[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP3004199A1 - Verfahren zur herstellung von urethan(meth)acrylaten - Google Patents

Verfahren zur herstellung von urethan(meth)acrylaten

Info

Publication number
EP3004199A1
EP3004199A1 EP14724463.6A EP14724463A EP3004199A1 EP 3004199 A1 EP3004199 A1 EP 3004199A1 EP 14724463 A EP14724463 A EP 14724463A EP 3004199 A1 EP3004199 A1 EP 3004199A1
Authority
EP
European Patent Office
Prior art keywords
meth
acrylate
carbon atoms
urethane
ethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14724463.6A
Other languages
English (en)
French (fr)
Inventor
Reinhold Schwalm
Susanne Neumann
Delphine Kimpel
Erich Beck
Klaus Menzel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP14724463.6A priority Critical patent/EP3004199A1/de
Publication of EP3004199A1 publication Critical patent/EP3004199A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/671Unsaturated compounds having only one group containing active hydrogen
    • C08G18/672Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C269/00Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C269/02Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups from isocyanates with formation of carbamate groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/08Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
    • C07C271/10Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C271/20Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of hydrocarbon radicals substituted by nitrogen atoms not being part of nitro or nitroso groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/671Unsaturated compounds having only one group containing active hydrogen
    • C08G18/672Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
    • C08G18/6725Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen containing ester groups other than acrylate or alkylacrylate ester groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/68Unsaturated polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/7806Nitrogen containing -N-C=0 groups
    • C08G18/7818Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups
    • C08G18/7837Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups containing allophanate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/81Unsaturated isocyanates or isothiocyanates
    • C08G18/8141Unsaturated isocyanates or isothiocyanates masked
    • C08G18/815Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen
    • C08G18/8158Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen with unsaturated compounds having only one group containing active hydrogen
    • C08G18/8175Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen with unsaturated compounds having only one group containing active hydrogen with esters of acrylic or alkylacrylic acid having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C09D175/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds

