[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP3084744A1 - System and method for optimized appliance control - Google Patents

System and method for optimized appliance control

Info

Publication number
EP3084744A1
EP3084744A1 EP14872863.7A EP14872863A EP3084744A1 EP 3084744 A1 EP3084744 A1 EP 3084744A1 EP 14872863 A EP14872863 A EP 14872863A EP 3084744 A1 EP3084744 A1 EP 3084744A1
Authority
EP
European Patent Office
Prior art keywords
intended target
appliance
target appliance
command
controlling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP14872863.7A
Other languages
German (de)
French (fr)
Other versions
EP3084744B1 (en
EP3084744A4 (en
Inventor
Paul D. Arling
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universal Electronics Inc
Original Assignee
Universal Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/136,023 external-priority patent/US9449500B2/en
Application filed by Universal Electronics Inc filed Critical Universal Electronics Inc
Priority to PL14872863T priority Critical patent/PL3084744T3/en
Publication of EP3084744A1 publication Critical patent/EP3084744A1/en
Publication of EP3084744A4 publication Critical patent/EP3084744A4/en
Application granted granted Critical
Publication of EP3084744B1 publication Critical patent/EP3084744B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C23/00Non-electrical signal transmission systems, e.g. optical systems
    • G08C23/04Non-electrical signal transmission systems, e.g. optical systems using light waves, e.g. infrared
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C2201/00Transmission systems of control signals via wireless link
    • G08C2201/20Binding and programming of remote control devices
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C2201/00Transmission systems of control signals via wireless link
    • G08C2201/90Additional features
    • G08C2201/93Remote control using other portable devices, e.g. mobile phone, PDA, laptop

