[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP3006682B1 - Device and method for operating a heating distribution station - Google Patents

Device and method for operating a heating distribution station Download PDF

Info

Publication number
EP3006682B1
EP3006682B1 EP14187849.6A EP14187849A EP3006682B1 EP 3006682 B1 EP3006682 B1 EP 3006682B1 EP 14187849 A EP14187849 A EP 14187849A EP 3006682 B1 EP3006682 B1 EP 3006682B1
Authority
EP
European Patent Office
Prior art keywords
heat
fluid
heat exchanger
working medium
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14187849.6A
Other languages
German (de)
French (fr)
Other versions
EP3006682A1 (en
Inventor
Richard Aumann
Daniela Walter
Roy Langer
Markus Lintl
Andreas Schuster
Jens-Patrick Springer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orcan Energy AG
Original Assignee
Orcan Energy AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orcan Energy AG filed Critical Orcan Energy AG
Priority to EP14187849.6A priority Critical patent/EP3006682B1/en
Priority to DK14187849.6T priority patent/DK3006682T3/en
Priority to PL14187849.6T priority patent/PL3006682T3/en
Priority to CN201580065182.3A priority patent/CN107002512A/en
Priority to PCT/EP2015/071760 priority patent/WO2016055263A1/en
Publication of EP3006682A1 publication Critical patent/EP3006682A1/en
Application granted granted Critical
Publication of EP3006682B1 publication Critical patent/EP3006682B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/003Plants characterised by condensers arranged or modified to co-operate with the engines condenser cooling circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/02Using steam or condensate extracted or exhausted from steam engine plant for heating purposes, e.g. industrial, domestic

Definitions

  • the invention relates to a heat transfer station for transferring heat from a supplier heat network with a first heat-carrying fluid to a customer heat network with a second heat-carrying fluid. Furthermore, the invention relates to a method for transferring heat from a supplier heat network with a first heat-carrying fluid to a customer heat network with a second heat-carrying fluid.
  • District heating refers to the supply of buildings with heating and hot water.
  • water is well suited as a medium for heat transport, with it being used in liquid or vapor form.
  • the medium is pumped in thermally insulated pipelines in a constant circulation.
  • Local heat refers to a corresponding transfer of heat for heating purposes over comparatively short distances, although the transition to district heating is fluid.
  • Heat transfer stations connect such local and district heating networks with heat consumers.
  • the operating temperatures of the district heating networks depend on the consumers with the highest required temperature level. In downtown Kunststoff, for example, the temperature of the district heating flow is 130 °C in winter and 80 °C in summer. The return temperature must not exceed 45 °C. These temperatures belong to the parameters that are usually specified in the technical connection conditions of the respective utility company and must be adhered to by the operating mode and construction of the system. However, the majority of consumers require lower flow temperatures for their heating systems. In the case of residential buildings, the required flow temperature is the hot water supply usually at about 60 - 65 °C, and therefore, according to the prior art, the temperature must first be lowered by adding colder water.
  • the document EP 2 538 040 A1 discloses a combined heat and power plant and associated method.
  • the document DE 10 2012 217 929 A1 discloses a combined heat and power plant and a method for operating a combined heat and power plant.
  • the object of the invention is to overcome this disadvantage and to make better use of the potential of district heating.
  • the working medium can be deheated in the condenser before it condenses. Furthermore, the working medium can optionally be supercooled below the condensation temperature in the condenser after the condensation.
  • the first heat-conducting fluid and the second heat-conducting fluid can be the same fluid. In the heat transfer station, heat is transferred from a network with a first temperature level to a network with a second, lower temperature level.
  • the heat transfer station is designed to use the electrical energy at least partially to operate the customer's heating network, in particular a customer's heating system.
  • the advantage of the heat transfer station according to the invention is that the said exergy difference between the district heating side and the heat customer side can be used to generate electrical energy by interposing a cyclic process, for example an organic Rankine process (ORC process) with an organic working medium, a Stirling cycle, a steam power process, etc.
  • a cyclic process for example an organic Rankine process (ORC process) with an organic working medium, a Stirling cycle, a steam power process, etc.
  • ORC process organic Rankine process
  • Part of the high-temperature heat extracted from the district heating network is converted into electrical energy in the thermodynamic cycle.
  • the heat of condensation of the working medium feeds the heating network with low-temperature heat. In this way, the heat supply can be realized in whole or in part via the thermodynamic cycle process.
  • the main benefit of the invention is the additional provision of electrical energy to the heat customer.
  • the heat transfer station according to the invention can be further developed such that a third heat exchanger can be provided for the direct transfer of heat from the first fluid to the second fluid.
  • a third heat exchanger can be provided for the direct transfer of heat from the first fluid to the second fluid.
  • a development of the aforementioned development consists in that means for dividing the mass flow of the second fluid into a first part and a second part; means for passing the first portion of the second fluid through the condenser and for passing a second portion of the second fluid through the third heat exchanger; and means for combining the first part of the mass flow of the second fluid after passing through the condenser and the second part of the mass flow of the second fluid after passing through the third heat exchanger may be provided.
  • the return temperature of the supplier heating network can be kept at a constant level by appropriate control of the cyclic process device.
  • the flow temperature in the customer heating network can be regulated as required. If there is a higher demand for heat, the mass flow to the cycle is reduced.
  • the means for dividing the mass flow of the second fluid can be provided in a flow or in a return of the customer heating network, and they preferably include a three-way valve or a pump in a flow to the third heat exchanger. This corresponds in each case to advantageous examples for the arrangement and for the specific design of these means.
  • a fourth heat exchanger is provided for the direct transfer of heat from the first fluid to the working medium.
  • a heat pump operating mode of the cyclic process device is made possible by the development. Heat pump operation offers heat customers the advantage that the installed connected load can be lower.
  • a further development of the previously mentioned development is that means for diverting the working medium from an inlet of the evaporator to the fourth heat exchanger, in particular in the form of a three-way valve or a solenoid valve; and means are provided for operating the expander as a compressor.
  • the working medium can be routed to the fourth heat exchanger instead of to the first heat exchanger, in order to absorb heat from the first fluid there when the expansion machine is operated as a compressor.
  • the means for operating the expansion machine as a compressor include: means for directly conducting the working medium from the fourth heat exchanger to a low-pressure side of the expansion machine operated as a compressor, in particular a first valve for blocking the connection between the evaporator and the High-pressure side of the expansion machine and a bypass line with a second valve for establishing a connection between the fourth heat exchanger and the low-pressure side of the expansion machine, and further means for directly conducting the compressed working medium from a high-pressure side of the expansion machine operated as a compressor to the condenser, in particular a fourth valve for blocking a connection between the low pressure side of the expander and the condenser and a bypass line with a third valve for establishing a connection between the high pressure kside of the expander and the condenser.
  • the heat transfer station can be designed in such a way that the second heat-carrying fluid is conducted completely both through the condenser and through the third heat exchanger. A large mass flow flows through the condenser. This is advantageous for the electrical efficiency of the system.
  • the heat transfer station with a third heat exchanger also includes means for dividing the mass flow of the first fluid into a first part and a second part, in particular a three-way valve, and means for conducting the first part of the first fluid to the third heat exchanger.
  • the aforementioned development can also be further developed such that a heat accumulator is provided in thermal contact with the second fluid. This enables the temperature gradients of the second fluid entering the condenser to be flattened. If the temperature of the second fluid is greater than the temperature of the heat accumulator, the second fluid is cooled, if it is lower, it is heated.
  • the object of the invention is further achieved by a method according to claim 11.
  • the method according to the invention transfers heat from a supplier heat network with a first heat-carrying fluid to a customer heat network with a second heat-carrying fluid by means of a thermodynamic cycle device, in particular an ORC device, the thermal cycle device having a first heat exchanger designed as an evaporator, an expansion machine, one with the expansion machine coupled generator, a second heat exchanger designed as a condenser and a feed pump, the method comprising the following steps: preheating, evaporating and optionally additional overheating of the working medium while supplying heat from the first fluid to the first heat exchanger; Generating mechanical energy by expanding the vaporized working medium with the expander and at least partially converting the mechanical energy into electrical energy with the generator; condensing the expanded working medium and transferring thermal energy from the expanded working medium to the second fluid with the second heat exchanger; and conveying the condensed working medium under pressure increase to the evaporator with the feed pump. Before condensing, the expanded working medium can optionally be deheated. After
  • the electrical energy is used at least partially to operate the customer's heating network, in particular a customer's heating system.
  • the further step of directly transferring heat from the first fluid to the second fluid using a third heat exchanger is provided.
  • a development of the aforementioned development consists in the following further steps being provided: dividing the mass flow of the second fluid into a first part and a second part; passing the first portion of the second fluid through the condenser and passing a second portion of the second fluid through the third heat exchanger; and combining the first portion of the mass flow of the second fluid after passing through the condenser and the second portion of the mass flow of the second fluid after passing through the third heat exchanger.
  • the method includes the step of directly transferring heat from the first fluid to the working medium using a fourth heat exchanger.
  • Another development is that the second heat-carrying fluid is conducted completely both through the condenser and through the third heat exchanger.
  • Exergy describes the part of the energy that can be completely converted into any other form of energy, such as electrical energy. It is therefore the workable part of the energy. In contrast to this, anergy is the non-workable part of energy, conversion into other forms of energy is not possible here. Even in an idealized process, thermal energy can only be partially converted into mechanical energy.
  • T is the temperature of the heat source
  • T U is the temperature of the environment.
  • the exergy contained in the heat flow is destroyed by lowering the temperature, such as 1 clarified.
  • the lowering of the temperature can have different reasons. It may be necessary to lower the temperature, for example in order to comply with temperature limits in the heating system. This is ensured, for example, by the heat transfer station. A further reduction in temperature takes place with any heat transfer, be it in the heat transfer station or in the heating system, which heats up a room, for example. When the heat has reduced to ambient temperature, it no longer has the ability to work and is pure anergy.
  • thermodynamic cycle into the heating system (see 2 ) the further use of part of the exergy contained in the heat flow in the form of electrical energy.
  • the energy flow which is converted into electrical energy, is no longer available for heating, but it can be compensated for by slightly increasing the heat supply in the ORC process. Due to the low prices of the energy sources and thus of the thermal energy generated compared to the purchase prices for electrical energy, this is economically interesting, especially in the area of the housing industry/small consumers.
  • FIG. 3 shows in a first embodiment of the invention the simplest realization of the power-generating heat transfer station.
  • the reference symbols used here are also retained in the further figures for the other embodiments if the same elements are involved.
  • the first embodiment of the heat transfer station 1 for transferring heat from a supplier heating network 10 with a first heat-carrying fluid to a customer heating network 20 with a second heat-carrying fluid comprises a thermodynamic cycle device 30 with a working medium (e.g.
  • thermodynamic cycle device 30 comprises: a first heat exchanger designed as an evaporator 31 for evaporating and optionally additional preheating and/or superheating of the working medium while supplying heat from the first fluid, an expansion machine 32 for generating mechanical Energy by expanding the vaporized working medium, a generator 33 coupled to the expansion machine for at least partially converting the mechanical energy into electrical energy, a second heat exchanger designed as a condenser 34 for condensing and optionally prior deheating and/or additional sub-cooling of the expanded working medium and transferring thermal energy from the expanded working medium to the second fluid, and a feed pump 35 for conveying the condensed working medium under pressure increase to the evaporator.
  • the feed pump is driven by a motor 36 .
  • a pump 21 is provided in the heating circuit of the customer heating network, with which the second fluid (water, for example) is conveyed.
  • a simplified representation of the district heating network 10, the ORC process 30 and the heating network 20 is chosen.
  • liquid working medium is vaporized with the supply of heat, expanded in the expansion machine 32 (eg screw expander, turbine) and liquefied at a lower pressure level.
  • the expansion machine 32 eg screw expander, turbine
  • heat is released from the working fluid to the heating water network and the required flow temperature is thereby reached.
  • the expansion machine 32 is coupled to the generator 33 via a shaft, which converts the mechanical energy into electrical energy. This can be fed into a network or used to cover the heating system's own requirements.
  • thermodynamic cycle process 30 in a heat transfer station 1 thus offers the possibility of a decentralized combined heat and power generation for heat consumers.
  • the parallel operation of several systems in a stack is made possible by a modular design. In this way, better part-load behavior and increased flexibility are achieved.
  • thermodynamic cycle involves the problem that the ORC can only use part of the temperature gradient between district heating supply and return. This is due to the fact that the pinch point between the temperature of the heat source and the temperature of the working medium limits the heat absorption, as shown in the ORC process TQ diagram in 4 clarified.
  • the temperature curves of the fluids in the district heating network, in the heating network and in the ORC process are shown there.
  • Q ⁇ max,ORC is the maximum amount of heat that the ORC can absorb
  • Q ⁇ requirement,customer is the heat requirement of the building.
  • the pinch point also called pinch point or point of lowest degree
  • the pinch point is the point of the smallest temperature difference between two media that transfer heat via one or more heat exchangers.
  • the heating performance is lower 3 depending on the operation of the ORC 30.
  • the heat supply to the heating network 20 is no longer possible, since heat is no longer extracted via the condenser 34.
  • thermodynamic machine and method for its operation describes a device and a method for avoiding cavitation in a thermodynamic cycle, which is particularly advantageous when using air condensers.
  • the working medium is subjected to additional pressure by adding a non-condensing gas in the condenser. Since this is synonymous with a higher flow height of the pump, the difference between the actual pressure and the boiling pressure increases in the pump inlet. In return, this reduces the pressure difference across the expansion machine and thus the electrical power output. Since the pressure difference across the expansion machine is relatively low when condensing against water, this solution is disadvantageous for the present application.
  • the heating operation is 2 after in the second embodiment figure 5 independent of the operation of the cyclic process.
  • a variable part of the heat is absorbed by the cyclic process, while the rest is transferred directly into the heating network 20 via a third heat exchanger 40 .
  • another pump in the heating network flow to the third heat exchanger 40 can be used to split the mass flow.
  • the pumps can also be arranged both in the flow and in the return of the heating network 20. If the cyclic process fails, the entire amount of heat can be supplied via the third heat exchanger 40 . An emergency operation functionality is thus given with adequate dimensioning of the third heat exchanger 40 .
  • the return temperature of the district heating network can be kept at a constant level or below a required maximum temperature by appropriate control of the cycle process.
  • the temperature is slightly higher than when the ORC is switched off.
  • the flow temperature in the heating network 20 can be regulated as required. If there is a higher demand for heat, the mass flow in the cyclic process is reduced. With constant input and output temperatures of the working medium, there is less heat input to the ORC. Due to the constant mass flow in the district heating network 10, this in turn means that the outlet temperature on the side of the district heating network 10 increases. As a result, there is a greater temperature difference across the third heat exchanger 40, as a result of which the amount of heat transferred directly to the heating network 20 is increased.
  • the system can be integrated both in heating water networks in which the district heating network and heating water network are separate from one another and in networks in which there is only one common network.
  • the third heat exchanger 40 is no longer required for integration into a mixed network, since a partial flow of the district heating water can be routed directly into the heating network.
  • This second embodiment also has improved functionality to prevent cavitation damage.
  • the mass flow of the heating water through the condenser 34 can be reduced via the 3-way valve 22 .
  • this increases the temperature spread of the water mass flow.
  • the condensation temperature of the working medium is determined by the inlet temperature of the water, the temperature difference at the pinch point, and the mass flow and thus the temperature spread of the water. If the water-side inlet temperature increases, the condensation pressure of the working medium also increases. If the mass flow of the water decreases, the outlet temperature of the water increases. Since the heat transfer surface remains constant, but the temperature difference between the working medium and the water increases, the working medium is supercooled to a greater extent. Greater subcooling has the same effect as greater head in the feed pump flow, since the difference between the actual pressure and the evaporating pressure at the pump inlet increases.
  • the heat transfer in the evaporator 34 quickly reaches its limits. Due to the pinch point between the working medium and the fluid at the entrance to the first heat exchanger (evaporator), cooling of the district heating return and thus the supply of heat is only possible to a limited extent.
  • this second embodiment enables 2 different operating modes.
  • a first operating mode is used for heating and electricity production. With an average heat requirement, the cyclic process runs parallel to the heat supply and part of the heat requirement is covered by the condensation heat. A small part of the heat from the heating network 20 is converted into electrical energy via the expansion machine 32 and the generator 33 .
  • a second operating mode serves as a pure heating operation. For this purpose, the cyclic process is used when the heat requirement is very high 30 switched off and the entire heat required is supplied to the heating network 20 via the third heat exchanger 40 . This operating mode is similar to that of a conventional transfer station.
  • the return temperature is an important parameter in order to extract as much heat as possible from the source and to increase the efficiency of the system.
  • the third embodiment 3 according to 7 represents a further development of the second embodiment 2, through which correspondingly low temperatures in the district heating return can be achieved.
  • a heat pump operating mode of the ORC enables.
  • the expander 32 is operated as a compressor 32 in that the valve 54 is closed and the valve 53 is opened, so that the fluid flows into the expansion machine 32 on the low-pressure side. Furthermore, the valve 55 is closed.
  • the compressed working medium flows through the open valve 52 into the condenser 34 where it gives off heat to the heating network 20 .
  • the throttle 56 causes the pressure to drop, which is accompanied by a reduction in the boiling temperature.
  • part of the thermal energy is transferred to the heating network 20 and the return temperature is thus reduced to a range suitable for the heat pump.
  • the working medium can then be routed via the 3-way valve 51 to the fourth heat exchanger 50, where it can be evaporated. This further cools the district heating return.
  • Heat pump operation offers heat customers the advantage that the installed connected load can be lower. This is due to the fact that the nominal connected load is defined by a fixed spread between district heating flow and return as well as the area of the heat exchanger. Due to the additional cooling of the return with a constant heat transfer surface and constant mass flow, the actual heat supply in heat pump operation is greater than the nominal connected load. For operators of geothermal heating plants, for example, there is the advantage that more energy can be extracted from the regenerative heat source. Due to the higher yield of thermal energy low return temperatures, part of the provision of peak load energy can also be replaced.
  • the valves 52, 53, 54, 55 allow the expansion machine 32 to be bypassed, which means that the pressure losses are reduced and the heat can be provided to the heating network 20 via natural circulation.
  • the third heat exchanger 40 can enable the bypass.
  • low district heating return temperatures can be achieved.
  • the heating network flow temperature is limited by the maximum condensation temperature plus the temperature of the heat exchanger. With minor modifications, it can be used in both separate and mixed heating circuits.
  • the cavitation avoidance is given here as for the second embodiment.
  • the temperature spread of the evaporator is the same as in the second embodiment. With the large temperature difference between district heating flow and return, the heat transfer in the evaporator quickly reaches its limits. Due to the pinch point between the working medium and the fluid in the district heating line, the cooling of the district heating return and thus the heat supply to the ORC is only possible to a limited extent.
  • FIG. 9 shows a fourth embodiment 4 of the heat transfer station according to the invention.
  • this fourth embodiment 4 means for dividing the mass flow of the first fluid into a first part and a second part in the form of a three-way valve, and means for conducting the first part of the first fluid to the third heat exchanger 40 are provided.
  • ORC operation the district heating return temperature is slightly higher than in the second embodiment 2.
  • the flow temperature in the heating network can be regulated as required. If (e.g.
  • a heat accumulator 60 (latent heat accumulator or a sensitive heat accumulator) is connected in front of the condenser 34 as a thermal buffer in the return of the heating network 20 . This allows the temperature gradients of the heating water entering the condenser 34 to be flattened out. With the large temperature difference between district heating flow and return, the heat transfer in the evaporator quickly reaches its limits. Due to the pinch point between the working medium and the fluid in the district heating line, the cooling of the district heating return and thus the heat supply is only possible to a limited extent.
  • the condenser 34 of the ORC on the side of the heating network 20 is always flowed through with the coldest temperature and with a large mass flow, since the second heat-carrying fluid is passed completely both through the condenser 34 and through the third heat exchanger 40.
  • This is advantageous for the electrical efficiency of the system, as a larger mass flow results in a lower temperature difference in the heating water return.
  • a lower back pressure to the expansion machine is set (see Fig. 11), which leads to a higher electrical output. If the cyclic process fails, the entire amount of heat can be supplied via the third heat exchanger 40 . An emergency operation functionality is thus given with adequate dimensioning of the third heat exchanger 40 .
  • the district heating return cannot be cooled as much by the third heat exchanger 40 as in the second embodiment. Depending on the mode of operation, this results in an increase in the district heating return temperature in ORC operation, for example by around 10 to 15 K.
  • the flow temperature in the heating network 20 can be regulated as desired. If there is a need for heat, the mass flow in the cyclic process is reduced, which means that more heat at a higher temperature level is transferred directly to the heating network via the third heat exchanger 40 transfer. With minor modifications, it can be used in both separate and mixed heating circuits.
  • a latent heat store or a sensitive heat store can be connected upstream of the condenser 34 as a thermal buffer in the return flow of the heating network. This enables the temperature gradients of the heating water entering the condenser to be flattened. Temperature spread in the evaporator of the fifth embodiment 5 corresponds to that of the second embodiment 2.
  • the heat transfer station has the following advantages and disadvantages.
  • the advantages are better utilization of the exergy used (large additional benefit with little additional heat output, see 2 ); less destruction of exergy when heat is transferred to heat consumers; decentralized combined heat and power at the end user (electricity-generating heating system); Use of different temperature variants and network types (mixed and separate circuits); great flexibility in terms of performance and operation, adaptable to a growing heating network (can be designed as a stack); and increase the efficiency and power rating of the overall system.
  • a disadvantage is a slightly lower maximum heat supply for the heat customer and in the embodiments 1, 2, 4, 5 a slight to moderate increase in the temperature of the district heating return. In the embodiments with an emergency function, the entire connected load can still be made available by bypassing the ORC, ie by switching it off, and by adequately dimensioning the third heat exchanger 40 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

