnetic material, its use and process for its preparation
PCT/EP2014/062001 WO2014198708A1 (en) 2013-06-13 2014-06-10 Magnetic material, use thereof, and method for producing same

Publications (2)

Publication Number Publication Date
EP3008221A1 true EP3008221A1 (en) 2016-04-20
EP3008221B1 EP3008221B1 (en) 2020-03-04

Family

ID=50896318

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14728593.6A Active EP3008221B1 (en) 2013-06-13 2014-06-10 Magnetic material, use thereof, and method for producing same

Country Status (6)

Country Link
US (1) US20160148734A1 (en)
EP (1) EP3008221B1 (en)
JP (1) JP2016528717A (en)
CN (1) CN105555980A (en)
DE (1) DE102013009940A1 (en)
WO (1) WO2014198708A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10062482B2 (en) * 2015-08-25 2018-08-28 GM Global Technology Operations LLC Rapid consolidation method for preparing bulk metastable iron-rich materials
EP3291250B1 (en) 2016-08-24 2021-05-26 Kabushiki Kaisha Toshiba Magnetic material, permanent magnet, rotary electrical machine, and vehicle
US10490325B2 (en) 2016-08-24 2019-11-26 Kabushiki Kaisha Toshiba Magnetic material, permanent magnet, rotary electrical machine, and vehicle
CN107785139A (en) 2016-08-24 2018-03-09 株式会社东芝 Ferromagnetic material, permanent magnet, electric rotating machine and vehicle
CN109952621B (en) * 2016-12-26 2021-01-26 日立金属株式会社 Rare earth-transition metal system ferromagnetic alloy
CN107385343B (en) * 2017-07-21 2020-02-28 张栗珲 Quantum water treatment device and functional material for water treatment
JP6733871B2 (en) * 2017-08-22 2020-08-05 トヨタ自動車株式会社 Magnetic compound and method for producing the same
JP6995542B2 (en) * 2017-09-19 2022-02-04 株式会社東芝 Magnet materials, permanent magnets, rotary machines, and vehicles
CN111655891B (en) * 2018-01-30 2022-04-05 Tdk株式会社 Permanent magnet

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US500A (en) * 1837-12-01 Improved excavating-machine
DE3765980D1 (en) * 1986-04-12 1990-12-13 Shinetsu Chemical Co RARE EARTH ALLOY FOR PERMANENT MAGNET.
EP0386286B1 (en) * 1987-09-17 1995-10-18 Shin-Etsu Chemical Co., Ltd. Rare earth iron-based permanent magnet
JP3057448B2 (en) * 1988-05-26 2000-06-26 信越化学工業株式会社 Rare earth permanent magnet
DE4133214C2 (en) * 1990-10-05 1996-11-07 Hitachi Metals Ltd Permanent magnet material made of iron-rare earth metal alloy
JPH05230502A (en) * 1992-02-21 1993-09-07 Minebea Co Ltd Production of rare-earth element bond magnet
JPH06192795A (en) * 1992-12-25 1994-07-12 Hitachi Metals Ltd Permanent magnet alloy
US5456769A (en) * 1993-03-10 1995-10-10 Kabushiki Kaisha Toshiba Magnetic material
JPH07126816A (en) * 1993-11-02 1995-05-16 Tokin Corp Rare earth element-containing permanent magnet material
JPH07161515A (en) * 1993-12-06 1995-06-23 Tokin Corp Rare earth permanent magnet material
JPH116038A (en) * 1997-06-16 1999-01-12 Tokin Corp Rare earth permanent magnet material
US7186303B2 (en) * 2002-08-21 2007-03-06 Neomax Co., Ltd. Magnetic alloy material and method of making the magnetic alloy material
DE102005001198A1 (en) * 2005-01-10 2006-07-20 H.C. Starck Gmbh Metallic powder mixtures
US9548150B2 (en) * 2013-03-06 2017-01-17 GM Global Technology Operations LLC Cerium-iron-based magnetic compounds

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2014198708A1 *

Also Published As

Publication number Publication date
CN105555980A (en) 2016-05-04
US20160148734A1 (en) 2016-05-26
DE102013009940A1 (en) 2014-12-18
WO2014198708A1 (en) 2014-12-18
EP3008221B1 (en) 2020-03-04
JP2016528717A (en) 2016-09-15

Similar Documents

Publication Publication Date Title
EP3008221B1 (en) Magnetic material, use thereof, and method for producing same
DE60036586T2 (en) A hard magnetic interstitial material having a plurality of elements and a magnetic powder manufacturing method and magnet
DE3587977T2 (en) Permanent magnets.
DE112013003109T5 (en) Sintered magnet
DE102016122327A1 (en) rare earth
DE69935231T2 (en) Powerful magnetic materials including iron, rare earth metals, boron, refractory metals and cobalt
DE102013200651A1 (en) Permanent magnet and motor and generator under its use
DE112012004741T5 (en) Production process of rare earth magnets
DE69212569T2 (en) Process for the production of alloy powders of the SE-Fe / Co-B-M type and bonded magnets with this alloy powder
EP2422347B1 (en) Magnetic alloy material and process for the production thereof
WO2013164202A1 (en) Magnetic material, use thereof and method for producing same
DE102011005772A1 (en) Permanent magnet and motor and generator where it is used
DE102015115217A1 (en) High-temperature hybrid permanent magnet
DE69403059T2 (en) Permanent magnet material, its manufacturing process and permanent magnet
DE4430964B4 (en) magnetic material
WO2016083269A1 (en) Magnetic material, method for producing same, and electric machine comprising a magnetic material
WO2014079822A2 (en) Magnetic material and method for producing same
DE102013201370A1 (en) Permanent magnet and motor and current generator using it
WO2014009057A1 (en) Magnetic material, use thereof and method for the production thereof
DE69118577T2 (en) Rare earth based magnetic materials, manufacturing process and application
DE2507105C2 (en) Process for the production of permanent magnetic material containing samarium, cobalt, copper and optionally iron
DE19747364C2 (en) Powder with magnetic anisotropy and its manufacturing process
DE112010000778T5 (en) Process for making a NdFeBGa magnet and NdFeBGa magnetic material
DE102006032520B4 (en) Method for producing magnetic cores, magnetic core and inductive component with a magnetic core
DE102018114722A1 (en) MANUFACTURE OF AN MNBI LTP MAGNET BY DIRECTORS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160113

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20171222

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191204

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1240429

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014013749

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ROBERT BOSCH GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200604

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200605

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200604

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200704

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014013749

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20201207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200610

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200610

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200610

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210621

Year of fee payment: 8

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1240429

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200610

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210823

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502014013749

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230103