Definitions

  • Controlling devices for example remote controls, for use in issuing commands to entertainment and other appliances, and the features and functionality provided by such controlling devices are well known in the art.
  • various communication protocols, command formats, and interface methods have been implemented by appliance manufacturers to enable operational control of entertainment and other appliances, also as well known in the art.
  • wireless and wired communication and/or digital interconnection methods such as WiFi, Bluetooth, HDMI, etc.
  • appliance manufacturer adoption of such newer methods remains inconsistent and fragmented. This, together with the large installed base of prior generation appliances, may cause confusion, mis-operation, or other problems when a user or manufacturer of a controlling device, such as a remote control, attempts to take advantage of the enhanced features and functionalities of these new control methods.
  • This invention relates generally to enhanced methods for appliance control via use of a controlling device, such as a remote control, smart phone, tablet computer, etc., and in particular to methods for taking advantage of improved appliance control
  • the instant invention comprises a modular hardware and software solution, hereafter referred to as a Universal Control Engine (UCE), which is adapted to provide device control across a variety of available control methodologies and communication media, such as for example various infrared (IR) remote control protocols; Consumer Electronic Control (CEC) as may be implemented over a wired HDMI connection; internet protocol (IP), wired or wireless; RF4CE wireless; Bluetooth (BT) wireless personal area network(s); UPnP protocol utilizing wired USB connections; or any other available standard or proprietary appliance command methodology. Since each individual control paradigm may have its own strengths and weaknesses, the UCE may be adapted to combine various control methods in order to realize the best control option for each individual command for each individual device.
  • IR infrared
  • CEC Consumer Electronic Control
  • IP internet protocol
  • RF4CE wireless
  • BT Bluetooth
  • UPnP protocol utilizing wired USB connections
  • the UCE itself may be adapted to receive commands from a controlling device, for example, a conventional remote control or a remote control app resident on a smart device such as a phone or tablet, etc., utilizing any convenient protocol and command structure (IR, RF4CE, BT, proprietary RF, etc.)
  • a controlling device for example, a conventional remote control or a remote control app resident on a smart device such as a phone or tablet, etc.
  • the controlling device may range from a very simple unidirectional IR device to a fully functional WiFi enabled smart phone or the like.
  • the UCE may receive command requests from such a controlling device and apply the optimum methodology to propagate the command function(s) to each intended target appliance, such as for example a TV, AV receiver, DVD player, etc.
  • the UCE may enable a single controlling device to command the operation of all appliances in a home theater system while coordinating available methods of controlling each particular appliance in order to select the best and most reliable method for issuing each command to each given device.
  • a UCE may utilize IR commands to power on an AV receiver appliance while CEC commands or another method may be used to select inputs or power down the same AV receiver appliance; or CEC commands may be used to power on and select inputs on a TV appliance while IR commands may be used to control the volume on the same TV appliance.
  • a UCE may comprise modular hardware and software which may be embodied in a standalone device suitable for use in an existing home theater equipment configuration, or may be incorporated into any one of the appliances such as a STB, TV, AV receiver, HDMI switch etc. Further, when incorporated into an appliance, UCE functionality may be provisioned as a separate hardware module or may be incorporated together with other hardware functionality, e.g., as part of an HDMI interface IC or chip set, etc.
  • FIGS. 1 and 2 illustrate exemplary systems in which a standalone UEC device may be utilized to command operation of several appliances
  • FIGS. 3 and 4 illustrate exemplary systems in which UEC functionality may be incorporated into an appliance which is part of a home entertainment system
  • Figure 5 illustrates a block diagram of an exemplary UEC device
  • Figure 6 illustrates a graphical representation of an exemplary UCE-based control environment
  • Figure 7 illustrates an exemplary preferred command matrix for use in a UCE- based control environment, for example as illustrated in Figure 6;
  • Figure 8 illustrates a block diagram of an exemplary smart device which may support a remote control app and a setup method for use in configuring a UCE;
  • Figure 9 illustrates an exemplary series of steps which may be performed in order to set up and configure an exemplary UCE
  • Figure 10 illustrates an exemplary series of steps which may be performed in order to define to a UCE an appliance configuration which corresponds to a user activity
  • Figure 1 1 illustrates exemplary activity configuration matrices such as may be defined during the steps of Figure 10;
  • Figure 12 illustrates an exemplary current appliance state matrix which may be maintained by a UCE for use in determining the commands necessary to invoke one of the states defined by the matrix of Figure 11 ;
  • Figure 13 illustrates an exemplary series of steps which may be performed by a UCE in issuing a function command to an appliance
  • Figure 14 illustrates an exemplary series of steps which may be performed by a UCE in establishing appliance states matching a desired activity defined in one of the matrices of Figure 1 1;
  • Figure 15 illustrates an exemplary series of steps which may be performed by a smart device to setup command control macros.
  • UCE device 100 may be used to issue commands to control various controllable appliances, such as a television 106, a cable set top box combined with a digital video recorder ("STB/DVR") 110, a DVD player 108, and an AV receiver 120. While illustrated in the context of a television 106, STB/DVR 1 10, a DVD player 108, and an AV receiver 120, it is to be understood that controllable appliances may include, but need not be limited to, televisions, VCRs, DVRs, DVD players, cable or satellite converter set- top boxes (“STBs”), amplifiers, CD players, game consoles, home lighting, drapery, fans, HVAC systems, thermostats, personal computers, etc.
  • STBs digital video recorder
  • appliance commands may be issued by UCE 100 in response to infrared (“IR”) request signals 1 16 received from a remote control device 102, radio frequency (“RF") request signals 1 18 received from an app 124 resident on a smart device 104, or any other device from which UCE 100 may be adapted to receive requests, using any appropriate communication method.
  • IR infrared
  • RF radio frequency
  • transmission of the requested appliance commands from the UCE to appliances 106, 108, 112, 120 may take the form of wireless IR signals 114 or CEC commands issued over a wired HDMI interface 1 12, as appropriate to the capabilities of the particular appliance to which each command may be directed.
  • AV receiver 120 may not support HDMI inputs, being connected to audio source appliances 108, 110 via, for example S/PDIF interfaces 122. Accordingly UCE 100 may be constrained to transmit all commands destined for AV receiver 120 exclusively as IR signals, while commands destined for the other appliances 106 through 110 may take the form of either CEC or IR signals as appropriate for each command. By way of example without limitation, certain TV manufacturers may elect not to support volume adjustment via CEC. If the illustrative TV 106 is of such manufacture, UCE 100 may relay volume adjustment requests to TV 106 as IR signals 114, while other requests such as power on/off or input selections may be relayed in the form of CEC commands over HDMI connection 1 12.
  • transmissions to and from UCE device 100 may take the form of any convenient IR, RF, hardwired, point-to-point, or networked protocol, as necessary for a particular embodiment.
  • wireless any convenient IR, RF, hardwired, point-to-point, or networked protocol, as necessary for a particular embodiment.
  • communications 1 16, 1 18, etc., between exemplary devices are illustrated herein as direct links, it should be appreciated that in some instances such communication may take place via a local area network or personal area network, and as such may involve various intermediary devices such as routers, bridges, access points, etc. Since these items are not necessary for an understanding of the instant invention, they are omitted from this and subsequent Figures for the sake of clarity.
  • UCE 100 may receive wireless request signals from a remote control 200 and/or an app resident on a tablet computer 202.
  • command transmissions to appliances 106, 108,1 10 may take the form of wired CEC commands or wireless IR commands.
  • remote control 200 may be in bi-directional communication 208 with UCE 100 and accordingly the UCE may delegate the transmission of IR commands 210 to the remote control device 200, i.e., use remote control 200 as a relay device for those commands determined to be best executed via IR transmissions.
  • a setup app 214 executing on a smart device such as tablet computer 202 may be utilized in conjunction with an Internet (212,204) accessible or cloud based server 206 and associated database 207 to initially configure UCE 100 for operation with the specific group of appliances to be controlled, i.e., to communicate to UCE 100 a matching command code set and capability profile for each particular appliance to be controlled, for example based on type, manufacture, model number, etc., as will be described in greater detail hereafter.
  • UCE functionality 100' may be embedded in an appliance, for example STB/DVR 310.
  • remote control 102 and/or smart device 104 may transmit wireless request signals directly to STB/DVR 310 for action by the built-in UCE function 100', which actions may, as before, comprise CEC command transmissions via HDMI connection 1 12 or IR command transmissions 1 14, originating in this instance from an IR blaster provisioned to the STB/DVR appliance 310.
  • STB/DVR 310 may be utilized to configure UEC 100', using for example an Internet connection 304 accessible through a cable modem and/or cable distribution system headend.
  • UCE functionality 100' may be embedded in an AV receiver 420 which may serve as an HDMI switch between various content sources such as a STB/DVR 110 or a DVD player 108 and a rendering device such as TV 106.
  • AV receiver 420 may also support various other input formats, for example analog inputs such as the illustrative 404 from CD player 408; composite or component video; S/PDIF coaxial or fiberoptic; etc.
  • request signals 406 may be directed to AV receiver 420, for example from remote control 402, for action by UCE function 100'.
  • resulting appliance commands may be transmitted using CEC signals transmitted over HDMI connections 112, or via IR signals 1 14 transmitted from an associated IR blaster.
  • initial configuration of UCE 100' to match the equipment to be controlled may be performed by an Internet-connected app resident in AV receiver 420, or by an app resident in tablet computer 202 or other smart device, as mentioned previously in conjunction with Figure 2.
  • UCE function 100' may be incorporated into an Internet-capable TV, an HDMI switch, a game console, etc.;
  • appliance command set and capability database 207 may be located at an internet cloud or a cable system headend, may be stored locally (in all or in part), which local storage may take the form of internal memory within the UCE itself or in an appliance such as a TV, STB or AV receiver, or may take the form of a memory stick or the like attachable to a smart device or appliance; etc.
  • an exemplary UCE device 100 may include, as needed for a particular application, a processor 500 coupled to a memory 502 which memory may comprise a combination of ROM memory, RAM memory, and/or non-volatile read/write memory and may take the form of a chip, a hard disk, a magnetic disk, an optical disk, a memory stick, etc., or any combination thereof. It will also be appreciated that some or all of the illustrated memory may be physically incorporated within the same IC chip as the processor 500 (a so called "microcontroller") and, as such, it is shown separately in Fig. 5 only for the sake of clarity.
  • Interface hardware provisioned as part of the exemplary UCE platform may include IR receiver circuitry 504 and IR transmitter circuitry 506; an HDMI interface 508; a WiFi transceiver and interface 510; an Ethernet interface 512; and any other wired or wireless I/O interface(s) 514 as appropriate for a particular embodiment, by way of example without limitation Bluetooth, RF4CE, USB, Zigbee, Zensys,
  • the electronic components comprising the exemplary UCE device 100 may be powered by an external power source 516.
  • an external power source 516 In the case of a standalone UCE device such as illustrated in Figures 1 or 2, this may comprise for example a compact AC adapter "wall wart," while integrated UCE devices such as illustrated in Figures 3 or 4 may draw operating power from the appliance into which they are integrated.
  • processor 500 and/or memory 502 and/or certain portions of interface hardware items 504 through 514 may be shared with other functionalities of the host appliance.
  • the memory 502 may include executable instructions that are intended to be executed by the processor 500 to control the operation of the UCE device 100 (collectively, the UCE programming) as well as data which serves to define the necessary control protocols and command values for use in transmitting command signals to controllable appliances (collectively, the command data).
  • the processor 500 may be programmed to control the various electronic components within the exemplary UCE device 100, e.g., to monitor the communication means 504,510 for incoming request messages from controlling devices, to cause the transmission of appliance command signals, etc.
  • the UCE device 100 may be adapted to be responsive to events, such as a received request message from remote control 102 or smart device 104, changes in connected appliance status reported over HDMI interface 508, WiFi interface 510, or Ethernet interface 512, etc. In response to an event, appropriate instructions within the UCE programming may be executed.
  • events such as a received request message from remote control 102 or smart device 104, changes in connected appliance status reported over HDMI interface 508, WiFi interface 510, or Ethernet interface 512, etc.
  • appropriate instructions within the UCE programming may be executed.
  • the UCE device 100 may retrieve from the command data stored in memory 502 a preferred command transmission medium (e.g., IR, CEC over HDMI, IP over WiFi, etc.) and a corresponding command value and control protocol to be used in transmitting that command to an intended target appliance, e.g., TV 106, in a format recognizable by that appliance to thereby control one or more functional operations of that appliance.
  • a preferred command transmission medium e.g., IR, CEC over HDMI, IP over WiFi, etc.
  • the status of connected appliances may be monitored and/or tabulated by the UCE programming in order to facilitate adjustment of appliance settings to match user- defined activity profiles, e.g. "Watch TV”, “View a movie”, etc.
  • the UCE programming of an exemplary UCE device 100 may comprise a universal control engine core 650 together with a series of scalable software modules 652 through 660, each module supporting a particular appliance command protocol or method and provisioned as appropriate for a particular embodiment.
  • the illustrative embodiment of Figure 6 may include an internet protocol (IP) module 652, a CEC over HDMI module 654, a Bluetooth module 656, an IR module 660, and other modules(s) 658, as appropriate for the particular application.
