[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP3059093A1 - Sicherheitselement, wertdokument mit einem solchen sicherheitselement sowie herstellungsverfahren eines sicherheitselementes - Google Patents

Sicherheitselement, wertdokument mit einem solchen sicherheitselement sowie herstellungsverfahren eines sicherheitselementes Download PDF

Info

Publication number
EP3059093A1
EP3059093A1 EP16000444.6A EP16000444A EP3059093A1 EP 3059093 A1 EP3059093 A1 EP 3059093A1 EP 16000444 A EP16000444 A EP 16000444A EP 3059093 A1 EP3059093 A1 EP 3059093A1
Authority
EP
European Patent Office
Prior art keywords
facets
security element
element according
pixels
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP16000444.6A
Other languages
English (en)
French (fr)
Other versions
EP3059093B1 (de
Inventor
Christian Fuhse
Michael Rahm
Andreas Rauch
Kaule Wittich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Giesecke and Devrient Currency Technology GmbH
Original Assignee
Giesecke and Devrient GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43919824&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3059093(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Giesecke and Devrient GmbH filed Critical Giesecke and Devrient GmbH
Publication of EP3059093A1 publication Critical patent/EP3059093A1/de
Application granted granted Critical
Publication of EP3059093B1 publication Critical patent/EP3059093B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D15/00Printed matter of special format or style not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • B42D25/21Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose for multiple purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • B42D25/23Identity cards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • B42D25/24Passports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • B42D25/26Entrance cards; Admission tickets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • B42D25/29Securities; Bank notes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/328Diffraction gratings; Holograms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/373Metallic materials
    • B42D2035/20
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/324Reliefs

Definitions

  • the present invention relates to a security element for a security paper, value document or the like, a value document with such a security element and a method for producing such a security element.
  • Items to be protected are often provided with a security element that allows verification of the authenticity of the item and at the same time serves as protection against unauthorized reproduction.
  • Items to be protected include, for example, security papers, identity and value documents (such as banknotes, chip cards, passports, identification cards, identity cards, stocks, attachments, certificates, vouchers, checks, tickets, credit cards, health cards, etc.) as well as product security elements such as security items. Labels, seals, packaging, etc.
  • a technique widely used in the field of security elements which gives a practically flat film a three-dimensional appearance, are various forms of holography.
  • these techniques have some disadvantages.
  • the quality of the three-dimensional representation of a hologram depends strongly on the lighting conditions. Especially with diffuse lighting, the representations of holograms are often barely visible.
  • holograms have the disadvantage that they are present in everyday life in many places and therefore their special position as a security feature disappears.
  • the object of the invention is to avoid the disadvantages of the prior art and in particular to provide a security element for a security paper, document of value or the like, in which a good three-dimensional appearance is achieved with an extremely flat design of the security element.
  • a security element for a security paper, document of value or the like having a carrier which has a surface area which is divided into a plurality of pixels, each comprising at least one optically effective facet, wherein the plurality of pixels respectively have several of the optically active facets with the same orientation per pixel and the facets are oriented so that the surface area is perceptible to a viewer as compared to its actual spatial form projecting and / or recessed surface.
  • an extremely flat security element in which, for example, the maximum height of the facets is not greater than 10 microns, can be provided, which nevertheless produces a very good three-dimensional impression when viewed. It is therefore possible, by means of a (macroscopically) flat area, to reproduce a surface which appears to be very curved, for the observer.
  • arbitrarily shaped three-dimensional configurations of the perceptible surface can be produced in this manner.
  • portraits, objects, motifs or other three-dimensional appearing objects can be recreated.
  • the three-dimensional impression is always related to the actual spatial form of the surface area.
  • the surface area may be flat or even curved.
  • a three-dimensional appearance related to this basic surface shape is always achieved, so that for a viewer the surface area then does not appear even or curved in the same way as the area itself.
  • the surface area that can be perceived as a protruding and / or recessed surface is understood here in particular to mean that the surface area can be perceived as a continuously curved surface. So the area z. B. be perceived as a surface with an apparent curvature, which differs from the curvature or actual spatial shape of the surface area. With the security element according to the invention can according to z. B. a curved surface can be imitated by adjusting the corresponding reflection behavior.
  • the surface area is in particular a continuous surface area.
  • the surface area can also have gaps or even comprise non-contiguous subareas.
  • the area may be interleaved with other security features.
  • it may, for. B. can be a true color hologram, so that a viewer can perceive the true color hologram and the front and / or recessed surface, which are provided by the surface area according to the invention together.
  • the orientation of the facets is chosen in particular such that the surface area is perceptible to a viewer as a non-planar surface.
  • the plurality of pixels each having a plurality of the optically effective facets having the same orientation per pixel may be 51% of the number of pixels. However, it is also possible that the majority is greater than 60%, 70%, 80% or in particular greater than 90% of the number of pixels.
  • all the pixels of the surface area to each have a plurality of the optically active facets with the same orientation.
  • the optically active facets can be designed as reflective and / or transmissive facets.
  • the facets may be formed in a surface of the carrier. Further, it is possible that the facets are formed both in the top and in the bottom of the carrier and facing each other. In this case, the facets are preferably designed as transmissive facets having a refractive effect, wherein, of course, the carrier itself is also transparent or at least translucent. The dimensions and orientations of the facets are then selected, in particular, such that for a viewer, a surface is perceivable so that it projects forward and / or backward in relation to the actual spatial form of the top and / or underside of the carrier.
  • the carrier may be formed as a layer composite.
  • the facets may lie at an interface within the laminar structure. So the facets z.
  • the facets can be embodied as embedded facets.
  • optically active facets are designed such that the pixels have no optically diffractive effect.
  • the dimensions of the optically active facets may be between 1 ⁇ m and 300 ⁇ m, preferably between 3 ⁇ m and 100 ⁇ m, and particularly preferably between 5 ⁇ m and 30 ⁇ m.
  • the dimensions of the pixels are chosen such that the area of the pixels is smaller by at least one order of magnitude and preferably by at least two orders of magnitude than the area of the area.
  • the area of the surface area as well as the area of the pixels is to be understood as meaning in particular the area when projected in the direction of the macroscopic surface normal of the surface area onto a plane.
  • the dimensions of the pixels can be chosen such that the dimensions of the pixels are at least in one direction at least an order of magnitude and preferably at least two orders of magnitude smaller than the dimensions of the surface of the surface region.
  • the maximum extent of a pixel is preferably between 5 ⁇ m and 5 mm, preferably between 10 ⁇ m and 300 ⁇ m, particularly preferably between 20 ⁇ m and 100 ⁇ m.
  • the pixel shape and / or the pixel size may, but need not, vary within the security element.
  • the grating period of the facets per pixel is preferably between 1 ⁇ m and 300 ⁇ m or between 3 ⁇ m and 300 ⁇ m, preferably between 3 ⁇ m and 100 ⁇ m or between 5 microns and 100 microns, more preferably between 5 microns and 30 microns or between 10 microns and 30 microns.
