EP3087594A4 - Measurement of multiple patterning parameters - Google Patents
Measurement of multiple patterning parameters Download PDFInfo
- Publication number
- EP3087594A4 EP3087594A4 EP14875032.6A EP14875032A EP3087594A4 EP 3087594 A4 EP3087594 A4 EP 3087594A4 EP 14875032 A EP14875032 A EP 14875032A EP 3087594 A4 EP3087594 A4 EP 3087594A4
- Authority
- EP
- European Patent Office
- Prior art keywords
- measurement
- multiple patterning
- patterning parameters
- parameters
- patterning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005259 measurement Methods 0.000 title 1
- 238000000059 patterning Methods 0.000 title 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/26—Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
- G01B11/27—Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
- G01B11/272—Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes using photoelectric detection means
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70058—Mask illumination systems
- G03F7/70141—Illumination system adjustment, e.g. adjustments during exposure or alignment during assembly of illumination system
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70605—Workpiece metrology
- G03F7/70616—Monitoring the printed patterns
- G03F7/70633—Overlay, i.e. relative alignment between patterns printed by separate exposures in different layers, or in the same layer in multiple exposures or stitching
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70605—Workpiece metrology
- G03F7/70681—Metrology strategies
- G03F7/70683—Mark designs
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70605—Workpiece metrology
- G03F7/706835—Metrology information management or control
- G03F7/706839—Modelling, e.g. modelling scattering or solving inverse problems
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F9/00—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
- G03F9/70—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
- G03F9/7073—Alignment marks and their environment
- G03F9/7076—Mark details, e.g. phase grating mark, temporary mark
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F9/00—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
- G03F9/70—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
- G03F9/7073—Alignment marks and their environment
- G03F9/7084—Position of mark on substrate, i.e. position in (x, y, z) of mark, e.g. buried or resist covered mark, mark on rearside, at the substrate edge, in the circuit area, latent image mark, marks in plural levels
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/10—Measuring as part of the manufacturing process
- H01L22/12—Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/30—Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/544—Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B2210/00—Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
- G01B2210/56—Measuring geometric parameters of semiconductor structures, e.g. profile, critical dimensions or trench depth
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/0002—Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70605—Workpiece metrology
- G03F7/70616—Monitoring the printed patterns
- G03F7/70625—Dimensions, e.g. line width, critical dimension [CD], profile, sidewall angle or edge roughness
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2223/00—Details relating to semiconductor or other solid state devices covered by the group H01L23/00
- H01L2223/544—Marks applied to semiconductor devices or parts
- H01L2223/54426—Marks applied to semiconductor devices or parts for alignment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2223/00—Details relating to semiconductor or other solid state devices covered by the group H01L23/00
- H01L2223/544—Marks applied to semiconductor devices or parts