  • the appliances to be controlled may include an IP enabled AV receiver 620, an IP enabled STB/DVR 610, TV 106, DVD player 108, and CD player 408. As illustrated, certain of these devices may be interconnected via HDMI 112 and/or Ethernet 670 interfaces.
  • the preferred method/protocol/medium for issuance of commands to the exemplary appliances of Figure 6 may vary by both appliance and by the function to be performed.
  • volume control and analog input selection commands 622 targeted to AV receiver 620 may be required to be issued via IR transmissions
  • power on/off and HDMI input selection functionality commands 624 may be better communicated via CEC commands and advanced functionality commands 626 such as sound field configuration may be best communicated via an Ethernet connection.
  • the various operational functions of the other appliances may best commanded via a mixture of mediums, methods, and protocols, as illustrated.
  • a particular appliance may support receipt of an operational command via more than one path, for example the power on/off function of AV receiver 620 may be available not only as a CEC command, but also via an IR command.
  • the UCE preferred command format may be that which has been determined to offer the greatest reliability, for example in the above instance the CEC command may be preferred since this form of command is not dependent on line-of- sight and also permits confirmation that the action has been performed by the target appliance.
  • the exemplary UCE core program 650 may be provisioned with a preferred command matrix 700, as illustrated in Figure 7.
  • Exemplary preferred command matrix 700 may comprise a series of data cells or elements, e.g. cells 712, each corresponding to a specific command 702 and a specific one of the appliances to be controlled 704.
  • the data content of such a cell or element may comprise identification of a form of command/transmission to be used and a pointer to the required data value and formatting information for the specific command.
  • the data element 712 corresponding to the "Input 2" command 706 for the configured TV appliance 708, may comprise an indicator that a CEC command is to be used, i.e., an indicator of the transmission device that is to be used to communicate the command to the intended target appliance, together with a pointer to the appropriate command data value and HDMI- CEC bus address; while data element 714 corresponding to the same command function for the configured AV receiver 710 may comprise an indicator that an IR command is to be used, together with a pointer to appropriate command data and formatting information within an IR code library stored elsewhere in UCE memory 502 .
  • one or more secondary command matrices 716 may also be provisioned, allowing for the use of alternate command methods in the event it is determined by the UCE programming that a preferred command was unsuccessful.
  • Command matrix 700 may also contain null entries, for example 718, where a particular function is not available on or not supported by a specific appliance.
  • command matrix 700 may be created and loaded into the memory 502 of UCE 100 during an initialization and set-up process, as will now be described in further detail.
  • a setup application may be provided.
  • such a set up application may take the form of programming to be executed on any convenient device with a suitable user interface and capable of establishing communication with the UCE, such as without limitation a smart phone, tablet computer, personal computer, set top box, TV, etc., as appropriate for a particular embodiment.
  • such a set up application may be incorporated into the UCE programming itself, utilizing for example a connected TV screen and an associated controlling device as the user interface.
  • the series of steps which may be performed by a UCE set up application when configuring a UCE device for operation with a specific set of appliances remains similar. Accordingly, it will be appreciated that the methods comprising the illustrative UCE set up application presented below in conjunction with Figures 8 and 9 may be generally applied, mutatis mutandis, to various alternative set up application embodiments.
  • a tablet computer such as the exemplary device 202 of Figure 2 may comprise, as needed for a particular application, a processor 800 memory 802 which memory may comprise a combination of ROM memory, RAM memory, and/or non-volatile read/write memory and may take the form of a chip, a hard disk, a magnetic disk, an optical disk, a memory stick, etc., or any combination thereof.
  • a processor 800 memory 802 which memory may comprise a combination of ROM memory, RAM memory, and/or non-volatile read/write memory and may take the form of a chip, a hard disk, a magnetic disk, an optical disk, a memory stick, etc., or any combination thereof.
  • external memory 804 may take the form of an SD card, memory stick, or the like.
  • Hardware provisioned as part of an exemplary tablet computer platform may include an LCD touchscreen 810 with associated display driver 806 and touch interface 808; hard keys 812 such as for example a power on/off key; a USB port 816; WiFi transceiver and interface 818; a Bluetooth transceiver and interface 820; a camera 822; and various other features 824 as appropriate for a particular embodiment, for example an accelerometer, GPS, ambient light sensor, near field communicator; etc.
  • the electronic components comprising the exemplary tablet computer device 202 may be powered by a battery-based internal power source 814, rechargeable for example via USB interface 816.
  • Memory 802 may include executable instructions that are intended to be executed by the processor 800 to control the operation of the tablet computer device 202 and to implement various functionalities such as Web browsing, game playing, video streaming, etc.
  • programming comprising additional functionalities may be downloaded into tablet computer 202 via, for example, WiFi interface 818, USB 816, external memory 804, or any other convenient method.
  • one such app may comprise a remote control app, for example as that described in co-pending U.S. Patent Application No. 13/329,940 of like assignee and incorporated herein by reference in its entirety, which app may be for use in commanding the operation of appliances 106, 108, 110 and/or 120 via UCE device 100.
  • tablet computer 202 may also be provisioned with a setup app 214, either as part of a remote control app or as separately downloadable item.
  • such a setup app upon being invoked at step 902 may initially request that the user place all of the appliances to be controlled into a known state, e.g., powered on, in order to enable the appliance detection and/or testing steps which follow.
  • the setup app may determine the identity of those appliances which are CEC-enabled. This may be accomplished by communicating a request to the associated UCE, which at step 906 which may cause the UCE programming to scan connected HDMI devices for appliances which are CEC-enabled and/or identifiable via interaction over the HDMI interface, for example as described in co- pending U.S. Patent Application No. 13/198,072, of like assignee and incorporated herein by reference in its entirety, and communicate such appliance identities to the setup application.
  • the setup application may determine if additional non-CEC appliances are connected to the UCE device via the HDMI interface. This may be accomplished by requesting the UCE programming to scan for any further HDMI connections at step 910 and communicate the findings back to the setup application. Though not illustrated, it will be appreciated that where appropriate for a particular embodiment the UCE programming may conduct similar scans to in order to discover appliances connected via Ethernet, USB, Bluetooth, RF4CE, WiFi etc., where such interfaces may be provisioned to a UCE.
  • the setup application may display a listing of detected appliances (both identified and not yet identified) to the user.
  • the user may be prompted to enter appliance identifying information for those HDMI or otherwise connected appliances which were detected but not identified, as well as identifying information regarding any additional appliances which may form part of the system to be controlled but are not discoverable as described above (for example appliances such as AV receiver 120 or CD player 408 which may be responsive only to unidirectional IR commands).
  • such identifying information may take the form of user- entered data such as an appliance type, brand and model number, or a setup code from a listing in a user guide; or may take the form of scanned or electronic information such as a digital picture of the appliance itself or of a bar code, QR code, or the like associated with appliance; near field acquisition of RFID tag data; etc.; or any combination thereof as appropriate for a particular embodiment.
  • the setup app may communicate that information to a database server, for example server 206, for performance of step 918, comprising identification of and retrieval of command codeset and capability data corresponding to the identified appliances from a database 207, and provision of this data to the setup application for processing and ultimate transfer to the UCE device.
  • the transferred codeset data may comprise complete command data values and formatting information, may comprise pointers to command data values and formatting information already stored in the memories 502 and/or 802/804 of the UCE or the device upon which the setup application is currently resident, or a combination thereof.
  • database 207 may contain alternate codesets for an identified appliance, or where uncertainty exists regarding a particular appliance model number, etc.
  • various control paradigms and/or command data sets may be tested against the appliances to be controlled. Such testing may take the form of soliciting user response to effects observable commands, monitoring of HDMI interface status changes as described for example in U.S. Patent Application No. 13/240,604, of like assignee and incorporated herein by reference in its entirety, or any other method as convenient for a particular application.
  • a suitable preferred command matrix for example as illustrated in Figure 7, may be constructed and stored into the memory 502 of exemplary UCE device 100, the matrix being constructed by considering the communication capabilities and functionalities of the devices identified via the above-described processes.
  • any suitable method may be utilized, for example a system-wide prioritization of command media and methods by desirability (e.g. apply IP, CEC, IR in descending order); appliance-specific command maps by brand and/or model; function- specific preference and/or priority maps (e.g. all volume function commands via IR where available); etc.; or any combination thereof.
  • the exact selection of command method priorities or mapping may take into account factors such connection reliability, e.g. wired versus wireless, bidirectional versus unidirectional communication, etc.; speed of command transmission or execution; internal priorities within an appliance, e.g. received IP received packets processed before CEC packets, etc.; type of protocol support (e.g. error correction versus error detection; ack/nak, etc.); or any other factors which may applied in order to achieve optimum performance of a particular embodiment.
  • said preferred command matrix may be performed at the database server or within the setup application, or a combination thereof, depending on the particular embodiment.
  • a preferred command matrix has been finalized and stored in the UCE device, at step 932 a series of desired appliance configurations associated with specific user activities may be configured and stored into the UCE device, as will be now be described.
  • an exemplary setup application may subsequently guide a user through a series of steps in order to establish the desired appliance configurations for a series of possible activities.
  • the user may be presented with a list of possible activities, e.g., "Watch TV”, “Watch a movie”, “Listen to music”, etc.
  • the user may also be able to edit activity titles and/or create additional user defined activities.
  • a user may select a particular activity for configuration, for example "Watch TV”.
  • the user may be prompted to identify the content source for the activity being configured, for example cable STB/DVR 110 for the exemplary "Watch TV" activity.
  • Such a prompt may take the form of a listing of eligible appliances as determined during the foregoing appliance set up steps; explicit user entry of an appliance type; etc.
  • the user may be prompted in a similar manner to select video and audio rendering appliances for use in this activity, for example TV 106 and AVR receiver 120 respectively.
  • the set up application in concert with UCE programming may be able to ascertain which input port of each rendering appliance is attached to the content source appliance identified for this activity and/or if any intermediate switching appliance is in use (for example AV receiver 420 of the system illustrated in Figure 4).
  • the set up application may automatically create all or part of an appropriate rendering device input selection for the activity being configured. If not, at steps 1008 and 1010, the user may be additionally requested to identify the applicable content route(s) to the rendering appliances, e.g., input port numbers, presence of intermediate switches, etc.
  • the set up application may construct an activity matrix, for example as illustrated in Figure 11.
  • activity matrix 1100 for a "Watch TV" activity may comprise a series of cells, for example 11 10 or 11 12, each corresponding to a desired configuration of a particular state 1 106 or function 1 108 of a specific appliance 1 104 during the specified activity.
  • cell 1 110 may indicate that the input of AV receiver 120 is to be set to "S/PDIF2", while cells 11 12 and 1114 may indicate that transport function commands (e.g., "play”, “pause”, “fast forward” etc.) are to be directed to STB/DVR 110 and not to DVD 1 14.
  • transport function commands e.g., "play”, “pause”, “fast forward” etc.
  • the assignment of functions such as, for example, volume control, to specific appliances during a particular activity may be performed within an individual controlling device, i.e., the controlling device may determine the appliance to which volume control commands are to be directed, in a preferred embodiment this assignment may be performed within the UCE, thereby ensuring consistency across each activity when multiple controlling devices are present in an environment, for example devices 102 and 104 of the environment illustrated in Figure 1.
  • the newly-constructed activity matrix 1 100 may be tested by causing the UCE programming, utilizing preferred command matrix 700, to issue the commands necessary to place the identified appliances into the desired state and thereafter receiving verification at step 1018 that the desired activity was successfully initiated.
  • verification may comprise, for example, detection and reporting of HDMI or other content streams and/or appliance status by UCE programming by directly monitoring CEC status or by using methods such as described for example in U.S. Patent Application No. 13/240,604;
  • step 1018 the set up application may return to step 1002 to allow reconfiguration of that activity and/or definition of alternative activities. If testing was successful, at steps 1020 and 1022 the completed activity matrix, for example 1100 as illustrated in Figure 1 1, may be transferred to the UCE 100 for storage in UCE memory 502. Thereafter, at step 1024 the user may be offered the opportunity to return to step 1002 to define additional activity configurations, for example 1 101, 1 102 as illustrated in Figure 1 1, or to exit the activity configuration process.
  • the series of steps performed by the UCE programming in order to convey a function command to an appliance in accordance with a command request 1300 received from a controlling device such as remote control 102 or 200, smart device 104 or 202, etc., or in accordance with an internally generated requirement resulting from receipt of an activity request (as will be described hereafter) may initially comprise retrieval from a preferred command matrix that data element which corresponds to the requested command and target appliance.
