EP3085843B1 - Device and method for heat decoupling of concreted parts of buildings - Google Patents
Device and method for heat decoupling of concreted parts of buildings Download PDFInfo
- Publication number
- EP3085843B1 EP3085843B1 EP16164252.5A EP16164252A EP3085843B1 EP 3085843 B1 EP3085843 B1 EP 3085843B1 EP 16164252 A EP16164252 A EP 16164252A EP 3085843 B1 EP3085843 B1 EP 3085843B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- thermal insulation
- insulation element
- concrete
- opening
- building
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 7
- 238000009413 insulation Methods 0.000 claims description 181
- 239000004567 concrete Substances 0.000 claims description 105
- 238000009415 formwork Methods 0.000 claims description 27
- 230000003014 reinforcing effect Effects 0.000 claims description 25
- 239000000463 material Substances 0.000 claims description 14
- 238000009434 installation Methods 0.000 claims description 12
- 239000011810 insulating material Substances 0.000 claims description 5
- 239000011440 grout Substances 0.000 claims description 3
- 238000003780 insertion Methods 0.000 claims description 2
- 230000037431 insertion Effects 0.000 claims description 2
- 238000005056 compaction Methods 0.000 claims 4
- 239000011208 reinforced composite material Substances 0.000 claims 1
- 230000002787 reinforcement Effects 0.000 description 59
- 238000011065 in-situ storage Methods 0.000 description 26
- 238000007906 compression Methods 0.000 description 8
- 239000000835 fiber Substances 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 230000006835 compression Effects 0.000 description 6
- 238000007789 sealing Methods 0.000 description 6
- 238000004062 sedimentation Methods 0.000 description 6
- 230000003068 static effect Effects 0.000 description 6
- 229910000746 Structural steel Inorganic materials 0.000 description 5
- 239000002131 composite material Substances 0.000 description 5
- 238000010276 construction Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000004382 potting Methods 0.000 description 4
- 230000000630 rising effect Effects 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 239000004793 Polystyrene Substances 0.000 description 3
- 239000011449 brick Substances 0.000 description 3
- 239000003365 glass fiber Substances 0.000 description 3
- 239000012774 insulation material Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000000149 penetrating effect Effects 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 239000004568 cement Substances 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000005489 elastic deformation Effects 0.000 description 2
- 239000011494 foam glass Substances 0.000 description 2
- 239000011372 high-strength concrete Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000011150 reinforced concrete Substances 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 239000002352 surface water Substances 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910001294 Reinforcing steel Inorganic materials 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 238000009435 building construction Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000004794 expanded polystyrene Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920006327 polystyrene foam Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- -1 potting mortar Chemical class 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000011376 self-consolidating concrete Substances 0.000 description 1
- 206010040560 shock Diseases 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000012720 thermal barrier coating Substances 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/38—Connections for building structures in general
- E04B1/41—Connecting devices specially adapted for embedding in concrete or masonry
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/16—Structures made from masses, e.g. of concrete, cast or similarly formed in situ with or without making use of additional elements, such as permanent forms, substructures to be coated with load-bearing material
- E04B1/165—Structures made from masses, e.g. of concrete, cast or similarly formed in situ with or without making use of additional elements, such as permanent forms, substructures to be coated with load-bearing material with elongated load-supporting parts, cast in situ
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/76—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/76—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
- E04B1/78—Heat insulating elements
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C5/00—Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
- E04C5/01—Reinforcing elements of metal, e.g. with non-structural coatings
- E04C5/06—Reinforcing elements of metal, e.g. with non-structural coatings of high bending resistance, i.e. of essentially three-dimensional extent, e.g. lattice girders
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/76—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
- E04B2001/7679—Means preventing cold bridging at the junction of an exterior wall with an interior wall or a floor
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C3/00—Structural elongated elements designed for load-supporting
- E04C3/30—Columns; Pillars; Struts
- E04C3/34—Columns; Pillars; Struts of concrete other stone-like material, with or without permanent form elements, with or without internal or external reinforcement, e.g. metal coverings
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C5/00—Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
- E04C5/01—Reinforcing elements of metal, e.g. with non-structural coatings
- E04C5/06—Reinforcing elements of metal, e.g. with non-structural coatings of high bending resistance, i.e. of essentially three-dimensional extent, e.g. lattice girders
- E04C5/0604—Prismatic or cylindrical reinforcement cages composed of longitudinal bars and open or closed stirrup rods
Definitions
- the present invention relates to a thermal insulation element for heat decoupling between load-bearing parts of the building to be made of concrete, preferably between a vertical part of the building, in particular a contactor, and a horizontal part of the building above or below it, in particular a floor or a floor slab.
- load-bearing parts of buildings are often created from reinforced concrete structures.
- such parts of the building are usually provided with external thermal insulation.
- the floor ceiling between the basement, such as a basement or underground garage, and the ground floor is often equipped with thermal insulation on the basement side.
- This is usually achieved by monolithically connecting the floor slab to the load-bearing columns and external walls with continuous reinforcement.
- this creates thermal bridges that are difficult to remove by means of external thermal insulation.
- the upper section of the load-bearing concrete columns facing the floor ceiling is also clad with thermal insulation. This is not only complex and visually unappealing, but also leads to unsatisfactory building physics results and also reduces the parking space available in the underground car park.
- the thermal insulation element has a pressure-resistant support structure with insulating elements arranged in the spaces.
- the supporting structure can consist of a lightweight concrete, for example.
- Such a thermal insulation element is used for the thermal insulation of brick outer walls, for example by using it like a conventional brick as the first stone layer of the load-bearing outer wall above the basement ceiling.
- a pressure-transmitting and insulating connecting element which is used for the vertical, load-bearing connection of building parts to be made of concrete. It consists of an insulation body with one or more pressure elements embedded in it. Shear force reinforcement elements run through the pressure elements and, for connection to the parts of the building to be made of concrete, extend essentially vertically beyond the top and the bottom of the insulation body.
- the insulation body can be made of foam glass or expanded polystyrene hard foam, for example, and the pressure elements can be made of concrete, fiber concrete or fiber plastic.
- EP 0 745 733 A1 discloses a cantilever plate or joint element for the horizontal connection of building parts.
- the publication DE 10 2005 001 270 A1 discloses a component for reinforced concrete construction, comprising a square base plate and a plurality of L-shaped angle iron, the angle iron are fixed by welding to a large side of the base plate in each case at one of the four corners or on the side faces of the base plate around one of the four corners, wherein the base plate has at least one through hole provided for receiving cables and wires and at least one recess provided for filling in the concrete.
- connection element When installing such a prefabricated connecting element, the reinforcement elements must also be cast when concreting the adjacent parts of the building.
- the connection element must be installed in a closed formwork for the underlying part of the building and it must be concreted from below against the existing, inaccessible and invisible underside of the connection element.
- supports and external walls in particular, which are load-bearing structural parts
- a poor design when building the building parts, particularly at the connection point to the connecting element can later lead to serious structural problems on the building.
- the object of the invention is therefore to
- the invention is therefore based on the object of specifying a thermal insulation element which enables reliable installation at a vertically load-bearing connection point between two parts of the building to be made of concrete.
- the invention relates to a method for installing a corresponding thermal insulation element.
- a thermal insulation element which consists at least partially of a pressure-transmitting material and has an upper and a lower contact surface for vertical connection to the parts of the building to be made of concrete
- the object is achieved in that the thermal insulation element is at least one from the upper to the lower Has support surface extending through opening, which is designed for performing a compression device.
- the through opening thus serves as an immersion point for an internal vibrator.
- the through opening in the thermal insulation element is preferably arranged approximately in the center.
- one or more rod-shaped reinforcement elements are provided which penetrate the thermal insulation element and which extend substantially vertically beyond the upper and lower contact surfaces.
- the present invention is based on the knowledge that during installation and subsequent concreting against the underside of the thermal insulation element, inadequate and undefined compression of the in-situ concrete below the thermal insulation element can occur, which also depends strongly on the composition of the in-situ concrete used.
- two processes on the underside of the thermal insulation element when the in-situ concrete sets can result in the load-bearing connection of the thermal insulation element to the underlying building part being inadequate.
- rising air bubbles, so-called compression pores can lead to the formation of voids on the underside of the thermal insulation element and thus ensure a structurally inadequate connection.
- the reinforcement elements serve to connect the thermal insulation element to the adjacent parts of the building and, if necessary, will be connected to their reinforcement.
- a monolithic connection of the building parts is thus achieved, even if, due to static requirements, the connection is only regarded as a concrete joint and the reinforcement elements thus perform a more constructive function without any major significance for the building statics.
- a passage opening is provided in the thermal insulation element according to the invention, through which a compacting device such as the vibrating bottle of a concrete vibrator can be passed, in order to compact or re-compact the in-situ concrete underneath after installing the thermal insulation element.
- the thermal insulation element is at least partially made of a pressure-transmitting and heat-insulating material.
- This material can preferably be a lightweight concrete.
- High-pressure resistant molded elements with low specific thermal conductivity can be produced from lightweight concrete under factory conditions.
- such a lightweight concrete molded part can comprise, in addition to the through opening according to the invention, further hollow chambers or enclosed insulating elements.
- a concrete with a dry bulk density of maximum 2000 kg / m 3 is defined under lightweight concrete according to the applicable regulations.
- the low density compared to normal concrete is achieved through appropriate manufacturing processes and different lightweight concrete grains such as grains with grain porosity such as expanded clay.
- lightweight concrete has a thermal conductivity between 0.2 and 1.6 W / (m ⁇ K).
- a thermal insulation element made of lightweight concrete also acts as a stress-damping element and is able to compensate for smaller settlements and elastic deformations of the part of the building above and a more even distribution and force transmission from eccentric bearing forces on or into the part of the building below, in particular a support. ensure.
- the much lower modulus of elasticity of the lightweight concrete used has a particularly favorable effect on load centers and bearing twists, which result in increased edge pressures. Due to its elastic properties, the thermal insulation element acts as a "centering element", so to speak. In contrast to this, the compression with a central load is of minor importance.
- the typical modulus of elasticity of normal concrete, as used for a column, is approximately E cm ⁇ 30,000 to 40,000 N / mm 2 .
- the modulus of elasticity of the lightweight concrete preferred in the context of the invention is between approximately 9,000 and 22,000 N / mm 2 , preferably 12,000 and 16,000 N / mm 2 , most preferably approximately 14,000 N / mm 2 .
- the thermal insulation element can also consist of a heat-insulating but not pressure-transmitting insulating body, for example of extruded polystyrene with one or more pressure bodies embedded therein.
- Such pressure hulls can be made from high-strength concrete, in which case the thermal conductivity of the thermal insulation element is reduced by a correspondingly small base area of the pressure elements.
- the latter variant Compared to a solid or hollow block thermal insulation element made of lightweight concrete, the latter variant has the disadvantage due to the significantly smaller contact area that even smaller weak points in the connection to the underlying part of the building due to the formation of voids or sedimentation have a significantly stronger impact on the structural stability of the construction. In the worst case, local overloading and thus failure of individual pressure elements of the thermal insulation element can occur. This risk is significantly lower due to the much larger contact surface with a thermal insulation element made of a material that transmits pressure, such as lightweight concrete.
- a further advantage of the present invention results if the lower contact surface of the thermal insulation element has a surface with a three-dimensional profile. Suitable profiling of the surface further reduces defects in the connection between the thermal insulation element and the freshly concreted part of the building underneath.
- the surface may have elevations and depressions as well as inclined surfaces, furrows, or the like, so that in the event of sedimentation, the surface water that settles out can run or settle in non-critical areas, while in areas of the thermal insulation element that are critical for the static connection intimate connection to the fresh concrete of the part of the building underneath is created.
- an embodiment is considered to be particularly preferred in which the lower bearing surface has a funnel-shaped or curved surface that is inclined or curved in the direction of the passage opening. This ensures that in the event of sedimentation, the surface water that is deposited is displaced in the direction of the passage opening or only forms in this area, which does not contribute to the statics of the construction anyway.
- the reinforcement elements can preferably be designed as reinforcement bars, which are used primarily for the transmission of tensile forces. Reinforcement elements that have to pass through thermal insulation are often made of stainless steel or stainless steel for structural reasons. In the context of the present invention, for reasons of better thermal insulation, the reinforcement elements can preferably be made of a fiber composite material such as glass fiber reinforced plastic.
- a reinforcement bracket is arranged in the thermal insulation element in the interior of the material transmitting the compressive force.
- a reinforcement bracket in the form of a self-contained reinforcement ring with, for example, a circular or rounded polygonal base surface, which is arranged in a plane that is essentially parallel to the support surfaces, can further increase the resistance to pressure force of the thermal insulation element by minimizing the transverse expansion of the thermal insulation element under pressure.
- a further advantageous aspect of the present invention results if at least one seal is provided on the thermal insulation element around its vertical boundary surfaces, which seal ensures tight installation of the thermal insulation element in a formwork for the underlying part of the building.