  • the grating period is chosen in particular such that at least one pixel per pixel two facets of the same orientation are included and that diffraction effects virtually no longer play a role for incident light (eg from the wavelength range of 380 nm to 750 nm).
  • the facets can be referred to as achromatic facets and the pixels as achromatic pixels, which cause a directed achromatic reflection.
  • the security element thus has an achromatic reflectivity with respect to the lattice structure present through the facets of the pixels.
  • the facets are preferably formed as substantially planar surface pieces.
  • the chosen formulation, according to which the facets are formed as essentially flat surface pieces, takes account of the fact that in practice production-related generally never perfectly flat surface pieces can be produced.
  • the orientation of the facets is determined in particular by their inclination and / or their azimuth angle.
  • the orientation of the facets can also be determined by other parameters. In particular, these are two mutually orthogonal parameters, such. B. the two components of the normal vector of each facet.
  • a reflective or reflection-increasing coating (in particular a metallic or high-refractive coating) may be formed at least in regions.
  • the reflective or reflection-enhancing coating may be a metallic coating, for example vapor-deposited.
  • aluminum, gold, silver, copper, palladium, chromium, nickel and / or tungsten and their alloys can be used as the coating material.
  • the reflective or reflection-enhancing coating are formed by a coating with a material having a high refractive index.
  • the reflective or reflection-enhancing coating may in particular be formed as a partially permeable coating.
  • a color-shifting coating may be formed on the facets at least in regions.
  • the color-shifting coating can be designed in particular as a thin-layer system or thin-film interference coating.
  • a layer sequence of metal layer - dielectric layer - metal layer or a layer sequence of three dielectric layers, wherein the refractive index of the middle layer is less than the refractive index of the other two layers are realized.
  • the dielectric material for example, ZnS, SiO 2 , TiO 2 , MgF 2 can be used.
  • the color-shifting coating can also be designed as an interference filter, thin semitransparent metal layer with selective transmission by plasma resonance effects, nanoparticles, etc.
  • the color-shifting layer can in particular also be realized as a liquid-crystal layer, diffractive relief structure or sub-wavelength grating.
  • a thin-film system with a reflector, dielectric, absorber structure (formed on the facets in this order) is also possible.
  • the thin-film system plus facet can not only be designed as a facet / reflector / dielectric / absorber, but also as a facet / absorber / dielectric / reflector.
  • the order depends in particular on which side the security element should be viewed from.
  • visible from both sides color shift effects are possible, if the thin-film system plus facet is designed, for example, as absorber / dielectric / absorber / facet or absorber / dielectric / reflector / dielectric / absorber / facet.
  • the color-shifting coating can be designed not only as a thin-film system but also as a liquid-crystal layer (in particular of cholesteric liquid-crystalline material).
  • a scattering coating or surface treatment of the facets can be provided.
  • Such a coating or treatment may be scattered according to Lambert's cosine law or there may be a scattering reflection with a directional distribution deviating from Lambert's cosine law. In particular, scattering with pronounced preferential direction is interesting here.
  • the embossing surface of the embossing tool in the production of the facets via an embossing process, can additionally be provided with a microstructure in order to produce specific effects.
  • the embossing surface of the embossing tool can be provided with a rough surface, so that facets with scattered reflection arise in the end product.
  • facets can be provided per pixel. It can also be three, four, five or more facets.
  • the number of facets per pixel may in particular be selected such that a maximum predetermined value Facet height is not exceeded.
  • the maximum facet height can be, for example, 20 ⁇ m or even 10 ⁇ m.
  • the grating period of the facets can be chosen to be the same for all pixels. However, it is also possible for one or more of the pixels to have different grating periods. Furthermore, it is possible that the grating period varies within a pixel and is thus not constant. Furthermore, in the grating period, a phase information can be imprinted, which is used to encode further information.
  • a verification mask having grating structures can be provided which have the same periods and azimuth angles as the facets in the security element according to the invention. In one subregion of the verification mask, the grids can have the same phase parameter as the security element to be verified and, in other regions, a specific phase difference. If the verification mask is placed over the security element, the different areas will appear differently bright or dark due to the moiré effect. In particular, the verification mask can be provided on the same object to be protected as the security element according to the invention.
  • Such an imaginary surface and in particular such a rotating mirror is very easily detectable and verifiable for a viewer.
  • any real arched reflecting or transmitting surface can be modified into an imaginary surface by means of the surface area of the security element according to the invention.
  • This can be z. B. be realized in that the azimuth angle of all facets are changed, for example, be rotated by a certain angle.
  • This can be interesting effects. If, for example, all azimuth angles are rotated by 45 ° to the right, the surface area for a viewer, when illuminated directly from above, is a curved surface that is apparently illuminated from the top right. Twisting all the azimuth angles by 90 °, the light reflections move when tilted in a direction that is perpendicular to the direction that a viewer would expect. This unnatural reflection behavior then makes it no longer possible for a viewer, for example, to decide whether the curved perceptible surface is present in front of or behind (in relation to the surface area).
  • the carrier may have a further surface area, which is preferably interleaved with the one area area and, in particular, is designed as a further security feature.
  • Such training can z. B. as nesting or as a multi-channel image.
  • the further surface region can be divided into a multiplicity of pixels, each comprising at least one optically active facet, in the same way as the one surface region, wherein preferably the plurality of pixels each have a plurality of the optically effective facets with the same orientation per pixel and the facets are so oriented that for a viewer of the other surface area as compared to its actual spatial shape curved or protruding and / or receding surface is perceptible.
  • z. B. two different three-dimensional representations can be realized.
  • phase information can be hidden or stored as a further security feature.
  • At least one facet can have a light-scattering microstructure on its surface.
  • several or even all facets may have such a light-scattering microstructure on the facet surface.
  • the light-scattering microstructure may be formed as a coating.
  • the facets can also be embedded in a colored material in order to additionally realize a color effect or to recreate a colored object.
  • the orientations of a plurality of facets with respect to the orientations for producing the protruding and / or recessed surface may be changed such that the protruding and / or recessed surface is still perceptible, but with a surface which appears to be matt.
  • the protruding and / or recessed surface can also be presented with a matte surface appearance.
  • the production method according to the invention can in particular be developed so that the security element according to the invention and the developments of the security element according to the invention can be produced.
  • the manufacturing method may further include the step of calculating the pixels from a surface to be tracked.
  • the facets (their dimensions and their orientations) are calculated for all pixels.
  • the height modulation of the surface area can then be carried out.
  • the step of coating the facets may be further provided.
  • the facets can be provided with a reflective or reflection-enhancing coating.
  • the reflective or reflection-enhancing coating can be a complete silvering or even a semi-transparent coating.
  • security paper is understood here in particular as the precursor that can not be processed to a value document which, in addition to the security element according to the invention, may also have further authenticity features (such as, for example, luminescent substances provided in the volume).
  • Value documents are here understood, on the one hand, documents produced from security papers.