  • receipt of a "TV power on" request from remote control 102 or the like at a UEC provisioned with the preferred command matrices illustrated in Figure 7 may cause retrieval of data element 720, indicating that the command is to be communicated to the TV appliance, e.g., television 106, using an HDMI CEC command.
  • the UCE programming may determine if the retrieved value constitutes a null element. If so, the referenced appliance does not support the requested command and accordingly at step 1314 an error message may be generated and the process thereafter terminated.
  • error message may depend upon the particular embodiment and/or the requesting controlling device: for example, if the request originated from a controlling device which is in bidirectional communication with the UCE the error may be communicated back to the requesting device for action, i.e., display to the user, illuminate a LED, activate a buzzer, etc. as appropriate.
  • action i.e., display to the user, illuminate a LED, activate a buzzer, etc.
  • that appliance's front panel display may be utilized.
  • the UCE may communicate the corresponding function command to the target appliance using the indicated command value and transmission method, e.g., for the exemplary data element 720 this may comprise issuing a CEC "power on" command to CEC logical device address zero (TV) via the UCE HDMI interface 508.
  • the UCE programming may determine if the communication interface and protocol used in issuing the command provides for any confirmation mechanism, i.e., explicit acknowledgement of receipt, monitoring of HDMI status on an interface, detection of a media stream or HDCP handshake, etc.
  • the UCE programming may simply assume that the command was successful and processing is complete. If however confirmation means exists, at step 1310 the UCE programming may wait to determine if the command was successfully executed. Once positive confirmation is received, processing is complete. If no confirmation or a negative confirmation is received, at step 1312 the UCE programming may determine if an alternative method is available to communicate the command to the target appliance.
  • this may comprise accessing a secondary command matrix 716 in order to determine if an alternative communication method is available for the specific function, e.g., "TV power on.” If an alternative does exist, at step 1316 the substitute command value and transmission method may be retrieved and processing may return to step 1306 to initiate an alternative attempt.
  • an IR "power on” command encoded according to SIRCS Spin Infrared Control System
  • an exemplary UCE may also support activity selection, whereby receipt of a single user request from a controlling device may cause a series of commands to be issued to various appliances in order to configure a system appropriately for a particular user activity, such as for example, watching television.
  • activity selection whereby receipt of a single user request from a controlling device may cause a series of commands to be issued to various appliances in order to configure a system appropriately for a particular user activity, such as for example, watching television.
  • a set of matrices defining desired equipment states suitable to various activities for example as illustrated at 1 100 through 1102 of Figure 11, may be stored in UCE memory 502 for access by UCE programming when executing such a request.
  • the programming of an exemplary UCE may maintain an additional matrix 1200
  • data elements 1206 and 1208 in the illustrative table 1200 may indicate that TV 106 is currently powered on (1208) with HDMI port number 2 selected as the input (1206).
  • the data contents of the elements in such a table may be maintained in any convenient manner as appropriate to a particular embodiment, for example without limitation retrieval of HDMI/CEC status; monitoring input media streams and/or HDCP status; measuring power consumption; construction of a simulated appliance state such as described for example in U.S. Patent 6,784,805; etc.; or any combination thereof.
  • a null data element 1210 maybe entered into exemplary matrix 1200 to indicate that this appliance may require configuration using discrete commands only and/or user interaction.
  • the data contents of the illustrative table may be maintained in memory 502 on an ongoing basis by UCE programming, while in other embodiments this data may be gathered "on the fly” at the time the activity request is being processed. Combinations of these methods may also be used, for example "on the fly” gathering for appliances connected via an HDMI bus combined with maintenance of a simulated state for appliances controlled via IR signals.
  • UCE programming may compare a desired state matrix, for example 1 100, to a current state matrix, for example 1200, element by element, issuing commands as necessary to bring appliances to the desired state.
  • a desired state matrix for example 1 100
  • a current state matrix for example 1200
  • element by element issuing commands as necessary to bring appliances to the desired state.
  • an exemplary series of steps which may be performed by the programming of a UCE in order to effect a "Watch TV" activity configuration will now be presented in conjunction with Figure 14.
  • the reader may also wish to reference the equipment configuration of Figure 1 and the activity and current state matrices 1 100 and 1200 of Figures 11 and 12.
  • the exemplary UCE programming may access an applicable appliance state matrix 1 100.
  • communication of the "power on” command to TV 106 may comprise a CEC command issued over HDMI connection 1 12.
  • a "mute" command may be communicated to TV 106, since element 1 116 of illustrative matrix 1 100 indicates that TV 106 is not the primary audio rendering appliance.
  • communication of the "mute" command to TV 106 may comprise an IR transmission 114.
  • the active input of TV 106 may be set to "HDMIl” via a CEC command, and at steps 1414,1416 a CEC "power on” command may be communicated to STB/DVR 110 if that appliance is not already powered on.
  • the exemplary UCE programming may set an internal status to indicate that future transport command requests (e.g., play, pause, FF, etc.) should be routed to STB/DVR 110, as indicated by element 11 12 of matrix 1 100.
  • future transport command requests e.g., play, pause, FF, etc.
  • steps 1420, 1422 a CEC "power off command may be communicated to STB/DVR 108 if that appliance is not already powered off.
  • steps 1424 and 1426 power on” and "input S/PDIF2" commands may be
  • exemplary UCE programming may set an internal status to indicate that future volume control command requests (e.g. volume up/down, mute) should be routed to AV receiver 120, as indicated by element 11 18 of matrix 1100, where after processing of the activity request is complete.
  • future volume control command requests e.g. volume up/down, mute
  • the exemplary UCE may also support activity selection, whereby receipt of a single user request from a smart device may cause a series of commands to be issued to various appliances in order to configure a system appropriately for one or more user activities, such as "watch TV,” “watch movie,” “listen to music,” etc.
  • activity selection whereby receipt of a single user request from a smart device may cause a series of commands to be issued to various appliances in order to configure a system appropriately for one or more user activities, such as “watch TV,” “watch movie,” “listen to music,” etc.
  • Fig. 15 an exemplary method is illustrated in Fig. 15. More particularly, with reference to Fig. 15, upon invocation of a setup app at step 1502 a user may be requested to place all of the appliances to be controlled into a known state, e.g., powered on or already joined in a wireless network, in order to enable the appliance detection and/or testing steps which follow.
  • the setup app may determine the identity of those appliances which are CEC-enabled or IP enabled. This may be accomplished by communicating a request to the associated UCE, which at step 1506 may cause the UCE programming to scan connected HDMI devices for appliances which are CEC-enabled and/or identifiable via interaction over the HDMI interface, for example as described in co-pending U.S. Patent Application No. 13/198,072, of like assignee and incorporated herein by reference in its entirety, and communicate such appliance identities to the setup application.
  • the setup app may also determine if the appliances has any associated icon information (for example stored as metadata on the appliance, available from a remote server, or the like) as well as information related to interface connection types, e.g., WI- FI, HDMI input/output, for use in the creation of supported macros. If the icon information is available, the icon information may be sent to the smart device by the appliance and/or retrieved by the smart device using other information provided by the appliance as appropriate as shown in step 1526.
  • icon information for example stored as metadata on the appliance, available from a remote server, or the like
  • information related to interface connection types e.g., WI- FI, HDMI input/output
  • icon information may then be automatically added to the user interface of the smart device whereupon an activation of the added icon may be used to provide access to command and control functionalities associated with the corresponding controllable device, including commands in the form of a listing of automatically generated macros available for that controllable device as described below.
  • icon information provided to the smart device may be used in connection with information stored on the smart device, stored in the internet cloud and/or at a remote server to automatically add an icon to the user interface of the smart device where the icon can be in the form of a logo for the controllable appliance, icons in the form of logos for content (e.g., television station logos) that can be accessed via the controllable appliance, etc.
  • icons may function as soft keys which may be selected to cause the performance of a further action for example, to display a device control page (e.g., to present television control soft keys such as channel up, channel down, etc.), cause the transmission of commands, etc. as described for example in U.S. Patent Application No. 10/288,727, (now U.S. Patent 7,831,930) of like assignee and incorporated herein by reference in its entirety, or any other method as convenient for a particular application.
  • a device control page e.g., to present television control soft keys such as channel up, channel down, etc.
  • the setup application then continues to step 1510 (after scanning for CEC connected appliances as discussed above) whereat the setup application may next determine if additional non-CEC appliances are connected to the UCE device via the HDMI interface. This may be accomplished by requesting the UCE programming to scan for any further HDMI connections at step 1512 and communicate the findings back to the setup application. Though not illustrated, it will be appreciated that, where appropriate for a particular embodiment, the UCE programming may conduct similar scans in order to discover appliances connected via Ethernet, USB, Bluetooth, RF4CE, WiFi etc., where such interfaces may be provisioned to a UCE.
  • the setup application may display a listing of detected appliances (both identified and not yet identified) to the user.
  • the user may then be prompted to enter appliance identifying information for those HDMI or otherwise connected appliances which were detected but not identified, as well as identifying information regarding any additional appliances which may form part of the system to be controlled but which were not discoverable as described above (for example appliances such as AV receiver 120 or CD player 408 which may be responsive only to
  • identifying information may take the form of user-entered data such as an appliance type, brand and model number, or a setup code from a listing in a user guide; or may take the form of scanned or electronic information such as a digital picture of the appliance itself or of a bar code, QR code, or the like associated with appliance; near field acquisition of RFID tag data; MAC address; etc.; or any combination thereof as appropriate for a particular embodiment.
  • the setup app may communicate that information to a database server, for example server 206, for performance of step 1520 in which the database server uses the identification information to retrieve icon information as needed (e.g., when such data was not obtainable from the appliance), command information as discussed previously, and in step 1522, to automatically generate macros which correspond to the appliance or a plurality of appliances considering their capability data as maintained in a database 207 and/or as retrieved from the appliances. Any such data gathered from and/or created by the server 206 will then be provisioned to the setup application for processing and ultimate transfer to the smart device and/or UCE as required.
  • a database server for example server 206
  • the transferred information and/or metadata may comprise complete command data values, appliance input/output data and current status, formatting information, pointers to command data values and formatting information already stored in the memories 502 and/or 802/804 of the UCE or the device upon which the setup application is currently resident, etc.
  • database 207 may contain alternate codesets, icon metadata, or macro information for an identified appliance, or where uncertainty exists regarding a particular appliance model number, etc.
  • control paradigms and/or command data sets may be tested against the appliances to be controlled. Such testing may take the form of soliciting user response to effects observable commands, monitoring of HDMI interface status changes as described for example in U.S. Patent Application No.
  • a suitable preferred user profile 1524 may be constructed and stored into the memory 502 of exemplary UCE device 100, the user profile 1524 being constructed by considering the communication capabilities and functionalities of the devices identified via the above-described processes.
  • any suitable method may be utilized, for example a system-wide prioritization of command media and methods by desirability (e.g. apply IP, CEC, IR in descending order); appliance-specific command maps by brand and/or model; function- specific preference and/or priority maps (e.g. all volume function commands via IR where available); etc.; or any combination thereof.
  • the exact selection of command method priorities or mapping may take into account factors such connection reliability, e.g. wired versus wireless, bidirectional versus unidirectional communication, etc.; speed of command transmission or execution; internal priorities within an appliance, e.g. received IP received packets processed before CEC packets, etc.; type of protocol support (e.g. error correction versus error detection; ack/nak, etc.); or any other factors which may applied in order to achieve optimum performance of a particular embodiment.
  • said construction of said user profile 1524 may be performed at the database server or within the setup application, or a combination thereof, depending on the particular embodiment.
  • the programming of an exemplary UCE may utilize a command prioritization list, for example a prioritization list "IP, CEC, IR" may cause the UCE programming to first determine if the requested command can be issued using Internet Protocol, only if not, then determine if the requested command can be issued using a CEC command over the HDMI interface, and only if not, then attempt to issue the requested command via an infrared signal.
  • a prioritization reflects an exemplary preference of using bi-directional communication protocols over uni-directional communication protocols over line of sight communication protocols, e.g., IR, when supported by the intended target appliance.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Selective Calling Equipment (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)