Definitions

  • the present invention describes a novel process for the preparation
  • Urethane acrylates based on caprolactone-modified resins are known e.g. from US 4,188,472.
  • 2-hydroxyethyl acrylate is reacted with epsilon-caprolactone ring-opening in the presence of various catalysts based on titanium or tin or organic acids (sulfuric acid, p-toluenesulfonic acid) and the resulting product is then reacted with diisocyanates to urethane.
  • DE 10246512 describes preparing low-viscosity polyisocyanates by reacting oxadiazinetrione-containing polyisocyanates with alcohols which contain at least one double bond polymerizable by electromagnetic radiation.
  • WO 07/05901 1 and WO 07/059070 describe urethane (meth) acrylates with allophanate groups which contain incorporated fluorinated alcohols.
  • the (meth) acrylate groups are incorporated in each case via urethane groups.
  • EP 783008 describes urethane (meth) acrylates obtained by reacting polyisocyanates with alcohols containing (meth) acrylate groups.
  • the (meth) acrylate groups are incorporated in each case via urethane groups.
  • the object of the present invention was to develop urethane (meth) acrylates which combine good scratch resistance, good elasticity and low viscosity.
  • a divalent alkylene radical having from 2 to 12 carbon atoms, which may optionally be substituted by C 1 to C 4 alkyl groups and / or interrupted by one or more oxygen atoms, preferably having from 2 to 10 carbon atoms, in particular preferably 2 to 8 and most preferably 3 to 6 carbon atoms,
  • R 2 are each independently of one another methyl or hydrogen, preferably hydrogen,
  • R 3 is a divalent alkylene radical having from 1 to 12 carbon atoms, which may optionally be substituted by Cr to C 4 -alkyl groups and / or interrupted by one or more oxygen atoms, preferably from 2 to 10, more preferably from 3 to 8 and most preferably from 3 to Having 4 carbon atoms,
  • R 4 denotes a divalent organic radical which is formed by conceptual abstraction of two isocyanate groups from a polyisocyanate (D) which contains at least one hydroxyalkyl (meth) acrylate bound via an allophanate group, and n and m independently of one another have positive numbers from 1 to 5 , preferably 2 to 5, particularly preferably 2 to 4, very particularly preferably 2 to 3 and in particular 2 to 2.5.
  • the double bond density of the urethane (meth) acrylate according to the invention measured in mol of (meth) acrylate groups per kg of urethane (meth) acrylate, is generally from 2 to 4 mol / kg, preferably from 2.4 to 3.4 and more preferably 2.6 to 3.0 mol / kg.
  • Another object of the present invention is a process for the preparation of such urethane (meth) acrylates, in which in a first step, a hydroxyalkyl (meth) acrylate (A) of the formula
  • n and m can also assume odd-numbered values on a statistical average, but are of course even in relation to each individual molecule of the above formula.
  • C 1 -C 4 -alkyl in this specification means methyl, ethyl, n-propyl, iso-propyl, n-butyl, isobutyl, sec-butyl or fer-butyl, preferably methyl, ethyl and n-butyl and especially preferably methyl.
  • radical R 1 examples are 1,2-ethylene, 1,2- or 1,3-propylene, 1,2-, 1,3- or 1,4-butylene, 1,1-dimethyl-1,2- ethylene, 1,2-dimethyl-1,2-ethylene, 1,5-pentylene, 1,6-hexylene, 1,8-octylene, 1,10-decylene or 1,12-dodecylene.
  • Butylene most preferably 1,2-ethylene.
  • radical R 3 examples are methylene, 1,2-ethylene, 1,2-propylene, 1,3-propylene, 1,2-butylene, 1,3-butylene, 1,4-butylene, 1,5-pentylene , 1,5-hexylene, 1,6-hexylene, 1,8-octylene, 1,10-decylene, 1,12-dodecylene, 2-oxa-1,4-butylene, 3-oxa-1, 5-pentylene or 3-oxa-1, 5-hexylene, preference is given to 1,3-propylene, 1,4-butylene, 1,5-pentylene, 1,5-hexylene and 1,12-dodecylene, particular preference is given to 1,5-hexylene pentylene.
  • Particularly preferred hydroxyalkyl (meth) acrylates (A) are 2-hydroxyethyl (meth) acrylate, 2- or 3-hydroxypropyl (meth) acrylate, 1,4-butanediol mono (meth) acrylate, neopentylglycol mono (meth) acrylate, 1 , 5-pentanediol mono (meth) acrylate and 1,6-hexanediol mono (meth) acrylate, very particularly preferred are 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate and 1,4-butanediol mono (meth) acrylate, in particular 2-hydroxyethyl (meth) acrylate.
  • the acrylates are in each case preferred over the methacrylates.
  • the lactone (B) has the following formula
  • Preferred lactones are beta-propiolactone, gamma-butyrolactone, gamma-ethyl-gamma-butyrolactone, gamma-valerolactone, delta-valerolactone, epsilon-caprolactone, 7-methyloxepan-2-one, 1,4-dioxepan-5-one, oxacyclotridecane 2- ⁇ and 13-butyl-oxacyclotridecan-2-one.
  • gamma-butyrolactone gamma-butyrolactone, delta-valerolactone and epsilon-caprolactone, very particularly preferred is epsilon-caprolactone.
  • catalysts (C) are selected from the group consisting of iron, titanium, aluminum, zirconium, manganese, nickel, zinc, cobalt, zirconium and bismuth compounds, preferably titanium.
  • metal complexes such as acetylacetonates of iron, titanium, aluminum, zirconium, manganese, nickel, zinc and cobalt are possible.
  • zirconium, bismuth, titanium and aluminum compounds used are: zirconium tetraacetylacetonate (eg K-KAT® 4205 from King Industries); Zirconium dioxides (eg K-KAT® XC-9213; XC-A 209 and XC-6212 from King Industries); Aluminum dioxide (eg K-KAT® 5218 from King Industries).
  • Suitable zinc compounds are those in which the following anions are used: F, C, CIO " , CIO 3 -, CICV, Br, J -, J0 3 -, CN -, OCN, N0 2 -, N0 3 -, HC0 3 -, C0 3 2 -, S 2 -, SH-, HSO 3 -, SO 3 2 -, HSO 4 -, S0 4 2 -, S2O2 2 -, S2O4 2 -, S 2 0 5 2 -, S 2 0 6 2 -, S2O7 2 -, S 2 0 8 2 -, H2PO2, H2PO4, HPO4 2 -, PO4 3 -, P2O7 4 -, (OC n H 2n + i) -, (C n H 2 n -i0 2 ) -, (C n H 2 n-30 2 ) - as well as (C n + iH 2 n-20
  • the preferred zinc carboxylates are those of carboxylates which have at least six carbon atoms, more preferably at least eight carbon atoms, in particular zinc (II) diacetate or zinc (II) dioctoate or zinc carbonate. (II) neodecanoate.
  • Commercially available catalysts are, for example, Borchi® Kat 22 from OMG Borchers GmbH, Langenfeld, Germany.
  • the titanium tetra-alcoholates Ti (OR) 4 are preferred, more preferably those of alcohols ROH having 1 to 8 carbon atoms, for example, methanol, ethanol, / so-propanol, n-propanol, n-butanol, / so-butanol , se / butanol, ferf-butanol, n-hexanol, n-heptanol, n-octanol, preference is given to methanol, ethanol, / isopropanol, n-propanol, n-butanol, feri-butanol, particularly preferably iso- Propanol and n-butanol.
  • alcohols ROH having 1 to 8 carbon atoms for example, methanol, ethanol, / so-propanol, n-propanol, n-butanol, / so-butanol , se / but
  • At least one bismuth compound is used, for example one to three, preferably one or two and particularly preferably a bismuth compound of the oxidation state +3.
  • Preferred bismuth compounds (C) are bismuth compounds having the following anions: F-, Ch, CIO “ , CIO3-, ClO-r, Br, J-, J0 3 -, CN-, OCN-, NO 2 " , NO 3 -, HC0 3 -, C0 3 2 " , S 2 -, SH-, HSO 3 -, SO 3 2 -, HSO 4 -, S0 4 2 -, S2O2 2 -, S2O4 2 -, S 2 0 5 2 -, S 2 0 6 2 -, S2O7 2 -, S 2 0 8 2 -, H2PO2-, H2PO4-, HPO4 2 -, PO4 3 -, P2O7 4 -, (OC x H 2 x + i) -, (CxH 2 x-) i0 2 ) -, (C x H 2 x -30 2 ) - as well as (Cx +
  • carboxylates in which the anion formulas (C x H2x-i02) _ as well as (CX + 1H2X-2O4) 2 - where n is 1 to 20.
  • particularly preferred salts have monocarboxylate anions of the general formula (C x H2x-i02) ⁇ on. where x is the numbers 1 to 20, preferably 1 to 10.
  • x is the numbers 1 to 20, preferably 1 to 10.
  • format acetate, propionate, hexanoate, neodecanoate and 2-ethylhexanoate.
  • the bismuth carboxylates are preferred, more preferably those of carboxylates having at least six carbon atoms, in particular Bismuth octoates, ethyl hexanoates, neodecanoates, or pivalates; for example, K-KAT 348, XC-B221; XC-C227, XC 8203 and XK-601 from King Industries, TIB KAT 716, 716LA, 716XLA, 718, 720, 789 from TIB Chemicals and those from Shepherd Lausanne, and, for example, Borchi® Kat 24; 315; 320 from OMG Borchers GmbH, Langenfeld, Germany.
  • bismuth neodecanoate bismuth 2-ethylhexanoate and zinc 2-ethylhexanoate are particularly preferred.
  • WO 04/029121 A1 Preferred is the use of acids having a pKa of not more than 4.8, more preferably not more than 2.5.
  • the polyisocyanate (D) is polyisocyanate (D) containing at least one hydroxyalkyl (meth) acrylate bound via an allophanate group.
  • polyisocyanates examples are described, for example, in WO 00/39183 A1, there especially from page 4, line 17 to page 6, line 6 and products 1 to 12 according to Table 1.
  • the polyisocyanates (D) can be prepared as described there from page 8, line 44 to page 10, line 2.
  • Polyisocyanates (D) are preferably obtainable by reacting at least one (cyclo) aliphatic diisocyanate with at least one hydroxyalkyl (meth) acrylate in the presence of at least one catalyst which is able to accelerate the formation of allophanate groups.
  • (cyclo) aliphatic is aliphatic or cycloaliphatic, preferably aliphatic.
  • Examples of (cyclo) aliphatic diisocyanates are aliphatic diisocyanates, such as tetramethyl endiisocyanate, hexamethylene diisocyanate (1,6-diisocyanatohexane), octamethylene diisocyanate, decamethylene diisocyanate, dodecamethylene diisocyanate, tetradecamethylene diisocyanate, derivatives of lysine diisocyanate, tetramethylxylylene diisocyanate, trimethylhexane diisocyanate or tetramethylhexane diisocyanate, cycloaliphatic diisocyanates, such as 1, 4- 1, 3 or 1, 2-diisocyanatocyclohexane, 4,4'- or 2,4'-di (isocyanatocyclohexyl) methane, 1-isocyanato-3,3,5-trimethyl-5- (isocyanatomethyl) cyclohe
  • 1,6-hexamethylene diisocyanate, isophorone diisocyanate and 4,4'- or 2,4'-di (isocyanatocyclohexyl) methane particular preference to 1,6-hexamethylene diisocyanate, isophorone diisocyanate and 4,4'-di (isocyanatocyclohexyl) methane
  • very particular preference is 1, 6-hexamethylene diisocyanate and isophorone diisocyanate and in particular 1, 6-hexamethylene diisocyanate.
  • Hydroxyalkyl (meth) acrylates may be those as described above for component (A), but may be different from the component (A) used.
  • the hydroxyalkyl (meth) acrylate used as component (A) and the hydroxyalkyl (meth) acrylate used for component (D) are identical.
  • the hydroxyalkyl (meth) acrylates used for component (D) are preferably 2-hydroxyethyl (meth) acrylate, 2- or 3-hydroxypropyl (meth) acrylate, 1,4-butanediol mono- (meth) acrylate , Neopentyl glycol mono (meth) acrylate, 1,5-pentanediol mono (meth) acrylate and 1,6-hexanediol mono (meth) acrylate, very particularly preferred are 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate and 1, 4-butanediol mono (meth) acrylate, especially 2-hydroxyethyl (meth) acrylate.
  • Catalysts which are able to accelerate the formation of allophanate groups are, for example, organozinc compounds, such as zinc acetylacetonate or zinc 2-ethylcaproate, or tetraalkylammonium compound, such as preferably tetraalkylammonium hydroxides, carboxylates and carbonates, particularly preferably N, N, N-trimethyl-N-benzylammoniumhydroxide, N, N, N-trimethyl-N-2-hydroxypropylammonium hydroxide, N, N, N-trimethyl-N-2-hydroxypropylammonium 2-ethylhexanoate and N, N, N-trimethyl-N-2-hydroxypropylammonium formate, most preferably N, N, N-trimethyl-N-2-hydroxypropylammonium 2-ethylhexanoate.
  • organozinc compounds such as zinc acetylacetonate or zinc 2-ethylcaproate
  • hydroxyalkyl (meth) acrylates at least 20 mol%, preferably at least 25 mol%, particularly preferably at least 30 mol%, very particularly preferably at least 35 mol%, in particular at least 40 mol% and especially at least 50 mol% bound via allophanate groups.
  • the polyisocyanate (D) containing at least one hydroxyalkyl (meth) acrylate bonded via an allophanate group is compounds having the formula fulfill, in which
  • R 5 is a bivalent, having from 2 to 12 carbon atoms alkylene radical which may optionally be substituted with d- to C 4 alkyl groups and / or interrupted by one or more oxygen atoms, preferably having 2 to 10 carbon atoms, more preferably 2 to 8 and all particularly preferably having 3 to 6 carbon atoms, a bivalent, 2 to 20 carbon atoms having alkylene radical or cycloalkylene lenrest which may optionally be substituted with C 1 to C 4 alkyl groups and / or interrupted by one or more oxygen atoms, preferably 4 to 15 carbon atoms having, particularly preferably having 6 to 13 carbon atoms,
  • R 7 is hydrogen or methyl, preferably hydrogen, and x is a positive number which is on average 2 to 6, preferably from 2 to 4.
  • the polyisocyanate (D) represented by this formula represents a particularly preferred radical R 4 according to the formula for the urethane (meth) acrylate according to the invention.
  • radical R 5 examples are 1, 2-ethylene, 1, 2 or 1, 3-propylene, 1, 2, 1, 3 or 1, 4-butylene, 1, 1-dimethyl-1, 2 ethylene, 1, 2-dimethyl-1, 2-ethylene, 1, 5-pentylene, 1, 6-hexylene, 1, 8-octylene,
  • 1, 10-decylene or 1, 12-dodecylene Preference is given to 1,2-ethylene, 1,2,3 or 1,3-propylene, 1,4-butylene and 1,6-hexylene, more preferably 1,2-ethylene, 1,2-propylene and 1, 4-butylene, most preferably 1, 2-ethylene.
  • R 6 is selected from the group consisting of 1, 6-hexylene,
  • R 6 is 1, 6-hexylene and R 5 is selected from the group consisting of 1, 2-ethylene, 1, 2-propylene and 1, 4-butylene, preferably from 1, 2-ethylene and 1,4-butylene, and more preferably 1,2-ethylene.
  • R 7 hydrogen is available under the trade name Laromer® LR 9000 from BASF SE, Ludwigshafen, with an NCO content of 14.5-15.5% by weight.
  • the reaction of the components (A) and (B) preferably takes place at temperatures of 50 to 150 ° C, preferably 70 to 130 ° C over a period of 3 to 20 hours, preferably from 5 to 12 hours with stirring or pumping.
  • the components (A) and (B) are in the desired stoichiometry (mol: mol), which is preferably 1: 1, 5 to 3, more preferably 1: 1, 8 to 2.5, most preferably 1: 2 to 2.3 and in particular 1: 2, mixed together and heated.
  • Component (A) may also be introduced and (B) added during or after heating. Before, during or after the heating, the catalyst (C), optionally distributed in several portions, is added to the mixture.
  • the catalyst (C) is generally added in amounts of from 0.001 to 2% by weight, based on the sum of the components (A) and (B), to the reaction mixture, preferably from 0.005 to 1.5% by weight, particularly preferably from 0.01 to 1 and most preferably 0.01 to 0.5% by weight. It is optionally possible, although less preferred, to carry out the reaction in the presence of at least one solvent.
  • solvents examples include aromatic (including alkylated benzenes and naphthalenes) and / or (cyclo) aliphatic hydrocarbons and mixtures thereof, chlorinated hydrocarbons, ketones, esters, alkoxylated Alkanklarealkylester, ethers, respectively mixtures of solvents.
  • Preferred aromatic hydrocarbon mixtures are those which comprise predominantly aromatic C 7 - to C 14 -hydrocarbons and can comprise a boiling range from 1 10 to 300 ° C., particular preference is given to toluene, o-, m- or p-xylene, trimethylbenzene isomers, tetramethylbenzene isomers , Ethylbenzene, cumene, tetrahydronaphthalene and mixtures containing such.
  • Solvesso® grades from ExxonMobil Chemical, in particular Solvesso® 100 (CAS No. 64742-95-6, predominantly C9 and C10 aromatics, boiling range about
  • hydrocarbon mixtures are generally more than 90% by weight, preferably more than 95, more preferably more than 98, and most preferably more than 99% by weight. It may be useful to use hydrocarbon mixtures with a particularly reduced content of naphthalene.
  • (Cyclo) aliphatic hydrocarbons are, for example, decalin, alkylated decalin and isomer mixtures of straight-chain or branched alkanes and / or cycloalkanes.
  • the content of aliphatic hydrocarbons is generally less than 5, preferably less than 2.5 and more preferably less than 1% by weight.
  • Esters are, for example, n-butyl acetate, ethyl acetate, 1-methoxypropyl acetate-2 and 2-methoxy-ethyl acetate.
  • Ethers are, for example, THF, dioxane and the dimethyl, ethyl or n-butyl ethers of ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol or tripropylene glycol.
  • ketones are acetone, diethyl ketone, ethyl methyl ketone, isobutyl methyl ketone, methyl amyl ketone and tert-butyl methyl ketone.
  • Preferred solvents are n-butyl acetate, ethyl acetate, 1-methoxypropyl acetate-2, 2-methoxy-ethyl acetate, and mixtures thereof, in particular with the abovementioned aromatic hydrocarbon mixtures, in particular xylene and Solvesso® 100.
  • Such mixtures can be prepared in a volume ratio of 5: 1 to 1: 5, preferably in a volume ratio of 4: 1 to 1: 4, more preferably in a volume ratio of 3: 1 to 1: 3 and most preferably in a volume ratio of 2: 1 to 1: 2 ,
  • Preferred examples are butyl acetate / xylene, methoxypropyl acetate / xylene 1: 1, butyl acetate / solvent naphtha 100 1: 1, butyl acetate / Solvesso® 100 1: 2 and crystal oil 30 / Shellsol® A 3: 1.
  • component (A) preferably hydroquinone monomethyl ether and / or phenothicine.
  • stabilizers which are known for the stabilization of (meth) acrylates against free-radical polymerization.
  • the first reaction step is terminated when the lactone (B) is substantially reacted, preferably at least 90%, more preferably at least 95, most preferably at least 97 and in particular at least 98%.
  • reaction mixture is storable in this form and can then be used at a later time in the second step.
  • the reaction mixture obtained from the first step is then reacted with component (D).
  • the second reaction step is carried out in a stoichiometry of 1, 2: 1 to 1: 1, 2 of hydroxy groups in the reaction product from the first step to isocyanate groups in component (D), preferably 1, 1: 1 to 1: 1, 1 preferably 1, 05: 1 to 1: 1, 05 and most preferably 1: 1.
  • the reaction in the second step is preferably carried out at 40 to 100 ° C, more preferably 50 to 90, most preferably at 60 to 80 ° C.
  • reaction mixture obtained from the first reaction step is brought to the desired temperature and the component (D) is introduced in several or preferably in one portion.
  • the catalyst (C) present in the reaction mixture in the first step in the reaction mixture is sufficient to also catalyze the reaction between isocyanate groups and hydroxyl groups. If this is not the case, then additional catalyst (C) can be added. This may be the same catalyst (C) as in the first step, or another, preferably the same catalyst.
  • 0.5% by weight more preferably less than 0.3, most preferably less than 0.1 and in particular less than 0.1% by weight has fallen.
  • reaction has been carried out in the presence of a solvent, this can now be separated off, preferably by distillation.
  • the reaction mixture in a washing apparatus with a 5-25, preferably 5-20, more preferably 5-15% by weight aqueous solution of a base, such as.
  • a base such as.
  • the laundry may be placed in a stirred tank or other conventional equipment, e.g. in a column or mixer-settler apparatus.
  • the organic phase is then prewashed with water or a 5-30% by weight, preferably 5-20, particularly preferably 5-15% by weight sodium chloride, potassium chloride, Ammonium chloride, sodium sulfate or ammonium sulfate solution, preferably saline.
  • the urethane (meth) acrylates according to the invention or the product obtained by the process according to the invention can be used in radiation-curable coating compositions in a manner known per se and has the advantage that in the product of the first stage the distribution of the lactone units (B) becomes more uniform is as according to the methods of the prior art.
  • the coating compositions which contain a product obtained by the process according to the invention have a higher flexibility.
  • urethane (meth) acrylates obtained by the process according to the invention in radiation-curable coating compositions is also an object of the present invention.
  • the urethane (meth) acrylates according to the invention can be used as the sole binder or, preferably, in combination with at least one further free-radically polymerizable compound.
  • a further object of the present invention are radiation-curable coating compositions comprising at least one inventive urethane (meth) acrylate and optionally at least one free-radically polymerizable compound and optionally at least one photoinitiator.
  • Radical polymerizable groups are for example preferred (meth) acrylate groups and more preferably acrylate groups.
  • the free-radically polymerizable compounds are preferably polyfunctional compounds (compounds having more than one free-radically polymerizable double bond) which are polymerizable compounds.
  • the polymerizable compounds are preferably selected from the group consisting of multifunctional (meth) acrylates, urethane (meth) acrylates, epoxy (meth) acrylates and carbonate (meth) acrylates.
  • (meth) acrylic acid is methacrylic acid and acrylic acid, preferably acrylic acid.
  • Multifunctional, polymerizable compounds are preferably multifunctional
  • (Meth) acrylates which carry at least 2, preferably 2-10, particularly preferably 3-6 and very particularly preferably 3-4 (meth) acrylate groups, preferably acrylate groups.
  • polyfunctional, polymerizable compounds are ethylene glycol diacrylate, 1,2-propanediol diacrylate, 1,3-propanediol diacrylate, 1,4-butanediol diacrylate, 1,3-butanediol diacrylate, 1,5-pentanediol diacrylate, 1,6-hexanediol diacrylate, 1,8-octanediol diacrylate , Neopentyl glycol diacrylate, 1, 1, 1, 2, 1, 3 and 1, 4-cyclohexanedimethanol diacrylate, 1, 2, 1, 3 or 1, 4-cyclohexanediol diacrylate, diproypline glycol diacrylate, tripropylene glycol diacrylate, trimethylolpropane,
  • Ci-cis-alkyl for example, methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, pentyl, hexyl , Heptyl, octyl, 2-ethylhexyl, 2,4,4-trimethylpentyl, decyl, dodecyl, tetradecyl, heptadecyl, octadecyl, 1, 1-dimethylpropyl, 1, 1-dimethylbutyl, 1, 1, 3,3-tetramethylbutyl , preferably methyl, ethyl or n-propyl, most preferably methyl or ethyl.
  • Preferred multifunctional, polymerizable compounds are 1,2-propane diol diacrylate, 1,3-propanediol diacrylate, dipropylene glycol diacrylate, polypropylene glycol diacrylate, trimethylolpropane triacrylate, ditrimethylol tetracrylate and dipentaerythritol hexaacrylate, polyester polyacrylates, polyetherol acrylates and triacrylate of from one to twenty times alkoxylated , Particularly preferably one to 20 times ethoxylated trimethylolpropane, one to 20 times propoxylated glycerol or one to 20 times ethoxylated and / or propoxylated pentaerythritol.
  • epoxy (meth) acrylates are used as multifunctional, polymerizable compounds in printing finishes.
  • Very particularly preferred multifunctional, polymerizable compounds are trimethylolpropane triacrylate and triacrylate of one to twenty times ethoxylated trimethylolpropane, triacrylate of one to 20 times propoxylated glycerol or tetraacrylate of one to 20 times ethoxylated and / or propoxylated pentaerythritol.
  • constituents may also be partially or completely esterified with (meth) acrylic acid esterified polyalcohols.
  • Such polyalcohols are, for example, at least divalent polyols, polyetherols or polyesterols or polyacrylate polyols having an average OH functionality of at least 2, preferably at least 3, more preferably at least 4 and most preferably 4 to 20.