- a seal prevents fresh concrete from penetrating and rising between the formwork and the thermal insulation element when the thermal insulation element is inserted or the underlying part of the building is concreted.
- such a seal prevents air from penetrating between the formwork and the thermal insulation element if, after compacting, the vibrating tool is pulled out of the passage opening of the thermal insulation element and the thermal insulation element drops by the volume previously displaced by the vibrating tool within the formwork of the building part below.
- potting openings can be provided in the thermal insulation element, via which additional casting compound, such as potting mortar, can be filled in, if necessary, after the concrete has hardened, in order to fill any cavities that still exist between the part of the building underneath and the thermal insulation element.
- additional casting compound such as potting mortar
- the potting openings in question are preferably closed by means of removable blind plugs, so that they cannot be blocked by in-situ concrete when the thermal insulation element is installed.
- a sealing plug is provided, with which the through opening can be subsequently closed.
- the sealing plug consists of a heat-insulating but non-load-bearing material, such as, for example, extruded polystyrene.
- such a sealing plug can be conically shaped so that it can be inserted sealingly into the through opening, which preferably also tapers downwards. This ensures that after the thermal insulation element has been installed, no thermal bridge remains through the through opening, for example due to in-situ concrete entering the through opening when concreting the floor slab above it.
- one or more indicators can be provided in the thermal insulation element, which indicate sufficient contact of the lower contact surface with the fresh concrete of the part of the building to be created below.
- such indicators can be designed in the manner of a float, for example. If the indicators on the upper contact surface of the thermal insulation element become visible when there is sufficient contact, it is ensured that there is sufficient contact with the underlying concrete surface.
- the through opening has an opening dimension which is large enough to allow the passing of vibrating bottles customary on the construction site, in particular of at least 50 mm, preferably between 60 and 80 mm.
- the invention also relates to a method for installing such a thermal insulation element between two load-bearing parts of the building to be made of concrete, preferably between a vertical part of the building, in particular a support, and a horizontal part of the building above or below it, in particular a floor or a floor slab.
- formwork is created for the lower part of the building and the lower part of the building is concreted by pouring in-situ concrete into the formwork and compacting it.
- the thermal insulation element is inserted into the formwork for the lower part of the building.
- the reinforcement elements which possibly protrude downward beyond the thermal insulation element pressed into the fresh in-situ concrete of the lower part of the building.
- the concrete is subsequently compacted in a subsequent step by means of a compacting device which is passed through the through-opening in the thermal insulation element.
- the passage opening can then preferably be closed by means of a sealing plug.
- the upper part of the building for example a floor ceiling, can be created above the thermal insulation element in a conventional manner.
- the thermal insulation element can also be installed before the formwork is filled with in-situ concrete.
- the passage opening can initially be used as a filling opening for the in-situ concrete.
- the filled concrete is then compacted by inserting the vibrating tool into the fresh in-situ concrete through the through opening.
- the thermal insulation element 1 shown is used for the monolithic connection and for the load-bearing connection of a concrete column in the basement of a building to the basement ceiling above. It has a cuboid base element 1 with an upper side 2 and an underside 3, each of which serves as a support surface for the basement ceiling or the end of the support that supports it. In the middle of the cuboid thermal insulation element 1 there is a central through opening 4, which extends from the top 2 to the bottom 3 of the thermal insulation element 1.
- Four reinforcing bars 5 project through the thermal insulation element.
- the underside 3 of the thermal insulation element 1 has a three-dimensional profile in the form of a funnel-shaped recess 6 which extends in the direction of the through opening 4.
- a reinforcement bracket 7 embedded which is around the reinforcing bars 5 and gives the thermal insulation element additional stability.
- the thermal insulation element 1 consists of a lightweight concrete, which on the one hand has high pressure stability and on the other hand has good thermal insulation properties. Compared to concrete with a thermal conductivity of about 1.6 W / (m ⁇ K), the thermal conductivity when using a suitable lightweight concrete material is in the range of about 0.5 W / (m ⁇ K), which corresponds to an improvement of about 70%.
- the light concrete used essentially consists of expanded clay, fine sand, preferably light sand, flow agents and stabilizers, which prevent segregation by floating the grain and improve workability.
- the compressive strength of the thermal insulation element is high enough to allow the statically planned use of the underlying column made of in-situ concrete, for example in accordance with the compressive strength class C25 / 30.
- the compressive strength of the thermal insulation element preferably corresponds to at least 1.5 times the statically required value. This ensures that there are also safety reserves in the event of any missing surfaces on the connecting surface between the thermal insulation element and the support, so that the thermal insulation element remains statically stable even at points with higher loads.
- the reinforcing bars 5 can be concreted into the lightweight concrete material of the cuboid base body 1 during the manufacture of the thermal insulation element.
- sleeves during manufacture it is possible to use sleeves during manufacture as a type of lost circuit through which the reinforcing bars 5 are inserted after the lightweight concrete element 1 has hardened.
- the reinforcement bars 5 themselves are in the exemplary embodiment made of a fiber composite material such as the proven ComBAR® reinforcement bar from Schock, which consists of glass fibers aligned in the direction of the force and a synthetic resin matrix.
- a glass fiber rebar has an extreme low thermal conductivity, which is up to 100 times lower than that of reinforcing steel, and is therefore ideal for use in the thermal insulation element.
- conventional reinforcement bars made of stainless steel or structural steel can also be used.
- the described use of sleeves as lost formwork for the subsequent insertion of the reinforcement bars is advantageous.
- Reinforcing bars made of fiber composite materials can transmit very high tensile forces, in contrast, however, significantly lower compressive forces can destroy the reinforcing bars.
- the use of sleeves avoids a form-fitting embedding of the reinforcing bars in the surrounding concrete, which is normally intended for concrete reinforcement and is almost essential. If there is a compressive load, for example due to subsidence in the building, the reinforcement bars in their sleeves can deform elastically until the compressive forces are completely removed by the compressive-stable insulating body 1, so that a harmful compressive load on the reinforcement bars is avoided.
- the reinforcement in the thermal insulation element is only designed as a tensile reinforcement, since the connection between the support and the floor slab above it can be considered statically anyway as an articulated connection.
- a stable and permanent connection or monolithic connection between the column and the floor slab according to the static requirements is achieved with continuous reinforcement.
- the dimensions of the reinforcing bars 5 are, without the invention being restricted to this, in the exemplary embodiment 16 mm in diameter and 930 mm in length.
- the arrangement of the reinforcing bars 5 based on the base area of the base body 1 is chosen slightly outside the main diagonals. The reason for this is that the reinforcement of the support is already in the corners of a support in which the reinforcing bars 5 of the thermal insulation element 1 are installed.
- the reinforcement bracket 7 consists of a ring bent stainless steel, which is welded at the connection point.
- the reinforcement bracket 7 has a diameter of approximately 200 mm with a material thickness of 8 mm or 10 mm.
- the basic body of the thermal insulation element 1 has an edge length of 250 x 250 mm in the exemplary embodiment.
- the height is 100 mm and thus corresponds to the usual thickness of a subsequently installed thermal insulation layer.
- the through opening runs, especially in Fig. 3 can be seen, slightly conical in that the through opening 4 tapers from an upper dimension of 70 mm to a lower dimension of 65 mm.
- the through opening can be closed by means of a corresponding likewise slightly conical plug (not shown).
- Fig. 4 shows the thermal insulation element in a side view, wherein additional peripheral seals 8 are attached to the base body 1.
- the seals 8 can be designed, for example, as rubber lips or conventional sealing tapes. They are used to seal the base body of the thermal insulation element 1 so that it is edge-tight against a formwork for the support to be created underneath, in order to prevent concrete from rising or air from entering.
- Fig. 5 shows the installation situation of the thermal insulation element in relation to a support 23.
- the cross section shown here runs below the base body of the thermal insulation element 1.
- the support 23 made of in-situ concrete has one Reinforcement with four vertical reinforcement bars 25 arranged in the corners of the support 23 and a large number of approximately square reinforcement bars 26 running horizontally around the reinforcement bars 25.
- the reinforcement bars 5 of the thermal insulation element are each slightly offset next to one of the reinforcement bars 25 of the support 23 Fig. 5 drawn section line BB corresponds to the cut of the in Fig. 7 shown longitudinal section through the column reinforcement.
- FIG 6 a longitudinal section through the support 23 and the connected parts of the building is shown first.
- the support 23 is placed on a base plate 21 and carries a floor ceiling 22 arranged above it. This can be, for example, the basement or basement ceiling of a building.
- Base plate 21, support 23 and floor ceiling 22 are statically connected to one another.
- the compressive force-transmitting thermal insulation element 1 is arranged, the reinforcing bars 5 of which are monolithically cast both in the support 23 and in the floor ceiling 22 above.
- a thermal insulation layer 24 is applied to the underside of the floor ceiling 22, the thickness of which essentially corresponds to the height of the base body of the thermal insulation element 1.
- the thermal barrier coating 24 consists of a highly insulating material applied, for example of mineral insulation panels or wood wool multi-layer panels.
- Fig. 7 the reinforcement of the support 23 together with the thermal insulation element 1 is shown in a longitudinal section.
- the cut corresponds to the cut line BB Fig. 5 .
- the reinforcement of the support 23 consists of four vertical reinforcement bars 25 arranged in the corners of the support, which can be made, for example, of structural steel with a bar diameter of 28 mm and a length of 2000 mm, as well as a plurality of reinforcement brackets running horizontally around the reinforcement bars 25 with in roughly square plan.
- the thermal insulation element 1 is located above the column reinforcement, the reinforcing bars 5 of which protrude downward into the column reinforcement.
- the reinforcement content of the column 23 is about 3-4%. With a typical heat conductivity of the structural steel of approx. 50 W / (m ⁇ K), it contributes to concrete 1.6 W / (m ⁇ K) in about half of the total thermal conductivity of the column. By using the combination of lightweight concrete and glass fiber reinforcement in the area of the thermal insulation element 1, the heat transfer between the support 23 and the floor ceiling 22 can thus be reduced by approximately 90% compared to a direct, monolithic connection.
- a formwork 27 installed around the column reinforcement 25, 26 and filled with in-situ concrete. This is compacted in a conventional manner with an internal vibrator. Then the thermal insulation element 1 is inserted into the formwork 27 from above and the reinforcing bars 5 are pressed into the still liquid in-situ concrete. The base body 1 is pressed against the fresh in-situ concrete until the liquid concrete rises slightly upwards in the passage opening 4, so that it is ensured that there is no longer an air gap between the concrete of the support 23 and the thermal insulation element 1. The vibrating bottle of a concrete vibrator is then passed through the passage opening 4 into the fresh in-situ concrete located below, in order to compact it again.
- the thermal insulation element When inserting the vibrating bottle, the thermal insulation element can be slightly raised by the volume of the concrete displaced by the vibrating bottle. When pulling out the vibrating bottle, care is therefore taken to ensure that the thermal insulation element 1 drops again by this volume by pressing the thermal insulation element 1 down accordingly when the vibrator is pulled out.
- the circumferential seal 8 prevents air from penetrating between the formwork 27 and the thermal insulation element 1 or the thermal insulation element 1 from tilting in the formwork 27.
- detail designated as detail D is drawn out again enlarged by one of the seals 8.
- the post-compression of the still liquid fresh concrete through the through opening of the thermal insulation element 1 leads to an intimate connection of the thermal insulation element 1 with the in-situ concrete located underneath.
- hollow spots due to the formation of voids or sedimentation in the fresh concrete between the thermal insulation element 1 and the support are prevented.
- the conical profile on the underside of the base body 1 also contributes to this, due to the rising air bubbles or on the Collect surface of separated cement water mainly in the central area of the passage opening 4.
- the passage opening 4 is then closed by means of a conical stopper (not shown).
- the sealing plug can be made of an insulating material such as polystyrene or the like. exist and serves to prevent the penetration of in-situ concrete into the through opening 4 when the floor ceiling 22 is subsequently created. In this way, any thermal bridges due to a concrete filling in the through opening 4 are avoided. Subsequently, the storey ceiling 22 above is created above the thermal insulation element 1 in a conventional manner.
- the through opening 4 can also be used as a filling opening for filling the formwork for the support 23 with in-situ concrete.
- the thermal insulation element is inserted into the still empty formwork of the support 23 and, if necessary, the reinforcement bars 5 are connected to the support reinforcement.
- Fresh concrete is then poured into the formwork through the opening 4 of the thermal insulation element and then compacted by inserting a vibrating bottle of an internal vibrator through the opening 4.
- the fresh concrete is compacted against the underside of the thermal insulation element from above through the through opening 4.
- the support 23 can also be made from self-compacting concrete, or the support can be compacted by an external vibrator. In the latter two cases, the through opening 4 thus serves only as a filling opening.
- FIG Figure 10 In addition to installation in the upper area of a support, installation in the foot area of a support is also conceivable. Such an arrangement is shown in FIG Figure 10 shown.