  • value documents can also be other documents and objects which can be provided with the security element according to the invention, so that the value documents have non-copyable authenticity features, whereby an authenticity check is possible and at the same time unwanted copying is prevented.
  • an embossing tool with an embossing surface with which the shape of the facets of a security element according to the invention (including its developments) can be embossed in the carrier or in a layer of the carrier.
  • the security element according to the invention can be used as a master for the exposure of volume holograms or for purely decorative purposes.
  • a photosensitive layer in which the volume hologram is to be formed may be brought into contact with the front of the master, and thus with the front of the security element, directly or with the interposition of a transparent optical medium.
  • the security element 1 according to the invention is integrated in a banknote 2 in such a way that the security element 1 differs from the security element 1 shown in FIG FIG. 1 shown front side of the banknote 2 is visible.
  • the security element 1 is formed as a reflective security element 1 with a rectangular outer contour, wherein the limited by the rectangular outer contour surface 3 is divided into a plurality of reflective pixels 4, of which a small part increases in FIG. 2 are shown as a plan view.
  • the pixels 4 are square here and have an edge length in the range of 10 to several 100 microns.
  • the edge length is not greater than 300 microns. In particular, it may be in the range between 20 and 100 microns.
  • the edge length of the pixels 4 is chosen in particular such that the area of each pixel 4 is smaller than the area 3 by at least one order of magnitude, preferably by two orders of magnitude.
  • the plurality of pixels 4 each have a plurality of reflective facets 5 of the same orientation, wherein the facets 5 are the optically effective surfaces of a reflective sawtooth grid.
  • FIG. 3 the sectional view along the line 6 for six adjacent pixels 41, 4 2 , 4 3 , 4 4 , 4 5 and 4 6 is shown, the illustration in FIG. 3 as well as in the other figures is not to scale for better representation is not true to scale. Furthermore, to simplify the illustration in FIGS. 1 to 3 as well as in FIG FIG. 4 the reflective coating on the facets 5 not shown.
  • the sawtooth grid of the pixels 4 is formed here in a surface 7 of a carrier 8, wherein the thus structured surface 7 preferably with a reflective coating (in FIG. 3 not shown).
  • the carrier 8 may be, for example, a radiation-curing plastic (UV resin) which is applied to a carrier foil, not shown, (for example, a PET foil).
  • UV resin radiation-curing plastic
  • the pixels 4 1 , 4 2 , 4 4 , 4 5 and 4 6 each have three facets 5, the orientation per pixel 4 1 , 4 2 , 4 4 , 4 5 and 4 6 is the same.
  • the sawtooth gratings and thus also the facets 5 of these pixels are the same except for their different inclination ⁇ 1 , ⁇ 4 (to simplify the illustration, only the inclination angles ⁇ 1 and ⁇ 4 of one facet 5 of the pixels 4 1 and 4 4 are shown ).
  • the pixel 4 3 here has only a single facet 5.
  • Seen in plan view are the facets 5 of the pixels 4 1 - 4 6 strip-shaped mirror surfaces which are aligned parallel to each other.
  • the orientation of the facets 5 is chosen so that for a viewer, the surface 3 as compared to their actual (macroscopic) spatial form, which here is the shape of a flat surface, forward and / or recessed surface is perceptible.
  • a viewer takes in the FIG. 3 shown in section surface 9 true when he looks at the facets 5. This is achieved by choosing the orientations of the facets 5 which reflect the incident light L1 as if it were incident on a surface according to the line 9 in FIG FIG. 3 indicated spatial form falls, as shown schematically by the incident light L2.
  • the reflection generated by the facets 5 of a pixel 4 corresponds to the average reflection of the area of the surface 9 that has been converted or readjusted by the corresponding pixel 4.
  • a three-dimensional elevation profile is thus readjusted by a grid-structured arrangement of reflective sawtooth structures (facets 5 per pixel 4) which mimic the reflection behavior of the height profile.
  • facets 5 per pixel 4 the surface 3 can thus be generated any three-dimensionally perceptible motifs, such. a person, parts of a person, a number or other objects.
  • the azimuth angle ⁇ of the trailing surface must also be adapted.
  • the azimuth angle ⁇ is relative to the direction according to arrow P1 ( FIG. 2 ) 0 °.
  • the azimuth angle ⁇ is approximately 170 °, for example.
  • the sawtooth grid of the pixel 4 7 is in FIG. 4 shown schematically in three-dimensional representation.
  • the reflective sawtooth structures can be written, for example, by means of gray scale lithography in a photoresist, then developed, galvanically molded, embossed in UV paint (carrier) and mirrored.
  • the mirror coating can be realized, for example, by means of an applied metal layer (vapor-deposited, for example).
  • an aluminum layer with a thickness of eg 50 nm is applied.
  • other metals such as silver, copper, chromium, iron, etc., or alloys thereof may also be used.
  • high-index coatings can be applied, for example ZnS or TiO 2 .
  • the evaporation can be full surface. However, it is also possible to carry out a coating only in regions or in a grid-shaped manner, so that the security element 1 is partially transparent or translucent.
  • the period A of the facets 5 is the same for all pixels 4 in the simplest case. However, it is also possible to vary the period A of the facets 5 per pixel 4. For example, the pixel 4 7 has a smaller period A than the pixels 4 1 - 4 6 (FIG. 2). In particular, the period A of the facets 5 can be chosen randomly for each pixel. By varying the choice of the period A of the sawtooth gratings for the facets 5, any visibility of a diffraction pattern originating from the sawtooth gratings can be minimized.
  • a fixed period A is provided within a pixel 4. In principle, however, it is also possible to vary the period ⁇ within a pixel 4, so that aperiodic sawtooth gratings per pixel 4 are present.
  • the period A of the facets 5 is on the one hand to avoid unwanted diffraction effects and to minimize the necessary film thickness (thickness on the other hand, preferably between 3 ⁇ m and 300 ⁇ m.
  • the distance is between 5 .mu.m and 100 .mu.m, wherein a distance between 10 .mu.m and 30 .mu.m is particularly preferred.
  • the pixels 4 are square. However, it is also possible to form the pixels 4 rectangular. Also, other pixel shapes may be used, such as a parallelogram or hexagonal pixel shape.
  • the pixels 4 preferably have dimensions which on the one hand are greater than the spacing of the facets 5 and on the other hand are so small that the individual pixels 4 do not disturb the unaided eye. The size range resulting from these requirements is between about 10 and a few 100 ⁇ m.
  • a phase parameter p i can optionally also be introduced for each pixel 4.
  • Ai are the amplitude of the sawtooth grid, ⁇ i the azimuth angle and Ai the grating period.
  • mod stands for the modulo operation and provides the positive remainder in division.
  • the amplitude factor Ai results from the slope of the trailing surface profile 9.
  • the sawtooth gratings or the facets 5 of different pixels 4 can be displaced relative to one another.
  • the parameters p i random values or other values varying per pixel 4 can be used.