  • Polyetherols in addition to the alkoxylated polyols, may also include polyethylene glycol having a molecular weight between 106 and 2000, polypropylene glycol having a molecular weight between 134 and 2000, polyTHF having a molecular weight between 162 and 2000 or poly-1,3-propanediol having a molecular weight between 134 and 2000 400 be.
  • Polyester polyols are e.g. from Ullmann's Encyclopedia of Industrial Chemistry,
  • polyesterpolyols which are obtained by reacting dihydric alcohols with dibasic carboxylic acids.
  • free polycarboxylic acids it is also possible to use the corresponding polycarboxylic anhydrides or corresponding polycarboxylic acid esters of lower alcohols or mixtures thereof to prepare the polyesterpolyols.
  • the polycarboxylic acids may be aliphatic, cycloaliphatic, araliphatic, aromatic or heterocyclic and optionally, e.g. by halogen atoms, substituted and / or unsaturated. Examples include:
  • dicarboxylic acids of the general formula HOOC- (CH 2) y -COOH, where y is a number from 1 to 20, preferably an even number from 2 to 20, particularly preferably succinic acid, adipic acid, sebacic acid and dodecanedicarboxylic acid.
  • Alcohols of the general formula HO- (CH 2) x -OH are preferred, where x is a number from 1 to 20, preferably an even number from 2 to 20.
  • x is a number from 1 to 20, preferably an even number from 2 to 20.
  • Preference is given to ethylene glycol, butane-1, 4-diol, Hexane-1, 6-diol, octane-1, 8-diol and dodecane-1, 12-diol.
  • neopentyl glycol is neopentyl glycol.
  • lactone-based polyesterdiols which are homopolymers or mixed polymers of lactones, preferably terminal hydroxyl-containing addition products of lactones onto suitable difunctional starter molecules.
  • Preferred lactones are those which are derived from compounds of the general formula HO- (CH 2) z -COOH, where z is a number from 1 to 20 and an H atom of a methylene unit is also denoted by a d- to C 4 - Alkyl radical may be substituted.
  • Examples are ⁇ -caprolactone, ⁇ -propiolactone, gamma-butyrolactone and / or methyl ⁇ -caprolactone, 4-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid or pivalolactone and mixtures thereof.
  • Suitable starter components are, for example, the low molecular weight dihydric alcohols mentioned above as the synthesis component for the polyesterpolyols.
  • the corresponding polymers of the ⁇ -caprolactone are particularly preferred.
  • Lower polyester diols or polyether diols can also be used as starters for the preparation of the lactone polymers.
  • polycarbonate diols e.g. by reaction of phosgene with an excess of the low molecular weight alcohols mentioned as synthesis components for the polyesterpolyols, into consideration.
  • the multifunctional, polymerizable compound may be urethane (meth) acrylates, epoxy (meth) acrylates or carbonate (meth) acrylates.
  • Urethane (meth) acrylates are e.g. obtainable by reacting polyisocyanates with hydroxyalkyl (meth) acrylates and optionally chain extenders such as diols, polyols, diamines, polyamines or dithiols or polythiols.
  • chain extenders such as diols, polyols, diamines, polyamines or dithiols or polythiols.
  • urethane (meth) acrylates dispersible in water without the addition of emulsifiers additionally contain ionic and / or nonionic hydrophilic groups which are present, for example. be incorporated by structural components such as hydroxycarboxylic acids in the urethane.
  • Such urethane (meth) acrylates contain as structural components substantially: (1) at least one organic aliphatic, aromatic or cycloaliphatic, preferably aliphatic or cycloaliphatic di- or polyisocyanate,
  • the urethane (meth) acrylates preferably have a number average molecular weight M n of 500 to 20,000, in particular of 500 to 10,000, more preferably 600 to 3000 g / mol (determined by gel permeation chromatography with tetrahydrofuran and polystyrene as standard).
  • the urethane (meth) acrylates preferably have a content of 1 to 5, particularly preferably 2 to 4 moles of (meth) acrylic groups per 1000 g of urethane (meth) acrylate.
  • Epoxy (meth) acrylates are obtainable by reacting epoxides with (meth) acrylic acid.
  • Suitable epoxides are, for example, epoxidized olefins, aromatic glycidyl ethers or aliphatic glycidyl ethers, preferably those of aromatic or aliphatic glycidyl ethers.
  • Epoxidized olefins may be, for example, ethylene oxide, propylene oxide, isobutylene oxide, 1-butoxide, 2-butene oxide, vinyl oxirane, styrene oxide or epichlorohydrin.
  • Preferred are ethylene oxide, propylene oxide, iso-butylene oxide, vinyl oxirane, styrene oxide or epichlorohydrin, more preferably ethylene oxide , Propylene oxide or epichlorohydrin and most preferably ethylene oxide and epichlorohydrin.
  • Aromatic glycidyl ethers are e.g. Bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol B diglycidyl ether, bisphenol S diglycidyl ether, hydroquinone diglycidyl ether, alkylation products of phenol / dicyclopentadiene, e.g. 2,5-bis [(2,3-epoxypropoxy) phenyl] octahydro-4,7-methano-5H-indene (CAS # [13446-85-0]), tris [4- (2,3-) epoxypropoxy) phenyl] methane isomers) CAS-No.
  • Bisphenol A diglycidyl ether bisphenol F diglycidyl ether
  • bisphenol B diglycidyl ether bisphenol S diglycidyl ether
  • hydroquinone diglycidyl ether alkylation products of phenol / dicyclopentadiene, e.g
  • aliphatic glycidyl ethers are 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, trimethylolpropane triglycidyl ether, pentaerythritol tetraglycidyl ether, 1,1,2,2-tetrakis [4- (2,3-epoxypropoxy) phenyl] ethane (CAS no [27043-37-4]), diglycidyl ethers of polypropylene glycol (a, (jo-bis (2,3-epoxypropoxy) poly (oxypropylene) (CAS No. [16096-30-3]) and of hydrogenated bisphenol A (2,2-bis [4- (2,3-epoxypropylene) and of hydrogenated bisphenol A (2,2-bis [4- (2,3-epoxypropylene) and of hydrogenated bisphenol A (2,2-bis [4- (2,3-epoxypropylene
  • the epoxide (meth) acrylates preferably have a number-average molecular weight M n of from 200 to 20 000, particularly preferably from 200 to 10 000 g / mol and very particularly preferably from 250 to 3000 g / mol; the content of (meth) acrylic groups is preferably 1 to 5, more preferably 2 to 4 per 1000 g of epoxy (meth) acrylate (determined by gel permeation chromatography with polystyrene as standard and tetrahydrofuran as eluent).
  • carbonate (meth) acrylates preferably contain 1 to 5, in particular 2 to 4, particularly preferably 2 to 3 (meth) acrylic groups and very particularly preferably 2
  • the number-average molecular weight M n of the carbonate (meth) acrylates is preferably less than 3000 g / mol, more preferably less than 1500 g / mol, particularly preferably less than 800 g / mol (determined by gel permeation chromatography with polystyrene as standard, solvent tetra- hydrofuran).
  • the carbonate (meth) acrylates are obtainable in a simple manner by transesterification of carbonic acid esters with polyhydric, preferably dihydric alcohols (diols, eg hexanediol) and subsequent esterification of the free OH groups with (meth) acrylic acid or else transesterification with (meth) acrylic esters, such as it eg in EP-A 92,269. They are also available by reacting phosgene, urea derivatives with polyvalent, e.g. dihydric alcohols.
  • (meth) acrylates of polycarbonate polyols such as the reaction product of one of the diols or polyols mentioned and a carbonic acid ester and a hydroxyl-containing (meth) acrylate.
  • Suitable carbonic acid esters are e.g. Ethylene, 1, 2 or 1, 3-propylene carbonate, carbonic acid dimethyl, diethyl or dibutyl ester.
  • Suitable hydroxyl-containing (meth) acrylates are, for example, 2-hydroxyethyl (meth) acrylate, 2- or 3-hydroxypropyl (meth) acrylate, 1,4-butanediol mono (meth) acrylate, neopentyl glycol mono (meth) acrylate, glycerol mono- and di (meth) acrylate, trimethylolpropane mono- and di (meth) acrylate and pentaerythritol mono-, di- and tri (meth) acrylate.
  • Particularly preferred carbonate (meth) acrylates are those of the formula:
  • R is H or CH3
  • X is a C2-C18 alkylene group and n is an integer from 1 to 5, preferably 1 to 3.
  • R is preferably H and X is preferably C 2 -C 10 -alkylene, for example 1, 2-ethylene, 1, 2-propylene, 1, 3-propylene, 1, 4-butylene or 1, 6-hexylene, particularly preferred for C 4 - to Ce-alkylene. Most preferably, X is C6-AI-alkylene.
  • the carbonate (meth) acrylates are preferably aliphatic carbonates (meth) acrylates.
  • urethane (meth) acrylates are particularly preferred.
  • Photoinitiators may be, for example, photoinitiators known to the person skilled in the art, for example those in Advances in Polymer Science, Volume 14, Springer Berlin 1974 or in KK Dietler, Chemistry and Technology of UV and EB Formulation for Coatings, Inks and Paints, Volume 3; Photoinitiators for Free Radical and Cationic Polymerization, PKT Oldring (Eds), SITA Technology Ltd, London.
  • Mono or bisacyl phosphine oxides as described e.g. EP-A 7 508, EP-A 57 474, DE-A 196 18 720, EP-A 495 751 or EP-A 615 980, for example 2,4,6-trimethylbenzoyldiphenylphosphine oxide (Lucirin® TPO from BASF SE) , Ethyl-2,4,6-trimethylbenzoylphenylphosphinate (Lucirin® TPO L from BASF SE), bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide (Irgacure® 819 from BASF SE), benzophenones, hydroxyacetophenones, phenylglyoxylic acid and their derivatives or mixtures of these photoinitiators.
  • 2,4,6-trimethylbenzoyldiphenylphosphine oxide (Lucirin® TPO from BASF SE)
  • Examples which may be mentioned are benzophenone, acetophenone, acetonaphthoquinone, methyl ethyl ketone, valerophenone, hexanophenone, ⁇ -phenylbutyrophenone, p-morpholinopropiophenone, dibenzosuberone, 4-morpholinobenzophenone, 4-morpholinodeoxybenzoin, p-diacetylbenzene, 4-aminobenzophenone, 4'-methoxyaceto -phenone, ⁇ -methylanthraquinone, ferric-butylanthraquinone, anthraquinone-carboxylic acid ester, benzaldehyde, ⁇ -tetralone, 9-acetylphenanthrene, 2-acetylphenanthrene, 10-thioxan-thone, 3-acetylphenanthrene, 3-acetylindole, 9-fluorenone, 1 in
  • photoinitiators are polymeric photoinitiators, such as, for example, the diester of carboxymethoxybenzophenone with polytetramethylene glycols of different molecular weight, preferably 200 to 250 g / mol (CAS 515136-48-8), and CAS 1246194-73-9, CAS 813452-37-8, CAS 71512-90-8, CAS 886463-10-1 or other polymeric benzophenone derivatives, as commercially available, for example, under the trade name Omnipol® BP from IGM Resins BV, Waalwijk, Netherlands or Genopol® BP1 from Rahn AG, Switzerland Are available.
  • polymeric photoinitiators such as, for example, the diester of carboxymethoxybenzophenone with polytetramethylene glycols of different molecular weight, preferably 200 to 250 g / mol (CAS 515136-48-8), and CAS 1246194-73-9, CAS 813452-37-8, CAS 71512
  • polymeric thioxanthones for example the diesters of carboxymethoxythioxanthones with polytetramethylene glycols of different molecular weight, as described, for example, under the trade name Omnipol® TX from IGM Resins BV, Waalwijk, Netherlands are available in the trade.
  • polymeric a-amino ketones for example the diesters of carboxyethoxythioxanthones with polyethylene glycols of different molecular weight, as are commercially available, for example, under the trade name Omnipol® 910 or Omnipol® 9210 from IGM Resins BV, Waalwijk, the Netherlands.
  • the photoinitiators used are silsesquioxane compounds having at least one initiating group as described in WO 2010/063612 A1, there especially from page 2, line 21 to page 43, line 9, which is hereby incorporated by reference in the present disclosure be, preferably from page 2, line 21 to page 30, line 5 and the compounds described in the examples of WO 2010/063612 A1.
  • non-yellowing or slightly yellowing photoinitiators of the phenylglyoxalic acid ester type such as silsesquioxane compounds described in DE-A 198 26 712, DE-A 199 13 353 or WO 98/33761.
  • photoinitiators are 2,4,6-trimethylbenzoyldiphenylphosphine oxide, ethyl 2,4,6-trimethylbenzoylphenylphosphinate, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 2-benzyl-2-dimethylamino-4'- morpholinobutyrophenone, 2- (dimethylamino) -1- (4-morpholino-phenyl) -2- (p-tolylmethyl) butane-1-one, 2-hydroxy-1 - [4 - [[4- (2-hydroxy 2-methyl-propanoyl) -phenyl] -methyl] -phenyl] -2-methyl-propan-1-one and the polymeric thioxanthone and benzophenone derivatives described above and those described in WO 2010/063612 A1.
  • Typical additives which may be added to the coating compositions are, for example, dispersants, waxes, stabilizers, sensitizers, fillers, defoamers, dyes, antistatic agents, thickeners, surface-active agents such as leveling agents, slip aids or adhesion promoters.
  • Suitable fillers include silicates, e.g. Example by hydrolysis of silicon tetrachloride available silicates such as Aerosil® the Fa. Degussa, silica, talc, aluminum silicates, magnesium silicates, calcium carbonate, etc.
  • Monoazo pigments C.I. Pigment Brown 25; C.I. Pigment Orange 5, 13, 36 and 67;
  • Anthanthrone pigments C.I. Pigment Red 168 (C.I. Vat Orange 3);
  • Anthraquinone pigments C.I. Pigment Yellow 147 and 177; C.I. Pigment Violet 31;
  • Anthraquinone pigments C.I. Pigment Yellow 147 and 177; C.I. Pigment Violet 31;
  • Anthrapyrimidine pigments C.I. Pigment Yellow 108 (C.I. Vat Yellow 20);
  • Quinacridone pigments C.I. Pigment Red 122, 202 and 206;
  • Quinophthalone pigments C.I. Pigment Yellow 138;
  • Dioxazine pigments C.I. Pigment Violet 23 and 37;
  • Flavanthrone pigments C.I. Pigment Yellow 24 (C.I. Vat Yellow 1);
  • Indanthrone pigments C.I. Pigment Blue 60 (C.I. Vat Blue 4) and 64 (C. I. Vat Blue 6);
  • Isoindoline pigments C.I. Pigment Orange 69; C.I. Pigment Red 260; C.I. pigment
  • Isoindolinone pigments C.I. Pigment Orange 61; C.I. Pigment Red 257 and 260; C.I.
  • Isoviolanthrone pigments C.I. Pigment Violet 31 (C.I. Vat Violet 1);
  • Perinone pigments C.I. Pigment Orange 43 (C.I. Vat Orange
  • Perylene pigments C.I. Pigment Black 31 and 32; C.I. Pigment Red 123, 149,
  • Phthalocyanine pigments C.I. Pigment Blue 15, 15: 1, 15: 2, 15: 3, 15: 4, 15: 6 and 16; C.I.
  • Thioindigo pigments C.I. Pigment Red 88 and 181 (C. I. Vat Red 1); C.I. pigment
  • Triaryl carbonium pigments C.I. Pigment Blue 1, 61 and 62; C.I. Pigment Green 1;
  • White pigments titanium dioxide (C.I. Pigment White 6), zinc white, zinc oxide, barium sulfate, zinc sulfide, lithopone; White lead; calcium carbonate;
  • Black pigments iron oxide black (Cl Pigment Black 1 1), iron manganese black, spinel black (Cl Pigment Black 27); Carbon black (Cl Pigment Black 7); Colored pigments: chromium oxide, chromium oxide hydrate green; Chrome green (Cl Pigment Green 48); Cobalt green (Cl Pigment Green 50); Ultramarine green; Cobalt blue (Cl Pigment Blue 28 and 36); Ultramarine blue; Iron blue (Cl Pigment Blue 27); Manganese blue; Ultramarine violet; Cobalt and manganese violet; Iron oxide red (Cl Pigment Red 101); Cadmium sulfoselenide (Cl Pigment Red 108); Molybdate red (Cl Pigment Red 104); ultramarine;
  • Iron oxide brown, mixed brown, spinel and corundum phases C.I. Pigment Brown 24, 29 and 31), chrome orange; Iron oxide yellow (C.I. Pigment Yellow 42); Nickel titanium yellow (C.I. Pigment Yellow 53; C.I. Pigment Yellow 157 and 164); Chromium titanium yellow; Cadmium sulfide and cadmium zinc sulfide (C.I. Pigment Yellow 37 and 35); Chrome yellow (C.I. Pigment Yellow 34), zinc yellow, alkaline earth dichromates; Naples yellow; Bismuth vanadate (C.I. Pigment Yellow 184); Interference pigments: metallic effect pigments based on coated metal flakes;
  • Pearlescent pigments based on metal oxide coated mica platelets Liquid crystal pigments.
  • Preferred pigments include monoazo pigments (in particular laked BONS pigments, naphthol AS pigments), disazo pigments (in particular diaryl yellow pigments,
  • Bisacetacetic acid acetanilide pigments disazopyrazolone pigments), quinacridone pigments, quinophthalone pigments, perinone pigments, phthalocyanine pigments, triarylcarbonium pigments (alkali lake pigments, laked rhodamines, dye salts with complex anions), isoindoline pigments, white pigments and carbon blacks.
  • particularly preferred pigments are: carbon black, titanium dioxide, C.I. Pigment Yellow 138, C.I. Pigment Red 122 and 146, C.I. Pigment Violet 19, C.I. Pigment Blue 15: 3 and 15: 4, C.I. Pigment Black 7, C.I. Pigment Orange 5, 38 and 43 and C.I. Pigment Green 7.
  • Suitable stabilizers include typical UV absorbers such as oxanilides, triazines and benzotriazole (the latter being available as Tinuvin® grades from BASF) and benzophenones.
  • radical scavengers for example sterically hindered amines such as 2,2,6,6-tetramethylpiperidine, 2,6-di-tert-butylpiperidin-dine or derivatives thereof, eg.
  • sterically hindered amines such as 2,2,6,6-tetramethylpiperidine, 2,6-di-tert-butylpiperidin-dine or derivatives thereof, eg.
  • bis (2,2,6,6-tetra-methyl-4-piperidyl) sebacinate, or quinone methides (such as Irgastab® UV 22) are used.
  • Stabilizers are usually used in amounts of 0.1 to 0.5 wt .-%, the active ingredient component, based on the preparation.
  • the coating compositions can also be used as printing inks.
  • Another aspect of the present invention is a method for printing flat or three-dimensional, preferably sheet-like substrates by any printing method using at least one printing ink of the invention.
  • at least one printing unit according to the invention is printed. stains on a substrate and then treated with actinic radiation, for example UV radiation and / or electron beams, preferably UV radiation.
  • Printing processes in which the printing inks according to the invention can be used are preferably offset printing, high-pressure, flexographic printing, gravure printing, screen printing and ink-jet printing. Particular preference is given to flexographic printing and offset printing.
  • UV-curable printing inks for these applications usually include reactive diluents, binders, colorants, initiators and optionally various additives. Binders serve to form the color film and anchor the constituents such as pigments or fillers in the paint film. Depending on the consistency, printing inks for these applications usually contain between 10 and 60% by weight of binder. Reactive diluents are used to adjust the processing viscosity.
  • Printing varnishes are either applied to the substrate as a primer (so-called “primer”) or applied to the printed substrate after the printing process as a coating.
  • Printing lacquers are used, for example, to protect the printed image, to improve the adhesion of the printing ink to the printing substrate or for aesthetic purposes.
  • the application is usually in-line or off-line by means of a coating unit on the printing press.
  • Print varnishes do not contain a colorant but, apart from that, are generally similar in composition to printing inks and are distinguished by the absence of the colorant.
  • Printing inks for mechanical printing include so-called pasty inks of high viscosity for offset and high pressure as well as so-called liquid inks of comparatively low viscosity for flexographic and gravure printing.
  • the inks according to the invention can be used, for example, as ink-jet liquid and for liquid toner for electrophotographic printing processes.
  • a drying and / or radiation hardening can take place after each printing process.
  • the radiation curing is carried out with high-energy light, for example UV light or electron beams.
  • the radiation curing can also be carried out at higher temperatures.
  • Suitable radiation sources for radiation curing are, for example, low-pressure mercury lamps, medium-pressure lamps with high-pressure lamps and fluorescent tubes, impulse lamps, metal halide, electronic flash devices, which radiation curing without photoinitiator is possible, or Excimerstrahler and UV LEDs.
  • the radiation sources used are, for example, high-pressure mercury vapor lamps, lasers, pulsed lamps (flash light), halogen lamps, UV LEDs or excimer radiators.
  • the radiation dose for UV curing which is usually sufficient for crosslinking, is in the range from 30 to 3000 mJ / cm 2 .
  • radiation sources can be used for the curing, e.g. two to four.
  • the irradiation may optionally also in the absence of oxygen, for. B. under inert gas atmosphere, are performed.
  • inert gases are preferably nitrogen, noble gases, carbon dioxide, or combustion gases.
  • the coating compositions according to the invention are suitable for coating substrates such as wood, paper, textile, leather, fleece, plastic surfaces, PVC, glass, ceramics, mineral building materials, such as cement shaped bricks and fiber cement boards, or metals or coated metals, preferably plastics or metals, in particular in the form of films, more preferably metals.
  • the coating compositions can be used in particular in primers, fillers, pigmented topcoats and clearcoats in the field of car repair or large vehicle painting and aircraft. Particularly suitable are those coating compositions for applications in which a particularly high application safety, outdoor weathering resistance, hardness and flexibility are required, such as in car repair and large vehicle painting.
  • Particularly suitable are those coating compositions for applications in which a particularly high application safety, outdoor weathering resistance, hardness and flexibility are required, such as in car repair and large vehicle painting.
  • the examples given below are intended to illustrate the present invention without, however, limiting it.
  • Example 1 323 parts of epsilon-caprolactone, 164 parts of hydroxyethyl acrylate and 0.2 part of zinc ethylhexanoate (BorchiKat® 22 from OMG Borchers GmbH, Langenfeld, Germany) were heated at 105-1 ° C. for 1 hour, then it was heated to 60.degree cooled and added 187 parts of a diisocyanate based on H12-MDI (Desmodur® W from Bayer MaterialScience) and another 14 hours react at 80-85 ° C. The isocyanate value had dropped to ⁇ 0.1%. The result was a viscous, clear urethane acrylate with a viscosity of 27.5 Pas (measured with an Epprecht cone / plate viscometer (Cone C) at 25 ° C).
  • Example 1 323 parts of epsilon-caprolactone, 164 parts of hydroxyethyl acrylate and 0.2 part of zinc ethylhex
  • Example 3 323 parts of epsilon-caprolactone, 164 parts of hydroxyethyl acrylate and 0.2 part of bismuth ethylhexanoate (BorchiKat® 24 from OMG Borchers GmbH, Langenfeld, Germany) were heated at 105-1 ° C. for 36 hours, then at 60 ° C. cooled and 400 parts of an isocyanato (Laromer ® LR9000) was added and allowed to react at 80-85 ° C for a further 12 hours. The isocyanate value had dropped to ⁇ 0.1%. The result was a viscous, clear urethane acrylate with a viscosity of 18 Pas (measured with an Epprecht cone / plate viscometer (Cone C) at 25 ° C).
  • Each 96 parts of the urethane acrylates from Examples 1 to 3 and Comparative Example 1 were mixed with 4 parts each of the photoinitiator Darocur® 1 173 (2-hydroxy-2-methyl-1-phenylpropan-1-one, photoinitiator from BASF SE), applied to 1 black glass plate with a box doctor blade (200 ⁇ ) and exposed to light at 1350 mJ / cm 2 exposure intensity on an IST UV exposure system.
  • Darocur® 1 173 2-hydroxy-2-methyl-1-phenylpropan-1-one
  • the scratch resistance of the cured layer was determined as follows: The exposed films were scratched with a ScotchBrite® fleece under a load of 750g with 10 double strokes and the gloss difference at 60 ° measurement angle before and after scratching determined. Gloss retention is the percentage of gloss from scratch to scratch to scratch.
  • the gloss retention was:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