- the support 23 is arranged here between the base plate 21 and the upper floor 22.
- a thermal insulation element 1 according to the invention is installed in the foot region of the support 23, the reinforcement bars 5 of which protrude from the base plate 21 into the upper region of the support 1 and are connected there to the reinforcement 25 of the support 1 are.
- a heat insulation layer 24 'made of insulation boards of a known type is attached to the top of the floor board 21.
- the production can be carried out in such a way that the thermal insulation element 1 is connected to the reinforcement 21 'before the base plate 21 is concreted.
- the base plate 21 is then cast from in-situ concrete, so that the concrete rises against the thermal insulation element 1 from below.
- the in-situ concrete can in turn be compacted through the central through opening 4 with a vibrating tool.
- the reinforcement 25 of the support is created and connected to the reinforcing bars 5 of the thermal insulation element.
- the formwork 27 for the support 23 is then built up around the thermal insulation element 1 and then the support 23 is poured and compacted from in-situ concrete in a conventional manner.
- Fig. 11 Another embodiment of a thermal insulation element is shown.
- the base body 10 of the thermal insulation element shown here is not made from lightweight concrete, but rather from a thermal insulation material which does not transmit compressive force, such as foam glass or rigid polystyrene foam.
- a total of four individual pressure bodies 11a to 11d, which are inserted into the insulation body 10, are used for the transmission of pressure force.
- the individual pressure elements 11a to 11d are made of a high-strength concrete in order to be able to remove the load through the building part 22 lying above. Reinforcing bars 15 are cast into the individual pressure elements 11a to 11d and project in the vertical direction beyond the top 12 and the bottom 13 of the thermal insulation element 10.
- a through opening 14 is provided approximately in the middle, as in the previous exemplary embodiment, which serves as a filling and / or compression opening.
- the thermal insulation element 10 is installed as in the previous exemplary embodiment.
- the thermal insulation property is achieved in this exemplary embodiment mainly by reducing the area of thermal bridges to the few individual pressure elements 11a to 11d.
- the present invention is not limited to the shape and number shown in the exemplary embodiment limited by single print elements. Rather, the portion of the pressure force-transmitting material provided within the insulation body 10 can be embodied in a variety of other geometries, such as, for example, in the form of a pressure-force-transmitting cylindrical ring.
- the reinforcing bars 15 also do not necessarily have to be guided through the pressure-force-transmitting regions 11a to 11d arranged in the insulation body 10, but can also be inserted separately therefrom through the non-pressure-force-transmitting regions of the thermal insulation element 10.
- thermal insulation element itself can be adapted to the component located below and / or above it.
- thermal insulation elements can be adapted to the typical cross sections of supports with a round, square or rectangular outline. Typical dimensions of round supports are diameters of 24 and 30 cm, or of supports with a rectangular layout of 25 x 25 cm and 30 x 30 cm. Thermal insulation elements with such a geometry can also be combined as desired to form larger supports or retaining walls.
- thermal insulation elements described here are particularly suitable for use with pendulum supports as well as wall supports with low clamping moments.
- use with load-bearing outer walls is also possible by installing the heat insulation elements at a suitable distance from one another and, if necessary, filling any remaining gaps between the individual heat insulation elements with non-load-bearing insulation material.
- the geometrical design of the profiled underside of the thermal insulation element can also be realized in a variety of other ways, for example in a step shape, a radial toothing, an annular bead and much more.
- openings can additionally or alternatively be provided for subsequent grouting of any remaining cavities between the thermal insulation element and the concrete surface located underneath.
- Such openings can be closed by means of blind plugs and, if necessary, opened to cover any remaining cavity by means of a potting compound such as one Subsequent filling of grout or a synthetic resin mass and thus establishing a secure static connection, even if in individual cases a faulty execution when creating the support or installing the thermal insulation element had resulted in a defective connection.
- indicators can be provided on the thermal insulation element, which can be pushed up in the manner of a float and thereby indicate that the thermal insulation element has contact with the in-situ concrete located underneath on its underside.
- thermal insulation element When installing the thermal insulation element in the already compacted, fresh concrete of the support underneath, during subsequent compacting and when pulling out the compacting tool from the through opening of the thermal insulation element, it may be advantageous if a defined pressure force is exerted on the thermal insulation element.
- rod-shaped reinforcing means for connecting the thermal insulation element to the parts of the building above and below can also be used in the context of the present invention, for example threaded rods, dowels or the like, since, as explained above, the connection between a support and a floor slab above it statically as a joint connection can be considered and the reinforcement at this point must therefore preferably have a constructive function.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Physics & Mathematics (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Electromagnetism (AREA)
- Acoustics & Sound (AREA)
- Building Environments (AREA)
Description
Die vorliegende Erfindung betrifft ein Wärmedämmelement zur Wärmeentkopplung zwischen aus Beton zu erstellenden, tragenden Gebäudeteilen, vorzugsweise zwischen einem vertikalen Gebäudeteil, insbesondere einer Schütze, und einem darüber oder darunterliegenden, horizontalen Gebäudeteil, insbesondere einer Geschossdecke oder einer Bodenplatte.The present invention relates to a thermal insulation element for heat decoupling between load-bearing parts of the building to be made of concrete, preferably between a vertical part of the building, in particular a contactor, and a horizontal part of the building above or below it, in particular a floor or a floor slab.
Im Hochbau werden tragende Gebäudeteile häufig aus mit einer Bewehrung versehenen Betonkonstruktionen erstellt. Aus energetischen Gründen werden solche Gebäudeteile in der Regel mit einer von außen angebrachten Wärmedämmung versehen. Insbesondere die Geschossdecke zwischen Tiefgeschoss, wie beispielsweise Keller oder Tiefgarage, und Erdgeschoss wird häufig auf der Tiefgeschossseite mit einer deckenseitig angebrachten Wärmedämmung ausgerüstet. Hierbei ergibt sich die Schwierigkeit, dass die tragenden Gebäudeteile, auf denen das Gebäude ruht, wie etwa Stützen und Außenwände, in lastabtragender Weise mit den darüber befindlichen Gebäudeteilen, insbesondere der Geschossdecke, verbunden sein müssen. Dies wird in der Regel dadurch erreicht, dass die Geschossdecke bei durchgehender Bewehrung monolithisch mit den tragenden Stützen und Außenwänden verbunden wird. Hierbei entstehen jedoch Wärmebrücken, die sich nur schlecht durch eine nachträglich von außen angebrachte Wärmedämmung beseitigen lassen. In Tiefgaragen wird beispielsweise häufig der obere, zur Geschossdecke weisende Abschnitt der tragenden Betonstützen ebenfalls mit einer Wärmedämmung ummantelt. Dies ist nicht nur aufwendig und optisch wenig ansprechend, sondern führt auch zu unbefriedigenden bauphysikalischen Ergebnissen und vermindert zudem den in der Tiefgarage verfügbaren Parkraum.In building construction, load-bearing parts of buildings are often created from reinforced concrete structures. For energy reasons, such parts of the building are usually provided with external thermal insulation. In particular, the floor ceiling between the basement, such as a basement or underground garage, and the ground floor is often equipped with thermal insulation on the basement side. The difficulty arises here that the load-bearing parts of the building on which the building rests, such as columns and outer walls, have to be connected in a load-bearing manner to the parts of the building above it, in particular the floor ceiling. This is usually achieved by monolithically connecting the floor slab to the load-bearing columns and external walls with continuous reinforcement. However, this creates thermal bridges that are difficult to remove by means of external thermal insulation. In underground garages, for example, the upper section of the load-bearing concrete columns facing the floor ceiling is also clad with thermal insulation. This is not only complex and visually unappealing, but also leads to unsatisfactory building physics results and also reduces the parking space available in the underground car park.
Aus der Schrift
Aus der Schrift
Die Druckschrift
In der Druckschrift
Die Druckschrift
Beim Einbau eines solchen vorgefertigten Anschlusselements müssen die Bewehrungselemente beim Betonieren der angrenzenden Gebäudeteile mit vergossen werden. Zu diesem Zweck muss das Anschlusselement in eine geschlossene Schalung für das darunterliegende Gebäudeteil eingebaut werden und es muss von unten gegen die bestehende, nicht zugängliche und nicht sichtbare Unterseite des Anschlusselements betoniert werden. Insbesondere bei Stützen und Außenwänden, bei denen es sich um tragende Bauwerksteile handelt, kann eine mangelhafte Ausführung beim Erstellen der Gebäudeteile insbesondere an der Verbindungsstelle zu dem Anschlusselement später zu gravierenden statischen Problemen am Gebäude führen. Hinzu kommt, dass eine Kontrolle und Überwachung der Ausführung kaum möglich ist. Insbesondere ist eine Sichtkontrolle vor und während des Betonierens wegen der Einbausituation in die Schalung nicht gegeben. Am fertigen Gebäudeteil ist eine Prüfung ebenfalls kaum mehr möglich, da die Verbindungsfläche zwischen Gebäudeteil und Anschlusselement nicht zugänglich ist. Der Erfindung liegt daher die Aufgabe zu-When installing such a prefabricated connecting element, the reinforcement elements must also be cast when concreting the adjacent parts of the building. For this purpose, the connection element must be installed in a closed formwork for the underlying part of the building and it must be concreted from below against the existing, inaccessible and invisible underside of the connection element. In the case of supports and external walls, in particular, which are load-bearing structural parts, a poor design when building the building parts, particularly at the connection point to the connecting element, can later lead to serious structural problems on the building. In addition, it is hardly possible to check and monitor the execution. In particular, there is no visual inspection before and during concreting because of the installation situation in the formwork. It is also hardly possible to check the finished part of the building, since the connection surface between the part of the building and the connecting element is not accessible. The object of the invention is therefore to
Der Erfindung liegt daher die Aufgabe zugrunde, ein Wärmedämmelement anzugeben, welches einen zuverlässigen Einbau an einer vertikal lastabtragenden Verbindungsstelle zwischen zwei aus Beton zu erstellenden Gebäudeteilen ermöglicht.The invention is therefore based on the object of specifying a thermal insulation element which enables reliable installation at a vertically load-bearing connection point between two parts of the building to be made of concrete.
grunde, ein Wärmedämmelement anzugeben, welches einen zuverlässigen Einbau an einer vertikal lastabtragenden Verbindungsstelle zwischen zwei aus Beton zu erstellenden Gebäudeteilen ermöglicht.Reasons to specify a thermal insulation element, which enables reliable installation at a vertically load-bearing connection point between two parts of the building to be made of concrete.
Die Aufgabe wird gelöst durch die Merkmale des Anspruchs 1. Vorteilhafte Ausgestaltungen sind den anhängigen Ansprüchen zu entnehmen. Darüber hinaus betrifft die Erfindung ein Verfahren zum Einbau eines entsprechenden Wärmedämmelements.The object is achieved by the features of
Bei einem erfindungsgemäßen Wärmedämmelement, welches zumindest teilweise aus einem druckkraftübertragenden Werkstoff besteht und eine obere und eine untere Auflagefläche zum vertikalen Anschluss an die aus Beton zu erstellenden Gebäudeteile aufweist, wird die Aufgabe dadurch gelöst, dass das Wärmedämmelement zumindest eine sich von der oberen bis zur unteren Auflagefläche erstreckende Durchgangsöffnung aufweist, welche zum Durchführen eines Verdichtungsgeräts ausgebildet ist. Die Durchgangsöffnung dient somit als Eintauchstelle für einen Innenrüttler. Vorzugsweise ist die Durchgangsöffnung in dem Wärmedämmelement in etwa mittig angeordnet. Außerdem sind ein oder mehrere stabförmige Bewehrungselemente vorgesehen, die das Wärmedämmelement durchdringen und sich im Wesentlichen vertikal über die obere und untere Auflagefläche hinaus erstrecken.In the case of a thermal insulation element according to the invention, which consists at least partially of a pressure-transmitting material and has an upper and a lower contact surface for vertical connection to the parts of the building to be made of concrete, the object is achieved in that the thermal insulation element is at least one from the upper to the lower Has support surface extending through opening, which is designed for performing a compression device. The through opening thus serves as an immersion point for an internal vibrator. The through opening in the thermal insulation element is preferably arranged approximately in the center. In addition, one or more rod-shaped reinforcement elements are provided which penetrate the thermal insulation element and which extend substantially vertically beyond the upper and lower contact surfaces.