- H01L2223/54453—Marks applied to semiconductor devices or parts for use prior to dicing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2223/00—Details relating to semiconductor or other solid state devices covered by the group H01L23/00
- H01L2223/544—Marks applied to semiconductor devices or parts
- H01L2223/54453—Marks applied to semiconductor devices or parts for use prior to dicing
- H01L2223/5446—Located in scribe lines
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20171643.8A EP3709341A1 (en) | 2013-12-23 | 2014-12-23 | Measurement of multiple patterning parameters |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361920462P | 2013-12-23 | 2013-12-23 | |
US14/574,021 US9490182B2 (en) | 2013-12-23 | 2014-12-17 | Measurement of multiple patterning parameters |
PCT/US2014/072241 WO2015100364A1 (en) | 2013-12-23 | 2014-12-23 | Measurement of multiple patterning parameters |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20171643.8A Division EP3709341A1 (en) | 2013-12-23 | 2014-12-23 | Measurement of multiple patterning parameters |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3087594A1 EP3087594A1 (en) | 2016-11-02 |
EP3087594A4 true EP3087594A4 (en) | 2017-10-18 |
EP3087594B1 EP3087594B1 (en) | 2020-04-29 |
Family
ID=53399655
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20171643.8A Pending EP3709341A1 (en) | 2013-12-23 | 2014-12-23 | Measurement of multiple patterning parameters |
EP14875032.6A Active EP3087594B1 (en) | 2013-12-23 | 2014-12-23 | Measurement of multiple patterning parameters |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20171643.8A Pending EP3709341A1 (en) | 2013-12-23 | 2014-12-23 | Measurement of multiple patterning parameters |
Country Status (7)
Country | Link |
---|---|
US (3) | US9490182B2 (en) |
EP (2) | EP3709341A1 (en) |
KR (2) | KR102415145B1 (en) |
CN (2) | CN105849885B (en) |
IL (2) | IL245962A0 (en) |
TW (2) | TWI733150B (en) |
WO (1) | WO2015100364A1 (en) |
Families Citing this family (66)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9383661B2 (en) | 2013-08-10 | 2016-07-05 | Kla-Tencor Corporation | Methods and apparatus for determining focus |
US10935893B2 (en) * | 2013-08-11 | 2021-03-02 | Kla-Tencor Corporation | Differential methods and apparatus for metrology of semiconductor targets |
US10955359B2 (en) * | 2013-11-12 | 2021-03-23 | International Business Machines Corporation | Method for quantification of process non uniformity using model-based metrology |
JP6567523B2 (en) * | 2013-12-30 | 2019-08-28 | エーエスエムエル ネザーランズ ビー.ブイ. | Method and apparatus for the design of metrology targets |
US10352876B2 (en) * | 2014-05-09 | 2019-07-16 | KLA—Tencor Corporation | Signal response metrology for scatterometry based overlay measurements |
WO2016124345A1 (en) | 2015-02-04 | 2016-08-11 | Asml Netherlands B.V. | Metrology method, metrology apparatus and device manufacturing method |
US10380728B2 (en) * | 2015-08-31 | 2019-08-13 | Kla-Tencor Corporation | Model-based metrology using images |
TWI656409B (en) * | 2015-09-09 | 2019-04-11 | 美商克萊譚克公司 | A new method based on the introduction of auxiliary electromagnetic field to superimpose first-order scattering measurement |
US10394136B2 (en) | 2015-09-30 | 2019-08-27 | Asml Netherlands B.V. | Metrology method for process window definition |
DE102015221772A1 (en) * | 2015-11-05 | 2017-05-11 | Carl Zeiss Smt Gmbh | Method and device for characterizing a wafer structured by at least one lithography step |
EP3371657B9 (en) | 2015-11-05 | 2021-12-15 | Carl Zeiss SMT GmbH | Method and device for characterizing a wafer patterned using at least one lithography step |
US11126092B2 (en) * | 2015-11-13 | 2021-09-21 | Asml Netherlands B.V. | Methods for determining an approximate value of a processing parameter at which a characteristic of the patterning process has a target value |