Abstract

In response to a detected presence of an intended target appliance within a logical topography of controllable appliances identity information associated with the intended target appliance is used to automatically add to a graphical user interface of a controlling device an icon representative of the intended target appliance and to create at a Universal Control Engine a listing of communication methods for use in controlling corresponding functional operations of the intended target appliance. When the icon is later activated, the controlling device is placed into an operating state appropriate for controlling functional operations of the intended target appliance while the Universal Control Engine uses at least one of the communication methods to transmit at least one command to place the intended target appliance into a predetermined operating state.

Description

SYSTEM AND METHOD FOR OPTIMIZED APPLIANCE CONTROL
RELATED APPLICATION INFORMATION
This application claims the benefit and is a continuation-in-part of U.S.
Application No. 13/899,671, filed on May 22, 2013, which application claims the benefit of U.S. Provisional Application No. 61/552,857, filed October 28, 2011, and U.S.
Provisional Application No. 61/680,876, filed August 8, 2012, the disclosures of which are incorporated herein by reference in their entirety.
This application is also related to U.S. Patent Application No. 12/621,277, filed on November 18, 2009 and entitled "System and Method for Reconfiguration of an
Entertainment System Controlling Device," which in turn is a continuation-in-part of U.S. Patent Application No. 12/569, 121 (now U.S. Patent 8,243,207), filed on September 29, 2009 and entitled "System and Method for Activity Based Configuration of an
Entertainment System," the disclosures of which are incorporated herein by reference in their entirety.
This application is also related to U.S. Patent Application No. 13/198,072, filed on August 4, 201 1 and entitled "System and Method for Configuring the Remote Control Functionality of a Portable Device," the disclosure of which is incorporated herein by reference in its entirety.
This application is also related to U.S. Patent Application No. 13/240,604, filed on
September 22, 2011 and entitled "System and Method for Configuring Controlling Device Functionality," the disclosure of which is incorporated herein by reference in its entirety.
BACKGROUND
Controlling devices, for example remote controls, for use in issuing commands to entertainment and other appliances, and the features and functionality provided by such controlling devices are well known in the art. In order to facilitate such functionality, various communication protocols, command formats, and interface methods have been implemented by appliance manufacturers to enable operational control of entertainment and other appliances, also as well known in the art. In particular, the recent proliferation of wireless and wired communication and/or digital interconnection methods such as WiFi, Bluetooth, HDMI, etc., amongst and between appliances has resulted in a corresponding proliferation of such communication protocols and command formats. While many of these newer methods may offer improved performance and/or reliability when compared to previous control protocols, appliance manufacturer adoption of such newer methods remains inconsistent and fragmented. This, together with the large installed base of prior generation appliances, may cause confusion, mis-operation, or other problems when a user or manufacturer of a controlling device, such as a remote control, attempts to take advantage of the enhanced features and functionalities of these new control methods.
SUMMARY OF THE INVENTION
This invention relates generally to enhanced methods for appliance control via use of a controlling device, such as a remote control, smart phone, tablet computer, etc., and in particular to methods for taking advantage of improved appliance control
communication methods and/or command formats in a reliable manner which is largely transparent to a user and/or seamlessly integrated with legacy appliance control technology.
To this end, the instant invention comprises a modular hardware and software solution, hereafter referred to as a Universal Control Engine (UCE), which is adapted to provide device control across a variety of available control methodologies and communication media, such as for example various infrared (IR) remote control protocols; Consumer Electronic Control (CEC) as may be implemented over a wired HDMI connection; internet protocol (IP), wired or wireless; RF4CE wireless; Bluetooth (BT) wireless personal area network(s); UPnP protocol utilizing wired USB connections; or any other available standard or proprietary appliance command methodology. Since each individual control paradigm may have its own strengths and weaknesses, the UCE may be adapted to combine various control methods in order to realize the best control option for each individual command for each individual device.
The UCE itself may be adapted to receive commands from a controlling device, for example, a conventional remote control or a remote control app resident on a smart device such as a phone or tablet, etc., utilizing any convenient protocol and command structure (IR, RF4CE, BT, proprietary RF, etc.) As will become apparent, the controlling device may range from a very simple unidirectional IR device to a fully functional WiFi enabled smart phone or the like. The UCE may receive command requests from such a controlling device and apply the optimum methodology to propagate the command function(s) to each intended target appliance, such as for example a TV, AV receiver, DVD player, etc. In this manner the UCE may enable a single controlling device to command the operation of all appliances in a home theater system while coordinating available methods of controlling each particular appliance in order to select the best and most reliable method for issuing each command to each given device. By way of example without limitation, a UCE may utilize IR commands to power on an AV receiver appliance while CEC commands or another method may be used to select inputs or power down the same AV receiver appliance; or CEC commands may be used to power on and select inputs on a TV appliance while IR commands may be used to control the volume on the same TV appliance.
As will become apparent, a UCE may comprise modular hardware and software which may be embodied in a standalone device suitable for use in an existing home theater equipment configuration, or may be incorporated into any one of the appliances such as a STB, TV, AV receiver, HDMI switch etc. Further, when incorporated into an appliance, UCE functionality may be provisioned as a separate hardware module or may be incorporated together with other hardware functionality, e.g., as part of an HDMI interface IC or chip set, etc.
A better understanding of the objects, advantages, features, properties and relationships of the invention will be obtained from the following detailed description and accompanying drawings which set forth illustrative embodiments and which are indicative of the various ways in which the principles of the invention may be employed.
BRIEF DESCRIPTION OF THE DRAWINGS
For a better understanding of the various aspects of the invention, reference may be had to preferred embodiments shown in the attached drawings in which:
Figures 1 and 2 illustrate exemplary systems in which a standalone UEC device may be utilized to command operation of several appliances;
Figures 3 and 4 illustrate exemplary systems in which UEC functionality may be incorporated into an appliance which is part of a home entertainment system;
Figure 5 illustrates a block diagram of an exemplary UEC device; Figure 6 illustrates a graphical representation of an exemplary UCE-based control environment;
Figure 7 illustrates an exemplary preferred command matrix for use in a UCE- based control environment, for example as illustrated in Figure 6;
Figure 8 illustrates a block diagram of an exemplary smart device which may support a remote control app and a setup method for use in configuring a UCE;
Figure 9 illustrates an exemplary series of steps which may be performed in order to set up and configure an exemplary UCE;
Figure 10 illustrates an exemplary series of steps which may be performed in order to define to a UCE an appliance configuration which corresponds to a user activity;
Figure 1 1 illustrates exemplary activity configuration matrices such as may be defined during the steps of Figure 10;
Figure 12 illustrates an exemplary current appliance state matrix which may be maintained by a UCE for use in determining the commands necessary to invoke one of the states defined by the matrix of Figure 11 ;
Figure 13 illustrates an exemplary series of steps which may be performed by a UCE in issuing a function command to an appliance;
Figure 14 illustrates an exemplary series of steps which may be performed by a UCE in establishing appliance states matching a desired activity defined in one of the matrices of Figure 1 1; and
Figure 15 illustrates an exemplary series of steps which may be performed by a smart device to setup command control macros.
DETAILED DESCRIPTION
With reference to Figure 1, there is illustrated an exemplary system in which a
UCE device 100 may be used to issue commands to control various controllable appliances, such as a television 106, a cable set top box combined with a digital video recorder ("STB/DVR") 110, a DVD player 108, and an AV receiver 120. While illustrated in the context of a television 106, STB/DVR 1 10, a DVD player 108, and an AV receiver 120, it is to be understood that controllable appliances may include, but need not be limited to, televisions, VCRs, DVRs, DVD players, cable or satellite converter set- top boxes ("STBs"), amplifiers, CD players, game consoles, home lighting, drapery, fans, HVAC systems, thermostats, personal computers, etc. In the illustrative example of Figure 1, appliance commands may be issued by UCE 100 in response to infrared ("IR") request signals 1 16 received from a remote control device 102, radio frequency ("RF") request signals 1 18 received from an app 124 resident on a smart device 104, or any other device from which UCE 100 may be adapted to receive requests, using any appropriate communication method. As illustrated, transmission of the requested appliance commands from the UCE to appliances 106, 108, 112, 120 may take the form of wireless IR signals 114 or CEC commands issued over a wired HDMI interface 1 12, as appropriate to the capabilities of the particular appliance to which each command may be directed. In particular, in the exemplary system illustrated, AV receiver 120 may not support HDMI inputs, being connected to audio source appliances 108, 110 via, for example S/PDIF interfaces 122. Accordingly UCE 100 may be constrained to transmit all commands destined for AV receiver 120 exclusively as IR signals, while commands destined for the other appliances 106 through 110 may take the form of either CEC or IR signals as appropriate for each command. By way of example without limitation, certain TV manufacturers may elect not to support volume adjustment via CEC. If the illustrative TV 106 is of such manufacture, UCE 100 may relay volume adjustment requests to TV 106 as IR signals 114, while other requests such as power on/off or input selections may be relayed in the form of CEC commands over HDMI connection 1 12.
It will however be appreciated that while illustrated in the context of IR, RF, and wired CEC signal transmissions, in general, transmissions to and from UCE device 100 may take the form of any convenient IR, RF, hardwired, point-to-point, or networked protocol, as necessary for a particular embodiment. Further, while wireless
communications 1 16, 1 18, etc., between exemplary devices are illustrated herein as direct links, it should be appreciated that in some instances such communication may take place via a local area network or personal area network, and as such may involve various intermediary devices such as routers, bridges, access points, etc. Since these items are not necessary for an understanding of the instant invention, they are omitted from this and subsequent Figures for the sake of clarity.
Since smart device remote control apps such as that contemplated in the illustrative device 104 are well known, for the sake of brevity the operation, features, and functions thereof will not be described in detail herein. Nevertheless, if a more complete understanding of the nature of such apps is desired, the interested reader may turn to, for example, the before mentioned U.S. Patent Application No. 12/406,601 or U.S. Patent Application No. 13/329,940, (now U.S. Patent 8,243,207). Turning now to Figure 2, in a further illustrative embodiment, UCE 100 may receive wireless request signals from a remote control 200 and/or an app resident on a tablet computer 202. As before, command transmissions to appliances 106, 108,1 10 may take the form of wired CEC commands or wireless IR commands. However, in this example remote control 200 may be in bi-directional communication 208 with UCE 100 and accordingly the UCE may delegate the transmission of IR commands 210 to the remote control device 200, i.e., use remote control 200 as a relay device for those commands determined to be best executed via IR transmissions. As also generally illustrated in Figure 2, a setup app 214 executing on a smart device such as tablet computer 202 may be utilized in conjunction with an Internet (212,204) accessible or cloud based server 206 and associated database 207 to initially configure UCE 100 for operation with the specific group of appliances to be controlled, i.e., to communicate to UCE 100 a matching command code set and capability profile for each particular appliance to be controlled, for example based on type, manufacture, model number, etc., as will be described in greater detail hereafter.
With reference to Figure 3, in a further illustrative embodiment UCE functionality 100' may be embedded in an appliance, for example STB/DVR 310. In this example, remote control 102 and/or smart device 104 may transmit wireless request signals directly to STB/DVR 310 for action by the built-in UCE function 100', which actions may, as before, comprise CEC command transmissions via HDMI connection 1 12 or IR command transmissions 1 14, originating in this instance from an IR blaster provisioned to the STB/DVR appliance 310. In this configuration, a set up application resident in
STB/DVR 310 may be utilized to configure UEC 100', using for example an Internet connection 304 accessible through a cable modem and/or cable distribution system headend.
In the further illustrative embodiment of Figure 4, UCE functionality 100' may be embedded in an AV receiver 420 which may serve as an HDMI switch between various content sources such as a STB/DVR 110 or a DVD player 108 and a rendering device such as TV 106. In addition to HDMI inputs, AV receiver 420 may also support various other input formats, for example analog inputs such as the illustrative 404 from CD player 408; composite or component video; S/PDIF coaxial or fiberoptic; etc. In this embodiment, request signals 406 may be directed to AV receiver 420, for example from remote control 402, for action by UCE function 100'. As before, resulting appliance commands may be transmitted using CEC signals transmitted over HDMI connections 112, or via IR signals 1 14 transmitted from an associated IR blaster. As appropriate for a particular embodiment, initial configuration of UCE 100' to match the equipment to be controlled may be performed by an Internet-connected app resident in AV receiver 420, or by an app resident in tablet computer 202 or other smart device, as mentioned previously in conjunction with Figure 2.
As will be appreciated, various other configurations are also possible without departing from the underlying UCE concept, for example UCE function 100' may be incorporated into an Internet-capable TV, an HDMI switch, a game console, etc.;
appliance command set and capability database 207 may be located at an internet cloud or a cable system headend, may be stored locally (in all or in part), which local storage may take the form of internal memory within the UCE itself or in an appliance such as a TV, STB or AV receiver, or may take the form of a memory stick or the like attachable to a smart device or appliance; etc.
With reference to Figure 5, an exemplary UCE device 100 (whether stand alone or in an appliance supporting UCE functionality) may include, as needed for a particular application, a processor 500 coupled to a memory 502 which memory may comprise a combination of ROM memory, RAM memory, and/or non-volatile read/write memory and may take the form of a chip, a hard disk, a magnetic disk, an optical disk, a memory stick, etc., or any combination thereof. It will also be appreciated that some or all of the illustrated memory may be physically incorporated within the same IC chip as the processor 500 (a so called "microcontroller") and, as such, it is shown separately in Fig. 5 only for the sake of clarity. Interface hardware provisioned as part of the exemplary UCE platform may include IR receiver circuitry 504 and IR transmitter circuitry 506; an HDMI interface 508; a WiFi transceiver and interface 510; an Ethernet interface 512; and any other wired or wireless I/O interface(s) 514 as appropriate for a particular embodiment, by way of example without limitation Bluetooth, RF4CE, USB, Zigbee, Zensys,
X10/Insteon, HomePlug, HomePNA, etc. The electronic components comprising the exemplary UCE device 100 may be powered by an external power source 516. In the case of a standalone UCE device such as illustrated in Figures 1 or 2, this may comprise for example a compact AC adapter "wall wart," while integrated UCE devices such as illustrated in Figures 3 or 4 may draw operating power from the appliance into which they are integrated. It will also be appreciated that in the latter case, in certain embodiments processor 500 and/or memory 502 and/or certain portions of interface hardware items 504 through 514 may be shared with other functionalities of the host appliance. As will be understood by those skilled in the art, some or all of the memory 502 may include executable instructions that are intended to be executed by the processor 500 to control the operation of the UCE device 100 (collectively, the UCE programming) as well as data which serves to define the necessary control protocols and command values for use in transmitting command signals to controllable appliances (collectively, the command data). In this manner, the processor 500 may be programmed to control the various electronic components within the exemplary UCE device 100, e.g., to monitor the communication means 504,510 for incoming request messages from controlling devices, to cause the transmission of appliance command signals, etc. To cause the UCE device 100 to perform an action, the UCE device 100 may be adapted to be responsive to events, such as a received request message from remote control 102 or smart device 104, changes in connected appliance status reported over HDMI interface 508, WiFi interface 510, or Ethernet interface 512, etc. In response to an event, appropriate instructions within the UCE programming may be executed. For example, when a command request is received from a smart phone 104, the UCE device 100 may retrieve from the command data stored in memory 502 a preferred command transmission medium (e.g., IR, CEC over HDMI, IP over WiFi, etc.) and a corresponding command value and control protocol to be used in transmitting that command to an intended target appliance, e.g., TV 106, in a format recognizable by that appliance to thereby control one or more functional operations of that appliance. By way of further example, the status of connected appliances, e.g., powered or not powered, currently selected input, playing or paused, etc., as may be discerned from interfaces 508 through 514, may be monitored and/or tabulated by the UCE programming in order to facilitate adjustment of appliance settings to match user- defined activity profiles, e.g. "Watch TV", "View a movie", etc.