Der vorliegenden Erfindung liegt die Erkenntnis zugrunde, dass beim Einbau und anschließendem Betonieren gegen die Unterseite des Wärmedämmelements eine unzureichende und undefinierte Verdichtung des Ortbetons unterhalb des Wärmedämmelements auftreten kann, die zudem stark von der Zusammensetzung des verwendeten Ortbetons abhängt. Nach Erkenntnis der Erfindung können an der Unterseite des Wärmedämmelements beim Abbinden des Ortbetons zwei Prozesse dazu führen, dass die lastabtragende Anbindung des Wärmedämmelements an das darunterliegende Gebäudeteil mangelhaft ist. Einerseits können aufsteigende Luftblasen, sogenannte Verdichtungsporen, an der Unterseite des Wärmedämmelements zu Lunkerbildung führen und so für eine statisch unzureichende Anbindung sorgen. Ein noch kritischerer Prozess stellt eine Sedimentation im noch nicht abgebundenen Ortbeton dar, bei dem schwerere Zuschlagstoffe langsam absinken und an der Betonoberfläche Wasser bzw. Zementleim abgesondert wird. Nach dem Abbinden und Austrocknen des Betonteils können in diesem Fall großflächige Hohlstellen zwischen dem Wärmedämmelement und dem darunter befindlichen Betonteil verbleiben, die von außen nicht sichtbar sind.The present invention is based on the knowledge that during installation and subsequent concreting against the underside of the thermal insulation element, inadequate and undefined compression of the in-situ concrete below the thermal insulation element can occur, which also depends strongly on the composition of the in-situ concrete used. According to the knowledge of the invention, two processes on the underside of the thermal insulation element when the in-situ concrete sets can result in the load-bearing connection of the thermal insulation element to the underlying building part being inadequate. On the one hand, rising air bubbles, so-called compression pores, can lead to the formation of voids on the underside of the thermal insulation element and thus ensure a structurally inadequate connection. An even more critical process is sedimentation in in-situ concrete that has not yet set, in which heavier aggregates slowly sink and water or cement paste is separated on the concrete surface. After setting and drying In this case, the concrete part can have large hollow spaces between the thermal insulation element and the concrete part underneath, which are not visible from the outside.
Die Bewehrungselemente dienen dazu, das Wärmedämmelement mit den angrenzenden Gebäudeteilen zu verbinden und werden gegebenenfalls an deren Bewehrung angeschlossen werden. Somit wird eine monolithische Verbindung der Gebäudeteile erreicht, auch wenn aufgrund statischer Anforderungen die Verbindung lediglich als Betongelenk betrachtet wird und die Bewehrungselemente somit eine eher konstruktive Funktion ohne größere Bedeutung für die Gebäudestatik erfüllen.The reinforcement elements serve to connect the thermal insulation element to the adjacent parts of the building and, if necessary, will be connected to their reinforcement. A monolithic connection of the building parts is thus achieved, even if, due to static requirements, the connection is only regarded as a concrete joint and the reinforcement elements thus perform a more constructive function without any major significance for the building statics.
Um dies zu vermeiden wird in dem erfindungsgemäßen Wärmedämmelement eine Durchgangsöffnung vorgesehen, durch welche ein Verdichtungsgerät wie etwa die Rüttelflasche eines Betonrüttlers hindurchgeführt werden kann, um nach dem Einbau des Wärmedämmelementes den darunter befindlichen Ortbeton zu verdichten bzw. nachzuverdichten. Durch diese Verdichtung bzw. Nachverdichtung können die beschriebenen Probleme vermieden und eine zuverlässige Anbindung des Wärmedämmelementes an das darunter befindliche Gebäudeteil erreicht werden.In order to avoid this, a passage opening is provided in the thermal insulation element according to the invention, through which a compacting device such as the vibrating bottle of a concrete vibrator can be passed, in order to compact or re-compact the in-situ concrete underneath after installing the thermal insulation element. By means of this compression or post-compression, the problems described can be avoided and a reliable connection of the thermal insulation element to the part of the building located below can be achieved.
Bei einer bevorzugten Ausführungsform ist das Wärmedämmelement zumindest teilweise aus einem druckkraftübertragenden und wärmedämmenden Werkstoff hergestellt. Vorzugsweise kann es sich bei diesem Werkstoff um einen Leichtbeton handeln. Aus Leichtbeton lassen sich unter Fabrikbedingungen hochdruckfeste Formelemente mit niedriger spezifischer Wärmeleitfähigkeit herstellen. Je nach statischer Anforderung kann ein solches Leichtbetonformteil neben der erfindungsgemäßen Durchgangsöffnung weitere Hohlkammern oder eingeschlossene Isolierelemente umfassen.In a preferred embodiment, the thermal insulation element is at least partially made of a pressure-transmitting and heat-insulating material. This material can preferably be a lightweight concrete. High-pressure resistant molded elements with low specific thermal conductivity can be produced from lightweight concrete under factory conditions. Depending on the structural requirements, such a lightweight concrete molded part can comprise, in addition to the through opening according to the invention, further hollow chambers or enclosed insulating elements.
Unter Leichtbeton ist nach dem geltenden Regelwerk ein Beton mit einer trockenen Rohdichte von maximal 2000 kg/m3 definiert. Die geringe Dichte im Vergleich zu Normalbeton wird durch entsprechende Herstellverfahren und unterschiedliche Leichtbetonkörnungen wie etwa Körnungen mit Kornporosität wie Blähton erreicht. Leichtbeton besitzt je nach Zusammensetzung eine Wärmeleitfähigkeit zwischen 0,2 und 1,6 W/(m · K).A concrete with a dry bulk density of maximum 2000 kg / m 3 is defined under lightweight concrete according to the applicable regulations. The low density compared to normal concrete is achieved through appropriate manufacturing processes and different lightweight concrete grains such as grains with grain porosity such as expanded clay. Depending on its composition, lightweight concrete has a thermal conductivity between 0.2 and 1.6 W / (m · K).
Als weiterer Vorteil ergibt sich, dass bei gleicher Festigkeitsklasse der E-Modul von Leichtbeton nur etwa 30 bis 70 % der Werte von Normalbeton beträgt. Daher sind die elastischen Verformungen bei gleicher Beanspruchung (Spannung) im Mittel 1,5- bis 3-mal so groß. Aus diesem Grund wirkt ein Wärmedämmelement aus Leichtbeton gleichzeitig als Spannungs-Dämpfungselement und ist in der Lage, kleinere Setzungen und elastische Verformungen des darüber liegenden Gebäudeteils auszugleichen und eine gleichmäßigere Verteilung und Krafteinleitung von außerzentrischen Auflagekräften auf bzw. in das darunterliegende Gebäudeteil, insbesondere eine Stütze, sicherzustellen.Another advantage is that, with the same strength class, the modulus of elasticity of lightweight concrete is only around 30 to 70% of that of normal concrete. Therefore, the elastic deformations with the same stress (tension) are on average 1.5 to 3 times as large. For this reason, a thermal insulation element made of lightweight concrete also acts as a stress-damping element and is able to compensate for smaller settlements and elastic deformations of the part of the building above and a more even distribution and force transmission from eccentric bearing forces on or into the part of the building below, in particular a support. ensure.
Das wesentlich geringere E-Modul des verwendeten Leichtbetons wirkt sich hierbei besonders günstig bei Last-Ausmitten und Auflagerverdrehungen aus, die erhöhte Kantenpressungen zur Folge haben. Das Wärmedämmelement wirkt aufgrund seiner elastischen Eigenschaften sozusagen als "Zentrierelement". Im Gegensatz dazu ist die Stauchung bei zentrischer Belastung von untergeordneter Bedeutung.The much lower modulus of elasticity of the lightweight concrete used has a particularly favorable effect on load centers and bearing twists, which result in increased edge pressures. Due to its elastic properties, the thermal insulation element acts as a "centering element", so to speak. In contrast to this, the compression with a central load is of minor importance.
Das typische E-Modul von Normalbeton, wie er für eine Stütze verwendet wird, beträgt etwa Ecm≈30.000 bis 40.000 N/mm2. Das E-Modul des im Rahmen der Erfindung bevorzugten Leichtbetons beträgt dem gegenüber zwischen etwa 9.000 und 22.000 N/mm2, vorzugsweise 12.000 und 16.000 N/mm2, höchstvorzugsweise etwa 14.000 N/mm2.The typical modulus of elasticity of normal concrete, as used for a column, is approximately E cm ≈30,000 to 40,000 N / mm 2 . In contrast, the modulus of elasticity of the lightweight concrete preferred in the context of the invention is between approximately 9,000 and 22,000 N / mm 2 , preferably 12,000 and 16,000 N / mm 2 , most preferably approximately 14,000 N / mm 2 .
Alternativ kann das Wärmedämmelement auch aus einem wärmedämmenden aber nicht druckkraftübertragenden Isolierkörper, beispielsweise aus extrudiertem Polystyrol mit einem oder mehreren darin eingebetteten Druckkörpern bestehen. Solche Druckkörper können aus hochfestem Beton hergestellt werden, wobei eine Reduzierung der Wärmeleitfähigkeit des Wärmedämmelements in diesem Falle durch eine entsprechend kleine Grundfläche der Druckelemente erreicht wird. Auch in diesem Fall ist wesentlich, dass beim Einbau des Wärmedämmelements eine Nachverdichtung des darunter betonierten Gebäudeteils erfolgt, indem ein entsprechendes Rüttelwerkzeug durch die im Wärmedämmelement vorgesehene Durchgangsöffnung in den darunterliegenden Ortbeton des angrenzenden frisch betonierten Gebäudeteils eingeführt wird.Alternatively, the thermal insulation element can also consist of a heat-insulating but not pressure-transmitting insulating body, for example of extruded polystyrene with one or more pressure bodies embedded therein. Such pressure hulls can be made from high-strength concrete, in which case the thermal conductivity of the thermal insulation element is reduced by a correspondingly small base area of the pressure elements. In this case, too, it is essential that when the thermal insulation element is installed, the part of the building that is concreted below is densified by inserting an appropriate vibrating tool through the passage opening provided in the thermal insulation element into the underlying concrete of the adjacent freshly concreted part of the building.
Gegenüber einem massiven oder in Hohlblockbauweise gefertigten Wärmedämmelement aus Leichtbeton hat die letztgenannte Variante aufgrund der deutlich kleineren Auflagefläche allerdings den Nachteil, dass bereits kleinere Schwachstellen in der Anbindung an das darunterliegende Gebäudeteil aufgrund von Lunkerbildung oder Sedimentation deutlich stärkere Auswirkung auf die statische Stabilität der Konstruktion haben. Schlimmstenfalls kann es zu einer lokalen Überlastung und damit einem Versagen einzelner Druckelemente des Wärmedämmelements kommen. Diese Gefahr ist aufgrund der wesentlich größeren Auflagefläche bei einem Wärmedämmelement aus einem druckkraftübertragenden Werkstoff wie Leichtbeton wesentlich geringer.Compared to a solid or hollow block thermal insulation element made of lightweight concrete, the latter variant has the disadvantage due to the significantly smaller contact area that even smaller weak points in the connection to the underlying part of the building due to the formation of voids or sedimentation have a significantly stronger impact on the structural stability of the construction. In the worst case, local overloading and thus failure of individual pressure elements of the thermal insulation element can occur. This risk is significantly lower due to the much larger contact surface with a thermal insulation element made of a material that transmits pressure, such as lightweight concrete.
Ein weiterer Vorteil der vorliegenden Erfindung ergibt sich, wenn die untere Auflagefläche des Wärmedämmelements eine Oberfläche mit dreidimensionalem Profil aufweist. Durch geeignete Profilierung der Oberfläche lassen sich Defekte in der Verbindung zwischen Wärmedämmelement und dem darunterliegenden frisch betonierten Gebäudeteil weiter vermindern. So kann die Oberfläche beispielsweise Erhöhungen und Vertiefungen aufweisen sowie geneigte Flächen, Furchen, oder ähnliches, so dass im Falle auftretender Sedimentation das sich absetzende Oberflächenwasser in unkritische Bereiche ablaufen bzw. sich dort absetzen kann, während in für die statische Anbindung kritischen Bereichen des Wärmedämmelements eine innige Verbindung zum Frischbeton des darunterliegenden Gebäudeteils entsteht.A further advantage of the present invention results if the lower contact surface of the thermal insulation element has a surface with a three-dimensional profile. Suitable profiling of the surface further reduces defects in the connection between the thermal insulation element and the freshly concreted part of the building underneath. For example, the surface may have elevations and depressions as well as inclined surfaces, furrows, or the like, so that in the event of sedimentation, the surface water that settles out can run or settle in non-critical areas, while in areas of the thermal insulation element that are critical for the static connection intimate connection to the fresh concrete of the part of the building underneath is created.
Als besonders bevorzugt wird in diesem Zusammenhang eine Ausführungsform angesehen, bei der die untere Auflagefläche eine trichterförmig in Richtung der Durchgangsöffnung geneigte oder gewölbte Oberfläche aufweist. Hierdurch wird erreicht, dass im Falle auftretender Sedimentation das sich absetzende Oberflächenwasser in Richtung der Durchgangsöffnung verdrängt wird bzw. sich nur in diesem Bereich bildet, der zur Statik der Konstruktion ohnehin nicht beiträgt.In this context, an embodiment is considered to be particularly preferred in which the lower bearing surface has a funnel-shaped or curved surface that is inclined or curved in the direction of the passage opening. This ensures that in the event of sedimentation, the surface water that is deposited is displaced in the direction of the passage opening or only forms in this area, which does not contribute to the statics of the construction anyway.