EP3190464B1 (en) | 2015-12-14 | 2021-08-11 | IMEC vzw | Method for inspecting a pattern of features on a semiconductor die |
CN108431692B (en) | 2015-12-23 | 2021-06-18 | Asml荷兰有限公司 | Measuring method, measuring apparatus and device manufacturing method |
US10139358B2 (en) * | 2016-01-11 | 2018-11-27 | International Business Machines Corporation | Method for characterization of a layered structure |
US10504759B2 (en) * | 2016-04-04 | 2019-12-10 | Kla-Tencor Corporation | Semiconductor metrology with information from multiple processing steps |
US10354873B2 (en) | 2016-06-08 | 2019-07-16 | Tokyo Electron Limited | Organic mandrel protection process |
KR102223708B1 (en) * | 2016-06-08 | 2021-03-04 | 도쿄엘렉트론가부시키가이샤 | Organic Mendrel Protection Process |
CN107918691B (en) * | 2016-10-07 | 2023-09-29 | 福特全球技术公司 | Method and device for evaluating a signal |
US10775323B2 (en) * | 2016-10-18 | 2020-09-15 | Kla-Tencor Corporation | Full beam metrology for X-ray scatterometry systems |
CN110100174B (en) * | 2016-10-20 | 2022-01-18 | 科磊股份有限公司 | Hybrid metrology for patterned wafer characterization |
WO2018089190A1 (en) * | 2016-11-09 | 2018-05-17 | Kla-Tencor Corporation | Target location in semiconductor manufacturing |
EP3333631A1 (en) | 2016-12-06 | 2018-06-13 | ASML Netherlands B.V. | Method of measuring a target, metrology apparatus, polarizer assembly |
US10861755B2 (en) * | 2017-02-08 | 2020-12-08 | Verity Instruments, Inc. | System and method for measurement of complex structures |
US10732516B2 (en) * | 2017-03-01 | 2020-08-04 | Kla Tencor Corporation | Process robust overlay metrology based on optical scatterometry |
DE102017204719A1 (en) * | 2017-03-21 | 2018-09-27 | Carl Zeiss Smt Gmbh | Metrology target |
CN110462523B (en) * | 2017-03-23 | 2022-02-11 | Asml荷兰有限公司 | Asymmetry monitoring of structures |
US10727142B2 (en) | 2017-05-30 | 2020-07-28 | Kla-Tencor Corporation | Process monitoring of deep structures with X-ray scatterometry |
US11378451B2 (en) * | 2017-08-07 | 2022-07-05 | Kla Corporation | Bandgap measurements of patterned film stacks using spectroscopic metrology |
US10147607B1 (en) | 2017-08-24 | 2018-12-04 | Micron Technology, Inc. | Semiconductor pitch patterning |
EP3451060A1 (en) * | 2017-08-28 | 2019-03-06 | ASML Netherlands B.V. | Substrate, metrology apparatus and associated methods for a lithographic process |
EP3470926A1 (en) * | 2017-10-16 | 2019-04-17 | ASML Netherlands B.V. | Metrology apparatus, lithographic system, and method of measuring a structure |
US10943838B2 (en) * | 2017-11-29 | 2021-03-09 | Kla-Tencor Corporation | Measurement of overlay error using device inspection system |
US11156548B2 (en) * | 2017-12-08 | 2021-10-26 | Kla-Tencor Corporation | Measurement methodology of advanced nanostructures |
US11085754B2 (en) * | 2017-12-12 | 2021-08-10 | Kla Corporation | Enhancing metrology target information content |
US10895541B2 (en) * | 2018-01-06 | 2021-01-19 | Kla-Tencor Corporation | Systems and methods for combined x-ray reflectometry and photoelectron spectroscopy |
DE102018201935B4 (en) * | 2018-02-08 | 2022-12-15 | Carl Zeiss Smt Gmbh | Process for measuring structures on a substrate for microlithography |
NL2021848A (en) * | 2018-04-09 | 2018-11-06 | Stichting Vu | Holographic metrology apparatus. |
JP7345542B2 (en) * | 2018-07-30 | 2023-09-15 | ケーエルエー コーポレイション | Device overlay error reduction |
CN109155235A (en) * | 2018-08-16 | 2019-01-04 | 长江存储科技有限责任公司 | It is controlled using the wafer flatness of back side collocation structure |
US11094053B2 (en) * | 2018-10-08 | 2021-08-17 | Kla Corporation | Deep learning based adaptive regions of interest for critical dimension measurements of semiconductor substrates |
US11422095B2 (en) * | 2019-01-18 | 2022-08-23 | Kla Corporation | Scatterometry modeling in the presence of undesired diffraction orders |