Gebiet der Erfindungfield of invention

Die Erfindung betrifft eine Wärmeübergabestation zum Übergeben von Wärme von einem Lieferantenwärmenetz mit einem ersten wärmeführenden Fluid auf ein Kundenwärmenetz mit einem zweiten wärmeführenden Fluid. Weiterhin betrifft die Erfindung ein Verfahren zum Übergeben von Wärme von einem Lieferantenwärmenetz mit einem ersten wärmeführenden Fluid auf ein Kundenwärmenetz mit einem zweiten wärmeführenden Fluid.The invention relates to a heat transfer station for transferring heat from a supplier heat network with a first heat-carrying fluid to a customer heat network with a second heat-carrying fluid. Furthermore, the invention relates to a method for transferring heat from a supplier heat network with a first heat-carrying fluid to a customer heat network with a second heat-carrying fluid.

Stand der TechnikState of the art

Fernwärme bezeichnet die Versorgung von Gebäuden mit Heizwärme und Warmwasser. Dafür ist beispielsweise Wasser als Medium für den Wärmetransport gut geeignet, wobei es flüssig oder in Dampfform Verwendung findet. Das Medium wird in wärmegedämmten Rohrleitungen in einem ständigen Umlauf gefördert. Als Nahwärme wird eine entsprechende Wärmeübertragung zu Heizzwecken über vergleichsweise kurze Distanzen bezeichnet, wobei der Übergang zur Fernwärme jedoch fließend ist.District heating refers to the supply of buildings with heating and hot water. For example, water is well suited as a medium for heat transport, with it being used in liquid or vapor form. The medium is pumped in thermally insulated pipelines in a constant circulation. Local heat refers to a corresponding transfer of heat for heating purposes over comparatively short distances, although the transition to district heating is fluid.

Wärmeübergabestationen verbinden solche Nah- und Fernwärmenetze mit Wärmeverbrauchern. Die Betriebstemperaturen der Fernwärmenetze richten sich dabei nach den Verbrauchern mit dem höchsten benötigten Temperaturniveau. In der Innenstadt Münchens beispielsweise beträgt die Temperatur des Fernwärme-Vorlaufes im Winter 130 °C und im Sommer 80 °C. Die Temperatur des Rücklaufes darf einen Wert von 45 °C nicht überschreiten. Diese Temperaturen gehören zu den Parametern, die üblicherweise in den technischen Anschlussbedingungen des jeweiligen Versorgungsunternehmens festgelegt sind und müssen durch die Betriebsart und Bauweise der Anlage eingehalten werden. Allerdings benötigt die überwiegende Zahl der Verbraucher niedrigere Vorlauftemperaturen für ihre Heizsysteme. Im Fall von Wohngebäuden liegt die benötigte Vorlauftemperatur der Warmwasserversorgung üblicherweise bei etwa 60 - 65 °C, und daher muss nach dem Stand der Technik zunächst durch Beimischung von kälterem Wasser die Temperatur gesenkt werden. Auf diese Weise wird jedoch ein großer Teil des theoretisch nutzbaren Potenzials (Exergie) des Heißwassers verschwendet, was nachteilig ist. Es wird also nach dem Stand der Technik Wärme auf hohem Temperaturniveau über weite Strecken transportiert und anschließend unter Exergievemichtung auf ein niedriges Temperaturniveau abgesenkt.Heat transfer stations connect such local and district heating networks with heat consumers. The operating temperatures of the district heating networks depend on the consumers with the highest required temperature level. In downtown Munich, for example, the temperature of the district heating flow is 130 °C in winter and 80 °C in summer. The return temperature must not exceed 45 °C. These temperatures belong to the parameters that are usually specified in the technical connection conditions of the respective utility company and must be adhered to by the operating mode and construction of the system. However, the majority of consumers require lower flow temperatures for their heating systems. In the case of residential buildings, the required flow temperature is the hot water supply usually at about 60 - 65 °C, and therefore, according to the prior art, the temperature must first be lowered by adding colder water. In this way, however, a large part of the theoretically usable potential (exergy) of the hot water is wasted, which is disadvantageous. According to the prior art, heat is thus transported at a high temperature level over long distances and then lowered to a low temperature level with the elimination of exergy.