  • a possibly still visible diffraction pattern of the sawtooth grating (the facets 5 per pixel 4) or the raster grating of the pixels 4 can be eliminated, which can otherwise cause undesirable color effects.
  • the varied phase parameters p i there are also no excellent directions in which the sawtooth gratings of adjacent pixels 4 fit together particularly well or particularly poorly, which prevents visible anisotropy.
  • the azimuth angle ⁇ and the gradients ⁇ of the facets 5 per pixel 4 can be selected such that they do not correspond as well as possible to the trailing surface 9, but deviate somewhat therefrom.
  • a (preferably random) component can be added thereto for each pixel 4 to the optimum value for adjusting the surface 9 in accordance with a suitable distribution.
  • the noise standard deviation of the distribution
  • the strength of the noise can be chosen differently for different pixels 4, whereby the domed appearing surface at different Make different smooth or dull.
  • the effect can be created that the viewer perceives the surface 3 as a smooth protruding and / or receding surface, which has a matte lettering or texture.
  • the thin film system may include first, second, and third dielectric layers formed on each other, wherein the first and third layers have a higher refractive index than the second layer. Due to the different inclinations of the facets 5 different colors are perceptible to a viewer without having to rotate the security element 1.
  • the perceivable surface thus has a certain color spectrum.
  • the security element 1 can in particular be designed as a multi-channel image, which has different, nested part surfaces, wherein at least one of the partial surfaces is formed in accordance with the invention, so that this partial surface is perceived by the viewer as a spatial partial surface.
  • the other partial surfaces may also be formed in the manner described by means of pixels 4 with at least one facet 5.
  • the other partial surfaces may, but need not, be perceptible as an area that protrudes and / or rebounds relative to the actual spatial form.
  • the nesting may for example be checkerboard-like or strip-like.
  • the security element 1 in addition to the already described use of color-shifting coatings, it is also possible to provide the security element 1 according to the invention additionally with color information.
  • color e.g. Color be printed on the facets 5 (either transparent or thin) or provided below an at least partially transparent or translucent sawtooth structure.
  • a coloring of a motif represented by the pixels 4 can thereby be carried out. If e.g. If a portrait is readjusted, the color layer can provide the face color.
  • a combination with a true color hologram or kinegram, in particular the interlacing with a true color hologram, which shows a colored representation of the surface 9 which is traced with the pixels 4, is also possible.
  • the achromatic three-dimensional image of an object appears colored at certain angles.
  • the surface 9 which is traced with the pixels 4 may, in particular, be a so-called imaginary surface. This is understood here as the formation of a reflection or transmission behavior that can not be created with a real domed reflective or transmissive surface.
  • the slope and the azimuth of the facets 5 correspond to the gradient of the height function.
  • the slope and the azimuth of the facets 5 merge into one another virtually continuously, but no height function can be found with which the above integral disappears. In this case we should talk about the reenactment of an imaginary surface.
  • this rotating mirror thus provides a surface, in which one runs continuously uphill along a circle, but at the end arrives again at the same altitude at which one started. Obviously, there is no such real surface.
  • the surface is designed as a reflective surface.
  • the same effects of the three-dimensional effect can essentially also be achieved in transmission if the sawtooth structures or the pixels 4 with the facets 5 (including the carrier 8) are at least partially transparent.
  • the sawtooth structures preferably lie between two layers having different refractive indices. In this case, the security element 1 then appears to the viewer like a glass body with a curved surface.
  • the described advantageous embodiments can also be used for the transmissive design of the security element 1.
  • the rotating mirror of an imaginary surface can see through the image.
  • the security against forgery of the security element 1 according to the invention can be increased by further features visible only with aids, which can also be referred to as hidden features.
  • a verification mask can be produced with lattice structures which have the same periods and azimuth angles as the security element 1 according to the invention.
  • the lattices of the verification mask can have the same phase parameter as the security element to be verified, in other areas a certain phase difference , These different areas will appear differently bright or dark due to moiré effects if the security element 1 and the verification mask are overlaid.
  • the pixels 4 may have other outlines in addition to the outline shapes described. With a magnifying glass or a microscope, these outlines can then be recognized.
  • any other structure can also be embossed or inscribed without the unaided eye noticing this.
  • these pixels are not part of the surface 3, so that there is an interleaving of the surface 3 with the differently formed pixels.
  • These other formed pixels may be, for example, every 100th pixel compared to the pixels 4 of the face 3. It is possible to introduce into these pixels a micro font or a logo, for example 10 ⁇ m letters in a 40 ⁇ m pixel.
  • the facets in the surface 7 of the carrier 8 are formed in such a way that the lowest points or the minimum height values of all the facets 5 (FIG. FIG. 3 ) lie in one plane.
  • the facets 5 such that the mean values of the heights of all facets 5 are at the same level as in FIG. 5 is shown schematically.
  • FIG. 7 is a sectional view in the same way as in FIG. 3 shown, but for the pixel 4 4 a mirror surface 10 is located, which adjusts the surface 9 in the region of the pixel 4 4 .
  • a pixel size of, for example, 20 ⁇ m to 100 ⁇ m
  • such a mirror surface 10 would lead to undesirably large heights d being present.
  • the corresponding mirror surface 10 would project from the xy plane by 20 ⁇ m to 100 ⁇ m.
  • maximum heights d of 10 ⁇ m are desired. Therefore, the mirror surface 10 is subjected to a modulo d operation, so that the in FIG. 7 5, wherein the normal vectors n of the facets 5 correspond to the normal vector n of the mirror surface 10.
  • the surface 9 to be readjusted can be present, for example, as a set of x, y values, each with assigned height h in the z direction (3D bitmap).
  • a 3D bitmap may have a defined square or 60 ° grid in the xy plane ( Figures 8,9 ) being constructed.
  • the halftone dots are connected in such a way that a surface coverage in the xy plane with triangular tiles results, as in FIGS. 8 and 9 is shown schematically.
  • the facets 5 or their orientations are obtained from tangent planes of the surface 9 to be adjusted. These can be determined from the mathematical derivation of the function f (x, y, z).
  • the azimuth angle ⁇ of the tangential plane is arctan (n y / n x ) and the slope angle ⁇ of the tangential plane is arccos n z .
  • the area f (x, y, z) can be arbitrarily curved and (x 0 , y 0 , z 0 ) is the point on the area for which the calculation is being performed. The calculation is performed successively for all points selected for the sawtooth structure.
  • the surface to be replicated may be described by triangular patches wherein the planar triangular pieces are stretched between selected points which lie within and at the edge of the surface to be replicated.
  • x i , y i , z i are the triangle vertices.
  • the surface can be projected into the xy plane and the individual triangles can be tilted according to their normal vector.
  • the sloping plane pieces form the facets and, if they protrude too far out of the xy plane, as in conjunction with FIG. 7 has been described, divided into smaller facets 5.