Vorzugsweise können die Bewehrungselemente als Bewehrungsstäbe ausgebildet werden, die vorwiegend zur Übertragung von Zugkräften dienen. Häufig werden Bewehrungselemente, die eine Wärmedämmung durchqueren müssen, aus bauphysikalischen Gründen aus Edelstahl bzw. nichtrostendem Stahl gefertigt. Im Rahmen der vorliegenden Erfindung können aus Gründen der besseren thermischen Isolierung die Bewehrungselemente vorzugsweise aus einem Faserverbundwerkstoff wie etwa glasfaserverstärkten Kunststoff hergestellt werden.The reinforcement elements can preferably be designed as reinforcement bars, which are used primarily for the transmission of tensile forces. Reinforcement elements that have to pass through thermal insulation are often made of stainless steel or stainless steel for structural reasons. In the context of the present invention, for reasons of better thermal insulation, the reinforcement elements can preferably be made of a fiber composite material such as glass fiber reinforced plastic.
Des Weiteren erweist es sich als vorteilhaft, wenn im Inneren des druckkraftübertragenden Werkstoffs in dem Wärmedämmelement ein Bewehrungsbügel angeordnet wird. Ein solcher Bewehrungsbügel in Form eines in sich geschlossenen Bewehrungsringes mit beispielsweise kreisrunder oder abgerundet mehreckiger Grundfläche, der in einer bezüglich der Auflageflächen im Wesentlichen parallelen Ebene angeordnet wird, kann die Druckkraftbeständigkeit des Wärmedämmelements weiter steigern, indem dieser die Querdehnung des Wärmedämmelements unter Druck minimiert.Furthermore, it proves to be advantageous if a reinforcement bracket is arranged in the thermal insulation element in the interior of the material transmitting the compressive force. Such a reinforcement bracket in the form of a self-contained reinforcement ring with, for example, a circular or rounded polygonal base surface, which is arranged in a plane that is essentially parallel to the support surfaces, can further increase the resistance to pressure force of the thermal insulation element by minimizing the transverse expansion of the thermal insulation element under pressure.
Ein weiterer vorteilhafter Aspekt der vorliegenden Erfindung ergibt sich, wenn an dem Wärmedämmelement mindestens eine um dessen vertikale Begrenzungsflächen umlaufende Dichtung vorgesehen wird, welche einen dichten Einbau des Wärmedämmelements in eine Schalung für das darunterliegende Gebäudeteil gewährleistet. Einerseits wird durch eine solche Dichtung verhindert, dass beim Einsetzen des Wärmedämmelements oder Betonieren des darunterliegenden Gebäudeteils Frischbeton zwischen Schalung und Wärmedämmelement eindringen und aufsteigen kann. Andererseits verhindert eine solche Dichtung das Eindringen von Luft zwischen Schalung und Wärmedämmelement, wenn nach erfolgtem Verdichten das Rüttelwerkzeug aus der Durchgangsöffnung des Wärmedämmelements herausgezogen wird und das Wärmedämmelement um das zuvor vom Rüttelwerkzeug verdrängte Volumen innerhalb der Schalung des darunterliegenden Gebäudeteils absinkt.A further advantageous aspect of the present invention results if at least one seal is provided on the thermal insulation element around its vertical boundary surfaces, which seal ensures tight installation of the thermal insulation element in a formwork for the underlying part of the building. On the one hand, such a seal prevents fresh concrete from penetrating and rising between the formwork and the thermal insulation element when the thermal insulation element is inserted or the underlying part of the building is concreted. On the other hand, such a seal prevents air from penetrating between the formwork and the thermal insulation element if, after compacting, the vibrating tool is pulled out of the passage opening of the thermal insulation element and the thermal insulation element drops by the volume previously displaced by the vibrating tool within the formwork of the building part below.
Neben der Durchgangsöffnung für das Rüttelwerkzeug können in dem Wärmedämmelement weitere Vergussöffnungen vorgesehen sein, über die erforderlichenfalls nach Aushärten des Betons zusätzlich Vergussmasse, wie etwa Vergussmörtel eingefüllt werden kann, um etwaige noch bestehende Hohlräume zwischen dem darunterliegenden Gebäudeteil und dem Wärmedämmelement auszufüllen. Vorzugsweise sind die betreffenden Vergussöffnungen mittels herausnehmbarer Blindstopfen verschlossen, so dass diese beim Einbau des Wärmedämmelementes nicht von Ortbeton verstopft werden können.In addition to the through opening for the vibrating tool, further potting openings can be provided in the thermal insulation element, via which additional casting compound, such as potting mortar, can be filled in, if necessary, after the concrete has hardened, in order to fill any cavities that still exist between the part of the building underneath and the thermal insulation element. The potting openings in question are preferably closed by means of removable blind plugs, so that they cannot be blocked by in-situ concrete when the thermal insulation element is installed.
Weiterhin ist im Rahmen der vorliegenden Erfindung bevorzugt, dass ein Verschlussstopfen vorgesehen wird, mit dem die Durchgangsöffnung nachträglich verschlossen werden kann. Hierbei ist weiter bevorzugt, dass der Verschlussstopfen aus einem wärmedämmenden, aber nichttragenden Material besteht, wie beispielsweise extrudiertem Polystyrol. Außerdem kann ein solcher Verschlussstopfen konisch geformt sein, so dass er dichtend in die, vorzugsweise ebenfalls konisch nach untenhin zulaufende Durchgangsöffnung eingesetzt werden kann. Somit ist sichergestellt, dass nach dem Einbau des Wärmedämmelementes keine Wärmebrücke durch die Durchgangsöffnung bestehen bleibt, beispielsweise aufgrund in der Durchgangsöffnung eintretenden Ortbetons beim Betonieren der darüber liegenden Geschossdecke.Furthermore, it is preferred within the scope of the present invention that a sealing plug is provided, with which the through opening can be subsequently closed. It is further preferred here that the sealing plug consists of a heat-insulating but non-load-bearing material, such as, for example, extruded polystyrene. In addition, such a sealing plug can be conically shaped so that it can be inserted sealingly into the through opening, which preferably also tapers downwards. This ensures that after the thermal insulation element has been installed, no thermal bridge remains through the through opening, for example due to in-situ concrete entering the through opening when concreting the floor slab above it.
Zusätzlich können in dem Wärmedämmelement ein oder mehrere Indikatoren vorgesehen werden, die einen ausreichenden Kontakt der unteren Anlagefläche mit dem Frischbeton des darunter zu erstellenden Gebäudeteils anzeigen. solche Indikatoren können beispielsweise in der Art eines Schwimmers ausgebildet sein. Wenn somit bei ausreichendem Kontakt die Indikatoren an der oberen Auflagefläche des Wärmedämmelements sichtbar werden ist sichergestellt, dass ausreichend Kontakt zu der darunterliegenden Betonfläche besteht.In addition, one or more indicators can be provided in the thermal insulation element, which indicate sufficient contact of the lower contact surface with the fresh concrete of the part of the building to be created below. such indicators can be designed in the manner of a float, for example. If the indicators on the upper contact surface of the thermal insulation element become visible when there is sufficient contact, it is ensured that there is sufficient contact with the underlying concrete surface.
Um ein Durchführen eines Rüttelwerkzeuges, beispielsweise der Rüttelflasche eines Betonrüttlers, zu ermöglichen, besitzt die Durchgangsöffnung ein Öffnungsmaß, das groß genug ist, um das Durchführen baustellenüblicher Rüttelflaschen zu ermöglichen, insbesondere von mindestens 50 mm, vorzugsweise zwischen 60 und 80 mm.In order to enable a vibrating tool, for example the vibrating bottle of a concrete vibrator, to be passed through, the through opening has an opening dimension which is large enough to allow the passing of vibrating bottles customary on the construction site, in particular of at least 50 mm, preferably between 60 and 80 mm.
Die Erfindung betrifft darüber hinaus ein Verfahren zum Einbau eines solchen Wärmedämmelementes zwischen zwei aus Beton zu erstellenden, tragenden Gebäudeteilen, vorzugsweise zwischen einem vertikalen Gebäudeteil, insbesondere einer Stütze, und einem darüber oder darunterliegenden horizontalen Gebäudeteil, insbesondere einer Geschossdecke oder einer Bodenplatte. Hierbei wird zunächst eine Schalung für das untere Gebäudeteil erstellt und das untere Gebäudeteil betoniert, indem Ortbeton in die Schalung eingefüllt und verdichtet wird. Dann wird in einem zweiten Schritt das Wärmedämmelement in die Schalung für das untere Gebäudeteil eingesetzt. Hierbei werden die gegebenenfalls nach unten über das Wärmedämmelement hinausragenden Bewehrungselemente in den frischen Ortbeton des unteren Gebäudeteils eingedrückt. Erfindungsgemäß erfolgt in einem anschließenden Schritt ein Nachverdichten des Betons mittels eines Verdichtungsgerätes, welches durch die Durchgangsöffnung in dem Wärmedämmelement hindurchgeführt wird. Vorzugsweise kann die Durchgangsöffnung anschließend mittels eines Verschlussstopfens verschlossen werden. Danach kann oberhalb des Wärmedämmelements in an sich üblicher Weise das obere Gebäudeteil, zum Beispiel eine Geschossdecke erstellt werden.The invention also relates to a method for installing such a thermal insulation element between two load-bearing parts of the building to be made of concrete, preferably between a vertical part of the building, in particular a support, and a horizontal part of the building above or below it, in particular a floor or a floor slab. First of all, formwork is created for the lower part of the building and the lower part of the building is concreted by pouring in-situ concrete into the formwork and compacting it. Then, in a second step, the thermal insulation element is inserted into the formwork for the lower part of the building. In this case, the reinforcement elements, which possibly protrude downward beyond the thermal insulation element pressed into the fresh in-situ concrete of the lower part of the building. According to the invention, the concrete is subsequently compacted in a subsequent step by means of a compacting device which is passed through the through-opening in the thermal insulation element. The passage opening can then preferably be closed by means of a sealing plug. Thereafter, the upper part of the building, for example a floor ceiling, can be created above the thermal insulation element in a conventional manner.
Durch das Nachverdichten des noch frischen Ortbetons des unteren Gebäudeteils nach Einsetzen des Wärmedämmelements wird sichergestellt, dass zu dessen unterer Anlagefläche inniger Kontakt besteht und Hohlräume aufgrund von Lunkerbildung und Sedimentation zwischen Wärmedämmelement und dem darunter befindlichen Gebäudeteil vermieden werden.By compacting the still fresh in-situ concrete of the lower part of the building after inserting the thermal insulation element, it is ensured that there is intimate contact with its lower contact surface and cavities due to the formation of voids and sedimentation between the thermal insulation element and the part of the building below it are avoided.
Bei einem alternativen Einbauverfahren kann das Wärmedämmelement auch vor dem Verfüllen der Schalung mit Ortbeton eingebaut werden. In diesem Fall kann die Durchgangsöffnung zunächst als Einfüllöffnung für den Ortbeton verwendet werden. Anschließend erfolgt eine Verdichtung des eingefüllten Betons, indem durch die Durchgangsöffnung das Rüttelwerkzeug in den frischen Ortbeton eingeführt wird.In an alternative installation method, the thermal insulation element can also be installed before the formwork is filled with in-situ concrete. In this case, the passage opening can initially be used as a filling opening for the in-situ concrete. The filled concrete is then compacted by inserting the vibrating tool into the fresh in-situ concrete through the through opening.
Weitere Merkmale, Vorteile und Eigenschaften der vorliegenden Erfindung werden im Folgenden anhand der Figuren und anhand von Ausführungsbeispielen erläutert. Dabei zeigt:
- Fig. 1
- eine isometrische Ansicht eines erfindungsgemäßen Wärmedämmelements aus einem druckkraftübertragenden Werkstoff, insbesondere Leichtbeton
- Fig. 2
- eine Draufsicht auf das Wärmedämmelement aus
Fig. 1 , - Fig. 3
- einen vertikalen Schnitt durch das Wärmedämmelement entlang der Schnittlinie C-C aus
Fig. 2 , - Fig. 4
- eine Weiterbildung des Wärmedämmelements aus
Fig. 1 in einer Seitenansicht, - Fig. 5
- einen Querschnitt einer Stütze eines Gebäudes, die mit einem Wärmedämmelement ausgestattet ist,
- Fig. 6
- einen Schnitt durch die
Stütze aus Figur 5 und der darüber und darunter befindlichen Gebäudeteile entlang der Schnittlinie B-B, - Fig. 7
- die Armierung der Stütze aus
Figur 6 mit dem Wärmedämmelement vor dem Betonieren der Stütze, - Fig. 8
- die mit einer Schalung versehene Stütze nach dem Verfüllen mit Beton,
- Fig. 9
- ein vergrößerter
Ausschnitt aus Figur 8 , - Fig. 10
- ein alternatives Ausführungsbeispiel mit im Fußbereich einer Stütze angeordnetem Wärmedämmelement und
- Fig. 11
- ein zweites Ausführungsbeispiel eines Wärmedämmelements aus einem nichttragenden Dämmmaterial mit eingesetzten Einzeldruckkörpern.