Das Dokument EP 2 538 040 A1 offenbart eine Kraft-Wärme-Kopplungsanlage und ein assoziiertes Verfahren. Das Dokument DE 10 2012 217 929 A1 offenbart ein Kraft-Wärme-Kraftwerk und ein Verfahren zum Betrieb eines Kraft-Wärme-Kraftwerks.The document EP 2 538 040 A1 discloses a combined heat and power plant and associated method. The document DE 10 2012 217 929 A1 discloses a combined heat and power plant and a method for operating a combined heat and power plant.

Beschreibung der ErfindungDescription of the invention

Aufgabe der Erfindung ist es, diesen Nachteil zu überwinden und das Potential der Fernwärme besser auszunutzen.The object of the invention is to overcome this disadvantage and to make better use of the potential of district heating.

Diese Aufgabe wird gelöst durch eine Wärmeübergabestation nach Anspruch 1.This object is achieved by a heat transfer station according to claim 1.

Die erfindungsgemäße Wärmeübergabestation zum Übergeben von Wärme von einem Lieferantenwärmenetz mit einem ersten wärmeführenden Fluid auf ein Kundenwärmenetz mit einem zweiten wärmeführenden Fluid umfasst eine thermodynamische Kreisprozessvorrichtung mit einem Arbeitsmedium, insbesondere eine ORC-Vorrichtung mit einem organischen Arbeitsmedium, wobei die thermodynamische Kreisprozessvorrichtung umfasst: einen als Verdampfer ausgebildeten ersten Wärmeübertrager zum Vorwärmen, Verdampfen und optional zusätzlichen Überhitzen des Arbeitsmediums unter Zuführung von Wärme aus dem ersten Fluid, eine Expansionsmaschine zum Erzeugen von mechanischer Energie durch Entspannen des verdampften Arbeitsmediums, einen mit der Expansionsmaschine gekoppelten Generator zum zumindest teilweisen Wandeln der mechanischen Energie in elektrische Energie, einen als Kondensator ausgebildeten zweiten Wärmeübertrager zum Kondensieren des entspannten Arbeitsmediums und Übertragen von Wärmeenergie aus dem entspannten Arbeitsmedium auf das zweite Fluid, und eine Speisepumpe zum Fördern des kondensierten Arbeitsmediums unter Druckerhöhung zum Verdampfer. Optional kann in dem Kondensator vor dem Kondensieren ein Enthitzen des Arbeitsmediums erfolgen. Weiterhin kann optional in dem Kondensator nach dem Kondensieren ein Unterkühlen des Arbeitsmediums unter die Kondensationstemperatur erfolgen. Das erste wärmeführende Fluid und das zweite wärmeführende Fluid können dasselbe Fluid sein. In der Wärmeübergabestation wird Wärme wird aus einem Netz mit einem ersten Temperaturniveau in ein Netz mit einem zweiten, niedrigeren Temperaturniveau übergeben.The heat transfer station according to the invention for transferring heat from a supplier heat network with a first heat-carrying fluid to a customer heat network with a second heat-carrying fluid comprises a thermodynamic cycle device with a working medium, in particular an ORC device with an organic working medium, the thermodynamic cycle device comprising: one as an evaporator trained first heat exchanger for preheating, evaporating and optionally additional superheating of the working medium by supplying heat from the first fluid, an expansion machine for generating mechanical energy by expanding the vaporized working medium, a generator coupled to the expansion machine for at least partially converting the mechanical energy into electrical energy Energy, designed as a condenser second heat exchanger for condensing the expanded working medium and transferring thermal energy from the expanded th working medium to the second Fluid, and a feed pump for delivering the condensed working medium under pressure increase to the evaporator. Optionally, the working medium can be deheated in the condenser before it condenses. Furthermore, the working medium can optionally be supercooled below the condensation temperature in the condenser after the condensation. The first heat-conducting fluid and the second heat-conducting fluid can be the same fluid. In the heat transfer station, heat is transferred from a network with a first temperature level to a network with a second, lower temperature level.

Erfindungsgemäß ist die Wärmeübergabestation dazu ausgebildet, die elektrische Energie zumindest teilweise zum Betreiben des Kundenwärmenetzes, insbesondere einer kundenseitigen Heizungsanlage, zu verwenden.According to the invention, the heat transfer station is designed to use the electrical energy at least partially to operate the customer's heating network, in particular a customer's heating system.

Der Vorteil der erfindungsgemäßen Wärmeübergabestation besteht darin, dass der genannte Exergieunterschied zwischen der Fernwärmeseite und der Wärmekundenseite für die Erzeugung elektrischer Energie genutzt werden kann, indem ein Kreisprozess zwischengeschaltet wird, beispielsweise ein Organic-Rankine-Prozess (ORC-Prozess) mit einem organischen Arbeitsmedium, ein Stirling-Kreisprozess, ein Dampfkraftprozess, etc. Ein Teil der dem Fernwärmenetz entzogenen Hochtemperaturwärme wird im thermodynamischen Kreisprozess in elektrische Energie gewandelt. Die Kondensationswärme des Arbeitsmediums speist das Heiznetz mit Niedertemperaturwärme. So kann die Wärmeversorgung ganz oder teilweise über den thermodynamischen Kreisprozess realisiert werden. Der Hauptnutzen der Erfindung besteht in der zusätzlichen Bereitstellung elektrischer Energie an den Wärmekunden.The advantage of the heat transfer station according to the invention is that the said exergy difference between the district heating side and the heat customer side can be used to generate electrical energy by interposing a cyclic process, for example an organic Rankine process (ORC process) with an organic working medium, a Stirling cycle, a steam power process, etc. Part of the high-temperature heat extracted from the district heating network is converted into electrical energy in the thermodynamic cycle. The heat of condensation of the working medium feeds the heating network with low-temperature heat. In this way, the heat supply can be realized in whole or in part via the thermodynamic cycle process. The main benefit of the invention is the additional provision of electrical energy to the heat customer.

Die erfindungsgemäße Wärmeübergabestation kann dahingehend weitergebildet werden, dass einen dritter Wärmeübertrager zum unmittelbaren Übertragen von Wärme aus dem ersten Fluid auf das zweite Fluid vorgesehen sein kann. Dies hat den Vorteil, dass ein Teil der Wärmeenergie direkt auf das Kundenwärmenetz übertragen wird und somit eine Absicherung der Wärmeversorgung gegen einem Ausfall der thermodynamischen Kreisprozessvorrichtung erzielt wird.The heat transfer station according to the invention can be further developed such that a third heat exchanger can be provided for the direct transfer of heat from the first fluid to the second fluid. This has the advantage that part of the thermal energy is transferred directly to the customer's heating network, thus securing the heat supply against failure of the thermodynamic cycle device.

Eine Weiterbildung der zuvor genannten Weiterbildung besteht darin, dass Mittel zum Aufteilen des Massenstroms des zweiten Fluids in einen ersten Teil und einen zweiten Teil; Mittel zum Leiten des ersten Teils des zweiten Fluids durch den Kondensator und zum Leiten eines zweiten Teils des zweiten Fluids durch den dritten Wärmeübertrager; und Mittel zum Zusammenführen des ersten Teils des Massenstroms des zweiten Fluids nach dem Leiten durch den Kondensator und des zweiten Teils des Massenstroms des zweiten Fluids nach dem Leiten durch den dritten Wärmeübertrager vorgesehen sein können. Die Rücklauftemperatur des Lieferantenwärmenetzes kann dabei durch entsprechende Regelung der Kreisprozessvorrichtung auf einem konstanten Niveau gehalten werden. Die Vorlauftemperatur im Kundenwärmenetz ist beliebig regelbar. Wenn höherer Wärmebedarf besteht, wird der Massenstrom zum Kreisprozess gesenkt.A development of the aforementioned development consists in that means for dividing the mass flow of the second fluid into a first part and a second part; means for passing the first portion of the second fluid through the condenser and for passing a second portion of the second fluid through the third heat exchanger; and means for combining the first part of the mass flow of the second fluid after passing through the condenser and the second part of the mass flow of the second fluid after passing through the third heat exchanger may be provided. The return temperature of the supplier heating network can be kept at a constant level by appropriate control of the cyclic process device. The flow temperature in the customer heating network can be regulated as required. If there is a higher demand for heat, the mass flow to the cycle is reduced.

Gemäß einer anderen Weiterbildung können die Mittel zum Aufteilen des Massenstroms des zweiten Fluids in einem Vorlauf oder in einem Rücklauf des Kundenwärmenetzes vorgesehen sein, und sie umfassen vorzugsweise ein Dreiwegeventil oder eine Pumpe in einem Vorlauf zum dritten Wärmeübertrager. Dieses entspricht jeweils vorteilhaften Beispielen für die Anordnung und für die konkrete Ausgestaltung dieser Mittel.According to another development, the means for dividing the mass flow of the second fluid can be provided in a flow or in a return of the customer heating network, and they preferably include a three-way valve or a pump in a flow to the third heat exchanger. This corresponds in each case to advantageous examples for the arrangement and for the specific design of these means.

Eine andere Weiterbildung besteht darin, dass ein vierter Wärmeübertrager zum unmittelbaren Übertragen von Wärme aus dem ersten Fluid auf das Arbeitmedium vorgesehen ist. Alternativ zur Stromerzeugung wird durch die Weiterbildung ein Wärmepumpen-Betriebsmodus der Kreisprozessvorrichtung ermöglicht. Der Wärmepumpenbetrieb bietet für Wärmekunden den Vorteil, dass die installierte Anschlussleistung geringer ausfallen kann.Another development is that a fourth heat exchanger is provided for the direct transfer of heat from the first fluid to the working medium. As an alternative to power generation, a heat pump operating mode of the cyclic process device is made possible by the development. Heat pump operation offers heat customers the advantage that the installed connected load can be lower.

Eine Weiterbildung der zuvor genannten Weiterbildung besteht darin, dass Mittel zum Umleiten des Arbeitsmediums aus einem Vorlauf des Verdampfers zum vierten Wärmeübertrager, insbesondere in Form eines Dreiwegeventils oder eines Magnetventils; und Mittel zum Betreiben der Expansionsmaschine als Kompressor vorgesehen sind. Auf diese Weise kann das Arbeitsmedium statt zum ersten Wärmeübertrager zum vierten Wärmeübertrager geleitet werden, um dort beim Betrieb der Expansionsmaschine als Kompressor Wärme aus dem ersten Fluid aufzunehmen.A further development of the previously mentioned development is that means for diverting the working medium from an inlet of the evaporator to the fourth heat exchanger, in particular in the form of a three-way valve or a solenoid valve; and means are provided for operating the expander as a compressor. In this way, the working medium can be routed to the fourth heat exchanger instead of to the first heat exchanger, in order to absorb heat from the first fluid there when the expansion machine is operated as a compressor.

Eine Weiterbildung der zuvor genannten Weiterbildung besteht darin, dass die Mittel zum Betreiben der Expansionsmaschine als Kompressor umfassen: Mittel zum unmittelbaren Leiten des Arbeitsmediums vom vierten Wärmeübertrager zu einer Niederdruckseite der als Kompressor betriebenen Expansionsmaschine, insbesondere ein erstes Ventil zum Sperren der Verbindung zwischen Verdampfer und der Hochdruckseite der Expansionsmaschine und eine Bypassleitung mit einem zweiten Ventil zum Herstellen einer Verbindung zwischen dem vierten Wärmeübertrager und der Niederdruckseite der Expansionsmaschine, und desweiteren Mittel zum unmittelbaren Leiten des komprimierten Arbeitsmediums von einer Hochdruckseite der als Kompressor betriebenen Expansionsmaschine zum Kondensator, insbesondere ein viertes Ventil zum Sperren einer Verbindung zwischen der Niederdruckseite der Expansionsmaschine und dem Kondensator und eine Bypassleitung mit einem dritten Ventil zum Herstellen einer Verbindung zwischen der Hochdruckseite der Expansionsmaschine und dem Kondensator. Dies stellt bevorzugte Ausgestaltungen der genannten Mittel zur Verfügung.A further development of the aforementioned further development is that the means for operating the expansion machine as a compressor include: means for directly conducting the working medium from the fourth heat exchanger to a low-pressure side of the expansion machine operated as a compressor, in particular a first valve for blocking the connection between the evaporator and the High-pressure side of the expansion machine and a bypass line with a second valve for establishing a connection between the fourth heat exchanger and the low-pressure side of the expansion machine, and further means for directly conducting the compressed working medium from a high-pressure side of the expansion machine operated as a compressor to the condenser, in particular a fourth valve for blocking a connection between the low pressure side of the expander and the condenser and a bypass line with a third valve for establishing a connection between the high pressure kside of the expander and the condenser. This makes preferred configurations of the means available.