JP2022530842A (en) * | 2019-02-14 | 2022-07-01 | ケーエルエー コーポレイション | Topography Measuring method of misalignment in manufacturing semiconductor device wafers |
EP3719545A1 (en) * | 2019-04-03 | 2020-10-07 | ASML Netherlands B.V. | Manufacturing a reflective diffraction grating |
IL289580B2 (en) * | 2019-07-10 | 2023-09-01 | Kla Tencor Corp | Data-driven misregistration parameter configuration and measurement system and method |
US11340060B2 (en) | 2019-07-23 | 2022-05-24 | Kla Corporation | Automatic recipe optimization for overlay metrology system |
US11003164B2 (en) * | 2019-08-30 | 2021-05-11 | Micron Technology, Inc. | Methods for aligning a physical layer to a pattern formed via multi-patterning, and associated systems |
US11256177B2 (en) * | 2019-09-11 | 2022-02-22 | Kla Corporation | Imaging overlay targets using Moiré elements and rotational symmetry arrangements |
CN111043988B (en) * | 2019-12-10 | 2021-04-23 | 东南大学 | Single stripe projection measurement method based on graphics and deep learning |
IL279727B1 (en) * | 2019-12-24 | 2024-11-01 | Asml Netherlands B V | Method of determining information about a patterning process, method of reducing error in measurement data, method of calibrating a metrology process, method of selecting metrology targets |
CN111406198B (en) * | 2020-02-24 | 2021-02-19 | 长江存储科技有限责任公司 | System and method for semiconductor chip surface topography metrology |
CN111386441B (en) * | 2020-02-24 | 2021-02-19 | 长江存储科技有限责任公司 | System for measuring surface topography of semiconductor chip |
WO2021168613A1 (en) | 2020-02-24 | 2021-09-02 | Yangtze Memory Technologies Co., Ltd. | Systems and methods for semiconductor chip surface topography metrology |
WO2021168611A1 (en) | 2020-02-24 | 2021-09-02 | Yangtze Memory Technologies Co., Ltd. | Systems and methods for semiconductor chip surface topography metrology |
CN111397542B (en) * | 2020-03-09 | 2021-07-06 | 天地科技股份有限公司 | System and method for monitoring straightness of scraper conveyor based on weak reflection grating |
CN111504210B (en) * | 2020-04-01 | 2021-07-20 | 武汉大学 | Measuring substrate for pitch movement and preparation method and measuring method thereof |
CN115917720A (en) | 2020-06-25 | 2023-04-04 | 科磊股份有限公司 | Wavelet system and method for improving misalignment and asymmetry of semiconductor devices |
US11847776B2 (en) | 2020-06-29 | 2023-12-19 | Applied Materials, Inc. | System using film thickness estimation from machine learning based processing of substrate images |
US11874606B2 (en) * | 2020-07-06 | 2024-01-16 | Nova Ltd. | System and method for controlling measurements of sample's parameters |
KR20220005913A (en) * | 2020-07-07 | 2022-01-14 | 삼성전자주식회사 | Pattern uniformity measuring apparatus and method based on pupil image, and mask manufacturing method using the measuring method |
JP2024505919A (en) * | 2021-01-28 | 2024-02-08 | ノヴァ リミテッド | Time-domain optical measurement and inspection of semiconductor devices |
US12062583B2 (en) * | 2021-03-11 | 2024-08-13 | Applied Materials Israel Ltd. | Optical metrology models for in-line film thickness measurements |
US11967535B2 (en) * | 2021-04-13 | 2024-04-23 | Kla Corporation | On-product overlay targets |
US12078601B2 (en) * | 2022-05-31 | 2024-09-03 | Kla Corporation | Universal metrology model |
IL293633B2 (en) * | 2022-06-06 | 2024-06-01 | Nova Ltd | System and method for library construction and use in measurements on patterned structures |
CN115876097A (en) * | 2023-03-03 | 2023-03-31 | 广州粤芯半导体技术有限公司 | Method for establishing optical critical dimension database, optical measurement structure and method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040190008A1 (en) * | 2003-01-17 | 2004-09-30 | Kla-Tencor Corporation | Method for process optimization and control by comparison between 2 or more measured scatterometry signals |