  • nachinesde surface is given by triangular patches, you can also proceed as follows. The entire surface to be replicated is subjected at once (or portions of each surface) to a Fresnel construction modulo d (or modulo di). Since the nachhede surface consists of layer pieces, created automatically on the xy plane triangles that are filled with the facets 5.
  • the construction of the facets can also be carried out as follows.
  • the x-y plane over which the surface 9 to be tracked is defined, one chooses suitable x-y points and connects them so that an area coverage of the x-y plane with polygon tiles results.
  • a randomly chosen point e.g., a vertex
  • a fresnel mirror corresponding to the normal vector is now placed in each tile.
  • square tiles or pixels 4 are used.
  • any (irregular) tiling is possible in principle.
  • the tiles can connect to each other (which is preferred because of the greater efficiency) or it can be joints between the tiles (for example, in the case of circular tiles).
  • the determination of the facets 5 according to the invention can be carried out in two fundamentally different ways.
  • the x-y plane can be divided into pixels 4 (or tiles) and for each pixel 4 the normal vector for the reflective planar surface is determined, which is then converted into several facets 5 of the same orientation.
  • a tiling in the x-y plane is first determined.
  • the tiling can be created completely arbitrarily.
  • the tiling consists of all the same squares with the side length a, where a is preferably in the range of 10 to 100 microns.
  • the tiling can also consist of different shaped tiles that fit together exactly or where joints occur.
  • the tiles can be shaped differently and contain coding or hidden information.
  • the tiles can be adapted to the projection of the surface to be adjusted in the x-y plane.
  • the grid lines can have any distances to each other.
  • the distances of the grid lines follow a certain scheme.
  • grid lines can not be provided exactly parallel to each other, for example to avoid interference.
  • the grid lines are parallel to each other, but have different distances.
  • the different distances of the grid lines may include a coding.
  • the grid lines of all facets 5 in each pixel 4 have the same distances. The distance can be in the range of 1 .mu.m to 20 .mu.m.
  • the grid lines may also have equal distances within each tile or within each pixel 4, but vary per pixel 4.
  • the azimuth angle ⁇ and the pitch angle ⁇ are then determined from the normal vector.
  • the sawtooth grid defined by grid lines, azimuth angle and pitch angle is computationally mounted in the associated tile taking into account the offset system.
  • the plane pieces i are each given by three corner points x 1i , y 1i , z 1i ; x 2i , y 2i , z 2i ; x 3i , y 3i , z 3i .
  • the sought sawtooth surface whose structure thickness in the regions i is smaller than d i , results from z modulo di, where z is calculated from the above formula and where the x and y values in the calculation are each within x 1i , y 1i ; x 2i , y 2i ; x 3i , y 3i given triangle lie in the xy plane.
  • the plane pieces i are each given by three vertices x 1i , y 1i , z 1i ; x 2i , y 2i , z 2i ; x 3i , y 3i , z 3i .
  • the sawtooth surface according to formula B differs from the surface to be adjusted according to formula A in that the value z is subtracted from the minimum value z 1i in the region i.
  • the sawtooth surface according to formula B consists of inclined triangles attached to the xy plane.
  • a maximum thickness di for the structure depth it may be that the maximum thickness is exceeded at the sawtooth surface according to formula B.
  • the angle ⁇ i is the pitch angle of the angle through x 1i , y 1i , z 1i ; x 2i , y 2i , z 2i , x 3i , y 3i , z 3i given triangle.
  • This sawtooth lattice mimics the original surface 9 to be followed, including its three-dimensional impression.
  • This sawtooth grid is flatter than a sawtooth grid created with the same procedure without subdividing the pixels 4 into a plurality of facets 5 according to the invention.
  • FIG. 10 3 a plan view of three pixels 4 of the surface 3 according to a further embodiment is shown, wherein the pixels 4 are irregular (solid lines) with irregular subdivisions or facets 5 (dashed lines).
  • the pixel borders and subdivisions are here straight lines, but they can also be curved.
  • FIG. 11 the corresponding cross-sectional view is shown, wherein the normal vectors of the facets 5 are shown schematically. Per pixel 4, the normal vectors of all facets 5 are the same while being different from pixel 4 to pixel 4. The normal vectors lie obliquely in space and generally not in the plane of the drawing, as in FIG. 11 for simplicity.
  • FIG. 11 is a plan view with the same pitch of pixels 4 as shown in FIG. 11, but with the division (facets 5) per pixel 4 being different.
  • the grating period A of the facets 5 in each pixel 4 is constant, but different from pixel 4 to pixel 4.
  • FIG. 13 shows the corresponding cross-sectional view.
  • FIG. 14 a further modification is shown wherein the pixel shape is the same as in FIG. 10 , However, the subdivision per pixel 4 is coded. Every second grid line spacing is twice the previous grid line spacing.
  • FIG. 15 the corresponding cross-sectional view is shown.
  • the normal vectors are determined as follows. You choose discrete points on the contour lines 15 (in FIG. 16 is a schematic plan view shown) and connects these points so that a triangular tiling arises. The calculation of the normal vector for the triangles is done as already described.
  • the normal vector was always calculated relative to the xy plane.
  • the security element on a bottle label (for example, at the bottleneck) can be provided so that then the trailing surface can be perceived undisturbed by a viewer spatially.
  • the normal vector n relative to the cylindrical surface has to be converted into the normal vector n trans in relation to a plane, so that the production methods described above can be used.
  • the security element according to the invention is then applied as a bottle label to the bottleneck (with the cylindrical curvature), the trailing surface 9 can then be perceived undistorted in a three-dimensional manner.
  • n trans cos ⁇ 0 sin ⁇ 0 1 0 - sin ⁇ 0 cos ⁇ ⁇ n ⁇
  • n normal vector over (x, y).
  • the security element 1 can be designed not only as a reflective security element 1, but also as a transmissive security element 1, as already mentioned.
  • the facets 5 are not mirrored and the carrier 8 is made of a transparent or at least translucent material, the viewing being done in a transparent manner.
  • a user When illuminated from behind, a user should perceive the trailing surface 9 as if there is a front-illuminated inventive reflective security element 1.
  • FIG. 20 shows the incidence on the inclined facets 5
  • FIG. 21 shows the incidence on the smooth side, which is preferred because of the possible larger incidence angles.
  • the azimuth angle of the reflective facet 5 is referred to as ⁇ s and the pitch angle of the facet 5 is referred to as ⁇ s .
  • the refractive index of the microprism 16 is n
  • FIG. 22 schematically a nachumblede reflective surface 9 with a mound 20 and a trough 21 is shown.
  • the negative focal length -f of the specular hill 20 is r / 2
  • the positive focal length f of the specular trough 21 is r / 2.
  • FIG. 23 schematically a lens 22 is shown, which has a transparent concave portion 23 and a transparent convex portion 24.
  • the concave portion 23 simulates the specular mound 20, wherein the negative focal length -f of the concave portion 23 is 2r.
  • the lens 22 according to FIG. 23 can be replaced by the shege leopard himself according to Figure 24.