Gemäß einer anderen Weiterbildung kann die Wärmeübergabestation derart ausgebildet sein, dass das zweite wärmeführende Fluid vollständig sowohl durch den Kondensator als auch durch den dritten Wärmeübertrager geleitet wird. Dabei wird der Kondensator mit einem großen Massenstrom durchströmt. Dies ist für den elektrischen Wirkungsgrad der Anlage vorteilhaft.According to another development, the heat transfer station can be designed in such a way that the second heat-carrying fluid is conducted completely both through the condenser and through the third heat exchanger. A large mass flow flows through the condenser. This is advantageous for the electrical efficiency of the system.

Eine andere Weiterbildung besteht darin, dass die Wärmeübergabestation mit einem dritten Wärmeübertrager weiterhin Mittel zum Aufteilen des Massenstroms des ersten Fluids in einen ersten Teil und einen zweiten Teil, insbesondere ein Dreiwegeventil, und Mittel zum Leiten des ersten Teils des ersten Fluids zum dritten Wärmeübertrager umfasst.Another development is that the heat transfer station with a third heat exchanger also includes means for dividing the mass flow of the first fluid into a first part and a second part, in particular a three-way valve, and means for conducting the first part of the first fluid to the third heat exchanger.

Die zuvor genannte Weiterbildung kann zudem dahingehend weitergebildet werden, dass ein Wärmespeicher in thermischem Kontakt mit dem zweiten Fluid vorgesehen ist. Dieses ermöglicht eine Abflachung der Temperaturgradienten des in den Kondensator eintretenden zweiten Fluids. Ist die Temperatur des zweiten Fluids größer als die Temperatur des Wärmespeichers wird das zweite Fluid gekühlt, falls sie kleiner ist, wird es erwärmt.The aforementioned development can also be further developed such that a heat accumulator is provided in thermal contact with the second fluid. This enables the temperature gradients of the second fluid entering the condenser to be flattened. If the temperature of the second fluid is greater than the temperature of the heat accumulator, the second fluid is cooled, if it is lower, it is heated.

Die erfindungsgemäße Aufgabe wird weiterhin gelöst durch ein Verfahren nach Anspruch 11.The object of the invention is further achieved by a method according to claim 11.

Das erfindungsgemäße Verfahren übergibt Wärme von einem Lieferantenwärmenetz mit einem ersten wärmeführenden Fluid auf ein Kundenwärmenetz mit einem zweiten wärmeführenden Fluid mittels einer thermodynamischen Kreisprozessvorrichtung, insbesondere einer ORC-Vorrichtung, wobei die thermische Kreisprozessvorrichtung einen als Verdampfer ausgebildeten ersten Wärmeübertrager, eine Expansionsmaschine, einen mit der Expansionsmaschine gekoppelten Generator, einen als Kondensator ausgebildeten zweiten Wärmeübertrager und eine Speisepumpe umfasst, wobei das Verfahren die folgenden Schritte umfasst: Vorwärmen, Verdampfen und optional zusätzliches Überhitzen des Arbeitsmediums unter Zuführung von Wärme aus dem ersten Fluid mit dem ersten Wärmeübertrager; Erzeugen von mechanischer Energie durch Entspannen des verdampften Arbeitsmediums mit der Expansionsmaschine und zumindest teilweises Wandeln der mechanischen Energie in elektrische Energie mit dem Generator; Kondensieren des entspannten Arbeitsmediums und Übertragen von Wärmeenergie aus dem entspannten Arbeitsmedium auf das zweite Fluid mit dem zweiten Wärmeübertrager; und Fördern des kondensierten Arbeitsmediums unter Druckerhöhung zum Verdampfer mit der Speisepumpe. Vor dem Kondensieren kann optional ein Enthitzen des entspannten Arbeitsmediums erfolgen. Nach dem Kondensieren kann optional ein Unterkühlen des kondensierten Arbeitsmediums erfolgen.The method according to the invention transfers heat from a supplier heat network with a first heat-carrying fluid to a customer heat network with a second heat-carrying fluid by means of a thermodynamic cycle device, in particular an ORC device, the thermal cycle device having a first heat exchanger designed as an evaporator, an expansion machine, one with the expansion machine coupled generator, a second heat exchanger designed as a condenser and a feed pump, the method comprising the following steps: preheating, evaporating and optionally additional overheating of the working medium while supplying heat from the first fluid to the first heat exchanger; Generating mechanical energy by expanding the vaporized working medium with the expander and at least partially converting the mechanical energy into electrical energy with the generator; condensing the expanded working medium and transferring thermal energy from the expanded working medium to the second fluid with the second heat exchanger; and conveying the condensed working medium under pressure increase to the evaporator with the feed pump. Before condensing, the expanded working medium can optionally be deheated. After the condensation, the condensed working medium can optionally be supercooled.

Erfindungsgemäß wird die elektrische Energie zumindest teilweises zum Betreiben des Kundenwärmenetzes, insbesondere einer kundenseitigen Heizungsanlage, verwendet.According to the invention, the electrical energy is used at least partially to operate the customer's heating network, in particular a customer's heating system.

Die Vorteile des erfindungsgemäßen Verfahrens und dessen Weiterbildungen entsprechen jenen der erfindungsgemäßen Vorrichtung und dessen Weiterbildungen und werden deshalb hier nicht nochmals aufgeführt.The advantages of the method according to the invention and its developments correspond to those of the device according to the invention and its developments and are therefore not listed again here.

Gemäß einer Weiterbildung des erfindungsgemäßen Verfahrens ist der weitere Schritt des unmittelbaren Übertragens von Wärme aus dem ersten Fluid auf das zweite Fluid mit einem dritten Wärmeübertrager vorgesehen.According to a development of the method according to the invention, the further step of directly transferring heat from the first fluid to the second fluid using a third heat exchanger is provided.

Eine Weiterbildung der zuvor genannten Weiterbildung besteht darin, dass die folgenden weiteren Schritte vorgesehen sind: Aufteilen des Massenstroms des zweiten Fluids in einen ersten Teil und einen zweiten Teil; Leiten des ersten Teils des zweiten Fluids durch den Kondensator und Leiten eines zweiten Teils des zweiten Fluids durch den dritten Wärmeübertrager; und Zusammenführen des ersten Teils des Massenstroms des zweiten Fluids nach dem Leiten durch den Kondensator und des zweiten Teils des Massenstroms des zweiten Fluids nach dem Leiten durch den dritten Wärmeübertrager.A development of the aforementioned development consists in the following further steps being provided: dividing the mass flow of the second fluid into a first part and a second part; passing the first portion of the second fluid through the condenser and passing a second portion of the second fluid through the third heat exchanger; and combining the first portion of the mass flow of the second fluid after passing through the condenser and the second portion of the mass flow of the second fluid after passing through the third heat exchanger.

Gemäß einer anderen Weiterbildung umfasst das Verfahren den Schritt des unmittelbaren Übertragens von Wärme aus dem ersten Fluid auf das Arbeitsmedium mit einem vierten Wärmeübertrager.According to another development, the method includes the step of directly transferring heat from the first fluid to the working medium using a fourth heat exchanger.

Eine andere Weiterbildung besteht darin, dass das zweite wärmeführende Fluid vollständig sowohl durch den Kondensator als auch durch den dritten Wärmeübertrager geleitet wird.Another development is that the second heat-carrying fluid is conducted completely both through the condenser and through the third heat exchanger.

Die genannten Weiterbildungen können einzeln eingesetzt oder wie beansprucht geeignet miteinander kombiniert werden.The developments mentioned can be used individually or, as claimed, can be suitably combined with one another.

Weitere Merkmale und beispielhafte Ausführungsformen sowie Vorteile der vorliegenden Erfindung werden nachfolgend anhand der Zeichnungen näher erläutert. Es versteht sich, dass die Ausführungsformen nicht den Bereich der vorliegenden Erfindung erschöpfen. Es versteht sich weiterhin, dass einige oder sämtliche der im Weiteren beschriebenen Merkmale auch auf andere Weise miteinander kombiniert werden können.Further features and exemplary embodiments as well as advantages of the present invention are explained in more detail below with reference to the drawings. It is understood that the embodiments do not exhaust the scope of the present invention. It is also understood that some or all of the features described below can also be combined with one another in other ways.

Zeichnungendrawings

Fig. 11
stellt die Exergienutzung und den Temperaturverlauf bei reinem Heizbetrieb schematisch dar.shows the use of exergy and the temperature profile in pure heating operation.
Fig. 22
zeigt die entsprechende Exergienutzung mit einem integrierten ORC-Prozess.shows the corresponding use of exergy with an integrated ORC process.
Fig. 33
zeigt eine erste Ausführungsform der erfindungsgemäßen Wärmeübergabestation.shows a first embodiment of the heat transfer station according to the invention.
Fig. 44
zeigt ein T-Q-Diagramm des ORC-Prozesses.shows a T-Q diagram of the ORC process.
Fig. 5figure 5
zeigt eine zweite Ausführungsform der erfindungsgemäßen Wärmeübergabestation.shows a second embodiment of the heat transfer station according to the invention.
Fig. 66
illustriert Kavitationsvermeidung durch Verringerung des Massenstroms.illustrates cavitation avoidance by reducing the mass flow.
Fig. 77
zeigt eine dritte Ausführungsform der erfindungsgemäßen Wärmeübergabestation in einem ersten Betriebsmodus.shows a third embodiment of the heat transfer station according to the invention in a first operating mode.
Fig. 88
zeigt die dritte Ausführungsform der erfindungsgemäßen Wärmeübergabestation in einem zweiten Betriebsmodus.shows the third embodiment of the heat transfer station according to the invention in a second operating mode.
Fig. 99
zeigt eine vierte Ausführungsform der erfindungsgemäßen Wärmeübergabestation.shows a fourth embodiment of the heat transfer station according to the invention.
Fig. 1010
zeigt eine fünfte Ausführungsform der erfindungsgemäßen Wärmeübergabestation.shows a fifth embodiment of the heat transfer station according to the invention.
Ausführungsformenembodiments

Zunächst wird im Folgenden die grundlegende Motivation der Erfindung im Bezug auf die Exergie dargestellt. Die Exergie bezeichnet den Teil der Energie, der vollständig in eine beliebige andere Energieform gewandelt werden kann, wie beispielsweise in elektrische Energie. Es handelt sich also um den arbeitsfähigen Teil der Energie. Im Gegensatz dazu ist die Anergie der nicht arbeitsfähige Teil einer Energie, eine Wandlung in andere Energieformen ist hier nicht möglich. So kann Wärmeenergie selbst in einem idealisierten Prozess nur zu einem Teil in mechanische Energie gewandelt werden.First of all, the basic motivation of the invention in relation to the exergy is presented below. Exergy describes the part of the energy that can be completely converted into any other form of energy, such as electrical energy. It is therefore the workable part of the energy. In contrast to this, anergy is the non-workable part of energy, conversion into other forms of energy is not possible here. Even in an idealized process, thermal energy can only be partially converted into mechanical energy.

Ein Wärmestrom Q besteht aus einem Exergie-Anteil Ė und einem Anergie-Anteil Ä, wobei sich der Exergie-Anteil mit Hilfe der Gleichung E ˙ = 1 T U T Q ˙

Figure imgb0001
errechnet. Hierbei ist T die Temperatur der Wärmequelle und TU die Temperatur der Umgebung. Bei einem konventionellen Heizsystem wird die im Wärmestrom enthaltene Exergie durch Absenkung der Temperatur vernichtet, wie Fig. 1 verdeutlicht. Die Absenkung der Temperatur kann hierbei unterschiedliche Gründe haben. So kann eine Absenkung der Temperatur notwendig sein, um z.B. Temperaturgrenzen im Heizungssystem einzuhalten, dies gewährleistet beispielsweise die Wärmeübergabestation. Eine weitere Reduktion der Temperatur findet bei jeglicher Wärmeübertragung statt, sei es in der Wärmeübergabestation oder aber in der Heizung, welche z.B. einen Raum erwärmt. Wenn die Wärme sich auf Umgebungstemperatur reduziert hat, dann besitzt sie keine Arbeitsfähigkeit mehr und ist reine Anergie.A heat flow Q consists of an exergy component Ė and an anergy component Ä, whereby the exergy component can be calculated using the equation E ˙ = 1 T u T Q ˙
Figure imgb0001
calculated. Here T is the temperature of the heat source and T U is the temperature of the environment. In a conventional heating system, the exergy contained in the heat flow is destroyed by lowering the temperature, such as 1 clarified. The lowering of the temperature can have different reasons. It may be necessary to lower the temperature, for example in order to comply with temperature limits in the heating system. This is ensured, for example, by the heat transfer station. A further reduction in temperature takes place with any heat transfer, be it in the heat transfer station or in the heating system, which heats up a room, for example. When the heat has reduced to ambient temperature, it no longer has the ability to work and is pure anergy.