US20050122516A1 (en) * | 2002-07-03 | 2005-06-09 | Abdurrahman Sezginer | Overlay metrology method and apparatus using more than one grating per measurement direction |
US20090296075A1 (en) * | 2008-05-29 | 2009-12-03 | Nanometrics Incorporated | Imaging Diffraction Based Overlay |
US20100141948A1 (en) * | 2007-07-11 | 2010-06-10 | Yoel Cohen | Method and system for use in monitoring properties of patterned structures |
US20130155406A1 (en) * | 2007-12-17 | 2013-06-20 | Asml Netherlands B.V. | Diffraction Based Overlay Metrology Tool and Method of Diffraction Based Overlay Metrology |
Family Cites Families (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5608526A (en) | 1995-01-19 | 1997-03-04 | Tencor Instruments | Focused beam spectroscopic ellipsometry method and system |
US5859424A (en) | 1997-04-08 | 1999-01-12 | Kla-Tencor Corporation | Apodizing filter system useful for reducing spot size in optical measurements and other applications |
US6429943B1 (en) | 2000-03-29 | 2002-08-06 | Therma-Wave, Inc. | Critical dimension analysis with simultaneous multiple angle of incidence measurements |
US7317531B2 (en) * | 2002-12-05 | 2008-01-08 | Kla-Tencor Technologies Corporation | Apparatus and methods for detecting overlay errors using scatterometry |
US6819426B2 (en) * | 2001-02-12 | 2004-11-16 | Therma-Wave, Inc. | Overlay alignment metrology using diffraction gratings |
US20030002043A1 (en) * | 2001-04-10 | 2003-01-02 | Kla-Tencor Corporation | Periodic patterns and technique to control misalignment |
US7061615B1 (en) * | 2001-09-20 | 2006-06-13 | Nanometrics Incorporated | Spectroscopically measured overlay target |
US6673638B1 (en) | 2001-11-14 | 2004-01-06 | Kla-Tencor Corporation | Method and apparatus for the production of process sensitive lithographic features |
WO2004003596A2 (en) * | 2002-06-28 | 2004-01-08 | Technion Research And Development Foundation Ltd. | Geometrical phase optical elements with space-variant subwavelength gratings |
US7440105B2 (en) * | 2002-12-05 | 2008-10-21 | Kla-Tencor Technologies Corporation | Continuously varying offset mark and methods of determining overlay |
US7068363B2 (en) * | 2003-06-06 | 2006-06-27 | Kla-Tencor Technologies Corp. | Systems for inspection of patterned or unpatterned wafers and other specimen |
US7230704B2 (en) * | 2003-06-06 | 2007-06-12 | Tokyo Electron Limited | Diffracting, aperiodic targets for overlay metrology and method to detect gross overlay |
JP2007522432A (en) * | 2003-12-19 | 2007-08-09 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Differential critical dimension and overlay measuring apparatus and measuring method |
JP4401814B2 (en) * | 2004-02-25 | 2010-01-20 | 株式会社日立ハイテクノロジーズ | Standard member for length measurement and electron beam length measuring device |
US7298496B2 (en) * | 2004-05-21 | 2007-11-20 | Zetetic Institute | Apparatus and methods for overlay, alignment mark, and critical dimension metrologies based on optical interferometry |
US7321426B1 (en) | 2004-06-02 | 2008-01-22 | Kla-Tencor Technologies Corporation | Optical metrology on patterned samples |
US7171284B2 (en) | 2004-09-21 | 2007-01-30 | Timbre Technologies, Inc. | Optical metrology model optimization based on goals |
US7630067B2 (en) * | 2004-11-30 | 2009-12-08 | Molecular Imprints, Inc. | Interferometric analysis method for the manufacture of nano-scale devices |
US7557921B1 (en) | 2005-01-14 | 2009-07-07 | Kla-Tencor Technologies Corporation | Apparatus and methods for optically monitoring the fidelity of patterns produced by photolitographic tools |
US7478019B2 (en) | 2005-01-26 | 2009-01-13 | Kla-Tencor Corporation | Multiple tool and structure analysis |
JP4708856B2 (en) * | 2005-05-16 | 2011-06-22 | 株式会社日立ハイテクノロジーズ | Electron beam calibration method and electron beam apparatus |
US7567351B2 (en) | 2006-02-02 | 2009-07-28 | Kla-Tencor Corporation | High resolution monitoring of CD variations |