Die vorliegende Erfindung beschreibt ein neues Verfahren zur Herstellung von Urethan(meth)acrylaten.

Description

Verfahren zur Herstellung von Urethan(meth)acrylaten
Beschreibung
Die vorliegende Erfindung beschreibt ein neues Verfahren zur Herstellung
Urethan(meth)acrylaten.
Urethanacrylate auf Basis von caprolactonmodifizierten Harzen sind z.B. aus der US 4,188,472 bekannt. In DE 2939584 (=US4188472) werden 2-Hydroxyethylacrylat mit epsilon-Caprolacton ringöffnend in Gegenwart verschiedener Katalysatoren auf Basis Titan oder Zinn oder organischer Säuren (Schwefelsäure, p-Toluolsulfonsäure) miteinander umgesetzt und das entstandene Produkt anschließend mit Diisocyanaten zum Urethan umgesetzt.
In DE 10246512 wird beschrieben, niedrigviskose Polyisocyanate herzustellen, indem man oxadiazintriongruppenhaltige Polyisocyanate mit Alkohlen umsetzt, die mindestens eine durch elektromagnetische Strahlung polymerisierbare Doppelbindung enthalten.
WO 07/05901 1 und WO 07/059070 beschreiben Urethan(meth)acrylate mit Allophanatgruppen, die fluorierte Alkohole eingebaut enthalten. Die (Meth)acrylatgruppen werden jeweils über Urethangruppen eingebaut.
EP 783008 beschreibt Urethan(meth)acrylate, die durch Umsetzung von Polyisocyanaten mit (meth)acrylatgruppenhaltigen Alkoholen. Die (Meth)acrylatgruppen werden jeweils über Urethangruppen eingebaut.
Aufgabe der vorliegenden Erfindung war es, Urethan(meth)acrylate zu entwickeln, die gute Kratzfestigkeit, gute Elastizität und niedrige Viskosität miteinander verbinden.
Die Aufgabe wurde gelöst durch Urethan(meth)acrylate der Formel
einen zweiwertigen, 2 bis 12 Kohlenstoffatome aufweisenden Alkylenrest, der gegebenenfalls mit C bis C4-Alkylgruppen substituiert und/oder durch ein oder mehrere Sauerstoffatome unterbrochen sein kann, bevorzugt 2 bis 10 Kohlenstoffatome aufweisend, beson- ders bevorzugt 2 bis 8 und ganz besonders bevorzugt 3 bis 6 Kohlenstoffatome aufweisend,
R2 jeweils unabhängig voneinander Methyl oder Wasserstoff, bevorzugt Wasserstoff,
R3 einen zweiwertigen, 1 bis 12 Kohlenstoffatome aufweisenden Alkylenrest, der gegebenenfalls mit Cr bis C4-Alkylgruppen und/oder durch ein oder mehrere Sauerstoffatome unterbrochen substituiert sein kann, bevorzugt 2 bis 10, besonders bevorzugt 3 bis 8 und ganz besonders bevorzugt 3 bis 4 Kohlenstoffatome aufweisend,
R4 einen zweiwertigen organischen Rest bedeutet, der durch gedankliche Abstraktion zweier Isocyanatgruppen von einem Polyisocyanat (D) entsteht, das mindestens ein Hydroxyal- kyl(meth)acrylat über eine Allophanatgruppe gebunden enthält, und n und m unabhängig voneinander positive Zahlen von 1 bis 5, bevorzugt 2 bis 5, besonders bevorzugt 2 bis 4, ganz besonders bevorzugt 2 bis 3 und insbesondere 2 bis 2,5.
Die Doppelbindungsdichte des erfindungsgemäß Urethan(meth)acrylates, gemessen in mol (Meth)acrylatgruppen pro kg Urethan(meth)acrylat, beträgt in der Regel 2 bis 4 mol/kg, bevorzugt 2,4 bis 3,4 und besonders bevorzugt 2,6 bis 3,0 mol/kg.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung von derartigen Urethan(meth)acrylaten, in dem man in einem ersten Schritt ein Hydroxyal- kyl(meth)acrylat (A) der Formel
mit einem Lacton (B) der Formel
in Gegenwart mindestens eines Katalysators (C), ausgewählt aus der Gruppe bestehend aus Eisen-, Titan-, Aluminium-, Zirkon-, Mangan-, Nickel-, Zink-, Cobalt-, Zirkonium- und Wismut- Verbindungen, miteinander umsetzt, und in einem weiteren Schritt das so erhaltene Produkt aus dem ersten Schritt mit einem Poly- isocyanat (D) umsetzt, das mindestens ein Hydroxyalkyl(meth)acrylat über eine Allophanat- gruppe gebunden enthält. Die Werte für n und m können im statistischen Mittel auch ungeradzahlige Werte annehmen, sind dann aber natürlich bezogen auf jedes einzelne Molekül der obigen Formel geradzahlig.
Ci-C4-Alkyl bdeutet im Rahmen dieser Schrift Methyl, Ethyl, n-Propyl, /so-Propyl, n-Butyl, iso- Butyl, se/-Butyl oder feri-Butyl, bevorzugt Methyl, Ethyl und n-Butyl und besonders bevorzugt Methyl.
Beispiele für den Rest R1 sind 1,2-Ethylen, 1,2- oder 1,3-Propylen, 1,2-, 1,3- oder 1,4-Butylen, 1,1-Dimethyl-1,2-ethylen, 1,2-Dimethyl-1,2-ethylen, 1,5-Pentylen, 1,6-Hexylen, 1,8-Octylen, 1,10-Decylen oder 1 ,12-Dodecylen. Bevorzugt sind 1,2-Ethylen, 1,2- oder 1,3-Propylen, 1,4- Butylen und 1,6-Hexylen, besonders bevorzugt sind 1,2-Ethylen, 1,2-Propylen und 1,4-Butylen, ganz besonders bevorzugt ist 1,2-Ethylen.
Beispiele für den Rest R3 sind Methylen, 1,2-Ethylen, 1,2-Propylen, 1,3-Propylen, 1,2-Butylen, 1,3-Butylen, 1,4-Butylen, 1,5-Pentylen, 1,5-Hexylen, 1,6-Hexylen, 1,8-Octylen, 1,10-Decylen, 1 ,12-Dodecylen, 2-Oxa-1,4-butylen, 3-Oxa-1 ,5-pentylen oder 3-Oxa-1 ,5-hexylen, bevorzugt sind 1,3-Propylen, 1,4-Butylen, 1,5-Pentylen, 1,5-Hexylen und 1 ,12-Dodecylen, besonders bevorzugt ist 1 ,5-Pentylen.
Gemäß der vorliegenden Erfindung werden im ersten Schritt Hydroxyalkyl(meth)acrylate (A) der Formel
in denen R1 und R2 die oben aufgeführten Bedeutungen hat, mit (n + m)/2 Äquivalenten Lacton (B) der Formel
in dem R3 die oben aufgeführten Bedeutungen hat, zu einem Zwischenprodukt der Formel
umgesetzt.
Besonders bevorzugt als Hydroxyalkyl(meth)acrylate (A) sind 2-Hydroxyethyl(meth)acrylat, 2- oder 3-Hydroxypropyl(meth)acrylat, 1 ,4-Butandiolmono(meth)acrylat, Neopentylglykolmo- no(meth)acrylat, 1 ,5-Pentandiolmono(meth)acrylat und 1 ,6-Hexandiolmono(meth)acrylat, ganz besonders bevorzugt sind 2-Hydroxyethyl(meth)acrylat, 2-Hydroxypropyl(meth)acrylat und 1 ,4- Butandiolmono(meth)acrylat, insbesondere 2-Hydroxyethyl(meth)acrylat. Die Acrylate sind dabei jeweils gegenüber den Methacrylaten bevorzugt.
Das Lacton (B) weist folgende Formel auf
Bevorzugte Lactone sind beta-Propiolacton, gamma-Butyrolacton, gamma-Ethyl-gamma- butyrolacton, gamma-Valerolacton, delta-Valerolacton, epsilon-Caprolacton, 7-Methyloxepan-2- on, 1 ,4-Dioxepan-5-on, Oxacyclotridecan-2-οη und 13-Butyl-oxacyclotridecan-2-on.
Besonders bevorzugt sind gamma-Butyrolacton, delta-Valerolacton und epsilon-Caprolacton, ganz besonders bevorzugt ist epsilon-Caprolacton.
Die Reaktion findet im ersten Schritt in Gegenwart mindestens eines Katalysators (C) statt, bei dem erfindungsgemäß Zinnverbindungen ausgeschlossen sind. Bevorzugte Katalysatoren (C) sind ausgewählt aus der Gruppe bestehend aus Eisen-, Titan-, Aluminium-, Zirkon-, Mangan-, Nickel-, Zink-, Cobalt-, Zirkonium- und Wismut-Verbindungen, bevorzugt handelt es sich um Titan-, Aluminium-, Zirkon-, Zink-, Zirkonium- oder Wismut- Verbindungen, besonders bevorzugt um Titan-, Zink- oder Wismut-Verbindungen, ganz besonders bevorzugt um Titan- oder Wismut-Verbindungen und insbesondere um Wismut- Verbindungen.
Beispielsweise sind Metallkomplexe wie Acetylacetonate des Eisens, Titans, Aluminiums, Zir- kons, Mangans, Nickels, Zinks und Cobalts möglich. Als Zirkonium-, Wismut-, Titan- und Aluminium-Verbindungen werden beispielsweise eingesetzt: Zirkoniumtetraacetylacetonat (z.B. K-KAT® 4205 der Firma King Industries); Zirkoniumdi- onate (z.B. K-KAT® XC-9213; XC-A 209 und XC-6212 der Firma King Industries); Aluminiumdi- onat (z.B. K-KAT® 5218 der Firma King Industries).
Als Zinkverbindungen kommen dabei solche in Betracht, in denen folgende Anionen eingesetzt werden: F-, C , CIO", CI03-, CICV, Br, J-, J03-, CN-, OCN-, N02-, N03-, HC03-, C03 2-, S2-, SH- , HS03-, SO32-, HSO4-, S04 2-, S2O22-, S2O42-, S205 2-, S206 2-, S2O72-, S208 2-, H2PO2-, H2PO4-, HPO42-, PO43-, P2O74-, (OCnH2n+i)-, (CnH2n-i02)-, (CnH2n-302)- sowie (Cn+iH2n-204)2-, wobei n für die Zahlen 1 bis 20 steht. Bevorzugt sind dabei die Carboxylate, bei denen das Anion den Formeln (CnH2n-i02)" sowie (Cn+iH2n-204)2" mit n gleich 1 bis 20, gehorcht. Besonders bevorzugte Salze weisen als Anionen Monocarboxylate der allgemeinen Formel (CnH2n-i02)~ auf, wobei n für die Zahlen 1 bis 20 steht. Hierbei sind insbesondere zu erwähnen Format, Acetat, Propionat, Hexanoat, Neodekanoat und 2-Ethylhexanoat.
Unter den Zink-Katalysatoren sind die Zink-carboxylate bevorzugt, besonders bevorzugt solche von Carboxylaten, die mindestens sechs Kohlenstoffatome, ganz besonders bevorzugt mindestens acht Kohlenstoffatome aufweisen, insbesondere Zink-(ll)-diacetat oder Zink-(ll)-dioctoat oder Zink-(ll) neodecanoat. Handelsübliche Katalysatoren sind beispielsweise Borchi® Kat 22 von OMG Borchers GmbH, Langenfeld, Deutschland.
Unter den Titanverbindungen sind die Titan tetra-alkoholate Ti(OR)4 bevorzugt, besonders bevorzugt solche von Alkoholen ROH mit 1 bis 8 Kohlenstoffatomen, beispielsweise Methanol, Ethanol, /so-Propanol, n-Propanol, n-Butanol, /so-Butanol, se/ -Butanol, ferf-Butanol, n-Hexanol, n-Heptanol, n-Octanol, bevorzugt sind Methanol, Ethanol, /so-Propanol, n-Propanol, n-Butanol, feri-Butanol, besonders bevorzugt sind iso-Propanol und n-Butanol.
Bevorzugt als Katalysator (C) wird mindestens eine Wismutverbindung eingesetzt, beispielsweise ein bis drei, bevorzugt ein oder zwei und besonders bevorzugt benau eine Wismutverbin- dung der Oxidationsstufe +3.
Als Wismutverbindungen (C) kommen dabei bevorzugt Wismutverbindungen mit folgenden Anionen in Betracht: F-, Ch, CIO", CIO3-, ClO-r, Br, J-, J03-, CN-, OCN-, N02 ", NO3-, HC03-, C03 2" , S2-, SH-, HSO3-, SO32-, HSO4-, S04 2-, S2O22-, S2O42-, S205 2-, S206 2-, S2O72-, S208 2-, H2PO2-, H2PO4-, HPO42-, PO43-, P2O74-, (OCxH2x+i)-, (CxH2x-i02)-, (CxH2x-302)- sowie (Cx+iH2x-204)2-, wobei x für die Zahlen 1 bis 20 steht. Bevorzugt sind dabei die Carboxylate, bei denen das Anion den Formeln (CxH2x-i02)_ sowie (CX+1H2X-2O4)2- mit n gleich 1 bis 20, gehorcht. Besonders bevorzugte Salze weisen als Anionen Monocarboxylate der allgemeinen Formel (CxH2x-i02)~ auf, wobei x für die Zahlen 1 bis 20, bevorzugt 1 bis 10 steht. Hierbei sind insbesondere zu erwäh- nen Format, Acetat, Propionat, Hexanoat, Neodekanoat und 2-Ethylhexanoat.
Unter den Wismut-Katalysatoren sind die Wismut-carboxylate bevorzugt, besonders bevorzugt solche von Carboxylaten, die mindestens sechs Kohlenstoffatome aufweisen, insbesondere Wismut-octoate, -ethylhexanoate, -neodecanoate, oder -pivalate; beispielsweise K-KAT 348, XC-B221 ; XC-C227, XC 8203 und XK-601 von King Industries, TIB KAT 716, 716LA, 716XLA, 718, 720, 789 von TIB Chemicals und solchen von Shepherd Lausanne, sowie beispielsweise Borchi® Kat 24; 315; 320 von OMG Borchers GmbH, Langenfeld, Deutschland.
Es kann sich dabei auch um Gemische verschiedener Metalle handeln, wie beispielsweise in Borchi® Kat 0245 von OMG Borchers GmbH, Langenfeld, Deutschland
Besonders bevorzugt sind jedoch Wismut neodecanoat, Wismut-2-ethylhexanoat und Zink-2- ethylhexanoat.
Es ist möglich, die Wirkung der Katalysatoren zusätzlich durch Anwesenheit von Säuren zu verstärken, beispielsweise durch Säuren mit einem pKa-Wert von < 2,5, wie beschrieben in EP 2316867 A1 oder mit einem pKa-Wert zwischen 2,8 und 4,5, wie beschrieben in
WO 04/029121 A1. Bevorzugt ist die Verwendung von Säuren mit einem pKa-Wert von nicht mehr als 4,8, besonders bevorzugt von nicht mehr als 2,5.
Bei dem Polyisocyanat (D) handelt es sich um Polyisocyanat (D), das mindestens ein Hydro- xyalkyl(meth)acrylat über eine Allophanatgruppe gebunden enthält.
Beispiele für derartige Polyisocyanate sind beispielsweise beschrieben in WO 00/39183 A1 , dort besonders von Seite 4, Zeile 17 bis Seite 6, Zeile 6 und Produkte 1 bis 12 gemäß Tabelle 1 . Die Polyisocyanate (D) sind herstellbar, wie dort beschrieben von Seite 8, Zeile 44 bis Seite 10, Zeile 2. Diese Offenbarungen seien jeweils durch Bezugnahme Bestandteil der vorliegen- den Beschreibung.
Bevorzugt sind Polyisocyanate (D) erhältlich durch Umsetzung mindestens eines (cyclo)ali- phatischen Diisocyanats mit mindestens einem Hydroxyalkyl(meth)acrylat in Gegenwart mindestens eines Katalysators, der die Bildung von Allophanatgruppen zu beschleunigen vermag.
(Cyclo)aliphatisch steht in dieser Schrift für aliphatisch oder cycloaliphatisch, bevorzugt aliphatisch.
Beispiele für (cyclo)aliphatische Diisocyanate sind aliphatische Diisocyanate wie Tetramethyl- endiisocyanat, Hexamethylendiisocyanat (1 ,6-Diisocyanatohexan), Octamethylendiisocyanat, Decamethylendiisocyanat, Dodecamethylendiisocyanat, Tetradecamethylendiisocyanat, Derivate des Lysindiisocyanates, Tetramethylxylylendiisocyanat, Trimethylhexandiisocyanat oder Tetramethylhexandiisocyanat, cycloaliphatische Diisocyanate wie 1 ,4-, 1 ,3- oder 1 ,2-Diisocya- natocyclohexan, 4,4'- oder 2,4'-Di(isocyanatocyclohexyl)methan, 1 -lsocya-nato-3,3,5- trimethyl- 5-(isocyanatomethyl)cyclohexan (Isophorondiisocyanat), 1 ,3- oder 1 ,4-Bis-(isocyanatomethyl)- cyclohexan oder 2,4-, oder 2,6-Diisocyanato-1 -methylcyclohexan. Bevorzugt sind 1 ,6-Hexamethylendiisocyanat, Isophorondiisocyanat und 4,4'- oder 2,4'-Di(iso- cyanatocyclohexyl)methan, besonders bevorzugt sind 1 ,6-Hexamethylendiisocyanat, Isophorondiisocyanat und 4,4'-Di(isocyanatocyclohexyl)methan, ganz besonders bevorzugt sind 1 ,6-Hexamethylendiisocyanat und Isophorondiisocyanat und insbesondere 1 ,6-Hexamethylen- diisocyanat.
Hydroxyalkyl(meth)acrylate können solche sein, wie sie oben bei der Komponente (A) beschrieben sind, können jedoch von der eingesetzten Komponente (A) verschieden sind. In einer bevorzugten Ausführungsform der vorliegenden Erfindung sind das als Komponente (A) einge- setzte Hydroxyalkyl(meth)acrylat und das für die Komponente (D) eingesetzte Hydroxyalkyl- (meth)acrylat gleich.
Bevorzugt handelt es sich bei den für die Komponente (D) eingesetzten Hydroxyalkyl(meth)- acrylaten um 2-Hydroxyethyl(meth)acrylat, 2- oder 3-Hydroxypropyl(meth)acrylat, 1 ,4-Butan- diolmono(meth)acrylat, Neopentylglykolmono(meth)acrylat, 1 ,5-Pentandiolmono(meth)acrylat und 1 ,6-Hexandiolmono(meth)acrylat, ganz besonders bevorzugt sind 2-Hydroxyethyl(meth)- acrylat, 2-Hydroxypropyl(meth)acrylat und 1 ,4-Butandiolmono(meth)acrylat, insbesondere 2- Hydroxyethyl(meth)acrylat. Katalysatoren, der die Bildung von Allophanatgruppen zu beschleunigen vermögen, sind beispielsweise Zink-organische Verbindungen, wie Zink-Acetylacetonat oder Zink-2-ethylcaproat, oder Tetraalkylammonium-Verbindung, wie bevorzugt Tetraalkylammonium Hydroxide, Car- boxylate und Carbonate, besonders bevorzugt sind N,N,N-Trimethyl-N-benzylammonium hyd- roxid, N,N,N-Trimethyl-N-2-hydroxypropylammonium hydroxid, N,N,N-Trimethyl-N-2-hydroxy- propylammonium-2-ethylhexanoat und N,N,N-Trimethyl-N-2-hydroxypropylammonium formiat, ganz besonders bevorzugt N,N,N-Trimethyl-N-2-hydroxypropylammonium-2-ethylhexanoat.
Die Komponente (D)enthält Allophanatgruppen in einem Gehalt an Allophanatgruppen (berechnet als C2N2HO3 = 101 g/mol) von 1 bis 28 Gew%, bevorzugt von 3 bis 25 Gew%.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung sind von den Hydroxyal- kyl(meth)acrylaten mindestens 20 mol%, bevorzugt mindestens 25 mol%, besonders bevorzugt mindestens 30 mol%, ganz besonders bevorzugt mindestens 35 mol%, insbesondere mindestens 40 mol% und speziell mindestens 50 mol% über Allophanatgruppen gebunden.
In einer bevorzugten Ausführungsform handelt es sich bei dem Polyisocyanat (D), das mindestens ein Hydroxyalkyl(meth)acrylat über eine Allophanatgruppe gebunden enthält, um Verbindungen, die die Formel erfüllen, worin
R5 einen zweiwertigen, 2 bis 12 Kohlenstoffatome aufweisenden Alkylenrest, der gegeb falls mit d- bis C4-Alkylgruppen substituiert und/oder durch ein oder mehrere Sauerstoffatome unterbrochen sein kann, bevorzugt 2 bis 10 Kohlenstoffatome aufweisend, besonders bevorzugt 2 bis 8 und ganz besonders bevorzugt 3 bis 6 Kohlenstoffatome aufweisend, einen zweiwertigen, 2 bis 20 Kohlenstoffatome aufweisenden Alkylenrest oder Cycloalky- lenrest, der gegebenenfalls mit d- bis C4-Alkylgruppen substituiert und/oder durch ein oder mehrere Sauerstoffatome unterbrochen sein kann, bevorzugt 4 bis 15 Kohlenstoffatome aufweisend, besonders bevorzugt 6 bis 13 Kohlenstoffatome aufweisend,