  • FIGS. 20 to 23 schematically show the beam path for incident light L. From these ray curves it can be seen that the lens 22 in transmission adjusts the surface 9 as desired.
  • FIGS. 25 to 27 an example is shown in which the sawtooth side is on the light incident side. Otherwise, the representation of Figure 25 corresponds to the representation of FIG. 22 , corresponds to the representation of FIG. 26 the representation in FIG. 23 and corresponds to the representation of FIG. 27 the representation in FIG. 24 ,
  • transparent sawtooth structure substantially corresponds to a cast of a corresponding reflective sawtooth structure for adjusting the surface 9 according to FIG. 25 ,
  • the trailing surface in transparency appears much flatter than in reflection. Therefore, the height of the sawtooth structure is preferably increased or the number of facets 5 per pixel 4 is increased.
  • both sides of a transparent or at least translucent support 8 with a sawtooth structure having the plurality of microprisms 16, as shown in FIG FIGS. 28 and 29 is indicated.
  • the sawtooth structures 25, 26 are mirror-symmetrical on both sides.
  • the two sawtooth structures 25, 27 are not mirror-symmetrical.
  • the sawtooth structure 25, 27 is composed of a prismatic surface 28 with a pitch angle ⁇ p and an auxiliary prism 29 attached thereto with a pitch angle ⁇ h , as in FIG. 30 is shown schematically.
  • ⁇ p + ⁇ h is the effective total prism angle.
  • Reflective or refractive security elements shown can also be embedded in transparent material or provided with a protective layer.
  • An embedding is done in particular to protect the micro-optical elements from dirt and abrasion and to prevent unauthorized readjustment by embossing the surface structure.
  • FIG. 32ac shows the arrangement before embedding.
  • a refractive index difference between prism material and potting material 40 is required and must be taken into account when calculating the light beam deflection.
  • FIG. 33b schematically shows the adjustment of the reflective array of FIG. 32a by a transmitting prism arrangement with exposed prisms 16, as already z. B. in the Figures 19-27 discussed.
  • FIG. 33b schematically shows a possible adjustment of the reflective array of FIG. 32a by embedded prisms 16, wherein the refractive indices of prism material and potting material 40 must differ.
  • the security element 1 according to the invention can be used as a security thread 19 (FIG. FIG. 1 ) be formed. Furthermore, the security element 1 can not only, as described, be formed on a carrier foil, from which it can be transferred in a known manner to the value document. It is also possible to design the security element 1 directly on the value document. Thus, a direct printing with subsequent embossing of the security element can be carried out on a polymer substrate, for example, to form a security element according to the invention in plastic banknotes.
  • the security element according to the invention can be formed in a wide variety of substrates.
  • a paper with synthetic fibers ie paper with a content x polymeric material in the range of 0 ⁇ x ⁇ 100 wt .-%
  • a plastic film for.
  • PE polyethylene
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PEN polyethylene naphthalate
  • PP polypropylene
  • PA polyamide
  • a multilayer composite in particular a composite of several different films (composite composite) or a
  • FIG. 31 schematically an embossing tool 30 is shown with which the facets 5 in the carrier 8 according to FIG. 5 can be shaped.
  • the embossing tool 30 has an embossing surface 31, in which the inverted shape of the surface structure to be embossed is formed.
  • embossing tool can be provided in the same way.

Landscapes

  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Credit Cards Or The Like (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Printing Methods (AREA)
  • Duplication Or Marking (AREA)

Abstract

Es wird bereitgestellt ein Sicherheitselement (1) für ein Sicherheitspapier, Wertdokument oder dergleichen, mit
einem Träger (8), der einen Flächenbereich (3) aufweist, der in eine Vielzahl von Pixeln (4), die jeweils zumindest eine optisch wirksame Facette (5) umfassen, aufgeteilt ist,
wobei und die Facetten (5) so orientiert sind, dass für einen Betrachter der Flächenbereich (3) als gegenüber seiner tatsächlichen Raumform vor- und/ oder zurückspringende Fläche wahrnehmbar ist, und wobei auf den Facetten zumindest bereichsweise eine farbkippende Beschichtung ausgebildet ist.

Description

  • Die vorliegende Erfindung betrifft ein Sicherheitselement für ein Sicherheitspapier, Wertdokument oder dergleichen, ein Wertdokument mit einem solchen Sicherheitselement sowie ein Verfahren zum Herstellen eines solchen Sicherheitselementes.
  • Zu schützende Gegenstände werden häufig mit einem Sicherheitselement ausgestattet, das die Überprüfung der Echtheit des Gegenstandes erlaubt und zugleich als Schutz vor unerlaubter Reproduktion dient.
  • Zu schützende Gegenstände sind beispielsweise Sicherheitspapiere, Ausweis- und Wertdokumente (wie z.B. Banknoten, Chipkarten, Pässe, Identifikationskarten, Ausweiskarten, Aktien, Anlagen, Urkunden, Gutscheine, Schecks, Eintrittskarten, Kreditkarten, Gesundheitskarten, etc.) sowie Produktsicherungselemente, wie z.B. Etiketten, Siegel, Verpackungen, etc.
  • Eine gerade im Bereich von Sicherheitselementen weit verbreitete Technik, die einer praktisch ebenen Folie eine dreidimensionale Erscheinung gibt, sind diverse Formen der Holographie. Für die Anwendung eines Sicherheitsmerkmals, insbesondere auf Banknoten, haben diese Techniken jedoch einige Nachteile. Zum einen hängt die Qualität der dreidimensionalen Darstellung eines Hologramms stark von den Beleuchtungsverhältnissen ab. Insbesondere bei diffuser Beleuchtung sind die Darstellungen von Hologrammen oft kaum zu erkennen. Weiterhin haben Hologramme den Nachteil, dass sie im Alltag inzwischen an vielen Stellen präsent sind und daher ihre besondere Stellung als Sicherheitsmerkmal schwindet.
  • Davon ausgehend liegt der Erfindung die Aufgabe zugrunde, die Nachteile des Standes der Technik zu vermeiden und insbesondere, ein Sicherheitselement für ein Sicherheitspapier, Wertdokument oder dergleichen bereitzustellen, bei dem eine gute dreidimensionale Erscheinung bei einer äußerst flachen Ausbildung des Sicherheitselementes erzielt wird.
  • Erfindungsgemäß wird die Aufgabe gelöst durch ein Sicherheitselement für ein Sicherheitspapier, Wertdokument oder dergleichen, mit einem Träger, der einen Flächenbereich aufweist, der in eine Vielzahl von Pixeln, die jeweils zumindest eine optisch wirksame Facette umfassen, aufgeteilt ist, wobei die Mehrzahl der Pixel jeweils mehrere der optisch wirksamen Facetten mit gleicher Orientierung pro Pixel aufweisen und die Facetten so orientiert sind, dass für einen Betrachter der Flächenbereich als gegenüber seiner tatsächlichen Raumform vor- und/oder zurückspringende Fläche wahrnehmbar ist.