Im Gegensatz dazu ermöglicht die Integration eines thermodynamischen Kreisprozesses in das Heizsystem (siehe Fig. 2) die Weiterverwendung eines Teils der im Wärmestrom enthaltenen Exergie in Form von elektrischer Energie. Der Energiestrom, welcher in elektrische Energie gewandelt wird, steht zwar nicht mehr für die Beheizung zur Verfügung, er kann jedoch durch eine geringfügige Erhöhung der Wärmezufuhr in den ORC-Prozess ausgeglichen werden. Aufgrund geringer Preise der Energieträger und damit der erzeugten thermischen Energie im Vergleich zu den Bezugspreisen für elektrische Energie ist dies besonders im Bereich der Wohnungswirtschaft/Kleinverbraucher wirtschaftlich interessant.In contrast, the integration of a thermodynamic cycle into the heating system (see 2 ) the further use of part of the exergy contained in the heat flow in the form of electrical energy. The energy flow, which is converted into electrical energy, is no longer available for heating, but it can be compensated for by slightly increasing the heat supply in the ORC process. Due to the low prices of the energy sources and thus of the thermal energy generated compared to the purchase prices for electrical energy, this is economically interesting, especially in the area of the housing industry/small consumers.

Fig. 3 zeigt in einer ersten Ausführungsform der Erfindung die einfachste Realisierung der Strom erzeugenden Wärmeübergabestation. Die hier verwendeten Bezugszeichen werden auch in den weiteren Figuren für die anderen Ausführungsformen beibehalten, wenn es sich um gleiche Elemente handelt. 3 shows in a first embodiment of the invention the simplest realization of the power-generating heat transfer station. The reference symbols used here are also retained in the further figures for the other embodiments if the same elements are involved.

Die erste Ausführungsform der erfindungsgemäßen Wärmeübergabestation 1 zum Übergeben von Wärme von einem Lieferantenwärmenetz 10 mit einem ersten wärmeführenden Fluid auf ein Kundenwärmenetz 20 mit einem zweiten wärmeführenden Fluid umfasst eine thermodynamische Kreisprozessvorrichtung 30 mit einem Arbeitsmedium (beispielsweise Wasser oder Wasserdampf), insbesondere eine ORC-Vorrichtung mit einem organischen Arbeitsmedium, wobei die thermodynamische Kreisprozessvorrichtung 30 umfasst: einen als Verdampfer 31 ausgebildeten ersten Wärmeübertrager zum Verdampfen und optional zusätzlichen Vorwärmen und/oder Überhitzen des Arbeitsmediums unter Zuführung von Wärme aus dem ersten Fluid, eine Expansionsmaschine 32 zum Erzeugen von mechanischer Energie durch Entspannen des verdampften Arbeitsmediums, einen mit der Expansionsmaschine gekoppelten Generator 33 zum zumindest teilweisen Wandeln der mechanischen Energie in elektrische Energie, einen als Kondensator 34 ausgebildeten zweiten Wärmeübertrager zum Kondensieren und optional vorherigen Enthitzen und/oder zusätzlichen Unterkühlen des entspannten Arbeitsmediums und Übertragen von Wärmeenergie aus dem entspannten Arbeitsmedium auf das zweite Fluid, und eine Speisepumpe 35 zum Fördern des kondensierten Arbeitsmediums unter Druckerhöhung zum Verdampfer. Die Speisepumpe wird durch einen Motor 36 betrieben. Zudem ist im Heizkreislauf des Kundenwärmenetzes eine Pumpe 21 vorgesehen, mit der das zweite Fluid (beispielsweise Wasser) gefördert wird.The first embodiment of the heat transfer station 1 according to the invention for transferring heat from a supplier heating network 10 with a first heat-carrying fluid to a customer heating network 20 with a second heat-carrying fluid comprises a thermodynamic cycle device 30 with a working medium (e.g. water or steam), in particular one ORC device with an organic working medium, wherein the thermodynamic cycle device 30 comprises: a first heat exchanger designed as an evaporator 31 for evaporating and optionally additional preheating and/or superheating of the working medium while supplying heat from the first fluid, an expansion machine 32 for generating mechanical Energy by expanding the vaporized working medium, a generator 33 coupled to the expansion machine for at least partially converting the mechanical energy into electrical energy, a second heat exchanger designed as a condenser 34 for condensing and optionally prior deheating and/or additional sub-cooling of the expanded working medium and transferring thermal energy from the expanded working medium to the second fluid, and a feed pump 35 for conveying the condensed working medium under pressure increase to the evaporator. The feed pump is driven by a motor 36 . In addition, a pump 21 is provided in the heating circuit of the customer heating network, with which the second fluid (water, for example) is conveyed.

Zum Zweck der Übersichtlichkeit wird eine vereinfachte Darstellung des Fernwärmenetzes 10, des ORC-Prozesses 30 sowie des Heiznetzes 20 gewählt. Im Verdampfer 31 wird flüssiges Arbeitsmedium unter Wärmezufuhr verdampft, in der Expansionsmaschine 32 (z.B. Schraubenexpander, Turbine) entspannt und auf einem niedrigeren Druckniveau verflüssigt. Bei der Verflüssigung im Kondensator 34 wird Wärme vom Arbeitsfluid an das Heizwassernetz abgegeben und dadurch die geforderte Vorlauftemperatur erreicht. Über eine Welle ist die Expansionsmaschine 32 mit dem Generator 33 gekoppelt, welcher die mechanische Energie in elektrische wandelt. Diese kann sowohl in ein Netz eingespeist werden, als auch zur Deckung des Eigenbedarfs der Heizungsanlage verwendet werden. Der Kreislauf wird geschlossen, indem die Speisepumpe 35 den Druck des Arbeitsmediums auf den Verdampfungsdruck erhöht und es emeut in den Verdampfer 31 fördert. Die Integration eines thermodynamischen Kreisprozesses 30 in eine Wärmeübergabestation 1 bietet somit die Möglichkeit einer dezentralen Kraft-Wärme-Kopplung bei Wärmeverbrauchern. Im Fall von größeren Wärmeübergabestationen wird durch einen modularen Aufbau der Parallelbetrieb mehrerer Anlagen in einem Stack ermöglicht. Auf diese Weise werden ein besseres Teillastverhalten sowie eine erhöhte Flexibilität erreicht.For the sake of clarity, a simplified representation of the district heating network 10, the ORC process 30 and the heating network 20 is chosen. In the evaporator 31, liquid working medium is vaporized with the supply of heat, expanded in the expansion machine 32 (eg screw expander, turbine) and liquefied at a lower pressure level. During the liquefaction in the condenser 34, heat is released from the working fluid to the heating water network and the required flow temperature is thereby reached. The expansion machine 32 is coupled to the generator 33 via a shaft, which converts the mechanical energy into electrical energy. This can be fed into a network or used to cover the heating system's own requirements. The circuit is closed by the feed pump 35 increasing the pressure of the working medium to the evaporation pressure and pumping it back into the evaporator 31 . The integration of a thermodynamic cycle process 30 in a heat transfer station 1 thus offers the possibility of a decentralized combined heat and power generation for heat consumers. In the case of larger heat transfer stations, the parallel operation of several systems in a stack is made possible by a modular design. In this way, better part-load behavior and increased flexibility are achieved.

Die Kombination einer Wärmeübergabestation mit einem thermodynamischen Kreisprozess beinhaltet allerdings die Problematik, dass der ORC nur einen Teil des Temperaturgefälles zwischen Fernwärme Vorlauf und -Rücklauf nutzen kann. Dies liegt in der Tatsache begründet, dass der Pinch Point zwischen der Temperatur der Wärmequelle und der Temperatur des Arbeitsmediums die Wärmeaufnahme begrenzt, wie das T-Q-Diagramm des ORC-Prozesses in Fig. 4 verdeutlicht. Dargestellt sind dort die Temperaturverläufe der Fluide im Fernwärmenetz, im Heiznetz, sowie im ORC-Prozess. Hierbei ist Q̇max,ORC die maximale Wärmemenge, welche der ORC aufnehmen kann, bei Q̇Anforderung,Kunde handelt es sich um den Wärmebedarf des Gebäudes. Als Pinch Point (auch Zwickpunkt oder Punkt der geringsten Grädigkeit genannt) bezeichnet man in der thermodynamischen Verfahrenstechnik den Punkt der kleinsten Temperaturdifferenz zwischen zwei Medien, die über ein oder mehrere Wärmeübertrager Wärme übertragen.However, the combination of a heat transfer station with a thermodynamic cycle involves the problem that the ORC can only use part of the temperature gradient between district heating supply and return. This is due to the fact that the pinch point between the temperature of the heat source and the temperature of the working medium limits the heat absorption, as shown in the ORC process TQ diagram in 4 clarified. The temperature curves of the fluids in the district heating network, in the heating network and in the ORC process are shown there. Q̇ max,ORC is the maximum amount of heat that the ORC can absorb, Q̇ requirement,customer is the heat requirement of the building. In thermodynamic process engineering, the pinch point (also called pinch point or point of lowest degree) is the point of the smallest temperature difference between two media that transfer heat via one or more heat exchangers.

Darüber hinaus ist die Heizleistung bei der ersten Ausführungsform nach Fig. 3 abhängig vom Betrieb des ORC 30. Bei einem Ausfall des thermodynamischen Prozesses 30 ist die Wärmeversorgung des Heiznetzes 20 nicht mehr möglich, da über den Kondensator 34 keine Wärme mehr ausgekoppelt wird. Ein weiteres Problem ergibt sich aus der Anfälligkeit der Arbeitsmedium-Speisepumpe 35 gegenüber Kavitation. Gelangt innerhalb von kurzer Zeit eine große Menge kalten Wassers in den Kondensator 34, beispielsweise bei plötzlich auftretendem Wärmebedarf, so sinkt der Druck im Kondensator 34. Wird hierbei der zur vorherrschenden Temperatur des Arbeitsmediums korrespondierende Siededruck unterschritten, kommt es zur Kavitation, also dem lokalen Entstehen von Dampfblasen im Kondensat im Zulauf und Eintritt zur Speisepumpe 35, die anschließend wieder zusammenfallen. Durch die damit verbundenen Druckwellen kommt es zu Schäden an den Laufrädern der Speisepumpe 35, darüber hinaus führt der entstehende Dampf zum Zusammenbruch des geförderten Volumenstromes, was anschließend zum sofortigen Stillstand des Kreisprozesses 30 führt.In addition, in the first embodiment, the heating performance is lower 3 depending on the operation of the ORC 30. In the event of a failure of the thermodynamic process 30, the heat supply to the heating network 20 is no longer possible, since heat is no longer extracted via the condenser 34. Another problem arises from the susceptibility of the working medium feed pump 35 to cavitation. If a large amount of cold water gets into the condenser 34 within a short time, for example when heat is suddenly required, the pressure in the condenser 34 drops. If the boiling pressure falls below the prevailing temperature of the working medium, cavitation occurs, i.e. local formation of vapor bubbles in the condensate in the inlet and inlet to the feed pump 35, which then collapse again. The resulting pressure waves damage the impellers of the feed pump 35, and the vapor produced also leads to the collapse of the volume flow being conveyed, which then leads to the cycle process 30 coming to an immediate standstill.