R7 Wasserstoff oder Methyl, bevorzugt Wasserstoff, bedeuten, und x eine positive Zahl ist, die im statistischen Mittel 2 bis zu 6, bevorzugt von 2 bis 4 beträgt. Das in dieser Formel dargestellte Polyisocyanat (D) stellt durch gedankliche Abstraktion zweier Isocyanatgruppen einen besonders bevorzugten Rest R4 gemäß der Formel für das erfindungsgemäße Urethan(meth)acrylat dar.
Beispiele für den Rest R5 sind 1 ,2-Ethylen, 1 ,2- oder 1 ,3-Propylen, 1 ,2-, 1 ,3- oder 1 ,4-Butylen, 1 ,1 -Dimethyl-1 ,2-ethylen, 1 ,2-Dimethyl-1 ,2-ethylen, 1 ,5-Pentylen, 1 ,6-Hexylen, 1 ,8-Octylen,
1 ,10-Decylen oder 1 ,12-Dodecylen. Bevorzugt sind 1 ,2-Ethylen, 1 ,2- oder 1 ,3-Propylen, 1 ,4-Bu- tylen und 1 ,6-Hexylen, besonders bevorzugt sind 1 ,2-Ethylen, 1 ,2-Propylen und 1 ,4-Butylen, ganz besonders bevorzugt ist 1 ,2-Ethylen.
Bevorzugt ist R6 ausgewählt aus der Gruppe bestehend aus 1 ,6-Hexylen,
, besonders bevorzugt handelt es sich um 1 ,6-Hexylen. In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung ist R6 1 ,6-Hexylen und R5 ausgewählt aus der Gruppe bestehend aus 1 ,2-Ethylen, 1 ,2-Propylen und 1 ,4-Butylen, bevorzugt aus 1 ,2-Ethylen und 1 ,4-Butylen und besonders bevorzugt 1 ,2-Ethylen.
Ein kommerziell verfügbares Polyisocyanat mit R5 = 1 ,2-Ethylen, R6 = 1 ,6-Hexylen und
R7 = Wasserstoff ist unter dem Handelsnamen Laromer® LR 9000 der BASF SE, Ludwigshafen mit einem NCO-Gehalt von 14,5 - 15,5 Gew% erhältlich.
Das erfindungsgemäße Verfahren zur Herstellung der Urethan(meth)acrylate kann wie folgt ausgeführt werden:
Die Umsetzung der Komponenten (A) und (B) findet bevorzugt statt bei Temperaturen von 50 bis 150 °C, bevorzugt 70 bis 130 °C über einen Zeitraum von 3 bis 20 Stunden, bevorzugt von 5 bis 12 Stunden unter Rühren oder Umpumpen. Die Komponenten (A) und (B) werden dabei in der gewünschten Stöchiometrie (mol : mol), die bevorzugt 1 : 1 ,5 bis 3, besonders bevorzugt 1 : 1 ,8 bis 2,5, ganz besonders bevorzugt 1 : 2 bis 2,3 und insbesondere 1 : 2 beträgt, miteinander vermischt und aufgeheizt. Es kann auch Komponente (A) vorgelegt und (B) erst während oder nach dem Aufheizen zugegeben werden. Vor, während oder nach dem Aufheizen wird der Katalysator (C), optional verteilt in mehreren Portionen, zu dem Gemisch zugegeben.
Es ist auch möglich, zunächst Komponente (A) mit lediglich einem Teil der Verbindung (B) umzusetzen und den Rest der Verbindung (B) zu einem späteren Zeitpunkt zur Reaktion zuzugeben.
Bevorzugt werden alle drei Komponenten (A), (B) und (C) miteinander vermischt und gemeinsam aufgeheizt und umgesetzt. Der Katalysator (C) wird in der Regel in Mengen von 0,001 bis 2 Gew% bezogen auf die Summe der Komponenten (A) und (B) dem Reaktionsgemisch zugegeben, bevorzugt 0,005 bis 1 ,5 Gew%, besonders bevorzugt 0,01 bis 1 und ganz besonders bevorzugt 0,01 bis 0,5 Gew%. Es ist optional möglich, wenn auch weniger bevorzugt, die Umsetzung in Gegenwart mindestens eines Lösungsmittels durchzuführen.
Beispiele für derartige Lösungsmittel sind aromatische (einschließlich alkylierter Benzole und Naphthaline) und/oder (cyclo)aliphatische Kohlenwasserstoffe und deren Gemische, chlorierte Kohlenwasserstoffe, Ketone, Ester, alkoxylierte Alkansäurealkylester, Ether, respektive Gemische der Lösungsmittel.
Als aromatische Kohlenwasserstoffgemische sind solche bevorzugt, die überwiegend aromatische C7- bis Ci4-Kohlenwasserstoffe umfassen und einen Siedebereich von 1 10 bis 300 °C um- fassen können, besonders bevorzugt sind Toluol, o-, m- oder p-Xylol, Trimethylbenzolisomere, Tetramethylbenzolisomere, Ethylbenzol, Cumol, Tetrahydronaphthalin und solche enthaltende Gemische.
Beispiele dafür sind die Solvesso®-Marken der Firma ExxonMobil Chemical, besonders Sol- vesso® 100 (CAS-Nr. 64742-95-6, überwiegend C9 und C10-Aromaten, Siedebereich etwa
154 - 178 °C), 150 (Siedebereich etwa 182 - 207 °C) und 200 (CAS-Nr. 64742-94-5), sowie die Shellsol®-Marken der Firma Shell, Caromax® (z.B. Caromax® 18) der Firma Petrochem Car- less und Hydrosol der Firma DHC (z.B. als Hydrosol® A 170). Kohlenwasserstoffgemische aus Paraffinen, Cycloparaffinen und Aromaten sind auch unter den Bezeichnungen Kristallöl (bei- spielsweise Kristallöl 30, Siedebereich etwa 158 - 198 °C oder Kristallöl 60: CAS-Nr. 64742-82- 1 ), Testbenzin (beispielsweise ebenfalls CAS-Nr. 64742-82-1 ) oder Solventnaphtha (leicht: Siedebereich etwa 155 - 180 °C, schwer: Siedebereich etwa 225 - 300 °C) im Handel erhältlich. Der Aromatengehalt derartiger Kohlenwasserstoffgemische beträgt in der Regel mehr als 90 Gew%, bevorzugt mehr als 95, besonders bevorzugt mehr als 98 und ganz besonders bevor- zugt mehr als 99 Gew%. Es kann sinnvoll sein, Kohlenwasserstoffgemische mit einem besonders verringerten Gehalt an Naphthalin einzusetzen.
(Cyclo)aliphatische Kohlenwasserstoffe sind beispielsweise Dekalin, alkyliertes Dekalin und Isomerengemische von geradlinigen oder verzweigten Alkanen und/oder Cycloalkanen.
Der Gehalt an aliphatischen Kohlenwasserstoffen beträgt in der Regel weniger als 5, bevorzugt weniger als 2,5 und besonders bevorzugt weniger als 1 Gew%.
Ester sind beispielsweise n-Butylacetat, Ethylacetat, 1 -Methoxypropylacetat-2 und 2-Methoxy- ethylacetat. Ether sind beispielsweise THF, Dioxan sowie die Dimethyl-, -ethyl- oder -n-butylether von Ethyl- englykol, Diethylenglykol, Triethylenglykol, Propylenglykol, Dipropylenglykol oder Tripropy- lenglykol. Ketone sind beispielsweise Aceton, Diethylketon, Ethylmethylketon, Isobutylmethylketon, Me- thylamylketon und tert.-Butylmethylketon.
Bevorzugte Lösungsmittel sind n-Butylacetat, Ethylacetat, 1 -Methoxypropylacetat-2, 2-Methoxy- ethylacetat, sowie deren Gemische, insbesondere mit den oben aufgeführten aromatischen Kohlenwasserstoffgemischen, insbesondere Xylol und Solvesso® 100.
Derartige Gemische können im Volumenverhältnis 5:1 bis 1 :5 erstellt werden, bevorzugt im Volumenverhältnis 4:1 bis 1 :4, besonders bevorzugt im Volumenverhältnis 3:1 bis 1 :3 und ganz besonders bevorzugt im Volumenverhältnis 2:1 bis 1 :2.
Bevorzugte Beispiele sind Butylacetat/Xylol, Methoxypropylacetat/Xylol 1 :1 , Butylacetat/Sol- ventnaphtha 100 1 :1 , Butylacetat/Solvesso® 100 1 :2 und Kristallöl 30/Shellsol® A 3:1 .
Bevorzugt sind Butylacetat, 1 -Methoxypropylacetat-2, Methylamylketon, Xylol und Solvesso® 100.
In der Regel ist es erforderlich und bevorzugt, die Reaktion in Gegenwart mindestens eines Stabilisators gegen radikalische Polymerisation der Komponente (A) durchzuführen, bevorzugt Hydrochinonmonomethylether und/oder Phenothizin. Es ist aber auch möglich andere Stabilisatoren einzusetzen, die für die Stabilisierung von (Meth)acrylaten gegen radikalische Polymerisa- tion bekannt sind.
Der erste Reaktionsschritt ist dann beendet, wenn das Lacton (B) im wesentlichen umgesetzt ist, bevorzugt zu mindestens 90%, besonders bevorzugt zu mindestens 95, ganz besonders bevorzugt zu mindestens 97 und insbesondere zu mindestens 98%.
Es ist möglich, unumgesetztes Lacton (B) sowie optional eingesetztes Lösungsmittel und Wasser, wenn der Wassergehalt > 1000 ppm ist, aus dem Reaktionsgemisch zu entfernen, bevorzugt per Destillation, es stellt jedoch eine bevorzugte Ausführungsform dar, das aus dem ersten Schritt erhaltene Reaktionsgemisch direkt in den zweiten Schritt, die Umsetzung mit Kompo- nente (D), einzusetzen.
Es ist möglich, die Reaktion aus dem ersten Schritt bevorzugt durch Abkühlen abzubrechen. Das Reaktionsgemisch ist in dieser Form lagerfähig und kann dann zu einem späteren Zeitpunkt in den zweiten Schritt eingesetzt werden.
Im zweiten Reaktionsschritt wird das aus dem ersten Schritt erhaltene Reaktionsgemisch dann mit Komponente (D) umgesetzt. Der zweite Reaktionsschritt wird in einer Stochiometrie von 1 ,2: 1 bis 1 : 1 ,2 von Hydroxygruppen im Reaktionsprodukt aus dem ersten Schritt zu Isocyanatgruppen in Komponente (D) durchgeführt, bevorzugt 1 ,1 : 1 bis 1 : 1 ,1 , besonders bevorzugt 1 ,05 : 1 bis 1 : 1 ,05 und ganz besonders bevorzugt 1 :1.
Die Umsetzung im zweiten Schritt erfolgt bevorzugt bei 40 bis 100 °C, besonders bevorzugt 50 bis 90, ganz besonders bevorzugt bei 60 bis 80 °C.
Dazu wird das aus dem ersten Reaktionsschritt erhaltene Reaktionsgemisch auf die gewünsch- te Temperatur gebracht und die Komponente (D) in mehreren oder bevorzugt in einer Portion eingetragen.
In der Regel und bevorzugt ist der aus der Reaktion im ersten Schritt im Reaktionsgemisch befindliche Katalysator (C) ausreichend, um auch die Reaktion zwischen Isocyanat- und Hydro- xygruppen zu katalysieren. Sollte dies nicht der Fall sein, so kann noch weiterer Katalysator (C) nachdosiert werden. Dabei kann es sich um den gleichen Katalysator (C) handeln, wie im ersten Schritt, oder um einen anderen, bevorzugt um den gleichen Katalysator.
Die Reaktion wird weitergeführt, bis der NCO-Wert auf unter 1 Gew%, bevorzugt unter
0,5 Gew%, besonders bevorzugt unter 0,3, ganz besonders bevorzugt unter 0,1 und insbesondere unter 0,1 Gew% gesunken ist.
Sollte die Reaktion in Gegenwart eines Lösungsmittels durchgeführt worden sein, so kann dieses jetzt abgetrennt werden, bevorzugt destillativ.
Es ist möglich, wenn auch in der Regel nicht erforderlich, den Katalysator aus dem erhaltenen Reaktionsgemisch abzutrennen.
Dies kann beispielsweise durch eine Wäsche oder Filtration erfolgen.
Dazu wird das Reaktionsgemisch in einem Waschapparat mit einer 5 - 25, bevorzugt 5 - 20, besonders bevorzugt 5 - 15 Gew%igen wäßrigen Lösung einer Base, wie z.B. Natronlauge, Kalilauge, Natriumhydrogencarbonat, Natriumcarbonat, Kaliumhydrogencarbonat, Kalziumhydroxid, Ammoniakwasser oder Kaliumcarbonat, der gegebenenfalls 5 - 15 Gew% Kochsalz, Kaliumchlorid, Ammoniumchlorid oder Ammoniumsulfat zugesetzt sein können, bevorzugt mit Natronlauge oder Natronlauge-Kochsalz-Lösung, neutralisiert.
Die Wäsche kann beispielsweise in einem Rührbehälter oder in anderen herkömmlichen Apparaturen, z.B. in einer Kolonne oder Mixer-Settler-Apparatur, durchgeführt werden.
Anschließend wird die organische Phase der Vorwäsche mit Wasser oder einer 5 - 30 Gew%- igen, bevorzugt 5 - 20, besonders bevorzugt 5 - 15 Gew%-igen Kochsalz-, Kaliumchlorid-, Ammoniumchlorid-, Natriumsulfat- oder Ammoniumsulfatlösung, bevorzugt Kochsalzlösung, behandelt.
Es ist jedoch auch möglich, Katalysatorspuren aus dem Reaktionsgemisch durch dessen Filtra- tion über Aktivkohle, Aluminiumoxid, Silika oder lonentauscher zu entfernen.
Die erfindungsgemäßen Urethan(meth)acrylate bzw. das gemäß dem erfindungsgemäßen Verfahren erhaltene Produkt kann in an sich bekannter Weise in strahlungshärtbare Beschichtungsmassen eingesetzt werden und weist als einen Vorteil auf, daß im Produkt der ersten Stu- fe die Verteilung der Lactoneinheiten (B) gleichmäßiger ist als gemäß den Verfahren aus dem Stand der Technik. Dies hat zur Folge, daß die Beschichtungsmassen, die ein Produkt erhalten nach dem erfindungsgemäßen Verfahren enthalten, eine höhere Flexibilität aufweisen.
Dementsprechend ist auch die Verwendung von Urethan(meth)acrylaten, erhalten nach dem erfindungsgemäßen Verfahren, in strahlungshärtbaren Beschichtungsmassen ein Gegenstand der vorliegenden Erfindung.
Die erfindungsgemäßen Urethan(meth)acrylate können als alleiniges Bindemittel oder bevorzugt in Kombination mit mindestens einer weiteren radikalisch polymerisierbaren Verbindung verwendet werden.
Somit sind ein weiterer Gegenstand der vorliegenden Erfindung strahlungshärtbare Beschichtungsmassen, enthaltend mindestens ein erfindungsgemäßes Urethan(meth)acrylat und optional mindestens eine radikalisch polymerisierbaren Verbindung sowie optional mindestens einen Photoinitiator.
Radikalisch polymerisationsfähige Gruppen sind beispielsweise bevorzugt (Meth)Acrylat- Gruppen und besonders bevorzugt Acrylat-Gruppen. Bei den radikalisch polymerisationsfähigen Verbindungen handelt es sich bevorzugt um multifunktionelle (Verbindung mit mehr als einer radikalisch polymerisierbaren Doppelbindung) polymerisationsfähige Verbindungen.
Bevorzugt sind die polymerisationsfähigen Verbindungen ausgewählt aus der Gruppe beste- hend aus multifunktionellen (Meth)acrylaten, Urethan(meth)acrylaten, Epoxy(meth)acrylaten und Carbonat(meth)acrylaten.
(Meth)Acrylsäure steht in dieser Schrift für Methacrylsäure und Acrylsäure, bevorzugt für Acryl- säure.
Multifunktionelle, polymerisationsfähige Verbindungen sind bevorzugt multifunktionelle
(Meth)acrylate, die mindestens 2, bevorzugt 2 - 10, besonders bevorzugt 3 - 6 und ganz besonders bevorzugt 3 - 4 (Meth)acrylatgruppen, bevorzugt Acrylatgruppen tragen. Beispiele für multifunktionelle, polymerisationsfähige Verbindungen sind Ethylenglykoldiacrylat, 1 ,2-Propandioldiacrylat, 1 ,3-Propandioldiacrylat, 1 ,4-Butandioldiacrylat, 1 ,3-Butandioldiacrylat, 1 ,5-Pentandioldiacrylat, 1 ,6-Hexandioldiacrylat, 1 ,8-Octandioldiacrylat, Neopentylglykoldiacrylat, 1 ,1 -, 1 ,2-, 1 ,3- und 1 ,4-Cyclohexandimethanoldiacry-lat, 1 ,2-, 1 ,3- oder 1 ,4-Cyclohexandiol- diacrylat, Diproyplengylkoldiacrylat,Tripropylen-glykoldiacrylat, Trimethylolpropantriacrylat,
Ditrimethylolpropantetraacrylat, Dipentaerythritpenta- oder -hexaacrylat, Pentaerythrittri- oder - tetraacrylat, Glycerindi- oder -triacrylat, sowie Di- und Polyacrylate von Zuckeralkoholen, wie beispielsweise Sorbit, Mannit, Diglycerol, Threit, Erythrit, Adonit (Ribit), Arabit (Lyxit), Xylit, Dulcit (Galactit), Maltit oder Isomalt, oder von Polyesterpolyolen, Polyetherolen, Poly-THF mit einer Molmasse zwischen 162 und 2000, Poly-1 ,3-Propandiol mit einer Molmasse zwischen 134 und 1 178, Polyethylenglykol mit einer Molmasse zwischen 106 und 898, sowie Epoxy(meth)- acrylate, , Polyester(meth)acrylate, Polyether(meth)acrylate, Urethan-(meth)acrylate oder Poly- carbonat(meth)acrylate, die optional auch mit einem oder mehreren Aminen modifiziert sein können.
Weitere Beispiele sind (Meth)Acrylate von Verbindungen der Formel (Villa) bis (Vllld),
(Villa) (Vlllb)
(Vlllc)
(Vllld) worin
R8 und R9 unabhängig voneinander Wasserstoff oder gegebenenfalls durch Aryl, Alkyl, Aryloxy, Alkyloxy, Heteroatome und/oder Heterocyclen substituiertes Ci - Cis-Alkyl, k, I, m, q unabhängig voneinander je für eine ganze Zahl von 1 bis 10, bevorzugt 1 bis 5 und besonders bevorzugt 1 bis 3 steht und jedes Xi für i = 1 bis k, 1 bis I, 1 bis m und 1 bis q unabhängig voneinander ausgewählt sein kann aus der Gruppe -CH2-CH2-0-, -CH2-CH(CH3)-0-, -CH(CH3)-CH2-0-, -CH2-C(CH3)2-0-, -C(CH3)2-CH2-0-, -CH2-CHVin-0-, -CHVin-CH2-0-, -CH2-CHPh-0- und -CHPh-CH2-0-, bevorzugt aus der Gruppe -CH2-CH2-0-, -CH2-CH(CH3)-0- und -CH(CH3)-CH2-0-, und besonders bevorzugt -CH2-CH2-0-, worin Ph für Phenyl und Vin für Vinyl steht.
Darin bedeuten gegebenenfalls durch Aryl, Alkyl, Aryloxy, Alkyloxy, Heteroatome und/oder He- terocyclen substituiertes Ci - Cis-Alkyl beispielsweise Methyl, Ethyl, Propyl, Isopropyl, n-Butyl, sec-Butyl, tert.-Butyl, Pentyl, Hexyl, Heptyl, Octyl, 2-Etylhexyl, 2,4,4-Trimethylpentyl, Decyl, Dodecyl, Tetradecyl, Hetadecyl, Octadecyl, 1 , 1 -Dimethylpropyl, 1 , 1 -Dimethylbutyl, 1 , 1 ,3,3-Te- tramethylbutyl, bevorzugt Methyl, Ethyl oder n-Propyl, ganz besonders bevorzugt Methyl oder Ethyl.
Bevorzugt handelt es sich dabei um (Meth)Acrylate von ein- bis zwanzigfach und besonders bevorzugt drei- bis zehnfach ethoxyliertem, propoxyliertem oder gemischt ethoxyliertem und propoxyliertem und insbesondere ausschließlich ethoxyliertem Neopentylglykol, Trimethylolpro- pan, Trimethylolethan oder Pentaerythrit.
Bevorzugte multifunktionelle, polymerisationsfähige Verbindungen sind, 1 ,2-Propan-dioldi- acrylat, 1 ,3-Propandioldiacrylat, Diproypiengylkoldiacrylat, Tnpropylenglykoldiacrylat, Trimethyl- olpropantriacrylat, Ditrimethyloltetracrylat und Dipentaerithrolhexaacry-Iat, Polyesterpolyolac- rylate, Polyetherolacrylate und Triacrylat von ein- bis zwanzigfach alkoxyliertem, besonders bevorzugt ein- bis 20fach ethoxyliertem Trimethylolpropan, ein- bis 20fach propoxyliertem Gly- cerin oder ein- bis 20fach ethoxyliertem und/oder propoxyliertem Pentaerythrit.