US7523021B2 (en) * | 2006-03-08 | 2009-04-21 | Tokyo Electron Limited | Weighting function to enhance measured diffraction signals in optical metrology |
US20070238201A1 (en) * | 2006-03-28 | 2007-10-11 | Merritt Funk | Dynamic metrology sampling with wafer uniformity control |
US7528941B2 (en) * | 2006-06-01 | 2009-05-05 | Kla-Tencor Technolgies Corporation | Order selected overlay metrology |
DE102006035022A1 (en) * | 2006-07-28 | 2008-01-31 | Carl Zeiss Smt Ag | Method for producing an optical component, interferometer arrangement and diffraction grating |
JP5933910B2 (en) * | 2006-08-15 | 2016-06-15 | ポラリゼーション ソリューションズ エルエルシー | Polarizer thin film and manufacturing method thereof |
US8032349B2 (en) | 2007-01-25 | 2011-10-04 | International Business Machines Corporation | Efficient methodology for the accurate generation of customized compact model parameters from electrical test data |
US7911612B2 (en) * | 2007-06-13 | 2011-03-22 | Asml Netherlands B.V. | Inspection method and apparatus, lithographic apparatus, lithographic processing cell and device manufacturing method |
US7940386B1 (en) | 2007-07-13 | 2011-05-10 | Kla-Tencor Corporation | Scatterometry target employing non-periodic defect features to enhance or optimize target sensitivity to a parameter of interest |
US7729873B2 (en) * | 2007-08-28 | 2010-06-01 | Tokyo Electron Limited | Determining profile parameters of a structure using approximation and fine diffraction models in optical metrology |
CN101855715A (en) * | 2007-11-07 | 2010-10-06 | 东京毅力科创株式会社 | Method and apparatus for deriving an iso-dense bias and controlling a fabrication process |
CN102037550B (en) | 2008-05-21 | 2012-08-15 | 恪纳腾公司 | Substrate matrix to decouple tool and process effects |
WO2010016559A1 (en) * | 2008-08-07 | 2010-02-11 | 旭硝子株式会社 | Diffraction grating, aberration correction element and optical head device |
US8197996B2 (en) | 2008-09-19 | 2012-06-12 | Tokyo Electron Limited | Dual tone development processes |
US8129080B2 (en) | 2008-09-19 | 2012-03-06 | Tokyo Electron Limited | Variable resist protecting groups |
US8024676B2 (en) | 2009-02-13 | 2011-09-20 | Tokyo Electron Limited | Multi-pitch scatterometry targets |
KR101134810B1 (en) * | 2009-03-03 | 2012-04-13 | 엘지이노텍 주식회사 | Light emitting device and method for fabricating the same |
US9927718B2 (en) * | 2010-08-03 | 2018-03-27 | Kla-Tencor Corporation | Multi-layer overlay metrology target and complimentary overlay metrology measurement systems |
JP5821100B2 (en) | 2010-12-17 | 2015-11-24 | カール ツァイス エスエムエス ゲーエムベーハー | Method and apparatus for correcting errors on a wafer processed by a photolithographic mask |
RU2540416C2 (en) * | 2011-05-17 | 2015-02-10 | Хонда Мотор Ко., Лтд. | Inverter generator |
US9046475B2 (en) * | 2011-05-19 | 2015-06-02 | Applied Materials Israel, Ltd. | High electron energy based overlay error measurement methods and systems |
US20130110477A1 (en) | 2011-10-31 | 2013-05-02 | Stilian Pandev | Process variation-based model optimization for metrology |
US9709903B2 (en) | 2011-11-01 | 2017-07-18 | Kla-Tencor Corporation | Overlay target geometry for measuring multiple pitches |
US8736084B2 (en) * | 2011-12-08 | 2014-05-27 | Taiwan Semiconductor Manufacturing Company, Ltd. | Structure and method for E-beam in-chip overlay mark |
US9127927B2 (en) * | 2011-12-16 | 2015-09-08 | Kla-Tencor Corporation | Techniques for optimized scatterometry |
US8418105B1 (en) | 2012-01-12 | 2013-04-09 | GlobalFoundries, Inc. | Methods for pattern matching in a double patterning technology-compliant physical design flow |
US8879073B2 (en) * | 2012-02-24 | 2014-11-04 | Kla-Tencor Corporation | Optical metrology using targets with field enhancement elements |
US10255385B2 (en) | 2012-03-28 | 2019-04-09 | Kla-Tencor Corporation | Model optimization approach based on spectral sensitivity |