- Fig. 1
- an isometric view of a thermal insulation element according to the invention made of a pressure-transmitting material, in particular lightweight concrete
- Fig. 2
- a plan view of the thermal insulation element
Fig. 1 , - Fig. 3
- a vertical section through the thermal insulation element along the section line CC
Fig. 2 , - Fig. 4
- advanced training in thermal insulation elements
Fig. 1 in a side view, - Fig. 5
- 1 shows a cross section of a pillar of a building which is equipped with a thermal insulation element,
- Fig. 6
- a section through the support
Figure 5 and the building parts above and below along the section line BB, - Fig. 7
- the reinforcement of the support
Figure 6 with the thermal insulation element before concreting the column, - Fig. 8
- the column provided with formwork after being filled with concrete,
- Fig. 9
- an enlarged section from
Figure 8 , - Fig. 10
- an alternative embodiment with a thermal insulation element arranged in the foot area of a support and
- Fig. 11
- a second embodiment of a thermal insulation element made of a non-load-bearing insulation material with inserted single pressure bodies.
Das in den
Das Wärmedämmelement 1 besteht aus einem Leichtbeton, welcher einerseits eine hohe Druckstabilität, andererseits eine gute Wärmedämmeigenschaft aufweist. Gegenüber Beton mit einer Wärmeleitfähigkeit von etwa 1,6 W/(m · K) liegt die Wärmeleitfähigkeit bei Verwendung eines geeigneten Leichtbetonwerkstoffs im Bereich von etwa 0,5 W/(m · K), was einer Verbesserung um etwa 70 % entspricht. Der verwendete Leichtbeton besteht im Wesentlichen aus Blähton, Feinsanden, vorzugsweise Leichtsand, Fließmitteln sowie Stabilisatoren, die ein Entmischen durch Aufschwimmen der Körnung verhindern und die Verarbeitbarkeit verbessern.The
Die Druckfestigkeit des Wärmedämmelements ist dabei ausreichend hoch, um die statisch geplante Ausnutzung der darunterliegenden Stütze aus Ortbeton zu ermöglichen, beispielsweise entsprechend der Druckfestigkeitsklasse C25/30. Vorzugsweise entspricht die Druckfestigkeit des Wärmedämmelements aber sogar mindestens dem 1,5-fachen des statisch erforderlichen Wertes. Damit wird erreicht, dass auch im Falle von eventuellen Fehlflächen an der Verbindungsfläche zwischen Wärmedämmelement und Stütze Sicherheitsreserven vorhanden sind, so dass das Wärmedämmelement auch bei punktuell höherer Belastung statisch stabil bleibt.The compressive strength of the thermal insulation element is high enough to allow the statically planned use of the underlying column made of in-situ concrete, for example in accordance with the compressive strength class C25 / 30. However, the compressive strength of the thermal insulation element preferably corresponds to at least 1.5 times the statically required value. This ensures that there are also safety reserves in the event of any missing surfaces on the connecting surface between the thermal insulation element and the support, so that the thermal insulation element remains statically stable even at points with higher loads.
Die Bewehrungsstäbe 5, die den Grundkörper des Wärmedämmelements 1 in vertikaler Richtung durchqueren, dienen vor allem als Zugstäbe zur Übertragung gegebenenfalls auftretender Zugkräfte. Die Bewehrungsstäbe 5 können bei der Herstellung des Wärmedämmelements in den Leichtbetonwerkstoff des quaderförmigen Grundkörpers 1 einbetoniert werden. Alternativ ist es zur einfacheren Herstellung des Wärmedämmelementes möglich, bei der Herstellung Hülsen als eine Art verlorene Schaltung zu verbauen, durch die die Bewehrungsstäbe 5 nach dem Aushärten des Leichtbetonelements 1 hindurchgesteckt werden.The reinforcement bars 5, which cross the base body of the
Die Bewehrungsstäbe 5 selbst sind im Ausführungsbeispiel aus einem Faserverbundwerkstoff wie etwa dem bewährten Bewehrungsstab ComBAR® von Schock, der aus in Kraftrichtung ausgerichteten Glasfasern und einer Kunstharz-Matrix besteht. Ein solcher Glasfaserbewehrungsstab weist eine extrem niedrige Wärmeleitfähigkeit auf, die bis zu 100-mal geringer ist als bei Betonstahl, und ist somit ideal für die Anwendung in dem Wärmedämmelement geeignet. Alternativ können jedoch auch Bewehrungsstäbe herkömmlicher Art aus nichtrostendem Stahl oder Baustahl zum Einsatz kommen.The reinforcement bars 5 themselves are in the exemplary embodiment made of a fiber composite material such as the proven ComBAR® reinforcement bar from Schock, which consists of glass fibers aligned in the direction of the force and a synthetic resin matrix. Such a glass fiber rebar has an extreme low thermal conductivity, which is up to 100 times lower than that of reinforcing steel, and is therefore ideal for use in the thermal insulation element. Alternatively, however, conventional reinforcement bars made of stainless steel or structural steel can also be used.
Vor allem bei Einsatz von Bewehrungsstäben aus einem Faserverbundwerkstoff ist die beschriebene Verwendung von Hülsen als verlorener Schalung zum nachträglichen Einstecken der Bewehrungsstäbe vorteilhaft. Bewehrungsstäbe aus Faserverbundwerkstoffen können zwar sehr hohe Zugkräfte übertragen, im Gegensatz dazu können aber schon deutlich geringere Druckkräfte zur Zerstörung der Bewehrungsstäbe führen. Durch den Einsatz von Hülsen wird eine formschlüssige Einbettung der Bewehrungsstäbe in den umgebenden Beton, die normalerweise bei Betonbewehrungen beabsichtigt und nahezu unerlässlich ist, vermieden. Kommt es nun zu einer Druckkraftbelastung, beispielsweise durch Setzungen im Gebäude, so können sich die Bewehrungsstäbe in ihren Hülsen elastisch verformen, bis die Druckkräfte vollständig durch den druckkraftstabilen Dämmkörper 1 abgetragen werden, so dass eine schädliche Druckkraftbelastung auf die Bewehrungsstäbe vermieden wird.Especially when using reinforcement bars made of a fiber composite material, the described use of sleeves as lost formwork for the subsequent insertion of the reinforcement bars is advantageous. Reinforcing bars made of fiber composite materials can transmit very high tensile forces, in contrast, however, significantly lower compressive forces can destroy the reinforcing bars. The use of sleeves avoids a form-fitting embedding of the reinforcing bars in the surrounding concrete, which is normally intended for concrete reinforcement and is almost essential. If there is a compressive load, for example due to subsidence in the building, the reinforcement bars in their sleeves can deform elastically until the compressive forces are completely removed by the compressive-stable
Die Bewehrung in dem Wärmedämmelement ist lediglich als Zugkraftbewehrung ausgelegt, da die Anbindung zwischen Stütze und darüber befindlicher Geschossdecke statisch ohnehin als Gelenkverbindung betrachtet werden kann. Somit wird durch den Einsatz der Hülsen zur verbindungsfreien Durchführung einer Faserverbundwerkstoffbewehrung eine den statischen Anforderungen entsprechende, stabile und dauerhafte Verbindung bzw. monolithische Anbindung zwischen Stütze und Geschossdecke bei durchgehender Bewehrung erreicht.The reinforcement in the thermal insulation element is only designed as a tensile reinforcement, since the connection between the support and the floor slab above it can be considered statically anyway as an articulated connection. Thus, by using the sleeves for the connection-free implementation of a fiber composite reinforcement, a stable and permanent connection or monolithic connection between the column and the floor slab according to the static requirements is achieved with continuous reinforcement.
Die Verwendung von Hülsen als verlorener Schalung zum nachträglichen Einbau von Bewehrungsstäben weist außerdem erhebliche Vorteile bei der Herstellung auf. Bei der Herstellung unter Fabrikbedingungen ist es einfacher, in eine Schalung für das Wärmedämmelement Hülsen einzusetzen, als Bewehrungsstäbe, die das Wärmedämmelement auf beiden Seiten durchdringen sollen und die gegenüber der Schalung abgedichtet werden müssen. Auch die Lagerung vereinfacht sich wesentlich, wenn vorgefertigte Wärmedämmelemente ohne sperrige Bewehrungsstäbe ausgeführt sind und letztere erst auf der Baustelle beim Einbau des Wärmedämmelements in die Hülsen des Wärmedämmelements eingesteckt werden.The use of sleeves as lost formwork for the subsequent installation of reinforcing bars also has considerable manufacturing advantages. When manufacturing under factory conditions, it is easier to use sleeves in a formwork for the thermal insulation element than reinforcement bars, which are intended to penetrate the thermal insulation element on both sides and which have to be sealed off from the formwork. Storage is also considerably simplified if prefabricated thermal insulation elements are designed without bulky reinforcing bars and the latter only at the construction site during installation of the thermal insulation element are inserted into the sleeves of the thermal insulation element.