In einer bevorzugten Ausführungsform werden in Drucklacken Epoxy(meth)acrylate als multifunktionelle, polymerisationsfähige Verbindungen eingesetzt.
Ganz besonders bevorzugte multifunktionelle, polymerisationsfähige Verbindungen sind Trime- thylolpropantriacrylat und Triacrylat von ein- bis zwanzigfach ethoxyliertem Trimethylolpropan, Triacrylat von ein- bis 20fach propoxyliertem Glycerin oder Tetraacrylat von ein- bis 20fach ethoxyliertem und/oder propoxyliertem Pentaerythrit.
Weitere Bestandteile können auch teilweise oder vollständig mit (Meth)Acrylsäure veresterte Polyalkohole sein.
Derartige Polyalkohole sind beispielsweise mindestens zweiwertige Polyole, Polyether-ole oder Polyesterole oder Polyacrylatpolyole mit einer mittleren OH-Funktionalität von mindestens 2, bevorzugt mindestens 3, besonders bevorzugt mindestens 4 und ganz besonders bevorzugt 4 bis 20. Polyetherole können zusätzlich zu den alkoxylierten Polyolen auch Polyethylenglykol mit einer Molmasse zwischen 106 und 2000, Polypropylenglykol mit einem Molgewicht zwischen 134 und 2000, Poly-THF mit einem Molgewicht zwischen 162 und 2000 oder Poly-1 ,3-propandiol mit einem Molgewicht zwischen 134 und 400 sein.
Polyesterpolyole, sind z.B. aus Ullmanns Encyklopädie der technischen Chemie,
4. Auflage, Band 19, S. 62 bis 65 bekannt. Bevorzugt werden Polyesterpolyole eingesetzt, die durch Umsetzung von zweiwertigen Alkoholen mit zweiwertigen Carbonsäuren erhalten werden. Anstelle der freien Polycarbonsäuren können auch die entsprechenden Polycarbonsäureanhyd- ride oder entsprechende Polycarbonsäureester von niederen Alkoholen oder deren Gemische zur Herstellung der Polyesterpolyole verwendet werden. Die Polycarbonsäuren können aliphatisch, cycloaliphatisch, araliphatisch, aromatisch oder heterocyclisch sein und gegebenenfalls, z.B. durch Halogen-atome, substituiert und/oder ungesättigt sein. Als Beispiele hierfür seien genannt:
Oxalsäure, Maleinsäure, Fumarsäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Sebacinsäure, Dodekandisäure, o-Phthalsäure, Isophthalsäure, Terephthalsäure, Trimellithsäure, Azelainsäure, 1 ,4-Cyclohexandicarbonsäure oder Tetrahydrophthalsäure, Korksäure, Azelainsäure, Phthalsäureanhydrid, Tetrahydrophthalsäureanhydrid, Hexahydrophthalsäureanhydrid, Tetrach- lorphthalsäureanhydrid, Endomethylentetrahydrophthalsäureanhydrid, Glutarsäureanhydrid, Maleinsäureanhydrid, dimere Fettsäuren, deren Isomere und Hydrierungsprodukte sowie veresterbare Derivate, wie Anhydride oder Dialkylester, beispielsweise Ci-C4-Alkylester, bevorzugt Methyl-, Ethyl- oder n-Butylester, der genannten Säuren eingesetzt werden. Bevorzugt sind Dicarbonsäuren der allgemeinen Formel HOOC-(CH2)y-COOH, wobei y eine Zahl von 1 bis 20, bevorzugt eine gerade Zahl von 2 bis 20 ist, besonders bevorzugt Bernsteinsäure, Adipinsäure, Sebacinsäure und Dodecandicarbonsäure.
Als mehrwertige Alkohole kommen zur Herstellung der Polyesterole in Betracht
1 .2- Propandiol, Ethylenglykol, 2,2-Dimethyl-1 ,2-Ethandiol, 1 ,3-Propandiol, 1 ,2-Butandiol, 1 ,3-Butandiol, 1 ,4-Butandiol, 3-Methylpentan-1 ,5-diol, 2-Ethylhexan-1 ,3-diol, 2,4-Diethyloctan-
1 .3- diol, 1 ,6-Hexandiol, Polyethylenglykol mit einer Molmasse zwischen 106 und 2000, Polypropylenglykol mit einem Molgewicht zwischen 134 und 2000, Poly-THF mit einem Molgewicht zwischen 162 und 2000, Poly-1 ,3-propandiol mit einem Molgewicht zwischen 134 und 400, Ne- opentylglykol, Hydroxypivalinsäureneopentylglykolester, 2-Ethyl-1 ,3-Propandiol, 2-Methyl-1 ,3- Propandiol, 2,2-Bis(4-hydroxy-cyclohexyl)propan, 1 ,1 -, 1 ,2-, 1 ,3- und 1 ,4-Cyclohexandi- methanol, 1 ,2-, 1 ,3- oder 1 ,4-Cyclohexandiol, Trimethylolbutan, Trimethylolpropan, Trimethylo- lethan, Neopentyl-glykol, Pentaerythrit, Glycerin, Ditrimethylolpropan, Dipentaerythrit, Sorbit, Mannit, Diglycerol, Threit, Erythrit, Adonit (Ribit), Arabit (Lyxit), Xylit, Dulcit (Galactit), Maltit oder Isomalt, die gegebenenfalls wie oben beschrieben alkoxyliert sein können.
Bevorzugt sind Alkohole der allgemeinen Formel HO-(CH2)x-OH, wobei x eine Zahl von 1 bis 20, bevorzugt eine gerade Zahl von 2 bis 20 ist. Bevorzugt sind Ethylenglycol, Butan-1 ,4-diol, Hexan-1 ,6-diol, Octan-1 ,8-diol und Dodecan-1 ,12- diol. Weiterhin bevorzugt ist Neopentylgly- kol.
Geeignet sind auch Polyesterdiole auf Lacton-Basis, wobei es sich um Homo- oder Mischpoly- merisate von Lactonen, bevorzugt um endständige Hydroxylgruppen aufweisende Anlagerungsprodukte von Lactonen an geeignete difunktionelle Startermoleküle handelt. Als Lactone kommen bevorzugt solche in Betracht, die sich von Verbindungen der allgemeinen Formel HO- (CH2)z-COOH ableiten, wobei z eine Zahl von 1 bis 20 ist und ein H-Atom einer Methyleneinheit auch durch einen d- bis C4-Alkylrest substituiert sein kann. Beispiele sind ε-Caprolacton, ß-Propiolacton, gamma-Butyrolacton und/oder Methyl- ε -caprolacton, 4-Hydroxybenzoesäure, 6-Hydroxy-2-naphthalinsäure oder Pivalolacton sowie deren Gemische. Geeignete Starterkomponenten sind z.B. die vorstehend als Aufbaukomponente für die Polyesterpolyole genannten niedermolekularen zweiwertigen Alkohole. Die entsprechenden Polymerisate des ε -Capro- lactons sind besonders bevorzugt. Auch niedere Polyesterdiole oder Polyetherdiole können als Starter zur Herstellung der Lacton-Polymerisate eingesetzt sein. Anstelle der Polymerisate von Lactonen können auch die entsprechenden, chemisch äquivalenten Polykondensate der den Lactonen entsprechenden Hydroxycarbonsäuren, eingesetzt werden.
Ferner kommen auch Polycarbonat-Diole, wie sie z.B. durch Umsetzung von Phosgen mit ei- nem Überschuß von den als Aufbaukomponenten für die Polyesterpolyole genannten niedermolekularen Alkohole erhalten werden können, in Betracht.
Weiterhin kann es sich bei der multifunktionellen, polymerisationsfähigen Verbindung um Urethan(meth)acrylate, Epoxy(meth)acrylate oder Carbonat(meth)acrylate handeln.
Urethan(meth)acrylate sind z.B. erhältlich durch Umsetzung von Polyisocyanaten mit Hydro- xyalkyl(meth)acrylaten und gegebenenfalls Kettenverlängerungsmitteln wie Diolen, Polyolen, Diaminen, Polyaminen oder Dithiolen oder Polythiolen. In Wasser ohne Zusatz von Emulgato- ren dispergierbare Urethan(meth)acrylate enthalten zusätzlich noch ionische und/oder nichtioni- sehe hydrophile Gruppen, welche z.B. durch Aufbaukomponenten wie Hydroxycarbonsäuren ins Urethan eingebracht werden.
Derartige Urethan(meth)acrylate enthalten als Aufbaukomponenten im wesentlichen: (1 ) mindestens ein organisches aliphatisches, aromatisches oder cycloaliphatisches, bevorzugt aliphatisches oder cycloaliphatisches Di- oder Polyisocyanat,
(2) mindestens eine Verbindung mit mindestens einer gegenüber Isocyanat reaktiven Gruppe und mindestens einer radikalisch polymerisierbaren ungesättigten Gruppe und
(3) gegebenenfalls mindestens eine Verbindung mit mindestens zwei gegenüber Isocyanat reaktiven Gruppen. Die Urethan(meth)acrylate haben vorzugsweise ein zahlenmittleres Molgewicht Mn von 500 bis 20 000, insbesondere von 500 bis 10 000 besonders bevorzugt 600 bis 3000 g/mol (bestimmt durch Gelpermeationschromatographie mit Tetrahydrofuran und Polystyrol als Standard). Die Urethan(meth)acrylate haben vorzugsweise einen Gehalt von 1 bis 5, besonders bevorzugt von 2 bis 4 Mol (Meth)acrylgruppen pro 1000 g Urethan(meth)acrylat.
Epoxid(meth)acrylate sind erhältlich durch Umsetzung von Epoxiden mit (Meth)acrylsäure. Als Epoxide in Betracht kommen z.B epoxidierte Olefine, aromatische Glycidyl-ether oder aliphati- sehe Glycidylether, bevorzugt solche von aromatischen oder aliphatischen Glycidylethern.
Epoxidierte Olefine können beispielsweise sein Ethylenoxid, Propylenoxid, /so-Butylenoxid, 1 -Butenoxid, 2-Butenoxid, Vinyloxiran, Styroloxid oder Epichlorhydrin, bevorzugt sind Ethylenoxid, Propylenoxid, /so-Butylenoxid, Vinyloxiran, Styroloxid oder Epichlorhydrin, besonders be- vorzugt Ethylenoxid, Propylenoxid oder Epichlorhydrin und ganz besonders bevorzugt Ethylenoxid und Epichlorhydrin.
Aromatische Glycidylether sind z.B. Bisphenol-A-diglycidylether, Bisphenol-F-diglycidylether, Bisphenol-B-diglycidylether, Bisphenol-S-diglycidylether, Hydrochinondiglycidylether, Alkylie- rungsprodukte von Phenol/Dicyclopentadien, z.B. 2,5-bis[(2,3-Epoxypropoxy)phenyl]octahydro- 4,7-methano-5H-inden) (CAS-Nr. [13446-85-0]), Tris[4-(2,3-epoxypropoxy)phenyl]methan Isomere )CAS-Nr. [66072-39-7]), Phenol basierte Epoxy Novolake (CAS-Nr. [9003-35-4]) und Kre- sol basierte Epoxy Novolake (CAS-Nr. [37382-79-9]). Aliphatische Glycidylether sind beispielsweise 1 ,4-Butandioldiglycidether, 1 ,6-Hexandiol- diglycidylether, Trimethylolpropantriglycidylether, Pentaerythrittetraglycidylether, 1 ,1 ,2,2-tetra- kis[4-(2,3-epoxypropoxy)phenyl]ethan (CAS-Nr. [27043-37-4]), Diglycidylether von Polypropy- lenglykol (a,(jo-bis(2,3-epoxypropoxy)poly(oxypropylen) (CAS-Nr. [16096-30-3]) und von hydriertem Bisphenol A (2,2-bis[4-(2,3-epoxypro-poxy)cyclohexyl]propan, CAS-Nr. [13410-58-7]).
Die Epoxid(meth)acrylate haben vorzugsweise ein zahlenmittleres Molgewicht Mn von 200 bis 20000, besonders bevorzugt von 200 bis 10000 g/mol und ganz besonders bevorzugt von 250 bis 3000 g/mol; der Gehalt an (Meth)acrylgruppen beträgt vorzugsweise 1 bis 5, besonders bevorzugt 2 bis 4 pro 1000 g Epoxid(meth)acrylat (bestimmt durch Gelpermeationschromatogra- phie mit Polystyrol als Standard und Tetrahydrofuran als Elutionsmittel).
Carbonat(meth)acrylate enthalten im Mittel vorzugsweise 1 bis 5, insbesondere 2 bis 4, besonders bevorzugt 2 bis 3 (Meth)acrylgruppen und ganz besonders bevorzugt 2
(Meth)acrylgruppen.
Das zahlenmittlere Molekulargewicht Mn der Carbonat(meth)acrylate ist vorzugsweise kleiner 3000 g/mol, besonders bevorzugt kleiner 1500 g/mol, besonders bevorzugt kleiner 800 g/mol (bestimmt durch Gelpermeationschromatgraphie mit Polystyrol als Standard, Lösemittel Tetra- hydrofuran).
Die Carbonat(meth)acrylate sind in einfacher Weise erhältlich durch Umesterung von Kohlensäureestern mit mehrwertigen, vorzugsweise zweiwertigen Alkoholen (Diolen, z.B. Hexandiol) und anschließende Veresterung der freien OH-Gruppen mit (Meth)acrylsäure oder auch Umesterung mit (Meth)acrylsäureestern, wie es z.B. in EP-A 92 269 beschrieben ist. Erhältlich sind sie auch durch Umsetzung von Phosgen, Harnstoffderivaten mit mehrwertigen, z.B. zweiwertigen Alkoholen. Denkbar sind auch (Meth)acrylate von Polycarbonatpolyolen, wie das Reaktionsprodukt aus einem der genannten Di- oder Polyole und einem Kohlensäureester sowie einem hydroxylgrup- penhaltigen (Meth)acrylat.
Geeignete Kohlensäureester sind z.B. Ethylen-, 1 ,2- oder 1 ,3-Propylencarbonat, Kohlensäure- dimethyl-, -diethyl- oder -dibutylester.
Geeignete hydroxygruppenhaltige (Meth)acrylate sind beispielsweise 2-Hydroxyethyl- (meth)acrylat, 2- oder 3-Hydroxypropyl(meth)acrylat, 1 ,4-Butandiolmono(meth)acrylat, Neopen- tylglykolmono(meth)acrylat, Glycerinmono- und di(meth)acrylat, Trimethylolpropanmono- und di(meth)acrylat sowie Pentaerythritmono-, -di- und -tri(meth)acrylat.
Besonders bevorzugte Carbonat(meth)acrylate sind solche der Formel:
worin R für H oder CH3, X für eine C2-C18 Alkylengruppe und n für eine ganze Zahl von 1 bis 5, vorzugsweise 1 bis 3 steht.
R steht vorzugsweise für H und X steht vorzugsweise für C2- bis Cio-Alkylen, beispiels-weise 1 ,2-Ethylen, 1 ,2-Propylen, 1 ,3-Propylen, 1 ,4-Butylen oder 1 ,6-Hexylen, besonders bevorzugt für C4- bis Ce-Alkylen. Ganz besonders bevorzugt steht X für C6-AI-kylen.
Vorzugsweise handelt es sich bei den Carbonat(meth)acrylaten um aliphatische Carbo- nat(meth)acrylate.
Unter den multifunktionellen, polymerisationsfähigen Verbindung sind Urethan(meth)acrylate besonders bevorzugt.
Es ist bevorzugt, den erfindungsgemäßen Beschichtungsmassen mindestens einen Photoinitiator zuzusetzen. Photoinitiatoren können beispielsweise dem Fachmann bekannte Photoinitiatoren sein, z.B. solche in "Advances in Polymer Science", Volume 14, Springer Berlin 1974 oder in K. K. Dietli- ker, Chemistry and Technology of UV- and EB-Formulation for Coatings, Inks and Paints, Volume 3; Photoinitiators for Free Radical and Cationic Polymeriza-tion, P. K. T. Oldring (Eds), SITA Technology Ltd, London, genannten.
In Betracht kommen z.B. Mono- oder Bisacylphosphinoxide, wie sie z.B. in EP-A 7 508, EP-A 57 474, DE-A 196 18 720, EP-A 495 751 oder EP-A 615 980 beschrieben sind, beispielsweise 2,4,6-Trimethylbenzoyldiphenylphosphinoxid (Lucirin® TPO der BASF SE), Ethyl-2,4,6-tri- methylbenzoylphenylphosphinat (Lucirin® TPO L der BASF SE), Bis-(2,4,6-trimethylbenzoyl)- phenylphosphinoxid (Irgacure® 819 der BASF SE), Benzophenone, Hydroxyacetophenone, Phenylglyoxylsäure und ihre Derivate oder Gemische dieser Photoinitiatoren. Als Beispiele seien genannt Benzophenon, Acetophenon, Acetonaphthochinon, Methylethylketon, Valero- phenon, Hexanophenon, a-Phenylbutyrophenon, p-Morpholinopropiophenon, Dibenzosuberon, 4-Morpholinobenzophenon, 4-Morpholinodeoxybenzoin, p-Diacetylbenzol, 4-Aminobenzophe- non, 4'-Methoxyaceto-phenon, ß-Methylanthrachinon, feri-Butylanthrachinon, Anthrachinoncar- bonysäureester, Benzaldehyd, α-Tetralon, 9-Acetylphenanthren, 2-Acetylphenanthren, 10-Thio- xan-thon, 3-Acetylphenanthren, 3-Acetylindol, 9-Fluorenon, 1 -lndanon, 1 ,3,4-Triacetylben-zol, Thioxanthen-9-οη, Xanthen-9-οη, 2,4-Dimethylthioxanthon, 2,4-Diethylthioxanthon, 2,4-Di-/so propylthioxanthon, 2,4-Dichlorthioxanthon, Benzoin, Benzoin-/sobutylether, Chloroxanthenon, Benzoin-tetrahydropyranylether, Benzoin-methylether, Benzoin-ethylether, Benzoin-butylether, Benzoin-Zsopropylether, 7-H-Benzoin-methylether, Benz[de]anthracen-7-on, 1 -Naphthaldehyd, 4,4'-Bis(dimethylamino)benzophenon, 4-Phenylbenzophenon, 4-Chlorbenzophenon, Michlers Keton, 1 -Acetonaphthon, 2-Acetonaphthon, 1 -Benzoylcyclohexan-1 -ol, 2-Hydroxy-2,2-dimethyl- acetophenon, 2,2-Dimethoxy-2-phenylacetophenon, 2,2-Diethoxy-2-phenylacetophenon,
1 ,1 -Dichlor-acetophenon, 1 -Hydroxyacetophenon, Acetophenondimethylketal, o-Methoxybenzo- phenon, 2-hydroxy-1 -[4-[[4-(2-hydroxy-2-methyl-propanoyl)phenyl]methyl]phenyl]-2-methyl- propan-1 -on,2-Benzyl-2-dimethylamino-4'-morpholinobutyrophenon, 2-(Di-methylamino)-1 -(4- morpholinophenyl)-2-(p-tolylmethyl)butan-1 -on, 2-Methyl-1 -(4-me-thylthiophenyl)-2-morpho- linopropan-1 -οη, Triphenylphosphin, Tri-o-Tolylphosphin, Benz[a]anthracen-7,12-dion, 2,2-Di- ethoxyacetophenon, Benzilketale, wie Benzildimethylketal, Anthrachinone wie 2-Methylan- thrachinon, 2-Ethylanthrachinon, 2-feri-Butyl-anthrachinon, 1 -Chloranthrachinon, 2-Amylanthra- chinon und 2,3-Butandion. Denkbar als Photoinitiatoren sind ebenfalls polymere Photoinitiatoren, wie beispielsweise der Diester von Carboxymethoxybenzophenon mit Polytetramethylenglykolen unterschiedlichen Molgewichts, bevorzugt 200 bis 250 g/mol (CAS 515136-48-8), sowie CAS 1246194-73-9, CAS 813452-37-8, CAS 71512-90-8, CAS 886463-10-1 oder weitere polymere Benzophenon- derivate, wie sie beispielsweise unter dem Handelsnamen Omnipol® BP der Firma IGM Resins B.V., Waalwijk, Niederlande oder Genopol® BP1 der Firma Rahn AG, Schweiz im Handel verfügbar sind. Denkbar sind ferner auch polymere Thioxanthone, beispielsweise der Diester von Carboxymethoxythioxanthonen mit Polytetramethylenglykolen unterschiedlichen Molgewichts, wie sie beispielsweise unter dem Handelsnamen Omnipol® TX der Firma IGM Resins B.V., Waalwijk, Niederlande im Handel verfügbar sind. Denkbar sind ferner auch polymere a-Amino- ketone, beispielsweise der Diester von Carboxyethoxythioxanthonen mit Polyethylenglykolen unterschiedlichen Molgewichts, wie sie beispielsweise unter dem Handelsnamen Omnipol® 910 oder Omnipol® 9210 der Firma IGM Resins B.V., Waalwijk, Niederlande im Handel verfügbar sind.