NL2010458A (en) * | 2012-04-16 | 2013-10-17 | Asml Netherlands Bv | Lithographic apparatus, substrate and device manufacturing method background. |
US8843875B2 (en) * | 2012-05-08 | 2014-09-23 | Kla-Tencor Corporation | Measurement model optimization based on parameter variations across a wafer |
US8913237B2 (en) * | 2012-06-26 | 2014-12-16 | Kla-Tencor Corporation | Device-like scatterometry overlay targets |
US9581430B2 (en) | 2012-10-19 | 2017-02-28 | Kla-Tencor Corporation | Phase characterization of targets |
US9576861B2 (en) * | 2012-11-20 | 2017-02-21 | Kla-Tencor Corporation | Method and system for universal target based inspection and metrology |
US10769320B2 (en) | 2012-12-18 | 2020-09-08 | Kla-Tencor Corporation | Integrated use of model-based metrology and a process model |
US9291554B2 (en) | 2013-02-05 | 2016-03-22 | Kla-Tencor Corporation | Method of electromagnetic modeling of finite structures and finite illumination for metrology and inspection |
US10101670B2 (en) | 2013-03-27 | 2018-10-16 | Kla-Tencor Corporation | Statistical model-based metrology |
US9875946B2 (en) | 2013-04-19 | 2018-01-23 | Kla-Tencor Corporation | On-device metrology |
US9255877B2 (en) * | 2013-05-21 | 2016-02-09 | Kla-Tencor Corporation | Metrology system optimization for parameter tracking |
CN103398666B (en) * | 2013-05-27 | 2015-12-23 | 电子科技大学 | A kind of dislocation of the interlayer for double-deck periodic micro structure method of testing |
WO2015080858A1 (en) * | 2013-12-01 | 2015-06-04 | Kla-Tencor Corporation | Target element types for process parameter metrology |
US10210606B2 (en) * | 2014-10-14 | 2019-02-19 | Kla-Tencor Corporation | Signal response metrology for image based and scatterometry overlay measurements |
US9710728B2 (en) * | 2014-10-28 | 2017-07-18 | Kla-Tencor Corporation | Image based signal response metrology |
-
2014
- 2014-12-17 US US14/574,021 patent/US9490182B2/en active Active
- 2014-12-23 EP EP20171643.8A patent/EP3709341A1/en active Pending
- 2014-12-23 TW TW108126866A patent/TWI733150B/en active
- 2014-12-23 KR KR1020167020139A patent/KR102415145B1/en active IP Right Grant
- 2014-12-23 CN CN201480070716.7A patent/CN105849885B/en active Active
- 2014-12-23 CN CN201710997426.2A patent/CN107741207B/en active Active
- 2014-12-23 TW TW103145080A patent/TWI675179B/en active
- 2014-12-23 WO PCT/US2014/072241 patent/WO2015100364A1/en active Application Filing
- 2014-12-23 EP EP14875032.6A patent/EP3087594B1/en active Active
- 2014-12-23 KR KR1020227021522A patent/KR102579585B1/en active IP Right Grant
-
2016
- 2016-06-01 IL IL245962A patent/IL245962A0/en active IP Right Grant
- 2016-09-16 US US15/268,217 patent/US9816810B2/en active Active
-
2017
- 2017-10-15 US US15/784,153 patent/US10612916B2/en active Active
-
2019
- 2019-01-28 IL IL264500A patent/IL264500B/en active IP Right Grant
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050122516A1 (en) * | 2002-07-03 | 2005-06-09 | Abdurrahman Sezginer | Overlay metrology method and apparatus using more than one grating per measurement direction |
US20040190008A1 (en) * | 2003-01-17 | 2004-09-30 | Kla-Tencor Corporation | Method for process optimization and control by comparison between 2 or more measured scatterometry signals |
US20100141948A1 (en) * | 2007-07-11 | 2010-06-10 | Yoel Cohen | Method and system for use in monitoring properties of patterned structures |
US20130155406A1 (en) * | 2007-12-17 | 2013-06-20 | Asml Netherlands B.V. | Diffraction Based Overlay Metrology Tool and Method of Diffraction Based Overlay Metrology |
US20090296075A1 (en) * | 2008-05-29 | 2009-12-03 | Nanometrics Incorporated | Imaging Diffraction Based Overlay |
Also Published As
Publication number | Publication date |
---|---|
US20150176985A1 (en) | 2015-06-25 |
IL245962A0 (en) | 2016-07-31 |
EP3087594A1 (en) | 2016-11-02 |