  • Damit kann ein äußerst flaches Sicherheitselement, bei dem z.B. die maximale Höhe der Facetten nicht größer als 10 µm ist, bereitgestellt werden, das dennoch einen sehr guten dreidimensionalen Eindruck bei Betrachtung erzeugt. Es ist daher möglich, mittels eines (makroskopisch) ebenen Flächenbereichs eine stark gewölbt erscheinende Fläche für den Betrachter nachzustellen. Grundsätzlich lassen sich in dieser Art und Weise beliebig geformte dreidimensionale Ausbildungen der wahrnehmbaren Fläche erzeugen. So können Portraits, Gegenstände, Motive oder sonstige dreidimensional erscheinende Objekte nachgestellt werden. Der dreidimensionale Eindruck wird dabei stets auf die tatsächliche Raumform des Flächenbereiches bezogen. So kann der Flächenbereich flach oder auch selbst gekrümmt ausgebildet sein. Es wird jedoch stets eine auf diese Grundflächenform bezogene dreidimensionale Erscheinung erreicht, so dass für einen Betrachter der Flächenbereich dann nicht eben oder in der gleichen Art und Weise gekrümmt erscheint wie der Flächenbereich selbst.
  • Unter den als vor- und/ oder zurückspringende Fläche wahrnehmbaren Flächenbereich wird hier insbesondere verstanden, dass der Flächenbereich als kontinuierlich gewölbte Fläche wahrnehmbar ist. So kann der Flächenbereich z. B. als Fläche mit einer scheinbaren Wölbung, die von der Krümmung oder tatsächlichen Raumform des Flächenbereiches abweicht, wahrgenommen werden. Mit dem erfindungsgemäßen Sicherheitselement kann entsprechend z. B. eine gewölbte Oberfläche durch Nachstellung des entsprechenden Reflexionsverhaltens imitiert werden.
  • Der Flächenbereich ist insbesondere ein zusammenhängender Flächenbereich. Der Flächenbereich kann jedoch auch Lücken aufweisen oder sogar nicht zusammenhängende Teilbereiche umfassen. In dieser Art und Weise kann der Flächenbereich mit anderen Sicherheitsmerkmalen verschachtelt sein. Bei den anderen Sicherheitsmerkmalen kann es sich z. B. um ein Echtfarbenhologramm handeln, so dass ein Betrachter das Echtfarbenhologramm und die vor- und/oder zurückspringende Fläche, die durch den erfindungsgemäßen Flächenbereich bereitgestellt werden, zusammen wahrnehmen kann.
  • Die Orientierung der Facetten ist insbesondere so gewählt, dass für einen Betrachter der Flächenbereich als nicht ebene Fläche wahrnehmbar ist.
  • Die Mehrzahl der Pixel, die jeweils mehrere der optisch wirksamen Facetten mit gleicher Orientierung pro Pixel aufweisen, kann 51 % der Pixelanzahl sein. Es ist jedoch auch möglich, dass die Mehrzahl größer als 60 %, 70 %, 80 % oder insbesondere größer als 90 % der Pixelanzahl ist.
  • Ferner ist es auch möglich, dass alle Pixel des Flächenbereiches jeweils mehrere der optisch wirksamen Facetten mit gleicher Orientierung aufweisen.
  • Die optisch wirksamen Facetten können als reflektive und/ oder transmissive Facetten ausgebildet sein.
  • Die Facetten können in einer Oberfläche des Trägers ausgebildet sein. Ferner ist es möglich, dass die Facetten sowohl in der Ober- als auch in der Unterseite des Trägers ausgebildet sind und sich einander gegenüberliegen. In diesem Fall sind die Facetten bevorzugt als transmissive Facetten mit brechender Wirkung ausgebildet, wobei natürlich der Träger selbst auch transparent oder zumindest transluzent ist. Die Abmessungen und Orientierungen der Facetten sind dann insbesondere so gewählt, dass für einen Betrachter eine Fläche so wahrnehmbar ist, dass sie gegenüber der tatsächlichen Raumform der Ober- und/ oder Unterseite des Trägers vor- und/ oder zurückspringt.
  • Der Träger kann als Schichtverbund ausgebildet sein. In diesem Fall können die Facetten an einer Grenzfläche innerhalb des Schichtverbundes liegen. So können die Facetten z. B. in einen auf einer Trägerfolie befindlichen Prägelack geprägt, anschließend metallisiert und in einer weiteren Lackschicht (z. B. Schutzlack oder Klebelack) eingebettet sein.
  • Insbesondere können bei dem erfindungsgemäßen Sicherheitselement die Facetten als eingebettete Facetten ausgebildet sein.
  • Insbesondere sind die optisch wirksamen Facetten so ausgebildet, dass die Pixel keine optisch diffraktive Wirkung aufweisen.
  • Die Abmessungen der optisch wirksamen Facetten können zwischen 1 µm und 300 um, bevorzugt zwischen 3 µm und 100 µm und besonders bevorzugt zwischen 5 µm und 30 µm liegen. Insbesondere liegt bevorzugt ein im Wesentlichen strahlenoptisches Reflexionsverhalten bzw. eine im Wesentlichen strahlenoptische Brechungswirkung vor.
  • Die Abmessungen der Pixel sind so gewählt, dass die Fläche der Pixel um zumindest eine Größenordnung und bevorzugt um zumindest zwei Größenordnungen kleiner ist als die Fläche des Flächenbereiches. Unter der Fläche des Flächenbereiches sowie der Fläche der Pixel wird hier insbesondere jeweils die Fläche bei Projektion in Richtung der makroskopischen Flächennormalen des Flächenbereiches auf eine Ebene verstanden.
  • Insbesondere können die Abmessungen der Pixel so gewählt sein, dass die Abmessungen der Pixel zumindest in einer Richtung um zumindest eine Größenordnung und bevorzugt um zumindest zwei Größenordnungen kleiner sind als die Abmessungen der Fläche des Flächenbereiches.
  • Die maximale Ausdehnung eines Pixels liegt vorzugsweise zwischen 5 µm und 5 mm, bevorzugt zwischen 10 µm und 300 µm, besonders bevorzugt zwischen 20µm und 100 µm. Die Pixelform und/oder die Pixelgröße kann, muss aber nicht, innerhalb des Sicherheitselementes variieren.
  • Die Gitterperiode der Facetten pro Pixel (die Facetten können ein periodisches oder aperiodisches Gitter, z. B. ein Sägezahngitter, bilden) liegt vorzugsweise zwischen 1 µm und 300 µm oder zwischen 3 µm und 300 µm, bevorzugt zwischen 3 µm und 100 µm oder zwischen 5 µm und 100 µm, besonders bevorzugt zwischen 5 µm und 30 µm oder zwischen 10 µm und 30 µm. Die Gitterperiode wird insbesondere so gewählt, dass pro Pixel zumindest zwei Facetten gleicher Orientierung enthalten sind und dass Beugungseffekte praktisch keine Rolle mehr spielen für einfallendes Licht (z.B. aus dem Wellenlängenbereich von 380 nm bis 750 nm). Da keine bzw. keine praktisch relevanten Beugungseffekte auftreten, können die Facetten als achromatische Facetten bzw. die Pixel als achromatische Pixel bezeichnet werden, die eine gerichtet achromatische Reflexion bewirken. Das Sicherheitselement weist somit bezüglich der durch die Facetten der Pixel vorhandenen Gitterstruktur eine achromatische Reflektivität auf.