In einer bevorzugten Ausführungsform werden als Photoinitiatoren Silsesquioxanverbindungen mit mindestens einer initiierend wirkenden Gruppe eingesetzt, wie sie beschrieben sind in WO 2010/063612 A1 , dort besonders von Seite 2, Zeile 21 bis Seite 43, Zeile 9, was hiermit per Bezugnahme Bestandteil der vorliegenden Offenbarung sei, bevorzugt von Seite 2, Zeile 21 bis Seite 30, Zeile 5 sowie den in den Beispiele der WO 2010/063612 A1 beschriebenen Verbindungen.
Geeignet sind auch nicht- oder wenig vergilbende Photoinitiatoren vom Phenylglyoxalsäure- estertyp, wie in DE-A 198 26 712, DE-A 199 13 353 oder WO 98/33761 beschriebene Silsesquioxanverbindungen.
Bevorzugt unter diesen Photoinitiatoren sind 2,4,6-Trimethylbenzoyldiphenylphosphin-oxid, Ethyl-2,4,6-trimethylbenzoylphenylphosphinat, Bis-(2,4,6-trimethylbenzoyl)-phenylphosphinoxid, 2-Benzyl-2-dimethylamino-4'-morpholinobutyrophenon, 2-(Di-methylamino)-1 -(4-morpholino- phenyl)-2-(p-tolylmethyl)butan-1 -on, 2-Hydroxy-1 -[4-[[4-(2-hydroxy-2-methyl-propanoyl)phenyl]- methyl]phenyl]-2-methyl-propan-1 -on sowie die oben beschriebenen polymeren Thioxanthon- und Benzophenonderivate sowie die in WO 2010/063612 A1 beschriebenen. Als weitere typische Additive können den Beschichtungsmassen beispielsweise Dispergiermittel, Wachse, Stabilisatoren, Sensibilisatoren, Füllmittel, Entschäumer, Farbstoffe, antistatische Agentien, Verdicker, oberflächenaktive Agentien wie Verlaufsmittel, Slip-aids oder Haftvermittler zugegeben werden. Geeignete Füllstoffe umfassen Silikate, z. B. durch Hydrolyse von Siliciumtetrachlorid erhältliche Silikate wie Aerosil® der Fa. Degussa, Kieselerde, Talkum, Aluminiumsilikate, Magnesiumsilikate, Calciumcarbonate etc.
Im Folgenden sind Beispiele für besonders gut geeignete Pigmente genannt, die den erfin- dungsgemäßen Beschichtungsmassen zugesetzt werden können.
Organische Pigmente:
Monoazopigmente: C.l. Pigment Brown 25; C.l. Pigment Orange 5, 13, 36 und 67;
C.l. Pigment Red 1 , 2, 3, 5, 8, 9, 12, 17, 22, 23, 31 , 48:1 , 48:2, 48:3, 48:4, 49, 49:1 , 52:1 , 52:2, 53, 53:1 , 53:3, 57:1 , 63, 1 12, 146, 170, 184, 210, 245 und 251 ; C.l. Pigment Yellow 1 , 3, 73, 74, 65, 97, 151 und 183; Disazopigmente: C.l. Pigment Orange 16, 34 und 44; C.l. Pigment Red
144, 166, 214 und 242; C.l. Pigment Yellow 12, 13, 14, 16, 17,
81 , 83, 106, 1 13, 126, 127, 155, 174, 176 und 188;
Anthanthronpigmente: C.l. Pigment Red 168 (C.l. Vat Orange 3);
Anthrachinonpigmente: C.l. Pigment Yellow 147 und 177; C.l. Pigment Violet 31 ;
Anthrachinonpigmente: C.l. Pigment Yellow 147 und 177; C.l. Pigment Violet 31 ;
Anthrapyrimidinpigmente: C.l. Pigment Yellow 108 (C.l. Vat Yellow 20);
Chinacridonpigmente: C.l. Pigment Red 122, 202 und 206;
C.l. Pigment Violet 19;
Chinophthalonpigmente: C.l. Pigment Yellow 138;
Dioxazinpigmente: C.l. Pigment Violet 23 und 37;
Flavanthronpigmente: C.l. Pigment Yellow 24 (C.l. Vat Yellow 1 );
Indanthronpigmente: C.l. Pigment Blue 60 (C.l. Vat Blue 4) und 64 (C.l. Vat Blue 6);
Isoindolinpigmente: C.l. Pigment Orange 69; C.l. Pigment Red 260; C.l. Pigment
Yellow 139 und 185;
Isoindolinonpigmente: C.l. Pigment Orange 61 ; C.l. Pigment Red 257 und 260; C.l.
Pigment Yellow 109, 1 10, 173 und 185;
Isoviolanthronpigmente: C.l. Pigment Violet 31 (C.l. Vat Violet 1 );
Metallkomplexpigmente: C.l. Pigment Yellow 1 17, 150 und 153; C.l. Pigment Green 8;
Perinonpigmente: C.l. Pigment Orange 43 (C.l. Vat Orange
7); C.l. Pigment Red 194 (C.l. Vat Red 15);
Perylenpigmente: C.l. Pigment Black 31 und 32; C.l. Pigment Red 123, 149,
178, 179 (C.l. Vat Red 23), 190 (C.l. Vat Red 29) und 224; C.l.
Pigment Violet 29;
Phthalocyaninpigmente: C.l. Pigment Blue 15, 15:1 , 15:2, 15:3, 15:4, 15:6 und 16; C.l.
Pigment Green 7 und 36;
Pyranthronpigmente: C.l. Pigment Orange 51 ; C.l. Pigment Red 216
(C.l. Vat Orange 4);
Thioindigopigmente: C.l. Pigment Red 88 und 181 (C.l. Vat Red 1 ); C.l. Pigment
Violet 38 (C.l. Vat Violet 3);
Triarylcarboniumpigmente: C.l. Pigment Blue 1 , 61 und 62; C.l. Pigment Green 1 ;
C.l. Pigment Red 81 , 81 :1 und 169; C.l. Pigment Violet 1 , 2, 3 und 27; C.l. Pigment Black 1 (Anilinschwarz);
C.l. Pigment Yellow 101 (Aldazingelb);
C.l. Pigment Brown 22.
Anorganische Pigmente:
Weißpigmente: Titandioxid (C.l. Pigment White 6), Zinkweiß, Farbenzinkoxid, Bariumsulfat, Zinksulfid, Lithopone; Bleiweiß; Calziumcarbonat;
Schwarzpigmente: Eisenoxidschwarz (C.l. Pigment Black 1 1 ), Eisen-Mangan- Schwarz, Spinellschwarz (C.l. Pigment Black 27); Ruß (C.l. Pigment Black 7); Buntpigmente: Chromoxid, Chromoxidhydratgrün; Chromgrün (C.l. Pigment Green 48); Cobaltgrün (C.l. Pigment Green 50); Ultramaringrün; Kobaltblau (C.l. Pigment Blue 28 und 36); Ultramarinblau; Eisenblau (C.l. Pigment Blue 27); Manganblau; Ultramarinviolett; Kobalt- und Manganviolett; Eisenoxidrot (C.l. Pigment Red 101 ); Cadmiumsulfoselenid (C.l. Pigment Red 108); Molybdatrot (C.l. Pigment Red 104); Ultramarinrot;
Eisenoxidbraun, Mischbraun, Spinell- und Korundphasen (C.l. Pigment Brown 24, 29 und 31 ), Chromorange; Eisenoxidgelb (C.l. Pigment Yellow 42); Nickeltitangelb (C.l. Pigment Yellow 53; C.l. Pigment Yellow 157 und 164); Chromtitangelb; Cadmiumsulfid und Cadmiumzinksulfid (C.l. Pigment Yellow 37 und 35); Chromgelb (C.l. Pigment Yellow 34), Zinkgelb, Erdalkalichromate; Neapelgelb; Bismutvanadat (C.l. Pigment Yellow 184); - Interferenzpigmente: Metalleffektpigmente auf der Basis beschichteter Metallplättchen;
Perlglanzpigmente auf der Basis metalloxidbeschichteter Glimmerplättchen; Flüssigkristallpigmente.
Als bevorzugte Pigmente sind dabei Monoazopigmente (insbesondere verlackte BONS- Pigmente, Naphthol AS-Pigmente), Disazopigmente (insbesondere Diarylgelbpigmente,
Bisacetessigsäureacetanilidpigmente, Disazopyrazolonpigmente), Chinacridonpigmente, Chi- nophthalonpigmente, Perinonpigmente, Phthalocyaninpigmente, Triarylcarboniumpigmente (Alkaliblaupigmente, verlackte Rhodamine, Farbstoffsalze mit komplexen Anionen), Isoindolinpig- mente, Weißpigmente und Ruße zu nennen.
Beispiele für besonders bevorzugte Pigmente sind im einzelnen: Ruß, Titandioxid, C.l. Pigment Yellow 138, C.l. Pigment Red 122 und 146, C.l. Pigment Violet 19, C.l. Pigment Blue 15:3 und 15:4, C.l. Pigment Black 7, C.l. Pigment Orange 5, 38 und 43 und C.l. Pigment Green 7. Geeignete Stabilisatoren umfassen typische UV-Absorber wie Oxanilide, Triazine und Benzotri- azol (letztere erhältlich als Tinuvin® -Marken der BASF) und Benzophenone. Diese können allein oder zusammen mit geeigneten Radikalfängern, beispielsweise sterisch gehinderten Aminen wie 2,2,6,6-Tetramethylpiperidin, 2,6-Di-tert.-butylpiperi-din oder deren Derivaten, z. B. Bis- (2,2,6,6-tetra-methyl-4-piperidyl)sebacinat, oder Chinonmethide (wie Irgastab® UV 22) einge- setzt werden. Stabilisatoren werden üblicherweise in Mengen von 0,1 bis 0,5 Gew.-%, der Wirkstoffkomponente, bezogen auf die Zubereitung, eingesetzt.
Die Beschichtungsmassen können auch als Drucktinten eingesetzt werden. Ein weiterer Aspekt der vorliegenden Erfindung ist ein Verfahren zum Bedrucken von flächigen oder dreidimensio- nalen, bevorzugt flächigen Substraten nach einem beliebigen Druckverfahren unter Verwendung von mindestens einer erfindungsgemäßen Druckfarbe. In einer bevorzugten Variante des erfindungsgemäßen Druckverfahrens druckt man mindestens eine erfindungsgemäße Druck- färbe auf ein Substrat und behandelt anschließend mit aktinischer Strahlung, beispielsweise UV-Strahlung und/oder Elektronenstrahlen, bevorzugt UV-Strahlung.
Druckverfahren, in denen die erfindungsgemäßen Druckfarben eingesetzt werden können sind bevorzugt Offsetdruck, Hochdruck, Flexodruck, Tiefdruck, Siebdruck und Tintenstrahldruck besonders bevorzugt sind Flexodruck und Offsetdruck.
Bei den sogenannten mechanischen Druckverfahren wie Offsetdruck, Hochdruck, Flexodruck oder Tiefdruck wird die Druckfarbe durch Kontakt einer mit Druckfarbe versehenen Druckplatte oder Druckform mit dem Bedruckstoff auf den Bedruckstoff übertragen. UV härtbare Druckfarben für diese Anwendungen umfassen üblicherweise Reaktivverdünner, Bindemittel, Farbmittel, Initiatoren sowie ggf. verschiedene Additive. Bindemittel dienen zur Bildung des Farbfilms und der Verankerung der Bestandteile wie beispielsweise Pigmente oder Füllstoffe im Farbfilm. Je nach Konsistenz enthalten Druckfarben für diese Anwendungen üblicherweise zwischen 10 und 60 Gew. % Bindemittel. Reaktivverdünner dienen zur Einstellung der Verarbeitungsviskosität.
Drucklacke werden entweder als Grundierung auf den Bedruckstoff aufgetragen (sogenannte "primer") oder nach dem Druckvorgang als Überzug auf den bedruckten Bedruckstoff aufgetragen. Drucklacke werden beispielsweise zum Schutz des Druckbildes, zur Verbesserung der Haftung der Druckfarbe auf dem Bedruckstoff oder zu ästhetischen Zwecken eingesetzt. Die Auftragung erfolgt üblicherweise in-line oder off-line mittels eines Lackierwerkes an der Druckmaschine.
Drucklacke enthalten kein Farbmittel, sind aber abgesehen davon im Regelfalle ähnlich wie Druckfarben zusammengesetzt, und zeichnen sich durch die Abwesenheit des Farbmittels aus.
Druckfarben für mechanische Druckverfahren umfassen so genannte pastöse Druckfarben mit hoher Viskosität für den Offset-und Hochdruck sowie so genannte Flüssigdruckfarben mit vergleichsweise niedriger Viskosität für den Flexo- und Tiefdruck.
Die erfindungsgemäßen Tinten können beispielsweise eingesetzt werden als Ink-Jet-Flüssigkeit sowie für Flüssigtoner für elektrophotographische Druckverfahren.
Gegebenenfalls kann, wenn mehrere Druckschichten der Druckfarben übereinander aufgetra- gen werden, nach jedem Druckvorgang eine Trocknung und/oder Strahlungshärtung erfolgen.
Die Strahlungshärtung erfolgt mit energiereichem Licht, z.B. UV-Licht oder Elektronenstrahlen. Die Strahlungshärtung kann auch bei höheren Temperaturen erfolgen. Als Strahlungsquellen für die Strahlungshärtung geeignet sind z.B. Quecksilber-Niederdruckstrahler, -Mitteldruckstrahler mit Hochdruckstrahler sowie Leuchtstoffröhren, Impulsstrahler, Metallhalogenidstrahler, Elektronenblitzeinrichtungen, wodurch eine Strahlungshärtung ohne Photoinitiator möglich ist, oder Excimerstrahler sowie UV-LEDs. Die Strahlungshärtung erfolgt durch Einwirkung energiereicher Strahlung, also UV-Strahlung oder Tageslicht, vorzugsweise Licht im Wellenlängenbereich von λ=200 bis 700 nm strahlt, besonders bevorzugt von λ=200 bis 500 nm und ganz besonders bevorzugt λ=250 bis 420 nm, oder durch Bestrahlung mit energiereichen Elektronen (Elektronenstrahlung; 60 bis 300 keV). Als Strahlungsquellen dienen bei- spielsweise Hochdruckquecksilberdampflampen, Laser, gepulste Lampen (Blitzlicht), Halogenlampen, UV-LEDs oder Excimerstrahler. Die üblicherweise zur Vernetzung ausreichende Strahlungsdosis bei UV-Härtung liegt im Bereich von 30 bis 3000 mJ/cm2.
Selbstverständlich sind auch mehrere Strahlungsquellen für die Härtung einsetzbar, z.B. zwei bis vier.
Diese können auch in jeweils unterschiedlichen Wellenlängebereichen strahlen.
Die Bestrahlung kann gegebenenfalls auch unter Ausschluß von Sauerstoff, z. B. unter Inert- gas-Atmosphäre, durchgeführt werden. Als Inertgase eignen sich vorzugsweise Stickstoff, Edelgase, Kohlendioxid, oder Verbrennungsgase.
Die erfindungsgemäßen Beschichtungsmassen eigenen sich zur Beschichtung von Substraten wie Holz, Papier, Textil, Leder, Vlies, Kunststoffoberflächen, PVC, Glas, Keramik, mineralischen Baustoffen, wie Zement-Formsteinen und Faserzementplatten, oder Metallen oder beschichteten Metallen, bevorzugt von Kunststoffen oder Metallen, insbesondere in Form von Folien, besonders bevorzugt Metallen.
Die Beschichtungsmittel können insbesondere in Grundierungen, Füllern, pigmentierten Deck- lacken und Klarlacken im Bereich Autoreparatur- oder Großfahrzeuglackierung und Flugzeugen eingesetzt werden. Besonders geeignet sind solche Beschichtungsmittel für Anwendungen, in denen eine besonders hohe Applikationssicherheit, Außenwitterungsbeständigkeit, Härte und Flexibilität gefordert werden, wie in der Autoreparatur- und Großfahrzeuglackierung. Die im Folgenden angegebenen Beispiele sollen die vorliegende Erfindung erläutern, ohne sie jedoch einzuschränken.
Die in dieser Schrift angegebenen %- und ppm-Angaben beziehen sich auf Gew.% und Gew.ppm, soweit nicht anders angegeben.
Beispiele
Vergleichsbeispiel 1 323 Teile epsilon-Caprolacton, 164 Teile Hydroxyethylacrylat und 0,2 Teile Zink ethylhexanoat (BorchiKat® 22 der OMG Borchers GmbH, Langenfeld, Deutschland) wurden 1 1 Stunden bei 105 - 1 10°C erhitzt, dann wurde auf 60°C abgekühlt und 187 Teile eines Diisocyanates auf Basis H12-MDI (Desmodur® W der Bayer MaterialScience) zugegeben und weitere 14 Stunden bei 80-85°C reagieren lassen. Der Isocyanatwert war auf < 0,1 % abgefallen. Es entstand ein zähflüssiges, klares Urethanacrylat mit einer Viskosität von 27,5 Pas (gemessen mit einem Epprecht Kegel/Platte Viskosimeter (Cone C) bei 25°C). Beispiel 1 :
323 Teile epsilon-Caprolacton, 164 Teile Hydroxyethylacrylat und 0,2 Teile Zink ethylhexanoat (BorchiKat® 22 der OMG Borchers GmbH, Langenfeld, Deutschland) wurden 1 1 Stunden bei 105 - 1 10°C erhitzt, dann wurde auf 60°C abgekühlt und 400 Teile eines Isocyanatoacrylats (Laromer® LR9000) zugegeben und weitere 12 Stunden bei 80-85°C reagieren lassen. Der Isocyanatwert war auf < 0,1 % abgefallen. Es entstand ein zähflüssiges, klares Urethanacrylat mit einer Viskosität von 15 Pas (gemessen mit einem Epprecht Kegel/Platte Viskosimeter (Cone C) bei 25 °C). Beispiel 2:
323 Teile epsilon-Caprolacton, 164 Teile Hydroxyethylacrylat und 0,5 Teile Tetrabutyl-ortho- titanat wurden 1 1 Stunden bei 105 - 1 10°C erhitzt, dann wurde auf 60°C abgekühlt und 400 Teile eines Isocyanatoacrylats (Laromer® LR9000) zugegeben und weitere 20 Stunden bei 80-85°C reagieren lassen. Der Isocyanatwert war auf < 0,1 % abgefallen. Es entstand ein zäh- flüssiges, klares Urethanacrylat mit einer Viskosität von 15,8 Pas (gemessen mit einem
Epprecht Kegel/Platte Viskosimeter (Cone C) 25 °C).
Beispiel 3: 323 Teile epsilon-Caprolacton, 164 Teile Hydroxyethylacrylat und 0,2 Teile Wismut ethylhexanoat (BorchiKat® 24 der OMG Borchers GmbH, Langenfeld, Deutschland) wurden 36 Stunden bei 105 - 1 10°C erhitzt, dann wurde auf 60°C abgekühlt und 400 Teile eines Isocyanatoacrylats (Laromer® LR9000) zugegeben und weitere 12 Stunden bei 80-85°C reagieren lassen. Der Isocyanatwert war auf < 0,1 % abgefallen. Es entstand ein zähflüssiges, klares Urethanacrylat mit einer Viskosität von 18 Pas (gemessen mit einem Epprecht Kegel/Platte Viskosimeter (Cone C) bei 25 °C).
Beispiel 4 Herstellen der Beschichtungen zur Bestimmung der Kratzfestigkeit
Je 96 Teile der Urethanacrylate aus Beispiel 1 bis 3 und Vergleichsbeispiel 1 wurden mit je 4 Teilen des Photinitiators Darocur® 1 173 (2-Hydroxy-2-methyl-1 -phenyl-propan-1 -on, Photoinitiator der BASF SE) gemischt, mit einem Kastenrakel (200 μηη) auf je 1 schwarze Glasplatte aufgetragen und mit 1350 mJ/cm2 Belichtungsstärke an einer IST UV Belichtungsanlage unter Luft belichtet.
Die Pendeldämpfung nach König betrug 18 s für Vergleichsbeispiel 1 und 27 s für Beispiel 1. Hohe Werte stehen für eine hohe Härte. Die Kratzbeständigkeit der gehärteten Schicht wurde folgendermaßen bestimmt: Die belichteten Filme wurden mit einem ScotchBrite® Fleece unter einer Belastung von 750g mit 10 Doppelhüben verkratzt und der Glanzunterschied bei 60° Meßwinkel vor und nach dem Kratzen bestimmt. Der Glanzerhalt ist der prozentuale Wert aus Glanz nach Verkratzung zu Glanz vor Verkratzung.
Der Glanzerhalt betrug:
Vergleichsbeispiel 1 : 52%
Beispiel 1 : 94%
Beispiel 2: 91 %
Beispiel 3: 93%