Die Abmessungen der Bewehrungsstäbe 5 betragen, ohne dass die Erfindung hierauf beschränkt wäre, im Ausführungsbeispiel 16 mm Durchmesser bei einer Länge von 930 mm. Die Anordnung der Bewehrungsstäbe 5 bezogen auf die Grundfläche des Grundkörpers 1 ist leicht außerhalb der Hauptdiagonalen gewählt. Grund hierfür ist, dass sich bei einer Stütze, in die die Bewehrungsstäbe 5 des Wärmedämmelements 1 verbaut werden, in den Ecken bereits die Bewehrung der Stütze befinden.The dimensions of the reinforcing
Der Bewehrungsbügel 7 besteht aus zu einem Ring gebogenen nichtrostendem Stahl, der an der Verbindungsstelle verschweißt ist. Der Bewehrungsbügel 7 hat einen Durchmesser von etwa 200 mm bei einer Materialstärke von 8 mm oder 10 mm.The
Der Grundkörper des Wärmedämmelements 1 hat im Ausführungsbeispiel eine Kantenlänge von 250 x 250 mm. Die Höhe beträgt 100 mm und entspricht somit der üblichen Stärke einer nachträglich angebrachten Wärmedämmschicht. Die Durchgangsöffnung verläuft, wie vor allem in
In
In
Der Bewehrungsgehalt der Stütze 23 beträgt etwa 3-4 %. Er trägt bei einem typischen Wärmeleitwert des Baustahls von ca. 50 W/(m · K) gegenüber Beton mit 1,6 W/(m · K) in etwa die Hälfte zur Gesamtwärmeleitfähigkeit der Stütze bei. Durch die Verwendung der Kombination aus Leichtbeton und einer Glasfaserbewehrung im Bereich des Wärmedämmelements 1 kann die Wärmeübertragung zwischen Stütze 23 und Geschossdecke 22 somit um ca. 90% gegenüber einem direkten, monolithischen Anschluss gesenkt werden.The reinforcement content of the
Zum Erstellen der Stütze 23 wird, wie in
Das Nachverdichten des noch flüssigen Frischbetons durch die Durchgangsöffnung des Wärmedämmelements 1 hindurch führt zu einer innigen Verbindung des Wärmedämmelements 1 mit dem darunter befindlichen Ortbeton. Insbesondere werden hohle Stellen aufgrund von Lunkerbildung oder Sedimentation im frischen Beton zwischen Wärmedämmelement 1 und der Stütze verhindert. Hierzu trägt vor allem auch die konisch verlaufende Profilierung an der Unterseite des Grundkörpers 1 bei, aufgrund der sich aufsteigende Luftblasen bzw. an der Oberfläche abgesondertes Zementwasser hauptsächlich im mittigen Bereich der Durchgangsöffnung 4 sammeln.The post-compression of the still liquid fresh concrete through the through opening of the
Nach dem Betonieren der Stütze und dem Nachverdichten durch die Durchgangsöffnung 4 hindurch werden etwaige in der Durchgangsöffnung 4 verbliebene Betonrest entfernt. Anschließend wird die Durchgangsöffnung 4 mittels eines konischen Stopfens (nicht gezeigt) verschlossen. Der Verschlusstopfen kann aus einem Dämmmaterial wie etwa Polystyrol o.ä. bestehen und dient dazu, das Eindringen von Ortbeton in die Durchgangsöffnung 4 zu verhindern, wenn anschließend die Geschossdecke 22 erstellt wird. Auf diese Weise werden etwaige Wärmebrücken aufgrund einer Betonfüllung in der Durchgangsöffnung 4 vermieden. Anschließend wird oberhalb des Wärmedämmelements 1 in an sich gewohnter Weise die darüber liegende Geschossdecke 22 erstellt.After concreting the column and re-compacting through the
Außer zum Verdichten bzw. Nachverdichten kann die Durchgangsöffnung 4 darüber hinaus auch als Einfüllöffnung zum Befüllen der Schalung für die Stütze 23 mit Ortbeton verwendet werden. In diesem Fall wird das Wärmedämmelement in die noch leere Schalung der Stütze 23 eingesetzt und gegebenenfalls die Bewehrungsstäbe 5 mit der Stützenbewehrung verbunden. Anschließend wird Frischbeton durch die Durchgangsöffnung 4 des Wärmedämmelements in die Schalung eingefüllt und anschließend verdichtet, indem durch die Durchgangsöffnung 4 eine Rüttelflasche eines Innenrüttlers eingeführt wird. Auch hier erfolgt also ein Verdichten des Frischbetons gegen die Unterseite des Wärmdämmelementes von oben durch die Durchgangsöffnung 4 hindurch. Alternativ kann die Stütze 23 auch aus selbstverdichtendem Beton erstellt werden oder das Verdichten der Stütze kann durch einen Außenrüttler erfolgen. In den beiden letztgenannten Fällen dient die Durchgangsöffnung 4 somit lediglich als Einfüllöffnung.In addition to compacting or post-compacting, the through
Neben einem Einbau im oberen Bereich einer Stütze ist auch der Einbau im Fußbereich einer Stütze denkbar. Eine solche Anordnung ist in einem alternativen Ausführungsbeispiel in
Die Herstellung kann dergestalt erfolgen, indem das Wärmedämmelement 1 vor dem Betonieren der Bodenplatte 21 mit deren Bewehrung 21' verbunden wird. Die Bodenplatte 21 wird dann aus Ortbeton gegossen, so dass der Beton von unten gegen das Wärmedämmelement 1 steigt. Um hier eine gute und zwischenraumfreie Verbindung zu erhalten, kann der Ortbeton wiederum durch die mittige Durchgangsöffnung 4 hindurch mit einem Rüttelwerkzeug verdichtet werden. Nach dem Aushärten wird die Bewehrung 25 der Stütze erstellt und mit den Bewehrungsstäben 5 des Wärmedämmelements verbunden. Um das Wärmedämmelement 1 herum wird anschließend die Schalung 27 für die Stütze 23 aufgebaut und anschließend die Stütze 23 in herkömmlicher Weise aus Ortbeton gegossen und verdichtet.The production can be carried out in such a way that the
In
Die Einzeldruckelemente 11a bis 11d sind aus einem hochfesten Beton gefertigt, um die Auflast durch das darüber liegende Gebäudeteil 22 abtragen zu können. Bewehrungsstäbe 15 sind in die Einzeldruckelemente 11a bis 11d eingegossen und ragen in vertikaler Richtung über die Oberseite 12 und die Unterseite 13 des Wärmedämmelements 10 hinaus. In etwa mittig ist wie im vorangegangenen Ausführungsbeispiel eine Durchgangsöffnung 14 vorgesehen, die als Einfüll- und/oder Verdichtungsöffnung dient.The individual pressure elements 11a to 11d are made of a high-strength concrete in order to be able to remove the load through the
Der Einbau des Wärmedämmelements 10 erfolgt wie im vorangegangenen Ausführungsbeispiel. Die Wärmedämmeigenschaft wird in diesem Ausführungsbeispiel hauptsächlich durch die flächenmäßige Reduktion von Wärmebrücken auf die wenigen Einzeldruckelemente 11a bis 11d erreicht. Die vorliegende Erfindung ist hierbei nicht auf die im Ausführungsbeispiel gezeigte Form und Anzahl von Einzeldruckelementen beschränkt. Vielmehr kann der innerhalb des Isolationskörpers 10 vorgesehene Anteil aus druckkraftübertragendem Werkstoff in vielfältigen anderen Geometrien ausgeführt werden, wie beispielsweise in Form eines druckkraftübertragenden zylindrischen Rings. Die Bewehrungsstäbe 15 müssen auch nicht zwingend durch die im Isolationskörper 10 angeordneten druckkraftübertragenden Bereiche 11a bis 11d geführt sein, sondern können auch separat hiervon durch die nicht druckkraftübertragenden Bereiche des Wärmedämmelements 10 gesteckt werden.The
Das Wärmedämmelement selbst kann in seinen Abmessungen an das darunter und/oder darüber befindliche Bauteil angepasst sein. Insbesondere können Wärmedämmelemente an die typischen Querschnitte von Stützen mit rundem, quadratischem oder rechteckigem Grundriss angepasst sein. Typische Abmessungen von runden Stützen sind Durchmesser von 24 und 30 cm, bzw. von Stützen mit rechteckigem Grundriss 25 x 25 cm und 30 x 30 cm. Wärmedämmelemente mit einer solchen Geometrie können auch zu größeren Stützen oder Stützwänden beliebig kombiniert werden.The dimensions of the thermal insulation element itself can be adapted to the component located below and / or above it. In particular, thermal insulation elements can be adapted to the typical cross sections of supports with a round, square or rectangular outline. Typical dimensions of round supports are diameters of 24 and 30 cm, or of supports with a rectangular layout of 25 x 25 cm and 30 x 30 cm. Thermal insulation elements with such a geometry can also be combined as desired to form larger supports or retaining walls.
Die vorliegend beschriebenen Wärmedämmelemente eignen sich besonders zum Einsatz bei Pendelstützen sowie Wandstützen mit geringen Einspannmomenten. Daneben ist auch der Einsatz bei tragenden Außenwänden möglich, indem die Wärmedämmelemente in geeignetem Abstand zueinander verbaut werden und gegebenenfalls verbleibende Lücken zwischen den einzelnen Wärmedämmelementen mit nicht tragendem Isolationsmaterial ausgefüllt werden.The thermal insulation elements described here are particularly suitable for use with pendulum supports as well as wall supports with low clamping moments. In addition, use with load-bearing outer walls is also possible by installing the heat insulation elements at a suitable distance from one another and, if necessary, filling any remaining gaps between the individual heat insulation elements with non-load-bearing insulation material.
Die geometrische Gestaltung der profilierten Unterseite des Wärmedämmelementes kann neben der hier gezeigten Kegelform auch in vielfältiger anderer Weise realisiert werden, beispielsweise in einer Stufenform, einer radialen Verzahnung, einem ringförmigen Wulst und vielem mehr.In addition to the conical shape shown here, the geometrical design of the profiled underside of the thermal insulation element can also be realized in a variety of other ways, for example in a step shape, a radial toothing, an annular bead and much more.
Neben einer Geometrieoptimierung der Unterseite des Wärmedämmelementes können zusätzlich bzw. alternativ kleinere Öffnungen zum nachträglichen Verguss eventuell verbliebener Hohlräume zwischen dem Wärmedämmelement und der darunter befindlichen Betonfläche vorgesehen sein. Solche Öffnungen können mittels Blindstopfen verschlossen und bei Bedarf geöffnet werden, um einen eventuell verbliebenen Hohlraum mittels einer Vergussmasse wie etwa einem Vergussmörtel oder einer Kunstharzmasse nachträglich zu verfüllen und damit eine sichere statische Anbindung herzustellen, auch wenn im Einzelfall eine fehlerhafte Ausführung bei der Erstellung der Stütze bzw. dem Einbau des Wärmedämmelementes zu einer mangelhaften Anbindung geführt hatte. Außerdem können an dem Wärmedämmelement Indikatoren vorgesehen sein, die in der Art eines Schwimmers nach oben gedrückt werden können und hierbei anzeigen, dass das Wärmedämmelement an seiner Unterseite Kontakt mit dem darunter befindlichen Ortbeton hat.In addition to optimizing the geometry of the underside of the thermal insulation element, smaller or smaller openings can additionally or alternatively be provided for subsequent grouting of any remaining cavities between the thermal insulation element and the concrete surface located underneath. Such openings can be closed by means of blind plugs and, if necessary, opened to cover any remaining cavity by means of a potting compound such as one Subsequent filling of grout or a synthetic resin mass and thus establishing a secure static connection, even if in individual cases a faulty execution when creating the support or installing the thermal insulation element had resulted in a defective connection. In addition, indicators can be provided on the thermal insulation element, which can be pushed up in the manner of a float and thereby indicate that the thermal insulation element has contact with the in-situ concrete located underneath on its underside.
Beim Einbau des Wärmedämmelements in den bereits verdichteten, frischen Beton der darunter befindlichen Stütze, beim anschließenden Nachverdichten sowie beim Herausziehen des Verdichtungswerkzeuges aus der Durchgangsöffnung des Wärmedämmelementes kann es gegebenenfalls vorteilhaft sein, wenn auf das Wärmedämmelement eine definierte Andruckkraft ausgeübt wird.When installing the thermal insulation element in the already compacted, fresh concrete of the support underneath, during subsequent compacting and when pulling out the compacting tool from the through opening of the thermal insulation element, it may be advantageous if a defined pressure force is exerted on the thermal insulation element.
Neben Bewehrungsstäben können im Rahmen der vorliegenden Erfindung auch andere stabförmige Bewehrungsmittel zur Anbindung des Wärmedämmelements an die darüber und darunterliegenden Gebäudeteile zum Einsatz kommen, beispielsweise Gewindestangen, Dübel oder ähnliches, da wie vorstehend erläutert die Anbindung zwischen einer Stütze und einer darüber befindlichen Geschossdecke statisch als Gelenkverbindung betrachtet werden kann und die Bewehrung an dieser Stelle somit vorzugsweise eine konstruktive Funktion erfüllen muss.In addition to reinforcing bars, other rod-shaped reinforcing means for connecting the thermal insulation element to the parts of the building above and below can also be used in the context of the present invention, for example threaded rods, dowels or the like, since, as explained above, the connection between a support and a floor slab above it statically as a joint connection can be considered and the reinforcement at this point must therefore preferably have a constructive function.
Claims (14)
- Thermal insulation element for thermal decoupling and vertically load-bearing connection of load-bearing building parts (23, 22) to be created from concrete, preferably between a vertical building part, especially a pillar (23), and a horizontal building part located thereabove or therebelow, especially a ceiling (22) or a floor slab (21), wherein the thermal insulation element (1) consists at least partly of a compressive-force-transmitting material and has an upper and a lower support face (2, 3) for vertical connection to the building parts (23, 22),
characterised in that
the thermal insulation element (1) has at least one through-opening (4) extending from the upper support face (2) to the lower support face (3), which through-opening is configured for passage of a compaction device for wet concrete, and has one or more bar-like reinforcing elements (5) passing through the thermal insulation element (1) and extending substantially vertically beyond the upper and lower support faces (2, 3). - Thermal insulation element according to claim 1, which consists at least partly of a compressive-force-transmitting and thermally insulating material.
- Thermal insulation element according to claim 2, which consists at least partly of a lightweight concrete.
- Thermal insulation element according to any one of the preceding claims, wherein the lower support face (3) has a three-dimensionally profiled surface.
- Thermal insulation element according to claim 4, wherein the lower support face (3) has a surface that is domed or inclined funnel-like in the direction of the through-opening (4).
- Thermal insulation element according to claim 1, wherein the bar-like reinforcing elements (5) are in the form of reinforcing bars which preferably consist of a fibre-reinforced composite material.
- Thermal insulation element according to claim 1 or 6, wherein the bar-like reinforcing elements (5) are installed in sleeves which are embedded in the compressive-force-transmitting material.
- Thermal insulation element according to any one of the preceding claims, having a reinforcing hoop (7) arranged in the interior of the compressive-force-transmitting material.
- Thermal insulation element according to any one of the preceding claims, which has at least one seal (8) surrounding the vertical boundary faces thereof for sealed installation of the thermal insulation element (1) in a formwork (27) for the building part (23) located therebelow.
- Thermal insulation element according to any one of the preceding claims, which additionally has one or more grout openings that are smaller than the through-opening (4), which grout openings are preferably closed by means of removable blind plugs.
- Thermal insulation element according to any one of the preceding claims, having a preferably conical closure plug for subsequent closure of the through-opening (4), the closure plug preferably consisting of a thermally insulating material.
- Thermal insulation element according to any one of the preceding claims, having one or more indicators for indicating that the lower support face (3) is in sufficient contact with unset concrete of the building part (23) to be created therebelow.
- Thermal insulation element according to any one of the preceding claims, wherein the through-opening (4) has an aperture dimension of at least 50 mm, preferably between 60 and 80 mm.