Die Patentschrift DE 10 2009 053 390 B3 "Thermodynamische Maschine sowie Verfahren zu deren Betrieb" beschreibt eine Vorrichtung und ein Verfahren zur Vermeidung von Kavitation in einem thermodynamischen Kreisprozess, welches insbesondere bei Verwendung von Luftkondensatoren vorteilhaft ist. Hierbei wird dem Arbeitsmedium durch Hinzufügen eines nicht kondensierenden Gases im Kondensator ein zusätzlicher Druck aufgeprägt. Da dies gleichbedeutend ist mit einer größeren Vorlaufhöhe der Pumpe, vergrößert sich im Pumpenzulauf der Abstand des tatsächlichen Druckes zum Siededruck. Im Gegenzug verringert sich dadurch die Druckdifferenz über der Expansionsmaschine und somit die abgegebene elektrische Leistung. Da bei Kondensation gegen Wasser die Druckdifferenz über der Expansionsmaschine verhältnismäßig gering ist, ist diese Lösung für den vorliegenden Anwendungsfall nachteilig.The patent specification DE 10 2009 053 390 B3 "Thermodynamic machine and method for its operation" describes a device and a method for avoiding cavitation in a thermodynamic cycle, which is particularly advantageous when using air condensers. In this case, the working medium is subjected to additional pressure by adding a non-condensing gas in the condenser. Since this is synonymous with a higher flow height of the pump, the difference between the actual pressure and the boiling pressure increases in the pump inlet. In return, this reduces the pressure difference across the expansion machine and thus the electrical power output. Since the pressure difference across the expansion machine is relatively low when condensing against water, this solution is disadvantageous for the present application.

Diese Nachteile können jedoch durch die nachfolgend dargestellten weiteren Ausführungsformen sowie bevorzugte Kombinationen daraus vermieden werden.However, these disadvantages can be avoided by the further embodiments presented below and preferred combinations thereof.

Der Heizbetrieb ist bei der zweiten Ausführungsform 2 nach Fig. 5 unabhängig vom Betrieb des Kreisprozesses. Ein variabler Teil der Wärme wird vom Kreisprozess aufgenommen, während der Rest über einen dritten Wärmeübertrager 40 direkt in das Heiznetz 20 übertragen wird. Alternativ zum 3-Wege-Ventil 22 kann eine weitere Pumpe im Heiznetz-Vorlauf zum dritten Wärmeübertrager 40 zur Aufteilung des Massenstroms verwendet werden. Die Pumpen können weiterhin sowohl im Vor- als auch im Rücklauf des Heiznetzes 20 angeordnet sein. Bei einem Ausfall des Kreisprozesses kann die gesamte Wärmemenge über den dritten Wärmeübertrager 40 zugeführt werden. Eine Notlauffunktionalität ist somit bei ausreichender Dimensionierung des dritten Wärmeübertragers 40 gegeben. Die Rücklauftemperatur des Fernwärmenetzes kann durch entsprechende Regelung des Kreisprozesses auf einem konstanten Niveau oder unterhalb einer geforderten Maximaltemperatur gehalten werden. Im ORC-Betrieb ist die Temperatur geringfügig höher als bei ausgeschaltetem ORC. Die Vorlauftemperatur im Heiznetz 20 ist beliebig regelbar. Wenn höherer Wärmebedarf besteht, wird der Massenstrom im Kreisprozess gesenkt. Bei konstanten Eingangs- und Ausgangstemperaturen des Arbeitsmediums findet dadurch eine geringere Wärmezufuhr an den ORC statt. Dies wiederum bedeutet aufgrund des konstanten Massenstromes im Fernwärmenetz 10, dass die Ausgangstemperatur auf der Seite des Fernwärmenetzes 10 steigt. Dadurch liegt über dem dritten Wärmeübertrager 40 eine größere Temperaturdifferenz an, wodurch die direkt an das Heiznetz 20 übertragene Wärmemenge erhöht wird. Das System kann sowohl in Heizwassernetze eingebunden werden, in denen Fernwärmenetz- und Heizwassemetz voneinander getrennt sind, als auch in Netzen in denen nur ein gemeinsames Netz besteht. Für die Integration in ein gemischtes Netz wird der dritte Wärmeübertrager 40 nicht mehr benötigt, da man einen Teilstrom des Fernwärmewassers direkt in das Heiznetz leiten kann.The heating operation is 2 after in the second embodiment figure 5 independent of the operation of the cyclic process. A variable part of the heat is absorbed by the cyclic process, while the rest is transferred directly into the heating network 20 via a third heat exchanger 40 . As an alternative to the 3-way valve 22, another pump in the heating network flow to the third heat exchanger 40 can be used to split the mass flow. The pumps can also be arranged both in the flow and in the return of the heating network 20. If the cyclic process fails, the entire amount of heat can be supplied via the third heat exchanger 40 . An emergency operation functionality is thus given with adequate dimensioning of the third heat exchanger 40 . The return temperature of the district heating network can be kept at a constant level or below a required maximum temperature by appropriate control of the cycle process. In ORC mode, the temperature is slightly higher than when the ORC is switched off. The flow temperature in the heating network 20 can be regulated as required. If there is a higher demand for heat, the mass flow in the cyclic process is reduced. With constant input and output temperatures of the working medium, there is less heat input to the ORC. Due to the constant mass flow in the district heating network 10, this in turn means that the outlet temperature on the side of the district heating network 10 increases. As a result, there is a greater temperature difference across the third heat exchanger 40, as a result of which the amount of heat transferred directly to the heating network 20 is increased. The system can be integrated both in heating water networks in which the district heating network and heating water network are separate from one another and in networks in which there is only one common network. The third heat exchanger 40 is no longer required for integration into a mixed network, since a partial flow of the district heating water can be routed directly into the heating network.

Diese zweite Ausführungsform verfügt weiterhin über eine verbesserte Funktionalität zur Vermeidung von Kavitationsschäden. Hierbei kann der Massenstrom des Heizwassers durch den Kondensator 34 über das 3-Wege-Ventil 22 reduziert werden. Wie Fig. 6 zeigt, vergrößert sich dadurch die Temperaturspreizung des Wassermassenstroms. Die Kondensationstemperatur des Arbeitsmediums wird durch die Eintrittstemperatur des Wassers, die Temperaturdifferenz im Pinch Point, sowie dem Massenstrom und damit der Temperaturspreizung des Wassers aufgeprägt. Steigt die wasserseitige Eintrittstemperatur, erhöht sich auch der Kondensationsdruck des Arbeitsmediums. Nimmt der Massenstrom des Wassers ab, steigt die Austrittstemperatur des Wassers. Da die Wärmeübertragerfläche konstant bleibt, die Temperaturdifferenz zwischen Arbeitsmedium und Wasser jedoch steigt, wird das Arbeitsmedium stärker unterkühlt. Eine größere Unterkühlung wirkt im Speisepumpenvorlauf wie eine größere Vorlaufhöhe, da sich der Abstand des tatsächlichen Drucks zum Verdampfungsdruck am Pumpeneingang vergrößert.This second embodiment also has improved functionality to prevent cavitation damage. Here, the mass flow of the heating water through the condenser 34 can be reduced via the 3-way valve 22 . As 6 shows, this increases the temperature spread of the water mass flow. The condensation temperature of the working medium is determined by the inlet temperature of the water, the temperature difference at the pinch point, and the mass flow and thus the temperature spread of the water. If the water-side inlet temperature increases, the condensation pressure of the working medium also increases. If the mass flow of the water decreases, the outlet temperature of the water increases. Since the heat transfer surface remains constant, but the temperature difference between the working medium and the water increases, the working medium is supercooled to a greater extent. Greater subcooling has the same effect as greater head in the feed pump flow, since the difference between the actual pressure and the evaporating pressure at the pump inlet increases.

Bei der großen Temperaturspreizung zwischen Fernwärme Vorlauf (z.B. 120 °C) und Rücklauf (z.B. 45 °C) stößt die Wärmeübertragung im Verdampfer 34 schnell an ihre Grenzen. Aufgrund des Pinch Points zwischen Arbeitsmedium und Fluid am Eintritt in den ersten Wärmeübertrager (Verdampfer) ist die Auskühlung des Fernwärmerücklaufes und somit die Wärmezufuhr nur begrenzt möglich.With the large temperature difference between district heating flow (e.g. 120 °C) and return (e.g. 45 °C), the heat transfer in the evaporator 34 quickly reaches its limits. Due to the pinch point between the working medium and the fluid at the entrance to the first heat exchanger (evaporator), cooling of the district heating return and thus the supply of heat is only possible to a limited extent.

Weiterhin ermöglicht diese zweite Ausführungsform 2 verschiedene Betriebsmodi. Ein erster Betriebsmodus dient zum Heizen und zur Stromproduktion. Bei durchschnittlichem Wärmebedarf läuft der Kreisprozess parallel zur Wärmeversorgung und ein Teil des Wärmebedarfes wird durch die Kondensationswärme gedeckt. Ein kleiner Teil der Wärme aus dem Heiznetz 20 wird über die Expansionsmaschine 32 und den Generator 33 in elektrische Energie gewandelt. Ein zweiter Betriebsmodus dient als reiner Heizbetrieb. Dazu wird bei sehr großem Wärmebedarf der Kreisprozess 30 ausgeschaltet und die gesamte benötigte Wärme über den dritten Wärmeübertrager 40 dem Heiznetz 20 zugeführt. Dieser Betriebsmodus gleicht hierbei dem einer herkömmlichen Übergabestation.Furthermore, this second embodiment enables 2 different operating modes. A first operating mode is used for heating and electricity production. With an average heat requirement, the cyclic process runs parallel to the heat supply and part of the heat requirement is covered by the condensation heat. A small part of the heat from the heating network 20 is converted into electrical energy via the expansion machine 32 and the generator 33 . A second operating mode serves as a pure heating operation. For this purpose, the cyclic process is used when the heat requirement is very high 30 switched off and the entire heat required is supplied to the heating network 20 via the third heat exchanger 40 . This operating mode is similar to that of a conventional transfer station.

Im Fall von sensiblen Wärmequellen (z.B. Geothermie-Heizwerk) ist die Rücklauftemperatur ein wichtiger Parameter, um möglichst viel Wärme aus der Quelle zu entnehmen und den Wirkungsgrad der Anlage zu steigern. Die dritte Ausführungsform 3 gemäß Fig. 7 stellt eine Weiterentwicklung der zweiten Ausführungsform 2 dar, durch die entsprechend niedrige Temperaturen im Fernwärme-Rücklauf erreicht werden können.In the case of sensitive heat sources (e.g. geothermal heating plant), the return temperature is an important parameter in order to extract as much heat as possible from the source and to increase the efficiency of the system. The third embodiment 3 according to 7 represents a further development of the second embodiment 2, through which correspondingly low temperatures in the district heating return can be achieved.

Alternativ zur Stromerzeugung wird durch die dritte Ausführungsform 3 nach Fig. 7 ein Wärmepumpen-Betriebsmodus des ORC ermöglicht. Dazu wird der Expander 32 als Kompressor 32 betrieben, indem das Ventil 54 geschlossen und das Ventil 53 geöffnet wird, so dass das Fluid auf der Niederdruckseite in die Expansionsmaschine 32 strömt. Weiterhin wird das Ventil 55 geschlossen. Durch das offene Ventil 52 strömt das verdichtete Arbeitsmedium in den Kondensator 34, wo es Wärme an das Heiznetz 20 abgibt. Durch die Drossel 56 erfolgt eine Druckabsenkung, die mit einer Verringerung der Siedetemperatur einhergeht. Mittels des dritten Wärmeübertragers 40 wird ein Teil der Wärmeenergie an das Heiznetz 20 übertragen und so die Rücklauftemperatur auf einen für die Wärmepumpe geeigneten Bereich herabgesenkt. Anschließend kann das Arbeitsmedium über das 3-Wege-Ventil 51 zum vierten Wärmeübertrager 50 geleitet werden, wo es verdampft werden kann. Dadurch wird der Fernwärme-Rücklauf weiter gekühlt.As an alternative to power generation, according to the third embodiment 3 7 a heat pump operating mode of the ORC enables. For this purpose, the expander 32 is operated as a compressor 32 in that the valve 54 is closed and the valve 53 is opened, so that the fluid flows into the expansion machine 32 on the low-pressure side. Furthermore, the valve 55 is closed. The compressed working medium flows through the open valve 52 into the condenser 34 where it gives off heat to the heating network 20 . The throttle 56 causes the pressure to drop, which is accompanied by a reduction in the boiling temperature. By means of the third heat exchanger 40, part of the thermal energy is transferred to the heating network 20 and the return temperature is thus reduced to a range suitable for the heat pump. The working medium can then be routed via the 3-way valve 51 to the fourth heat exchanger 50, where it can be evaporated. This further cools the district heating return.