Claims

Patentansprüche
1 . Urethan(meth)acrylate der Formel
worin
R1 einen zweiwertigen, 2 bis 12 Kohlenstoffatome aufweisenden Alkylenrest, der gegebenenfalls mit Cr bis C4-Alkylgruppen substituiert und/oder durch ein oder mehrere Sauerstoffatome unterbrochen sein kann, bevorzugt 2 bis 10 Kohlenstoffatome aufweisend, besonders bevorzugt 2 bis 8 und ganz besonders bevorzugt 3 bis 6 Kohlenstoffatome aufweisend,
R2 jeweils unabhängig voneinander Methyl oder Wasserstoff, bevorzugt Wasserstoff,
R3 einen zweiwertigen, 1 bis 12 Kohlenstoffatome aufweisenden Alkylenrest, der gegebenenfalls mit C bis C4-Alkylgruppen und/oder durch ein oder mehrere Sauerstoffatome unterbrochen substituiert sein kann, bevorzugt 2 bis 10, besonders bevorzugt 3 bis 8 und ganz besonders bevorzugt 3 bis 4 Kohlenstoffatome aufweisend,
R4 einen zweiwertigen organischen Rest bedeutet, der durch gedankliche Abstraktion zweier Isocyanatgruppen von einem Polyisocyanat (D) entsteht, das mindestens ein Hydroxyalkyl(meth)acrylat über eine Allophanatgruppe gebunden enthält, und n und m unabhängig voneinander positive Zahlen von 1 bis 5, bevorzugt 2 bis 5, besonders bevorzugt 2 bis 4, ganz besonders bevorzugt 2 bis 3 und insbesondere 2 bis 2,5.
Urethan(meth)acrylat gemäß Anspruch 1 , dadurch gekennzeichnet, daß R1 ausgewählt ist aus der Gruppe bestehend aus 1 ,2-Ethylen, 1 ,2- oder 1 ,3-Propylen, 1 ,2-, 1 ,3- oder 1 ,4- Butylen, 1 ,1 -Dimethyl-1 ,2-ethylen, 1 ,2-Dimethyl-1 ,2-ethylen, 1 ,5-Pentylen, 1 ,6-Hexylen, 1 ,8-Octylen, 1 ,10-Decylen und 1 ,12-Dodecylen.
Urethan(meth)acrylat gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß R3 ausgewählt ist aus der Gruppe bestehend aus Methylen, 1 ,2-Ethylen, 1 ,2-Propylen, 1 ,3-Pro- pylen, 1 ,2-Butylen, 1 ,3-Butylen, 1 ,4-Butylen, 1 ,5-Pentylen, 1 ,5-Hexylen, 1 ,6-Hexylen, 1 ,8- Octylen, 1 ,10-Decylen, 1 ,12-Dodecylen, 2-Oxa-1 ,4-butylen, 3-Oxa-1 ,5-pentylen oder 3-Oxa-1 ,5-hexylen
Urethan(meth)acrylat gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß es sich bei dem Katalysator um eine Titan-, Zink- oder Wismut-Verbindung handelt.
Verfahren zur Herstellung von Urethan(meth)acrylaten gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß man in einem ersten Schritt ein Hydroxyal- kyl(meth)acrylat (A) der Formel
mit einem Lacton (B) der Formel
in Gegenwart mindestens eines Katalysators (C), ausgewählt aus der Gruppe bestehend aus Eisen-, Titan-, Aluminium-, Zirkon-, Mangan-, Nickel-, Zink-, Cobalt-, Zirkonium- und Wismut-Verbindungen, miteinander umsetzt, und in einem weiteren Schritt das so erhaltene Produkt aus dem ersten Schritt mit einem Polyisocyanat (D) umsetzt, das mindestens ein Hydroxyalkyl(meth)acrylat über eine Allo- phanatgruppe gebunden enthält.
Verfahren gemäß Anspruch 5, dadurch gekennzeichnet, daß es sich bei dem Polyisocyanat (D) um ein solches handelt, das erhältlich ist durch Umsetzung mindestens eines (cyc- lo)aliphatischen Diisocyanats mit mindestens einem Hydroxyalkyl(meth)acrylat in Gegenwart mindestens eines Katalysators, der die Bildung von Allophanatgruppen zu beschleunigen vermag.
Verfahren gemäß Anspruch 6, dadurch gekennzeichnet, daß das Diisocyanat ausgewählt ist aus der Gruppe bestehend aus 1 ,6-Hexamethylendiisocyanat, Isophorondiisocyanat und 4,4'- oder 2,4'-Di(isocyanatocyclohexyl)methan. Verfahren gemäß Anspruch 6 oder 7, dadurch gekennzeichnet, daß das für die Komponente (D) eingesetzte Hydroxyalkyl(meth)acrylaten ausgewählt ist aus der Gruppe bestehend aus 2-Hydroxyethyl(meth)acrylat, 2- oder 3-Hydroxypropyl(meth)acrylat, 1 ,4-Bu- tandiolmono(meth)acrylat, Neopentylglykolmono(meth)acrylat, 1 ,5-Pentandiolmono- (meth)acrylat und 1 ,6-Hexandiolmono(meth)acrylat.
Verfahren gemäß Anspruch 5, dadurch gekennzeichnet, daß es sich bei dem Polyisocya- nat (D) um Verbindungen, die die Formel
handelt, worin einen zweiwertigen, 2 bis 12 Kohlenstoffatome aufweisenden Alkylenrest, der gegebenenfalls mit Cr bis C4-Alkylgruppen substituiert und/oder durch ein oder mehrere Sauerstoffatome unterbrochen sein kann, bevorzugt 2 bis 10 Kohlenstoffatome aufweisend, besonders bevorzugt 2 bis 8 und ganz besonders bevorzugt 3 bis 6 Kohlenstoffatome aufweisend, einen zweiwertigen, 2 bis 20 Kohlenstoffatome aufweisenden Alkylenrest oder Cyc- loalkylenrest, der gegebenenfalls mit d- bis C4-Alkylgruppen substituiert und/oder durch ein oder mehrere Sauerstoffatome unterbrochen sein kann, bevorzugt 4 bis 15 Kohlenstoffatome aufweisend, besonders bevorzugt 6 bis 13 Kohlenstoffatome aufweisend,
Wasserstoff oder Methyl, bevorzugt Wasserstoff, bedeuten, und
X eine positive Zahl ist, die im statistischen Mittel 2 bis zu 6, bevorzugt von 2 bis 4 beträgt.
0. Verfahren gemäß Anspruch 9, dadurch gekennzeichnet, daß R5 ausgewählt ist aus der Gruppe bestehend aus 1 ,2-Ethylen, 1 ,2- oder 1 ,3-Propylen, 1 ,2-, 1 ,3- oder 1 ,4-Butylen, 1 ,1 -Dimethyl-1 ,2-ethylen, 1 ,2-Dimethyl-1 ,2-ethylen, 1 ,5-Pentylen, 1 ,6-Hexylen, 1 ,8- Octylen, 1 ,10-Decylen und 1 ,12-Dodecylen. Verfahren gemäß Anspruch 9 oder 10, dadurch gekennzeichnet, daß R6 ausgewählt ist
aus der Gruppe bestehend aus 1 ,6-Hexylen,
und
Strahlungshärtbare Beschichtungsmassen, enthaltend mindestens ein
Urethan(meth)acrylat gemäß einem der Ansprüche 1 bis 4 und optional mindestens eine radikalisch polymerisierbaren Verbindung sowie optional mindestens einen Photoinitiator.
Verwendung von strahlungshärtbaren Beschichtungsmassen gemäß Anspruch 12 zur Beschichtung von Holz, Papier, Textil, Leder, Vlies, Kunststoffoberflächen, PVC, Glas, Keramik, mineralischen Baustoffen, Zement-Formsteinen, Faserzementplatten, Metallen und beschichteten Metallen.
EP14724463.6A 2013-05-27 2014-05-16 Verfahren zur herstellung von urethan(meth)acrylaten Withdrawn EP3004199A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14724463.6A EP3004199A1 (de) 2013-05-27 2014-05-16 Verfahren zur herstellung von urethan(meth)acrylaten

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP13169361 2013-05-27
EP14724463.6A EP3004199A1 (de) 2013-05-27 2014-05-16 Verfahren zur herstellung von urethan(meth)acrylaten
PCT/EP2014/060079 WO2014191235A1 (de) 2013-05-27 2014-05-16 Verfahren zur herstellung von urethan(meth)acrylaten

Publications (1)

Publication Number Publication Date
EP3004199A1 true EP3004199A1 (de) 2016-04-13

Family

ID=48468187

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14724463.6A Withdrawn EP3004199A1 (de) 2013-05-27 2014-05-16 Verfahren zur herstellung von urethan(meth)acrylaten

Country Status (6)

Country Link
US (1) US20160090485A1 (de)
EP (1) EP3004199A1 (de)
KR (1) KR20160011637A (de)
CN (1) CN105246937A (de)
RU (1) RU2015155963A (de)
WO (1) WO2014191235A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020131185A2 (en) * 2018-09-26 2020-06-25 Dvorchak Enterprises Llc One component uv curable compositions and methods for making same
US11187127B2 (en) 2019-06-28 2021-11-30 Deere & Company Exhaust gas treatment system and method with four-way catalyzed filter element

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4188472A (en) * 1978-10-06 1980-02-12 Ppg Industries, Inc. Curable lactone derived resins
US20060128923A1 (en) * 2004-12-15 2006-06-15 Bayer Materialscience Llc Radiation curable compositions
KR101251244B1 (ko) * 2005-02-24 2013-04-08 바스프 에스이 방사선 경화성 수성 폴리우레탄 분산액
US8163390B2 (en) * 2006-10-09 2012-04-24 Basf Se Radiation-curable compounds
WO2012171833A1 (de) * 2011-06-14 2012-12-20 Basf Se Strahlungshärtbare wässrige polyurethandispersionen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2014191235A1 *

Also Published As

Publication number Publication date
WO2014191235A1 (de) 2014-12-04
KR20160011637A (ko) 2016-02-01
RU2015155963A (ru) 2017-07-04
CN105246937A (zh) 2016-01-13
US20160090485A1 (en) 2016-03-31

Similar Documents

Publication Publication Date Title
EP2912084B1 (de) Strahlungshärtbare wasserdispergierbare polyurethan(meth)acrylate
EP2875082B1 (de) Schnelltrocknende strahlungshärtbare beschichtungsmassen
US10703929B2 (en) Aqueous polymer compositions comprising polyurethane (meth)acrylates
EP2855553B1 (de) Strahlungshärtbare verbindungen
EP1856173A1 (de) Strahlungshärtbare wässrige polyurethandispersionen
EP2160429B1 (de) Flexible strahlungshärtbare beschichtungsmassen
EP2928938B1 (de) Strahlungshärtbare wässrige polyurethandispersionen
EP2421905B1 (de) Strahlungshärtbare beschichtungsmassen
EP3015485B1 (de) Verfahren zur Herstellung strahlungshärtbarer Urethan(meth)acrylate
EP1869098B1 (de) Strahlungshärtbare verbindungen
EP2092030A1 (de) Niedrigviskose beschichtungsmassen
EP1910485A1 (de) Durch energieeintrag reparable beschichtungen
EP1858995B1 (de) Radikalisch härtbare beschichtungsmassen
WO2006069690A1 (de) Strahlungshärtbare verbindungen
EP2828311A1 (de) Strahlungshärtbare wässrige dispersionen
EP3004199A1 (de) Verfahren zur herstellung von urethan(meth)acrylaten
DE102010044206A1 (de) Verfahren zur Herstellung von strahlungshärtbaren (Meth)Acrylaten
EP1727868A1 (de) Cer-verbindungen als initiatoren für die dual-cure-härtung
DE102010044204A1 (de) Verfahren zur Herstellung von strahlungshärtbaren (Meth)Acrylaten
WO2005087873A2 (de) Cer-verbindungen als initiatoren für die strahlungshärtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160104

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160802