- Method for installing a thermal insulation element (1) for thermal decoupling between load-bearing building parts (23, 22, 21) to be created from concrete, preferably between a vertical building part, especially a pillar (23), and a horizontal building part located thereabove or therebelow, especially a ceiling (22) or a floor slab (21), wherein the thermal insulation element (1) consists at least partly of a compressive-force-transmitting material and has an upper and a lower support face (2, 3) for vertical connection to the building parts (23, 22, 21), and wherein the thermal insulation element (1) has at least one through-opening (4) extending from the upper support face to the lower support face,
comprising the following steps:- introduction of concrete into a formwork for the lower building part (23) and compaction of the concrete,- insertion of the thermal insulation element (1) into the formwork for the lower building part (23),- further compaction of the concrete by means of a compaction device for fresh concrete, which device is passed through the through-opening (4), and preferably- subsequent closure of the through-opening (4) by means of a closure plug.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL16164252T PL3085843T3 (en) | 2015-04-23 | 2016-04-07 | Device and method for heat decoupling of concreted parts of buildings |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102015106296.8A DE102015106296A1 (en) | 2015-04-23 | 2015-04-23 | thermal insulation element |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3085843A1 EP3085843A1 (en) | 2016-10-26 |
EP3085843B1 true EP3085843B1 (en) | 2020-07-29 |
Family
ID=55745585
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16164252.5A Active EP3085843B1 (en) | 2015-04-23 | 2016-04-07 | Device and method for heat decoupling of concreted parts of buildings |
Country Status (6)
Country | Link |
---|---|
US (1) | US10125487B2 (en) |
EP (1) | EP3085843B1 (en) |
CA (1) | CA2927834A1 (en) |
DE (1) | DE102015106296A1 (en) |
HU (1) | HUE051110T2 (en) |
PL (1) | PL3085843T3 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2966232B8 (en) * | 2014-07-07 | 2017-08-02 | Fundacíon Tecnalia Research & Innovation | Dry joint joining device between columns and beams of precast reinforced concrete |
US9598891B2 (en) * | 2015-03-23 | 2017-03-21 | Jk Worldwide Enterprises Inc. | Thermal break for use in construction |
US9863137B2 (en) * | 2015-03-23 | 2018-01-09 | Jk Worldwide Enterprises Inc. | Thermal break for use in construction |
US10787809B2 (en) * | 2015-03-23 | 2020-09-29 | Jk Worldwide Enterprises Inc. | Thermal break for use in construction |
DE102015109887A1 (en) * | 2015-06-19 | 2016-12-22 | Schöck Bauteile GmbH | Thermal insulation system for the vertical, load-bearing connection of concrete parts of buildings |
CN106836644B (en) * | 2016-12-26 | 2019-01-01 | 中国化学工程第三建设有限公司 | A kind of method of construction of reinforced column |
GB2574406B (en) * | 2018-06-04 | 2020-07-08 | Pbp Berlani Holding Ltd | Improvements in or relating to building structures |
DE102018130844A1 (en) | 2018-12-04 | 2020-06-04 | Schöck Bauteile GmbH | Device for heat decoupling between a concrete building wall and a floor ceiling and manufacturing process |
DE102020113637A1 (en) | 2020-05-20 | 2021-11-25 | Schöck Bauteile GmbH | Method for the horizontal production of a load-bearing, vertical precast concrete part and a load-bearing, vertical precast concrete part |
AT17361U1 (en) * | 2020-12-11 | 2022-02-15 | Porr Bau Gmbh | Building construction, method of forming the same and functional part |
CN114004085A (en) * | 2021-10-29 | 2022-02-01 | 郑州大学 | A kind of FRP composite spiral stirrup restrained concrete column and its compression design method |
Family Cites Families (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3724145A (en) * | 1971-04-05 | 1973-04-03 | D Daniel | Apparatus for anchoring a structure to earth matter |
US4209560A (en) * | 1978-04-28 | 1980-06-24 | Avco Corporation | Composite structure reinforced in the X, Y, and Z directions and method of making same |
US4378032A (en) * | 1979-10-31 | 1983-03-29 | Saggese Vincent A | Slotted concrete pipe |
US4338759A (en) * | 1980-07-28 | 1982-07-13 | Universal Component Systems, Inc. | Method of building construction using concrete reinforced wall modules |
US4394201A (en) * | 1980-10-31 | 1983-07-19 | Ernst Haeussler | Concrete slab assembly, especially for building facades |
DE3105489A1 (en) * | 1981-02-14 | 1982-11-11 | Jürgen 7440 Nürtingen Baumgärtner | Block providing a high degree of heat insulation |
US4953332A (en) * | 1989-05-15 | 1990-09-04 | Galloway Craig D | Masonry structure system |
US5218809A (en) * | 1990-04-14 | 1993-06-15 | Baumann Hanns U | Earthquake resistant structure utilizing a confinement reinforcing framework |
US6519909B1 (en) * | 1994-03-04 | 2003-02-18 | Norman C. Fawley | Composite reinforcement for support columns |
DE19519630A1 (en) * | 1995-05-29 | 1996-12-05 | Sfs Handels Holding Ag | Cantilever and / or joint element for reinforced building constructions |
US5867964A (en) * | 1995-12-20 | 1999-02-09 | Perrin; Arthur | Prefabricated construction panels and modules for multistory buildings and method for their use |
DE19823100C1 (en) * | 1998-05-22 | 2000-01-13 | Sfs Handels Holding Ag Heerbru | Cantilever and / or joint element for reinforced building constructions |
DE10106222A1 (en) | 2001-02-10 | 2002-08-14 | Schoeck Entwicklungsgmbh | Brick-shaped thermal insulation element |
NL1020949C2 (en) * | 2002-06-27 | 2004-01-16 | Connector Vinkeveen B V | Method for manufacturing a cavity in a concrete part as well as concrete part provided with a reinforcement. |
US20050097854A1 (en) | 2003-11-07 | 2005-05-12 | Neng-I Tu | L-shaped steel element joint |
TWM256410U (en) * | 2004-03-11 | 2005-02-01 | Neng-Yi Tu | Steel frame connection device |
US7814719B2 (en) * | 2004-06-14 | 2010-10-19 | Plastedil S.A. | Self-supporting construction element made of expanded plastic material, in particular for manufacturing building floors and floor structure incorporating such element |
US20080134606A1 (en) * | 2006-12-07 | 2008-06-12 | Shaw And Sons, Inc. | Monolithic concrete wall expansion joint system |
US20100024346A1 (en) * | 2008-07-31 | 2010-02-04 | Strahin Kiel E | Reinforcement bar support |
US20110258964A1 (en) * | 2008-12-30 | 2011-10-27 | Shuhuan Wu | Composite Thermal Insulation Wall Body of a Building |
IES20100101A2 (en) * | 2009-04-24 | 2010-10-27 | Maurice O'brien | A construction system |
US8381479B1 (en) * | 2009-09-28 | 2013-02-26 | Felix E. Ferrer | Pre-fabricated modular reinforcement cages for concrete structures |
US8381485B2 (en) * | 2010-05-04 | 2013-02-26 | Plattforms, Inc. | Precast composite structural floor system |
DE102010027661B4 (en) * | 2010-07-19 | 2012-08-02 | Schöck Bauteile GmbH | Shuttering apparatus and method for providing a recess during casting of a building component |
EA023516B1 (en) * | 2010-10-12 | 2016-06-30 | Свенск Селлармеринг Фабрик Аб | Reinforcement element for casting comprising ring shaped portions and reinforcement with such reinforcement elements |
SI2405065T1 (en) | 2010-11-19 | 2014-08-29 | Georg Koch | Insulating connection element for bearing compressive loads |
US9561606B2 (en) * | 2011-04-15 | 2017-02-07 | Owens Corning Intellectual Capital, Llc | Contained foam envelope for insulating and sealing large volumes |
US8555584B2 (en) * | 2011-09-28 | 2013-10-15 | Romeo Ilarian Ciuperca | Precast concrete structures, precast tilt-up concrete structures and methods of making same |
US8840336B2 (en) * | 2011-11-08 | 2014-09-23 | Fort Miller Co., Inc. | Removable dowel connector and system and method of installing and removing the same |
WO2014022884A1 (en) * | 2012-08-07 | 2014-02-13 | Nandor Koszo | A wall assembly and a building structure including the wall assembly |
US9388841B2 (en) * | 2013-03-14 | 2016-07-12 | James A. Allmon | Ratcheting-type shrinkage compensating device for use in continuous tie-down systems |
US20150013255A1 (en) * | 2013-03-14 | 2015-01-15 | Christopher M. Hunt | Hybrid cementitious buildings for a multi-level habitat |
-
2015
- 2015-04-23 DE DE102015106296.8A patent/DE102015106296A1/en active Pending
-
2016
- 2016-04-07 PL PL16164252T patent/PL3085843T3/en unknown
- 2016-04-07 HU HUE16164252A patent/HUE051110T2/en unknown
- 2016-04-07 EP EP16164252.5A patent/EP3085843B1/en active Active
- 2016-04-20 CA CA2927834A patent/CA2927834A1/en not_active Abandoned
- 2016-04-25 US US15/137,488 patent/US10125487B2/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
PL3085843T3 (en) | 2020-11-30 |
EP3085843A1 (en) | 2016-10-26 |
HUE051110T2 (en) | 2021-01-28 |
DE102015106296A1 (en) | 2016-10-27 |
US20160312459A1 (en) | 2016-10-27 |
CA2927834A1 (en) | 2016-10-23 |
US10125487B2 (en) | 2018-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3085843B1 (en) | Device and method for heat decoupling of concreted parts of buildings | |
EP3112542B1 (en) | Device and method for heat decoupling of concreted parts of buildings | |
EP2281964A1 (en) | Cast wall, floor or ceiling element and manufacturing method thereof | |
WO2016037864A1 (en) | Double wall made of high-strength or ultra-high-strength reinforced concrete | |
EP2715013B1 (en) | Connecting arrangement and method for producing a punching shear reinforcement, a subsequent lateral-force reinforcement and/or a reinforcement connection | |
DE19711813A1 (en) | Thermal insulation for construction joints | |
EP3225758B1 (en) | Connection component for thermal isolation between a vertical and horizontal building part | |
EP3106581B1 (en) | Thermal insulation system for vertical, load-bearing connection of parts of buildings made from concrete | |
EP4400668A2 (en) | Moulded building block to be fitted between a building wall and a floor or ceiling panel, and section of a building with such a moulded building block | |
EP3225759B1 (en) | Connection component for thermal isolation between vertically connected building sections | |
EP0457969B1 (en) | Method and device for the lifting of buildings | |
DE20219324U1 (en) | building basement | |
EP3492665A1 (en) | Finished concrete part with at least one load-absorbing component and connection plate for assembly in the gap between same and load-absorbing component | |
DE20120365U1 (en) | Formwork stone wall with clay and straw filling | |
EP4234828A2 (en) | Device for decoupling heat between a concrete wall of a building and a floor and production method | |
EP3467220B1 (en) | Building section and method for producing same | |
DE102005048147B3 (en) | Wall element formed as a hollow concrete finished part for a building element for erecting the first storey of a building comprises an inner wall, an outer wall and vertical channels extending from the upper side to the lower side | |
EP1457609B1 (en) | Floor for a building | |
DE202011002466U1 (en) | Profile element for arrangement on a building wall opening | |
EP3728756B1 (en) | Column-ceiling node for a reinforced concrete ceiling and two concrete columns in storey construction | |
AT520529B1 (en) | Support ceiling node for a reinforced concrete floor and two concrete columns in the storey | |
DE10121864B4 (en) | Drempelwandvorrichtung | |
WO2024109972A1 (en) | Wall element and method for the placement of such wall elements | |
DE102013005747A1 (en) | Concrete components and method of constructing same | |
DE102018130844A1 (en) | Device for heat decoupling between a concrete building wall and a floor ceiling and manufacturing process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20161214 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20170721 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: E04C 5/06 20060101ALN20200311BHEP Ipc: E04B 1/76 20060101ALN20200311BHEP Ipc: E04B 1/16 20060101AFI20200311BHEP Ipc: E04B 1/78 20060101ALI20200311BHEP Ipc: E04C 3/34 20060101ALN20200311BHEP |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: E04B 1/16 20060101AFI20200319BHEP Ipc: E04C 5/06 20060101ALN20200319BHEP Ipc: E04B 1/76 20060101ALN20200319BHEP Ipc: E04B 1/78 20060101ALI20200319BHEP Ipc: E04C 3/34 20060101ALN20200319BHEP |
|
INTG | Intention to grant announced |
Effective date: 20200403 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: VALIPAT S.A. C/O BOVARD SA NEUCHATEL, CH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1295953 Country of ref document: AT Kind code of ref document: T Effective date: 20200815 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502016010622 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: FI Ref legal event code: FGE |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20200729 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E051110 Country of ref document: HU |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201029 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201130 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201129 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502016010622 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 |
|
26N | No opposition filed |
Effective date: 20210430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210407 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210407 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201129 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20230324 Year of fee payment: 8 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230513 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NO Payment date: 20230418 Year of fee payment: 8 Ref country code: DE Payment date: 20230418 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: HU Payment date: 20230330 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20240327 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240422 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240423 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240501 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240417 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240423 Year of fee payment: 9 Ref country code: FI Payment date: 20240418 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20240419 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240408 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240430 Ref country code: HU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240408 |