Der Wärmepumpenbetrieb bietet für Wärmekunden den Vorteil, dass die installierte Anschlussleistung geringer ausfallen kann. Dies liegt darin begründet, dass die Nennanschlussleistung sich durch eine festgelegte Spreizung zwischen Fernwärme Vor- und Rücklauf sowie der Fläche der Wärmeübertrager definiert. Durch die zusätzliche Auskühlung des Rücklaufes bei konstanter Wärmeübertragerfläche und konstantem Massenstrom, ist die tatsächliche Wärmezufuhr im Wärmepumpenbetrieb größer als die Nennanschlussleistung. Für Betreiber von beispielsweise Geothermie-Heizwerken ergibt sich der Vorteil, dass der regenerativen Wärmequelle so mehr Energie entzogen werden kann. Durch die höhere Ausbeute thermischer Energie bei niedrigen Rücklauftemperaturen kann darüber hinaus ein Teil der Bereitstellung von Spitzenlastenergie ersetzt werden.Heat pump operation offers heat customers the advantage that the installed connected load can be lower. This is due to the fact that the nominal connected load is defined by a fixed spread between district heating flow and return as well as the area of the heat exchanger. Due to the additional cooling of the return with a constant heat transfer surface and constant mass flow, the actual heat supply in heat pump operation is greater than the nominal connected load. For operators of geothermal heating plants, for example, there is the advantage that more energy can be extracted from the regenerative heat source. Due to the higher yield of thermal energy low return temperatures, part of the provision of peak load energy can also be replaced.

Im ORC-Betrieb gemäß Fig. 8 verhält sich diese dritte Ausführungsform 3 analog zur zweiten Ausführungsform 2. Hierbei sind die Ventile 54 und 55 offen, das 3-Wege-Ventil 51 versperrt den Zugang zum vierten Wärmeübertrager 50 und ermöglicht den Zugang zum ersten Wärmeübertrager 31.In ORC operation according to 8 This third embodiment 3 behaves analogously to the second embodiment 2. Here, the valves 54 and 55 are open, the 3-way valve 51 blocks access to the fourth heat exchanger 50 and allows access to the first heat exchanger 31.

Durch die Ventile 52, 53, 54, 55 ist ein Bypass der Expansionsmaschine 32 möglich, somit sinken die Druckverluste und die Wärmebereitstellung an das Heiznetz 20 kann über einen Naturumlauf realisiert werden. Alternativ kann der dritte Wärmeübertrager 40 den Bypass ermöglichen. Im Wärmepumpen-Betriebsfall sind niedrige Fernwärme-Rücklauftemperaturen erreichbar. Eine Begrenzung der Heiznetz-Vorlauftemperatur besteht durch die maximale Kondensationstemperatur plus der Grädigkeit des Wärmeübertragers. Der Einsatz ist mit geringfügigen Modifikationen sowohl bei getrennten als auch bei gemischten Heizkreisen möglich. Die Kavitationsvermeidung ist hier wie für die zweite Ausführungsform gegeben. Die Temperaturspreizung des Verdampfers ist wie in der zweiten Ausführungsform. Bei der großen Temperaturspreizung zwischen Fernwärme Vor- und Rücklauf stößt die Wärmeübertragung im Verdampfer schnell an ihre Grenzen. Aufgrund des Pinch Points zwischen Arbeitsmedium und Fluid in der Fernwärmeleitung ist die Auskühlung des Fernwärme Rücklaufes und somit die Wärmezufuhr an den ORC nur begrenzt möglich.The valves 52, 53, 54, 55 allow the expansion machine 32 to be bypassed, which means that the pressure losses are reduced and the heat can be provided to the heating network 20 via natural circulation. Alternatively, the third heat exchanger 40 can enable the bypass. In heat pump operation, low district heating return temperatures can be achieved. The heating network flow temperature is limited by the maximum condensation temperature plus the temperature of the heat exchanger. With minor modifications, it can be used in both separate and mixed heating circuits. The cavitation avoidance is given here as for the second embodiment. The temperature spread of the evaporator is the same as in the second embodiment. With the large temperature difference between district heating flow and return, the heat transfer in the evaporator quickly reaches its limits. Due to the pinch point between the working medium and the fluid in the district heating line, the cooling of the district heating return and thus the heat supply to the ORC is only possible to a limited extent.

Fig. 9 zeigt eine vierte Ausführungsform 4 der erfindungsgemäßen Wärmeübergabestation. In dieser vierten Ausführungsform 4 sind Mittel zum Aufteilen des Massenstroms des ersten Fluids in einen ersten Teil und einen zweiten Teil in Form eines Dreiwegeventils, und Mittel zum Leiten des ersten Teils des ersten Fluids zum dritten Wärmeübertrager 40 vorgesehen. Weiterhin gibt es einen Wärmespeicher 60 in thermischem Kontakt mit dem zweiten Fluid. Bei einem Ausfall des Kreisprozesses kann die gesamte Wärmemenge über den dritten Wärmeübertrager 40 zugeführt werden. Eine Notlauffunktionalität ist somit bei ausreichender Dimensionierung des dritten Wärmeübertrager 40 gegeben. Im ORC-Betrieb ist die Fernwärme-Rücklauftemperatur leicht erhöht gegenüber der zweiten Ausführungsform 2. Die Vorlauftemperatur im Heiznetz ist beliebig regelbar. Wenn (z.B. bei Spitzenlast) ein gesteigerter/erhöhter Wärmebedarf besteht, wird der Massenstrom zum Kreisprozess gesenkt, dadurch wird mehr Wärme auf einem höheren Temperaturniveau über den dritten Wärmeübertrager 40 an das Heiznetz 20 übertragen. Die Heiznetz Vorlauftemperatur ist wie bei der zweiten Ausführungsform 2. Der Einsatz ist mit geringfügigen Modifikationen sowohl bei getrennten als auch bei gemischten Heizkreisen möglich. In den Rücklauf des Heiznetzes 20 ist als thermischer Puffer ein Wärmespeicher 60 (Latentwärmespeicher oder ein sensibler Wärmespeicher) vor den Kondensator 34 geschaltet werden. Dieses ermöglicht eine Abflachung der Temperaturgradienten des in den Kondensator 34 eintretenden Heizwassers. Bei der großen Temperaturspreizung zwischen Fernwärme Vor- und Rücklauf stößt die Wärmeübertragung im Verdampfer schnell an ihre Grenzen. Aufgrund des Pinch Points zwischen Arbeitsmedium und Fluid in der Fernwärmeleitung ist die Auskühlung des Femwärme Rücklaufes und somit die Wärmezufuhr nur begrenzt möglich. 9 shows a fourth embodiment 4 of the heat transfer station according to the invention. In this fourth embodiment 4, means for dividing the mass flow of the first fluid into a first part and a second part in the form of a three-way valve, and means for conducting the first part of the first fluid to the third heat exchanger 40 are provided. There is also a heat accumulator 60 in thermal contact with the second fluid. If the cyclic process fails, the entire amount of heat can be supplied via the third heat exchanger 40 . An emergency operation functionality is thus given with adequate dimensioning of the third heat exchanger 40 . In ORC operation, the district heating return temperature is slightly higher than in the second embodiment 2. The flow temperature in the heating network can be regulated as required. If (e.g. at peak load) there is an increased/increased demand for heat, the mass flow to the cycle process is reduced, as a result more heat is transferred at a higher temperature level to the heating network 20 via the third heat exchanger 40 . The heating network flow temperature is the same as in the second embodiment 2. With minor modifications, it can be used with both separate and mixed heating circuits. A heat accumulator 60 (latent heat accumulator or a sensitive heat accumulator) is connected in front of the condenser 34 as a thermal buffer in the return of the heating network 20 . This allows the temperature gradients of the heating water entering the condenser 34 to be flattened out. With the large temperature difference between district heating flow and return, the heat transfer in the evaporator quickly reaches its limits. Due to the pinch point between the working medium and the fluid in the district heating line, the cooling of the district heating return and thus the heat supply is only possible to a limited extent.

Bei der fünften Ausführungsform 5 nach Fig. 10 wird der Kondensator 34 des ORC auf der Seite des Heiznetzes 20 immer mit der kältesten Temperatur sowie mit einem großen Massenstrom durchströmt, da das zweite wärmeführende Fluid vollständig sowohl durch den Kondensator 34 als auch durch den dritten Wärmeübertrager 40 geleitet wird. Dies ist für den elektrischen Wirkungsgrad der Anlage vorteilhaft, da sich bei einem größeren Massenstrom eine geringere Temperaturdifferenz im Heizwasser-Rücklauf einstellt. Bei konstantem Pinch Point stellt sich somit ein niedrigerer Gegendruck zur Expansionsmaschine ein (siehe dazu Fig. 11), was zu einer höheren elektrischen Leistung führt. Bei einem Ausfall des Kreisprozesses kann die gesamte Wärmemenge über den dritten Wärmeübertrager 40 zugeführt werden. Eine Notlauffunktionalität ist somit bei ausreichender Dimensionierung des dritten Wärmeübertragers 40 gegeben. Aufgrund der Erwärmung des Heiznetz-Rücklaufes im Kondensator 34 kann der Fernwärme-Rücklauf durch den dritten Wärmeübertrager 40 nicht so weit gekühlt werden wie bei der zweiten Ausführungsform. Dadurch ergibt sich im ORC-Betrieb je nach Betriebsweise eine Erhöhung der Fernwärme-Rücklauftemperatur, beispielsweise um etwa 10 bis 15 K. Die Vorlauftemperatur im Heiznetz 20 ist beliebig regelbar. Wenn Wärmebedarf besteht, wird der Massenstrom im Kreisprozess gesenkt, dadurch wird mehr Wärme auf einem höheren Temperaturniveau über den dritten Wärmeübertrager 40 direkt an das Heiznetz übertragen. Der Einsatz ist mit geringfügigen Modifikationen sowohl bei getrennten als auch bei gemischten Heizkreisen möglich. Kavitationsvermeidung: In den Rücklauf des Heiznetzes kann wie bei der vierten Ausführungsform 4 als thermischer Puffer ein Latentwärmespeicher oder ein sensibler Wärmespeicher vor den Kondensator 34 geschaltet werden. Dieses ermöglicht eine Abflachung der Temperaturgradienten des in den Kondensator eintretenden Heizwassers. Temperaturspreizung im Verdampfer der fünften Ausführungsform 5 entspricht jener der zweiten Ausführungsform 2.In the fifth embodiment 5 after 10 the condenser 34 of the ORC on the side of the heating network 20 is always flowed through with the coldest temperature and with a large mass flow, since the second heat-carrying fluid is passed completely both through the condenser 34 and through the third heat exchanger 40. This is advantageous for the electrical efficiency of the system, as a larger mass flow results in a lower temperature difference in the heating water return. With a constant pinch point, a lower back pressure to the expansion machine is set (see Fig. 11), which leads to a higher electrical output. If the cyclic process fails, the entire amount of heat can be supplied via the third heat exchanger 40 . An emergency operation functionality is thus given with adequate dimensioning of the third heat exchanger 40 . Due to the heating of the heating network return in the condenser 34, the district heating return cannot be cooled as much by the third heat exchanger 40 as in the second embodiment. Depending on the mode of operation, this results in an increase in the district heating return temperature in ORC operation, for example by around 10 to 15 K. The flow temperature in the heating network 20 can be regulated as desired. If there is a need for heat, the mass flow in the cyclic process is reduced, which means that more heat at a higher temperature level is transferred directly to the heating network via the third heat exchanger 40 transfer. With minor modifications, it can be used in both separate and mixed heating circuits. Cavitation avoidance: As in the fourth embodiment 4, a latent heat store or a sensitive heat store can be connected upstream of the condenser 34 as a thermal buffer in the return flow of the heating network. This enables the temperature gradients of the heating water entering the condenser to be flattened. Temperature spread in the evaporator of the fifth embodiment 5 corresponds to that of the second embodiment 2.

Zusammenfassend weist die erfindungsgemäße Wärmeübergabestation die folgenden Vor- und Nachteile auf. Als Vorteile sind eine bessere Ausnutzung der eingesetzten Exergie (bei wenig zusätzlicher Wärmeleistung großer zusätzlicher Nutzen, siehe Fig. 2); weniger Vernichtung von Exergie bei Wärmeübergabe an Wärmeverbraucher; dezentrale Kraft-Wärme-Kopplung beim Endnutzer (Strom erzeugendes Heizsystem); Nutzung unterschiedlicher Temperaturvarianten und Netztypen (gemischte und getrennte Kreise); große Flexibilität in Leistung und Betrieb, an wachsendes Wärmenetz anpassbar (kann als Stack ausgeführt werden); und Steigerung von Wirkungsgrad und Stromkennzahl des Gesamtsystems aufzuführen. Als Nachteil ist eine geringfügig niedrigere maximale Wärmebereitstellung für den Wärmekunden zu nennen und in den Ausführungsformen 1, 2, 4, 5 eine geringfügige bis mäßige Erhöhung der Temperatur des Fernwärmerücklaufs. In den Ausführungsformen mit Notlauffunktion kann durch einen Bypass des ORC, also dessen Abschaltung, und einer ausreichenden Dimensionierung des dritten Wärmeübertragers 40 trotzdem die gesamte Anschlussleistung zur Verfügung gestellt werden.In summary, the heat transfer station according to the invention has the following advantages and disadvantages. The advantages are better utilization of the exergy used (large additional benefit with little additional heat output, see 2 ); less destruction of exergy when heat is transferred to heat consumers; decentralized combined heat and power at the end user (electricity-generating heating system); Use of different temperature variants and network types (mixed and separate circuits); great flexibility in terms of performance and operation, adaptable to a growing heating network (can be designed as a stack); and increase the efficiency and power rating of the overall system. A disadvantage is a slightly lower maximum heat supply for the heat customer and in the embodiments 1, 2, 4, 5 a slight to moderate increase in the temperature of the district heating return. In the embodiments with an emergency function, the entire connected load can still be made available by bypassing the ORC, ie by switching it off, and by adequately dimensioning the third heat exchanger 40 .