US20180051984A1 (en) | 2018-02-22 |
CN107741207B (en) | 2020-08-07 |
CN105849885A (en) | 2016-08-10 |
TWI733150B (en) | 2021-07-11 |
US9816810B2 (en) | 2017-11-14 |
KR20160101189A (en) | 2016-08-24 |
CN105849885B (en) | 2017-11-17 |
US9490182B2 (en) | 2016-11-08 |
IL264500A (en) | 2019-02-28 |
CN107741207A (en) | 2018-02-27 |
EP3087594B1 (en) | 2020-04-29 |
US20170003123A1 (en) | 2017-01-05 |
KR20220097543A (en) | 2022-07-07 |
TWI675179B (en) | 2019-10-21 |
TW201940833A (en) | 2019-10-16 |
KR102579585B1 (en) | 2023-09-15 |
IL264500B (en) | 2021-02-28 |
WO2015100364A1 (en) | 2015-07-02 |
TW201531662A (en) | 2015-08-16 |
KR102415145B1 (en) | 2022-06-29 |
EP3709341A1 (en) | 2020-09-16 |
US10612916B2 (en) | 2020-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
IL264500B (en) | Measurement of multiple patterning parameters | |
EP3066629A4 (en) | Providing single-use offers | |
EP3019082A4 (en) | Determining respiratory parameters | |
EP3090423A4 (en) | Physical object discovery | |
EP3003039A4 (en) | Methyl/fluoro-pyridinyl-methoxy substituted pyridinone-pyridinyl compounds and fluoro-pyrimidinyl-methoxy substituted pyridinone-pyridinyl compounds | |
EP3055281A4 (en) | Preparation of hydroxy-benzylbenzene derivatives | |
EP3073904A4 (en) | Monitoring pneumocardial function | |
EP3086086A4 (en) | Measurement device | |
EP3042340A4 (en) | Ar-book | |
EP3049079A4 (en) | Solid forms of ceftolozane | |
EP3088520A4 (en) | IMPROVED ß-FRUCTOFURANOSIDASE | |
EP3063391A4 (en) | Nosecap | |
EP3032231A4 (en) | Thermometer | |
EP3025677A4 (en) | Intraocular-lens-inserting instrument | |
EP3041039A4 (en) | Sample-retainer | |
EP3001860A4 (en) | Tape measure | |
EP3071575A4 (en) | Preparation of normorphinans | |
AU2013904478A0 (en) | Cataract Probe | |
AU2013904602A0 (en) | Monitoring pneumocardial function | |
AU2013901727A0 (en) | Disposable c-string | |
AU2013902578A0 (en) | C f - | |
AU2013904936A0 (en) | MonoCalm | |
AU2013904344A0 (en) | Solitaire - - - - organizer | |
AU2013904094A0 (en) | Enviro-Cut | |
AU2013904019A0 (en) | Uni-Block |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20160603 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: PTERLINZ, KEVIN Inventor name: KRISHNAN, SHANKAR Inventor name: SAPIEN, NOAM Inventor name: PANDEV, STILIAN IVANOV Inventor name: SHCHEGROV, ANDREI V. Inventor name: DZIURA, THADDEUS GERARD |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20170920 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01L 21/66 20060101AFI20170914BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200206 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1264562 Country of ref document: AT Kind code of ref document: T Effective date: 20200515 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602014064721 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200730 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200829 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200831 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1264562 Country of ref document: AT Kind code of ref document: T Effective date: 20200429 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602014064721 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20210201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20201223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20201231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201223 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201231 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201223 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201231 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201231 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230525 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20231226 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231229 Year of fee payment: 10 |