An overview of an exemplary UCE control environment is presented in Figure 6.
The UCE programming of an exemplary UCE device 100 may comprise a universal control engine core 650 together with a series of scalable software modules 652 through 660, each module supporting a particular appliance command protocol or method and provisioned as appropriate for a particular embodiment. By way of example, the illustrative embodiment of Figure 6 may include an internet protocol (IP) module 652, a CEC over HDMI module 654, a Bluetooth module 656, an IR module 660, and other modules(s) 658, as appropriate for the particular application. The appliances to be controlled may include an IP enabled AV receiver 620, an IP enabled STB/DVR 610, TV 106, DVD player 108, and CD player 408. As illustrated, certain of these devices may be interconnected via HDMI 112 and/or Ethernet 670 interfaces. (In this regard, it should be appreciated that the illustrative interconnections 112 and 670 of Figure 6 are intended to depict logical topography only, and accordingly details of exact physical cabling structure and/or the presence of any necessary switches, routers, hubs, repeaters, interconnections, etc., are omitted for the sake of clarity.)
The preferred method/protocol/medium for issuance of commands to the exemplary appliances of Figure 6 may vary by both appliance and by the function to be performed. By way of example, volume control and analog input selection commands 622 targeted to AV receiver 620 may be required to be issued via IR transmissions, while power on/off and HDMI input selection functionality commands 624 may be better communicated via CEC commands and advanced functionality commands 626 such as sound field configuration may be best communicated via an Ethernet connection. In a similar manner, the various operational functions of the other appliances may best commanded via a mixture of mediums, methods, and protocols, as illustrated. As will be appreciated, in some instances a particular appliance may support receipt of an operational command via more than one path, for example the power on/off function of AV receiver 620 may be available not only as a CEC command, but also via an IR command. In such instances, the UCE preferred command format may be that which has been determined to offer the greatest reliability, for example in the above instance the CEC command may be preferred since this form of command is not dependent on line-of- sight and also permits confirmation that the action has been performed by the target appliance.
In order to determine the optimum method for each configured appliance type and command, the exemplary UCE core program 650 may be provisioned with a preferred command matrix 700, as illustrated in Figure 7. Exemplary preferred command matrix 700 may comprise a series of data cells or elements, e.g. cells 712, each corresponding to a specific command 702 and a specific one of the appliances to be controlled 704. The data content of such a cell or element may comprise identification of a form of command/transmission to be used and a pointer to the required data value and formatting information for the specific command. By way of example, the data element 712 corresponding to the "Input 2" command 706 for the configured TV appliance 708, may comprise an indicator that a CEC command is to be used, i.e., an indicator of the transmission device that is to be used to communicate the command to the intended target appliance, together with a pointer to the appropriate command data value and HDMI- CEC bus address; while data element 714 corresponding to the same command function for the configured AV receiver 710 may comprise an indicator that an IR command is to be used, together with a pointer to appropriate command data and formatting information within an IR code library stored elsewhere in UCE memory 502 . In certain embodiments one or more secondary command matrices 716 may also be provisioned, allowing for the use of alternate command methods in the event it is determined by the UCE programming that a preferred command was unsuccessful. Command matrix 700 may also contain null entries, for example 718, where a particular function is not available on or not supported by a specific appliance. In an exemplary embodiment, command matrix 700 may be created and loaded into the memory 502 of UCE 100 during an initialization and set-up process, as will now be described in further detail.
In order to perform initial configuration of a UCE device, a setup application may be provided. In some embodiments, such a set up application may take the form of programming to be executed on any convenient device with a suitable user interface and capable of establishing communication with the UCE, such as without limitation a smart phone, tablet computer, personal computer, set top box, TV, etc., as appropriate for a particular embodiment. In other embodiments such a set up application may be incorporated into the UCE programming itself, utilizing for example a connected TV screen and an associated controlling device as the user interface. Regardless of the exact form and location of the programming and user interface means, the series of steps which may be performed by a UCE set up application when configuring a UCE device for operation with a specific set of appliances remains similar. Accordingly, it will be appreciated that the methods comprising the illustrative UCE set up application presented below in conjunction with Figures 8 and 9 may be generally applied, mutatis mutandis, to various alternative set up application embodiments.
With reference to Figure 8, as known in the art a tablet computer such as the exemplary device 202 of Figure 2 may comprise, as needed for a particular application, a processor 800 memory 802 which memory may comprise a combination of ROM memory, RAM memory, and/or non-volatile read/write memory and may take the form of a chip, a hard disk, a magnetic disk, an optical disk, a memory stick, etc., or any combination thereof. In some embodiments, provision may also be made for attachment of external memory 804 which may take the form of an SD card, memory stick, or the like. Hardware provisioned as part of an exemplary tablet computer platform may include an LCD touchscreen 810 with associated display driver 806 and touch interface 808; hard keys 812 such as for example a power on/off key; a USB port 816; WiFi transceiver and interface 818; a Bluetooth transceiver and interface 820; a camera 822; and various other features 824 as appropriate for a particular embodiment, for example an accelerometer, GPS, ambient light sensor, near field communicator; etc. The electronic components comprising the exemplary tablet computer device 202 may be powered by a battery-based internal power source 814, rechargeable for example via USB interface 816.
Memory 802 may include executable instructions that are intended to be executed by the processor 800 to control the operation of the tablet computer device 202 and to implement various functionalities such as Web browsing, game playing, video streaming, etc. As is known in the art, programming comprising additional functionalities (referred to as "apps") may be downloaded into tablet computer 202 via, for example, WiFi interface 818, USB 816, external memory 804, or any other convenient method. As discussed previously, one such app may comprise a remote control app, for example as that described in co-pending U.S. Patent Application No. 13/329,940 of like assignee and incorporated herein by reference in its entirety, which app may be for use in commanding the operation of appliances 106, 108, 110 and/or 120 via UCE device 100. In order to initially configure UCE device 100 to match the appliances to be controlled and to establish an appropriate command matrix, tablet computer 202 may also be provisioned with a setup app 214, either as part of a remote control app or as separately downloadable item.
With reference now to Figure 9 such a setup app, upon being invoked at step 902 may initially request that the user place all of the appliances to be controlled into a known state, e.g., powered on, in order to enable the appliance detection and/or testing steps which follow. Next, at step 904 the setup app may determine the identity of those appliances which are CEC-enabled. This may be accomplished by communicating a request to the associated UCE, which at step 906 which may cause the UCE programming to scan connected HDMI devices for appliances which are CEC-enabled and/or identifiable via interaction over the HDMI interface, for example as described in co- pending U.S. Patent Application No. 13/198,072, of like assignee and incorporated herein by reference in its entirety, and communicate such appliance identities to the setup application. Thereafter, at step 904 the setup application may determine if additional non-CEC appliances are connected to the UCE device via the HDMI interface. This may be accomplished by requesting the UCE programming to scan for any further HDMI connections at step 910 and communicate the findings back to the setup application. Though not illustrated, it will be appreciated that where appropriate for a particular embodiment the UCE programming may conduct similar scans to in order to discover appliances connected via Ethernet, USB, Bluetooth, RF4CE, WiFi etc., where such interfaces may be provisioned to a UCE.
Thereafter, at step 912 the setup application may display a listing of detected appliances (both identified and not yet identified) to the user. At step 914, the user may be prompted to enter appliance identifying information for those HDMI or otherwise connected appliances which were detected but not identified, as well as identifying information regarding any additional appliances which may form part of the system to be controlled but are not discoverable as described above (for example appliances such as AV receiver 120 or CD player 408 which may be responsive only to unidirectional IR commands). Without limitation, such identifying information may take the form of user- entered data such as an appliance type, brand and model number, or a setup code from a listing in a user guide; or may take the form of scanned or electronic information such as a digital picture of the appliance itself or of a bar code, QR code, or the like associated with appliance; near field acquisition of RFID tag data; etc.; or any combination thereof as appropriate for a particular embodiment.
Once appropriate identifying information has been acquired, at step 916 the setup app may communicate that information to a database server, for example server 206, for performance of step 918, comprising identification of and retrieval of command codeset and capability data corresponding to the identified appliances from a database 207, and provision of this data to the setup application for processing and ultimate transfer to the UCE device. As will be appreciated, the transferred codeset data may comprise complete command data values and formatting information, may comprise pointers to command data values and formatting information already stored in the memories 502 and/or 802/804 of the UCE or the device upon which the setup application is currently resident, or a combination thereof. Where necessary, for example when database 207 may contain alternate codesets for an identified appliance, or where uncertainty exists regarding a particular appliance model number, etc., at steps 920, 922, and 924 various control paradigms and/or command data sets may be tested against the appliances to be controlled. Such testing may take the form of soliciting user response to effects observable commands, monitoring of HDMI interface status changes as described for example in U.S. Patent Application No. 13/240,604, of like assignee and incorporated herein by reference in its entirety, or any other method as convenient for a particular application. Once appropriate codesets have been fully determined, at steps 926,928 and 930 a suitable preferred command matrix, for example as illustrated in Figure 7, may be constructed and stored into the memory 502 of exemplary UCE device 100, the matrix being constructed by considering the communication capabilities and functionalities of the devices identified via the above-described processes.
In order to select the optimum command method for each function of each configured appliance any suitable method may be utilized, for example a system-wide prioritization of command media and methods by desirability (e.g. apply IP, CEC, IR in descending order); appliance-specific command maps by brand and/or model; function- specific preference and/or priority maps (e.g. all volume function commands via IR where available); etc.; or any combination thereof. The exact selection of command method priorities or mapping may take into account factors such connection reliability, e.g. wired versus wireless, bidirectional versus unidirectional communication, etc.; speed of command transmission or execution; internal priorities within an appliance, e.g. received IP received packets processed before CEC packets, etc.; type of protocol support (e.g. error correction versus error detection; ack/nak, etc.); or any other factors which may applied in order to achieve optimum performance of a particular embodiment.
As will be appreciated, the construction of said preferred command matrix may be performed at the database server or within the setup application, or a combination thereof, depending on the particular embodiment. Once a preferred command matrix has been finalized and stored in the UCE device, at step 932 a series of desired appliance configurations associated with specific user activities may be configured and stored into the UCE device, as will be now be described.
Upon completion and storage of a preferred command matrix, an exemplary setup application may subsequently guide a user through a series of steps in order to establish the desired appliance configurations for a series of possible activities. With reference to Figure 10, at step 1002, the user may be presented with a list of possible activities, e.g., "Watch TV", "Watch a movie", "Listen to music", etc. In some embodiments, the user may also be able to edit activity titles and/or create additional user defined activities. At step 1004 a user may select a particular activity for configuration, for example "Watch TV". At step 1006, the user may be prompted to identify the content source for the activity being configured, for example cable STB/DVR 110 for the exemplary "Watch TV" activity. Such a prompt may take the form of a listing of eligible appliances as determined during the foregoing appliance set up steps; explicit user entry of an appliance type; etc. Next, at steps 1008 the user may be prompted in a similar manner to select video and audio rendering appliances for use in this activity, for example TV 106 and AVR receiver 120 respectively. Depending upon the system topography and the interfaces in use (i.e. HDMI/CEC, IP, analog, etc.) the set up application in concert with UCE programming may be able to ascertain which input port of each rendering appliance is attached to the content source appliance identified for this activity and/or if any intermediate switching appliance is in use (for example AV receiver 420 of the system illustrated in Figure 4). Where such information is obtainable, the set up application may automatically create all or part of an appropriate rendering device input selection for the activity being configured. If not, at steps 1008 and 1010, the user may be additionally requested to identify the applicable content route(s) to the rendering appliances, e.g., input port numbers, presence of intermediate switches, etc. During or upon conclusion of steps 1004 through 1010, the set up application may construct an activity matrix, for example as illustrated in Figure 11. By way of example, activity matrix 1100 for a "Watch TV" activity may comprise a series of cells, for example 11 10 or 11 12, each corresponding to a desired configuration of a particular state 1 106 or function 1 108 of a specific appliance 1 104 during the specified activity. By way of example, cell 1 110 may indicate that the input of AV receiver 120 is to be set to "S/PDIF2", while cells 11 12 and 1114 may indicate that transport function commands (e.g., "play", "pause", "fast forward" etc.) are to be directed to STB/DVR 110 and not to DVD 1 14. In this regard, it will be appreciated that while in some embodiments the assignment of functions such as, for example, volume control, to specific appliances during a particular activity may be performed within an individual controlling device, i.e., the controlling device may determine the appliance to which volume control commands are to be directed, in a preferred embodiment this assignment may be performed within the UCE, thereby ensuring consistency across each activity when multiple controlling devices are present in an environment, for example devices 102 and 104 of the environment illustrated in Figure 1.
Returning now to Figure 10, at steps 1014 and 1016 the newly-constructed activity matrix 1 100 may be tested by causing the UCE programming, utilizing preferred command matrix 700, to issue the commands necessary to place the identified appliances into the desired state and thereafter receiving verification at step 1018 that the desired activity was successfully initiated. It will be appreciated that such verification may comprise, for example, detection and reporting of HDMI or other content streams and/or appliance status by UCE programming by directly monitoring CEC status or by using methods such as described for example in U.S. Patent Application No. 13/240,604;
solicitation of user input confirming correct operation; monitoring for presence or absence of analog input signals; recording of appliance status or error messages; etc.; or any combination thereof as appropriate for a particular embodiment.
If testing is unsuccessful, at step 1018 the set up application may return to step 1002 to allow reconfiguration of that activity and/or definition of alternative activities. If testing was successful, at steps 1020 and 1022 the completed activity matrix, for example 1100 as illustrated in Figure 1 1, may be transferred to the UCE 100 for storage in UCE memory 502. Thereafter, at step 1024 the user may be offered the opportunity to return to step 1002 to define additional activity configurations, for example 1 101, 1 102 as illustrated in Figure 1 1, or to exit the activity configuration process.