Die dargestellten Ausführungsformen sind lediglich beispielhaft und der vollständige Umfang der vorliegenden Erfindung wird durch die Ansprüche definiert.The illustrated embodiments are exemplary only, and the full scope of the present invention is defined by the claims.

Claims (15)

  1. A heat transfer station (2, 3, 4, 5) for transferring heat from a supplier's heat network (10) including a first heat carrying fluid to a customer's heat network (20) including a second heat carrying fluid, comprising:
    a thermodynamic cyclic process device (30) including a working medium, in particular an ORC device including an organic working medium, the thermodynamic cyclic process device comprising:
    a first heat exchanger (31) configured as an evaporator (31) for preheating, evaporating and optionally additionally superheating the working medium while supplying heat from the first fluid,
    an expansion engine (32) for generating mechanical energy by expanding the vaporized working medium,
    a generator (33) coupled to the expansion engine for at least partially converting the mechanical energy into electric energy,
    a second heat exchanger (34) configured as a condenser (34) for condensing and optionally additionally deheating and/or optionally additionally supercooling the expanded working medium and transferring heat energy from the expanded working medium to the second fluid, and
    a feed pump (35) for feeding the condensed working medium to the evaporator while increasing the pressure;
    characterized in that
    the heat transfer station (2, 3, 4, 5) is configured to use the electric energy at least partially for operating the customer's heating network, in particular a heating system on the customer's side.
  2. The heat transfer station according to claim 1, further comprising:
    a third heat exchanger (40) for directly transferring heat from the first fluid to the second fluid.
  3. The heat transfer station according to claim 2, further comprising:
    means (22) for dividing the mass flow of the second fluid into a first portion and a second portion;
    means for passing the first portion of the second fluid through the condenser and for passing a second portion of the second fluid through the third heat exchanger; and
    means for combining the first portion of the mass flow of the second fluid after passing through the condenser and the second portion of the mass flow of the second fluid after passing through the third heat exchanger.
  4. The heat transfer station according to claim 3, wherein the means for dividing the mass flow of the second fluid are provided in a feed line or in a return line of the customer's heat network and preferably comprise a three-way valve, a solenoid valve or a pump in a feed line to the third heat exchanger.
  5. The heat transfer station according to any one of claims 1 to 4, further comprising:
    a fourth heat exchanger (50) for directly transferring heat from the first fluid to the working medium.
  6. The heat transfer station according to claim 5, further comprising:
    means (51) for diverting the working medium from a feed line of the evaporator to the fourth heat exchanger, in particular in the form of a three-way valve or a solenoid valve;
    and
    means (52, 53, 54, 55) for operating the expansion engine as a compressor.
  7. The heat transfer station according to claim 6, wherein the means for operating the expansion engine as a compressor comprise:
    means (53, 54) for directly leading the working medium from the fourth heat exchanger (50) to a low-pressure side of the expansion engine (32) operated as a compressor, in particular a first valve (54) for blocking the connection between the evaporator and the high-pressure side of the expansion engine and a bypass line including a second valve (53) for establishing a connection between the fourth heat exchanger (50) and the low-pressure side of the expansion engine (32), and
    means (52, 55) for directly leading the compressed working medium from a high-pressure side of the expansion engine (32) operated as a compressor to the condenser (34), in particular a fourth valve (55) for blocking a connection between the low-pressure side of the expansion engine (32) and the condenser (34), and a bypass line including a third valve (52) for establishing a connection between the high-pressure side of the expansion engine (32) and the condenser (34).
  8. The heat transfer station according to claim 2, wherein the heat transfer station is configured such that the second heat carrying fluid is passed entirely through both the condenser and the third heat exchanger.
  9. The heat transfer station according to claims 2 or 8, further comprising:
    means (41) for dividing the mass flow of the first fluid into a first portion and a second portion, in particular a three-way valve, and
    means for leading the first portion of the first fluid to the third heat exchanger.
  10. The heat transfer station according to claim 9, further comprising:
    a heat accumulator (60) in thermal contact with the second fluid.
  11. A method for transferring heat from a supplier's heat network including a first heat-carrying fluid to a customer's heat network including a second heat-carrying fluid by means of a thermodynamic cycle device, in particular an ORC device, wherein the thermal cycle device comprises a first heat exchanger configured as an evaporator, an expansion engine, a generator coupled to the expansion engine, a second heat exchanger configured as a condenser, and a feed pump, and wherein the method comprises the following steps:
    preheating, evaporating and optionally additionally superheating the working fluid while supplying heat from the first fluid using the first heat exchanger;
    generating mechanical energy by expanding the vaporized working medium using the expansion engine and at least partially converting the mechanical energy into electric energy using the generator;
    condensing and optionally additionally deheating and/or optionally additionally supercooling the expanded working fluid and transferring heat energy from the expanded working fluid to the second fluid using the second heat exchanger; and
    feeding the condensed working medium to the evaporator while increasing the pressure using the feed pump;
    characterized by
    at least partially using the electrical energy to operate the customer's heating network, in particular a customer's heating system.
  12. The method according to claim 11, comprising the further step of:
    directly transferring heat from the first fluid to the second fluid using a third heat exchanger.
  13. The method according to claim 12, comprising the further steps of:
    dividing the mass flow of the second fluid into a first portion and a second portion;
    passing the first portion of the second fluid through the condenser and passing a second portion of the second fluid through the third heat exchanger; and
    combining the first portion of the mass flow of the second fluid after passing through the condenser and the second portion of the mass flow of the second fluid after passing through the third heat exchanger.
  14. The method according to any one of claims 11 to 13, comprising the further step of:
    directly transferring heat from the first fluid to the working medium using a fourth heat exchanger.
  15. The method according to claim 12, wherein the second heat carrying fluid is passed entirely through both the condenser and the third heat exchanger.
EP14187849.6A 2014-10-07 2014-10-07 Device and method for operating a heating distribution station Active EP3006682B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14187849.6A EP3006682B1 (en) 2014-10-07 2014-10-07 Device and method for operating a heating distribution station
DK14187849.6T DK3006682T3 (en) 2014-10-07 2014-10-07 Arrangement and procedure for operating a heat transfer station
PL14187849.6T PL3006682T3 (en) 2014-10-07 2014-10-07 Device and method for operating a heating distribution station
CN201580065182.3A CN107002512A (en) 2014-10-07 2015-09-22 Apparatus and method for running heat exchange station
PCT/EP2015/071760 WO2016055263A1 (en) 2014-10-07 2015-09-22 Device and method for the operation of a heat transfer station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP14187849.6A EP3006682B1 (en) 2014-10-07 2014-10-07 Device and method for operating a heating distribution station

Publications (2)

Publication Number Publication Date
EP3006682A1 EP3006682A1 (en) 2016-04-13
EP3006682B1 true EP3006682B1 (en) 2022-08-03

Family

ID=51690848

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14187849.6A Active EP3006682B1 (en) 2014-10-07 2014-10-07 Device and method for operating a heating distribution station

Country Status (5)

Country Link
EP (1) EP3006682B1 (en)
CN (1) CN107002512A (en)
DK (1) DK3006682T3 (en)
PL (1) PL3006682T3 (en)
WO (1) WO2016055263A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3404244B1 (en) 2017-05-15 2021-02-24 Orcan Energy AG Device and method for standardizing and constructing an orc container
DE102017011851A1 (en) * 2017-12-21 2019-06-27 Daimler Ag Arrangement for converting thermal energy from heat loss of an internal combustion engine
DE102018209695A1 (en) * 2018-06-15 2019-12-19 Schweizer Steimen Ag Operating method and control unit for a combined heat and power system and combined heat and power system
EP3647553B1 (en) * 2018-11-05 2022-12-28 Orcan Energy AG Supply of an electromechanical power converter with electrical energy from a thermodynamic cyclical process
DE102020204682A1 (en) * 2020-04-14 2021-10-14 Siemens Aktiengesellschaft Control of a heating network
DE102020209046A1 (en) 2020-07-20 2022-01-20 Siemens Aktiengesellschaft Method for controlling heat exchanges between multiple energy systems and control platform
WO2022219107A1 (en) * 2021-04-15 2022-10-20 Climeon Ab Energy recovery system and method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100451460C (en) * 2006-11-21 2009-01-14 清华大学 Fuel coal and fuel gas united heat supply method
DE102009053390B3 (en) * 2009-11-14 2011-06-01 Orcan Energy Gmbh Thermodynamic machine and method for its operation
EP2538040B1 (en) * 2011-06-22 2016-10-05 Orcan Energy AG Combined heat and power device and associated method
DE102012217929A1 (en) * 2012-10-01 2014-04-03 Siemens Aktiengesellschaft Combined heat and power plant and method of operation of a combined heat and power plant

Also Published As

Publication number Publication date
CN107002512A (en) 2017-08-01
EP3006682A1 (en) 2016-04-13
DK3006682T3 (en) 2022-09-12
WO2016055263A1 (en) 2016-04-14
PL3006682T3 (en) 2023-01-30

Similar Documents

Publication Publication Date Title
EP3006682B1 (en) Device and method for operating a heating distribution station
EP2748434B1 (en) Assembly for storing thermal energy
DE69927925T2 (en) Recovery of waste heat in an organic energy converter by means of an intermediate liquid circuit
EP2538040B1 (en) Combined heat and power device and associated method
EP2823156B1 (en) System for storing and outputting thermal energy
EP2900943B1 (en) Cogeneration power plant and method for operating a cogeneration power plant
EP2759679A1 (en) Thermal storage device for the utilisation of low temperature heat
EP2447506A2 (en) System for generating mechanical and/or electrical energy
DE212016000187U1 (en) ORC for converting heat loss from a heat source into mechanical energy and cooling system making use of the ORC
WO2017067790A1 (en) Functional synergies of thermodynamic cycles and heat sources
DE102013005035B4 (en) Method and device for coupling heat from a district heating network
EP3491303B1 (en) Heat pump system having heat pump assemblies coupled on the input side and output side
EP2825737A1 (en) System for storing and outputting thermal energy having a heat accumulator and a cold accumulator and method for the operation thereof
DE102016112601A1 (en) Device for power generation according to the ORC principle, geothermal system with such a device and operating method
DE102012110579B4 (en) Plant and process for generating process steam
DE102014226837A1 (en) Variable heat exchanger system and method of operating a heat exchanger system
EP1895139B1 (en) Energy supply system
WO2018029371A1 (en) Heat exchanger for use in a heating part of a liquid-air energy storage power plant, heating part, and method for operating such a heat exchanger in such a heating part
EP4224092A1 (en) Heat pump system using co2 as first heat pump medium and water as second heat pump medium
EP2951407A2 (en) Method for operating a low-temperature power plant, and low-temperature power plant itself
DE102013016461A1 (en) Method for operating a low-temperature power plant, and low-temperature power plant itself
AT511823A4 (en) METHOD AND DEVICE FOR GENERATING COLD AND / OR USE HEAT AND MECHANICAL OR BZW. ELECTRICAL ENERGY BY MEANS OF AN ABSORPTION CIRCUIT
DE102016220634A1 (en) Waste heat power plant with gradual heat supply
DE202010003630U1 (en) Engine block as a direct heat exchanger in a steam circuit
DE102011114199B4 (en) Process for the thermal and thermoelectric exhaust gas or hot gas heat utilization with steam cycle, as well as means for exhaust gas or hot gas heat utilization

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161013

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210726

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220517

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SPRINGER, JENS-PATRICK

Inventor name: SCHUSTER, ANDREAS

Inventor name: LINTL, MARKUS

Inventor name: LANGER, ROY

Inventor name: WALTER, DANIELA

Inventor name: AUMANN, RICHARD

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1508907

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220815

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014016333

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20220909

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221205

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221103

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221203

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014016333

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221007

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

26N No opposition filed

Effective date: 20230504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221007

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230919

Year of fee payment: 10

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1508907

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221007

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231023

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221007

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231023

Year of fee payment: 10

Ref country code: FR

Payment date: 20231024

Year of fee payment: 10

Ref country code: DK

Payment date: 20231023

Year of fee payment: 10

Ref country code: DE

Payment date: 20231026

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803