With reference now to Figure 13, the series of steps performed by the UCE programming in order to convey a function command to an appliance in accordance with a command request 1300 received from a controlling device such as remote control 102 or 200, smart device 104 or 202, etc., or in accordance with an internally generated requirement resulting from receipt of an activity request (as will be described hereafter) may initially comprise retrieval from a preferred command matrix that data element which corresponds to the requested command and target appliance. By way of specific example, receipt of a "TV power on" request from remote control 102 or the like at a UEC provisioned with the preferred command matrices illustrated in Figure 7 may cause retrieval of data element 720, indicating that the command is to be communicated to the TV appliance, e.g., television 106, using an HDMI CEC command. At step 1304, the UCE programming may determine if the retrieved value constitutes a null element. If so, the referenced appliance does not support the requested command and accordingly at step 1314 an error message may be generated and the process thereafter terminated. As will be appreciated, the exact nature of such an error message may depend upon the particular embodiment and/or the requesting controlling device: for example, if the request originated from a controlling device which is in bidirectional communication with the UCE the error may be communicated back to the requesting device for action, i.e., display to the user, illuminate a LED, activate a buzzer, etc. as appropriate. Alternatively, in those embodiments where a UCE is incorporated into an appliance, that appliance's front panel display may be utilized. If the retrieved preferred command matrix element data is valid, at step 1306 the UCE may communicate the corresponding function command to the target appliance using the indicated command value and transmission method, e.g., for the exemplary data element 720 this may comprise issuing a CEC "power on" command to CEC logical device address zero (TV) via the UCE HDMI interface 508. Once the command has been issued, at step 1308 the UCE programming may determine if the communication interface and protocol used in issuing the command provides for any confirmation mechanism, i.e., explicit acknowledgement of receipt, monitoring of HDMI status on an interface, detection of a media stream or HDCP handshake, etc. If not, for example the command was issued using a unidirectional IR signal and no other confirmation means such as power or input signal monitoring is available, the UCE programming may simply assume that the command was successful and processing is complete. If however confirmation means exists, at step 1310 the UCE programming may wait to determine if the command was successfully executed. Once positive confirmation is received, processing is complete. If no confirmation or a negative confirmation is received, at step 1312 the UCE programming may determine if an alternative method is available to communicate the command to the target appliance. Returning to the specific example presented above this may comprise accessing a secondary command matrix 716 in order to determine if an alternative communication method is available for the specific function, e.g., "TV power on." If an alternative does exist, at step 1316 the substitute command value and transmission method may be retrieved and processing may return to step 1306 to initiate an alternative attempt. Returning again to the specific example, if the CEC "power on" command corresponding to data element 720 of matrix 700 issued to TV 106 cannot be confirmed, an IR "power on" command encoded according to SIRCS (Sony Infrared Control System) in correspondence with the equivalent data element in secondary matrix 716 may be attempted as a substitute.
In addition to relaying individual command requests as described above, an exemplary UCE may also support activity selection, whereby receipt of a single user request from a controlling device may cause a series of commands to be issued to various appliances in order to configure a system appropriately for a particular user activity, such as for example, watching television. To this end a set of matrices defining desired equipment states suitable to various activities, for example as illustrated at 1 100 through 1102 of Figure 11, may be stored in UCE memory 502 for access by UCE programming when executing such a request. As illustrated in Figure 12, in some embodiments the programming of an exemplary UCE may maintain an additional matrix 1200
representative of the current state of the controlled appliances, arranged for example by appliance 1202 and by operational state 1204. By way of example, data elements 1206 and 1208 in the illustrative table 1200 may indicate that TV 106 is currently powered on (1208) with HDMI port number 2 selected as the input (1206). The data contents of the elements in such a table may be maintained in any convenient manner as appropriate to a particular embodiment, for example without limitation retrieval of HDMI/CEC status; monitoring input media streams and/or HDCP status; measuring power consumption; construction of a simulated appliance state such as described for example in U.S. Patent 6,784,805; etc.; or any combination thereof. In the case of certain appliances, such as for example AV receiver 120 which may be controllable only via unidirectional IR, the current state of the appliance may not be discernible. In such cases, a null data element 1210 maybe entered into exemplary matrix 1200 to indicate that this appliance may require configuration using discrete commands only and/or user interaction. As will be appreciated, in some embodiments the data contents of the illustrative table may be maintained in memory 502 on an ongoing basis by UCE programming, while in other embodiments this data may be gathered "on the fly" at the time the activity request is being processed. Combinations of these methods may also be used, for example "on the fly" gathering for appliances connected via an HDMI bus combined with maintenance of a simulated state for appliances controlled via IR signals.
In order to configure a group of appliances for a desired activity, UCE programming may compare a desired state matrix, for example 1 100, to a current state matrix, for example 1200, element by element, issuing commands as necessary to bring appliances to the desired state. By way of example, an exemplary series of steps which may be performed by the programming of a UCE in order to effect a "Watch TV" activity configuration will now be presented in conjunction with Figure 14. For the purposes of this example, the reader may also wish to reference the equipment configuration of Figure 1 and the activity and current state matrices 1 100 and 1200 of Figures 11 and 12.
Upon receipt of a "Watch TV" request 1400, at step 1402 the exemplary UCE programming may access an applicable appliance state matrix 1 100. Next, at step 1404 it may be determined by the UCE programming whether the present "power" state of TV 106 as indicated by current state matrix 1200 matches the desired state stored in the corresponding data element of matrix 1 100. If the states match, processing may continue at step 1408. If the states do not match, at step 1406 a "power on" command may be communicated to TV 106. As will be appreciated from the earlier discussion in conjunction with Figure 13 and inspection of exemplary preferred command matrix 700, in the illustrative system communication of the "power on" command to TV 106 may comprise a CEC command issued over HDMI connection 1 12. Next, at step 1408 a "mute" command may be communicated to TV 106, since element 1 116 of illustrative matrix 1 100 indicates that TV 106 is not the primary audio rendering appliance. In accordance with preferred command matrix 700, communication of the "mute" command to TV 106 may comprise an IR transmission 114. Thereafter, at steps 1410, 1412 the active input of TV 106 may be set to "HDMIl" via a CEC command, and at steps 1414,1416 a CEC "power on" command may be communicated to STB/DVR 110 if that appliance is not already powered on. At step 1418, the exemplary UCE programming may set an internal status to indicate that future transport command requests (e.g., play, pause, FF, etc.) should be routed to STB/DVR 110, as indicated by element 11 12 of matrix 1 100. Thereafter, at steps 1420, 1422 a CEC "power off command may be communicated to STB/DVR 108 if that appliance is not already powered off. Thereafter, at steps 1424 and 1426 "power on" and "input S/PDIF2" commands may be
communicated to AV receiver 120 via IR signals. As will be appreciated, it may not be possible to determine the current status of AV receiver 120, as indicated for example by elements 1210 and 1220 of matrix 1200, and accordingly so-called "discrete," or explicit, function commands may be issued which may establish the desired status regardless of the current state of the appliance. Finally, at step 1428 the exemplary UCE programming may set an internal status to indicate that future volume control command requests (e.g. volume up/down, mute) should be routed to AV receiver 120, as indicated by element 11 18 of matrix 1100, where after processing of the activity request is complete.
As noted above, the exemplary UCE may also support activity selection, whereby receipt of a single user request from a smart device may cause a series of commands to be issued to various appliances in order to configure a system appropriately for one or more user activities, such as "watch TV," "watch movie," "listen to music," etc. To setup the user interface of the smart device to support such macro command functionality, an exemplary method is illustrated in Fig. 15. More particularly, with reference to Fig. 15, upon invocation of a setup app at step 1502 a user may be requested to place all of the appliances to be controlled into a known state, e.g., powered on or already joined in a wireless network, in order to enable the appliance detection and/or testing steps which follow. Next, at step 1504 the setup app may determine the identity of those appliances which are CEC-enabled or IP enabled. This may be accomplished by communicating a request to the associated UCE, which at step 1506 may cause the UCE programming to scan connected HDMI devices for appliances which are CEC-enabled and/or identifiable via interaction over the HDMI interface, for example as described in co-pending U.S. Patent Application No. 13/198,072, of like assignee and incorporated herein by reference in its entirety, and communicate such appliance identities to the setup application. Next, at step 1508 the setup app may also determine if the appliances has any associated icon information (for example stored as metadata on the appliance, available from a remote server, or the like) as well as information related to interface connection types, e.g., WI- FI, HDMI input/output, for use in the creation of supported macros. If the icon information is available, the icon information may be sent to the smart device by the appliance and/or retrieved by the smart device using other information provided by the appliance as appropriate as shown in step 1526. An icon corresponding to the icon information may then be automatically added to the user interface of the smart device whereupon an activation of the added icon may be used to provide access to command and control functionalities associated with the corresponding controllable device, including commands in the form of a listing of automatically generated macros available for that controllable device as described below. Thus, icon information provided to the smart device may be used in connection with information stored on the smart device, stored in the internet cloud and/or at a remote server to automatically add an icon to the user interface of the smart device where the icon can be in the form of a logo for the controllable appliance, icons in the form of logos for content (e.g., television station logos) that can be accessed via the controllable appliance, etc. In a further illustrative embodiment, icons may function as soft keys which may be selected to cause the performance of a further action for example, to display a device control page (e.g., to present television control soft keys such as channel up, channel down, etc.), cause the transmission of commands, etc. as described for example in U.S. Patent Application No. 10/288,727, (now U.S. Patent 7,831,930) of like assignee and incorporated herein by reference in its entirety, or any other method as convenient for a particular application.
The setup application then continues to step 1510 (after scanning for CEC connected appliances as discussed above) whereat the setup application may next determine if additional non-CEC appliances are connected to the UCE device via the HDMI interface. This may be accomplished by requesting the UCE programming to scan for any further HDMI connections at step 1512 and communicate the findings back to the setup application. Though not illustrated, it will be appreciated that, where appropriate for a particular embodiment, the UCE programming may conduct similar scans in order to discover appliances connected via Ethernet, USB, Bluetooth, RF4CE, WiFi etc., where such interfaces may be provisioned to a UCE.
Thereafter, at step 1514 the setup application may display a listing of detected appliances (both identified and not yet identified) to the user. At step 1516, the user may then be prompted to enter appliance identifying information for those HDMI or otherwise connected appliances which were detected but not identified, as well as identifying information regarding any additional appliances which may form part of the system to be controlled but which were not discoverable as described above (for example appliances such as AV receiver 120 or CD player 408 which may be responsive only to
unidirectional IR commands). Without limitation, such identifying information may take the form of user-entered data such as an appliance type, brand and model number, or a setup code from a listing in a user guide; or may take the form of scanned or electronic information such as a digital picture of the appliance itself or of a bar code, QR code, or the like associated with appliance; near field acquisition of RFID tag data; MAC address; etc.; or any combination thereof as appropriate for a particular embodiment.
Once appropriate identifying information has been acquired, at step 1518 the setup app may communicate that information to a database server, for example server 206, for performance of step 1520 in which the database server uses the identification information to retrieve icon information as needed (e.g., when such data was not obtainable from the appliance), command information as discussed previously, and in step 1522, to automatically generate macros which correspond to the appliance or a plurality of appliances considering their capability data as maintained in a database 207 and/or as retrieved from the appliances. Any such data gathered from and/or created by the server 206 will then be provisioned to the setup application for processing and ultimate transfer to the smart device and/or UCE as required. As will be appreciated, the transferred information and/or metadata may comprise complete command data values, appliance input/output data and current status, formatting information, pointers to command data values and formatting information already stored in the memories 502 and/or 802/804 of the UCE or the device upon which the setup application is currently resident, etc. Where necessary, for example when database 207 may contain alternate codesets, icon metadata, or macro information for an identified appliance, or where uncertainty exists regarding a particular appliance model number, etc., at steps 1528, 1530, and 1522 various control paradigms and/or command data sets may be tested against the appliances to be controlled. Such testing may take the form of soliciting user response to effects observable commands, monitoring of HDMI interface status changes as described for example in U.S. Patent Application No. 13/240,604, of like assignee and incorporated herein by reference in its entirety, or any other method as convenient for a particular application. Once appropriate codesets and macro operations have been fully determined, at steps 1528 and 1530 a suitable preferred user profile 1524, may be constructed and stored into the memory 502 of exemplary UCE device 100, the user profile 1524 being constructed by considering the communication capabilities and functionalities of the devices identified via the above-described processes.
In order to select the optimum command method for each function of each configured appliance any suitable method may be utilized, for example a system-wide prioritization of command media and methods by desirability (e.g. apply IP, CEC, IR in descending order); appliance-specific command maps by brand and/or model; function- specific preference and/or priority maps (e.g. all volume function commands via IR where available); etc.; or any combination thereof. The exact selection of command method priorities or mapping may take into account factors such connection reliability, e.g. wired versus wireless, bidirectional versus unidirectional communication, etc.; speed of command transmission or execution; internal priorities within an appliance, e.g. received IP received packets processed before CEC packets, etc.; type of protocol support (e.g. error correction versus error detection; ack/nak, etc.); or any other factors which may applied in order to achieve optimum performance of a particular embodiment.
As will be appreciated, the construction of said user profile 1524 may be performed at the database server or within the setup application, or a combination thereof, depending on the particular embodiment.
While various concepts have been described in detail, it will be appreciated by those skilled in the art that various modifications and alternatives to those concepts could be developed in light of the overall teachings of the disclosure. For example, in an alternate embodiment of UCE functionality, in place of a preferred command matrix such as illustrated in Figure 7, the programming of an exemplary UCE may utilize a command prioritization list, for example a prioritization list "IP, CEC, IR" may cause the UCE programming to first determine if the requested command can be issued using Internet Protocol, only if not, then determine if the requested command can be issued using a CEC command over the HDMI interface, and only if not, then attempt to issue the requested command via an infrared signal. Such a prioritization reflects an exemplary preference of using bi-directional communication protocols over uni-directional communication protocols over line of sight communication protocols, e.g., IR, when supported by the intended target appliance.
Further, while described in the context of functional modules and illustrated using block diagram format, it is to be understood that, unless otherwise stated to the contrary, one or more of the described functions and/or features may be integrated in a single physical device and/or a software module, or one or more functions and/or features may be implemented in separate physical devices or software modules. It will also be appreciated that a detailed discussion of the actual implementation of each module is not necessary for an enabling understanding of the invention. Rather, the actual
implementation of such modules would be well within the routine skill of an engineer, given the disclosure herein of the attributes, functionality, and inter-relationship of the various functional modules in the system. Therefore, a person skilled in the art, applying ordinary skill, will be able to practice the invention set forth in the claims without undue experimentation. It will be additionally appreciated that the particular concepts disclosed are meant to be illustrative only and not limiting as to the scope of the invention which is to be given the full breadth of the appended claims and any equivalents thereof.
All patents cited within this document are hereby incorporated by reference in their entirety.

Claims

CLAIMS What is claimed is:
1. A method for controlling a functional operation of an intended target appliance, comprising:
in response to a detected presence of the intended target appliance within a logical topography of controllable appliances using identity information associated with the intended target appliance to automatically add to a graphical user interface of a controlling device an icon representative of the intended target appliance and to create at a Universal Control Engine a listing of communication methods for use in controlling corresponding functional operations of the intended target appliance; and
in response to a sensed activation of the icon representative of the intended target appliance as added to the graphical user interface of the controlling device causing the controlling device to be placed into an operating state appropriate for controlling functional operations of the intended target appliance while causing the Universal Control Engine to use at least one of a plurality of communication methods in the listing of communication methods that has been associated with the intended target appliance to transmit to the intended target appliance at least one command to place the intended target appliance into a predetermined operating state.
2. The method as recited in claim 1, wherein the identity information includes icon metadata that is provided to the controlling device from the intended target appliance and wherein the controlling device uses the icon metadata to automatically add the icon representative of the intended target appliance to the graphical user interface of the controlling device.
3. The method as recited in claim 1, wherein the identity information includes icon metadata that is provided to the controlling device from a remotely located server device and wherein the controlling device uses the icon metadata to automatically add the icon representative of the intended target appliance to the graphical user interface of the controlling device.
4. The method as recited in claim 1, wherein, in response to the sensed activation of the icon representative of the intended target appliance as added to the graphical user interface of the controlling device, the Universal Control Engine is caused to execute an automatically generated macro command sequence to place at least one additional controllable appliance within the logical topography of controllable appliances into a corresponding predetermined operating state.
5. The method as recited in claim 1, wherein placing the controlling device into an operating state appropriate for controlling functional operations of the intended target appliance comprises causing the controlling device to display a graphical user interface page having activable icons representative of controllable functions of the intended target appliance.
6. The method as recited in claim 5, wherein the activable icons of the graphical user interface page comprise activable icons having logos representative of media content that is accessible via the intended target appliance.
7. The method as recited in claim 6, wherein the logos representative of media content that is accessible via the intended target appliance are atomically populated on the activable icons via use of the identity information associated with the intended target appliance.
8. The method as recited in claim 1, wherein the controlling device comprises a smart phone.
9. The method as recited in claim 1, wherein the controlling device comprises a tablet computing device.
10. The method as recited in claim 1, comprising causing the controlling device to detect the presence of the intended target appliance within the logical topography of controllable appliances.
11. The method as recited in claim 10, wherein a communication exchanged via use of a Bluetooth communication protocol is used by the controlling device to detect the presence of the intended target appliance within the logical topography of controllable appliances.
12. The method as recited in claim 10, comprising placing the intended target appliance into a predetermined state to facilitate detection of the intended target appliance within the logical topography of controllable appliances.
13. The method as recited in claim 1, comprising detecting by an appliance having the Universal Control Engine the presence of the intended target appliance within the logical topography of controllable appliances.
14. The method as recited in claim 13, wherein a communication exchanged via use of a Bluetooth communication protocol is used by the appliance having the Universal Control
Engine to detect the presence of the intended target appliance within the logical topography of controllable appliances.
15. The method as recited in claim 1, comprising prompting a user to provide data indicative of the identity information associated with the intended target appliance in response to a detected presence of the intended target appliance within a logical topography of controllable appliances.
16. The method as recited in claim 1, wherein the intended target device comprises the Universal Control Engine.
EP14872863.7A 2013-12-20 2014-12-19 System and method for optimized appliance control Active EP3084744B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL14872863T PL3084744T3 (en) 2013-12-20 2014-12-19 System and method for optimized appliance control

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/136,023 US9449500B2 (en) 2012-08-08 2013-12-20 System and method for optimized appliance control
PCT/US2014/071361 WO2015095637A1 (en) 2013-12-20 2014-12-19 System and method for optimized appliance control

Publications (3)

Publication Number Publication Date
EP3084744A1 true EP3084744A1 (en) 2016-10-26
EP3084744A4 EP3084744A4 (en) 2016-12-28
EP3084744B1 EP3084744B1 (en) 2019-06-12

Family

ID=53403724

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14872863.7A Active EP3084744B1 (en) 2013-12-20 2014-12-19 System and method for optimized appliance control

Country Status (6)

Country Link
EP (1) EP3084744B1 (en)
CN (1) CN105659302A (en)
ES (1) ES2734389T3 (en)
IL (1) IL246102B (en)
PL (1) PL3084744T3 (en)
WO (1) WO2015095637A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3864871A4 (en) * 2018-10-10 2022-07-13 Universal Electronics Inc. System and method for optimized appliance control
WO2022207484A1 (en) * 2021-03-30 2022-10-06 Interdigital Ce Patent Holdings, Sas Remote controllable smart device and method
EP4073982A4 (en) * 2020-01-15 2023-01-18 Universal Electronics Inc. System and method for optimized appliance utilization
US11651677B2 (en) 2011-10-28 2023-05-16 Universal Electronics Inc. System and method for optimized appliance control

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11756412B2 (en) 2011-10-28 2023-09-12 Universal Electronics Inc. Systems and methods for associating services and/or devices with a voice assistant
US11792185B2 (en) 2019-01-08 2023-10-17 Universal Electronics Inc. Systems and methods for associating services and/or devices with a voice assistant
US11700412B2 (en) 2019-01-08 2023-07-11 Universal Electronics Inc. Universal voice assistant
EP3908918A4 (en) * 2019-01-08 2022-10-26 Universal Electronics, Inc. Universal voice assistant
US11665757B2 (en) 2019-01-08 2023-05-30 Universal Electronics Inc. Universal audio device pairing assistant
US11776539B2 (en) 2019-01-08 2023-10-03 Universal Electronics Inc. Voice assistant with sound metering capabilities
IT201900001755A1 (en) * 2019-02-06 2020-08-06 Mind S R L DEVICE FOR REMOTE CONTROL OF DOMESTIC EQUIPMENT AND RELATIVE OPERATING METHOD

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0144199B1 (en) * 1995-04-18 1998-08-17 구자홍 Menu rearrangement method
US7831930B2 (en) 2001-11-20 2010-11-09 Universal Electronics Inc. System and method for displaying a user interface for a remote control application
FR2886083A1 (en) * 2005-05-19 2006-11-24 Thomson Licensing Sa METHOD OF SELECTING ELEMENTS AND FUNCTIONS BY DISPLAYING A SPECIFIC ICON, AND APPARATUS USING THE METHOD
CN1952866A (en) * 2006-11-06 2007-04-25 张伟明 Constitution method of medium centre defined by customer with remote-control display interface
US8151215B2 (en) * 2008-02-07 2012-04-03 Sony Corporation Favorite GUI for TV
US9503562B2 (en) * 2008-03-19 2016-11-22 Universal Electronics Inc. System and method for appliance control via a personal communication or entertainment device
CN101799975A (en) * 2009-02-10 2010-08-11 Tcl集团股份有限公司 Study type remote controller and press key template establishment method thereof
US8918719B2 (en) * 2011-02-14 2014-12-23 Universal Electronics Inc. Graphical user interface and data transfer methods in a controlling device
JP2012209898A (en) * 2011-03-30 2012-10-25 Sony Corp Terminal device and communication method, information processing device and method, program, and information processing system
JP2012244489A (en) * 2011-05-20 2012-12-10 Sony Corp Information processing apparatus, information processing method, and program
US9215394B2 (en) * 2011-10-28 2015-12-15 Universal Electronics Inc. System and method for optimized appliance control
US9437105B2 (en) * 2011-10-28 2016-09-06 Universal Electronics Inc. System and method for optimized appliance control
CN102541547B (en) * 2011-12-22 2015-12-02 华为技术有限公司 A kind of disposal route for realizing control objectives equipment and device
CN102665124B (en) * 2012-04-11 2015-10-21 深圳市迈乐数码科技股份有限公司 Based on learning remote control system and the learning remote control method of Set Top Box
US20140235265A1 (en) * 2013-02-19 2014-08-21 Homersoft Sp. Zo.O. Dynamic proximity control system
CN103294401B (en) * 2013-06-03 2016-02-17 广东欧珀移动通信有限公司 A kind of icon disposal route and device with the electronic equipment of touch-screen

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11651677B2 (en) 2011-10-28 2023-05-16 Universal Electronics Inc. System and method for optimized appliance control
US11769397B2 (en) 2011-10-28 2023-09-26 Universal Electronics Inc. System and method for optimized appliance control
US11887469B2 (en) 2011-10-28 2024-01-30 Universal Electronics Inc. System and method for optimized appliance control
US12073711B2 (en) 2011-10-28 2024-08-27 Universal Electronics Inc. System and method for optimized appliance control
EP3864871A4 (en) * 2018-10-10 2022-07-13 Universal Electronics Inc. System and method for optimized appliance control
EP4073982A4 (en) * 2020-01-15 2023-01-18 Universal Electronics Inc. System and method for optimized appliance utilization
WO2022207484A1 (en) * 2021-03-30 2022-10-06 Interdigital Ce Patent Holdings, Sas Remote controllable smart device and method

Also Published As

Publication number Publication date
CN105659302A (en) 2016-06-08
WO2015095637A1 (en) 2015-06-25
EP3084744B1 (en) 2019-06-12
EP3084744A4 (en) 2016-12-28
PL3084744T3 (en) 2019-10-31
IL246102B (en) 2020-07-30
ES2734389T3 (en) 2019-12-05
IL246102A0 (en) 2016-07-31

Similar Documents

Publication Publication Date Title
US11410542B2 (en) System and method for optimized appliance control
US20130249679A1 (en) System and method for optimized appliance control
EP3084744B1 (en) System and method for optimized appliance control
EP3000007A1 (en) System and method for optimized appliance control
US11769397B2 (en) System and method for optimized appliance control
US20190325735A1 (en) System and method for optimized appliance control

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160617

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

A4 Supplementary search report drawn up and despatched

Effective date: 20161125

RIC1 Information provided on ipc code assigned before grant

Ipc: G08C 19/00 20060101AFI20161121BHEP

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190110

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1143587

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014048417

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: RENTSCH PARTNER AG, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190912

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190913

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602014048417

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2734389

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20191205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191014

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191012

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014048417

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 1143587

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190612

26N No opposition filed

Effective date: 20200313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

PG2D Information on lapse in contracting state deleted

Ref country code: IS

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231227

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231226

Year of fee payment: 10

Ref country code: IT

Payment date: 20231220

Year of fee payment: 10

Ref country code: IE

Payment date: 20231227

Year of fee payment: 10

Ref country code: FR

Payment date: 20231227

Year of fee payment: 10

Ref country code: AT

Payment date: 20231204

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231130

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240102

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231229

Year of fee payment: 10

Ref country code: CH

Payment date: 20240102

Year of fee payment: 10