  • Die Facetten sind bevorzugt als im Wesentlichen ebene Flächenstücke ausgebildet. Die gewählte Formulierung, nach der die Facetten als im Wesentlichen ebene Flächenstücke ausgebildet sind, trägt dabei der Tatsache Rechnung, dass sich in der Praxis herstellungsbedingt in der Regel nie perfekt ebene Flächenstücke herstellen lassen.
  • Die Orientierung der Facetten wird insbesondere durch ihre Neigung und/oder ihren Azimut-Winkel bestimmt. Natürlich kann die Orientierung der Facetten auch durch andere Parameter bestimmt sein. Insbesondere handelt es sich dabei um zwei zueinander orthogonale Parameter, wie z. B. die zwei Komponenten des Normalenvektors der jeweiligen Facette.
  • Auf den Facetten kann zumindest bereichsweise eine reflektierende oder reflexionserhöhende Beschichtung (insbesondere eine metallische oder hochbrechende Beschichtung) ausgebildet sein. Die reflektierende oder reflexionserhöhende Beschichtung kann eine metallische Beschichtung sein, die beispielsweise aufgedampft ist. Als Beschichtungsmaterial kann insbesondere Aluminium, Gold, Silber, Kupfer, Palladium, Chrom, Nickel und/ oder Wolfram sowie deren Legierungen verwendet werden. Alternativ kann die reflektierende oder reflexionserhöhende Beschichtung durch eine Beschichtung mit einem Material mit hohem Brechungsindex gebildet werden.
  • Die reflektierende oder reflexionserhöhende Beschichtung kann insbesondere als teildurchlässige Beschichtung ausgebildet sein.
  • In einer weiteren Ausgestaltung kann auf den Facetten zumindest bereichsweise eine farbkippende Beschichtung ausgebildet sein. Die farbkippende Beschichtung kann insbesondere als Dünnschichtsystem bzw. Dünnfilm-Interferenzbeschichtung ausgebildet sein. Dabei kann z.B. eine Schichtfolge Metallschicht - dielektrische Schicht - Metallschicht oder eine Schichtfolge aus drei dielektrischen Schichten, wobei die Brechzahl der mittleren Schicht geringer ist als die Brechzahl der beiden anderen Schichten, verwirklicht werden. Als dielektrisches Material kann z.B. ZnS, SiO2, TiO2, MgF2 verwendet werden.
  • Die farbkippende Beschichtung kann auch als Interferenzfilter, dünne semitransparente Metallschicht mit selektiver Transmission durch Plasmaresonanzeffekte, Nanopartikel, etc. ausgebildet sein. Die farbkippende Schicht kann insbesondere auch als Flüssigkristallschicht, diffraktive Relief Struktur oder Sub-Wellenlängengitter realisiert sein. Auch ein Dünnfilmsystem mit einem Aufbau Reflektor, Dielektrikum, Absorber (in dieser Reihenfolge auf den Facetten ausgebildet) ist möglich.
  • Das Dünnfilmsystem plus Facette kann nicht nur, wie bereits beschrieben, als Facette/Reflektor/Dielektrikum/Absorber ausgebildet sein, sondern auch als Facette/Absorber/Dielektrikum/ Reflektor. Die Reihenfolge hängt insbesondere davon ab, von welcher Seite das Sicherheitselement betrachtet werden soll. Ferner sind auch beidseitig sichtbare Farbkippeffekte möglich, wenn das Dünnfilmsystem plus Facette beispielsweise als Absorber/Dielektrikum/ Absorber/ Facette oder Absorber/ Dielektrikum/ Reflektor/ Dielektrikum/Absorber/Facette ausgebildet ist.
  • Die farbkippende Beschichtung kann nicht nur als Dünnfilmsystem, sondern auch als Flüssigkristallschicht (insbesondere aus cholesterischem flüssigkristallinem Material) ausgebildet sein.
  • Soll ein diffus streuender Gegenstand nachgestellt werden, kann eine streuende Beschichtung oder Oberflächenbehandlung der Facetten vorgesehen werden. Eine solche Beschichtung oder Behandlung kann nach dem Lambert'schen Cosinus-Gesetz streuen oder es kann eine Streureflexion mit einer vom Lambert'schen Cosinus-Gesetz abweichenden Richtungsverteilung vorliegen. Insbesondere ist hier Streuung mit ausgeprägter Vorzugsrichtung interessant.
  • Bei der Herstellung der Facetten über einen Prägevorgang kann die Prägefläche des Prägewerkzeugs, mit der die Form der Facetten in den Träger bzw. in eine Schicht des Trägers geprägt werden kann, zusätzlich mit einer Mikrostruktur versehen sein, um bestimmte Effekte zu erzeugen. Beispielsweise kann die Prägefläche des Prägewerkzeugs mit einer rauen Oberfläche versehen sein, so dass beim Endprodukt Facetten mit Streureflexion entstehen.
  • Bei dem erfindungsgemäßen Sicherheitselement können pro Pixel bevorzugt zumindest zwei Facetten vorgesehen sein. Es können auch drei, vier, fünf oder mehr Facetten sein.
  • Bei dem erfindungsgemäßen Sicherheitselement kann die Anzahl der Facetten pro Pixel insbesondere so gewählt sein, dass eine maximale vorgegebene Facettenhöhe nicht überschritten wird. Die maximale Facettenhöhe kann beispielsweise 20 µm oder auch 10 µm betragen.
  • Ferner kann bei dem erfindungsgemäßen Sicherheitselement die Gitterperiode der Facetten für alle Pixel gleich gewählt sein. Es ist jedoch auch möglich, dass einzelne oder mehrere der Pixel unterschiedliche Gitterperioden aufweisen. Ferner ist es möglich, dass die Gitterperiode innerhalb eines Pixels variiert und somit nicht konstant ist. Des Weiteren kann in die Gitterperiode noch eine Phaseninformation eingeprägt sein, die zur Codierung weiterer Informationen dient. Insbesondere kann eine Verifikationsmaske mit Gitterstrukturen bereitgestellt werden, die die gleichen Perioden und Azimut-Winkel aufweisen wie die Facetten bei dem erfindungsgemäßen Sicherheitselement. In einem Teilbereich der Verifikationsmaske können die Gitter den gleichen Phasenparameter aufweisen wie das zu verifizierende Sicherheitselement und in anderen Bereichen eine bestimmte Phasendifferenz. Wenn die Verifikationsmaske über das Sicherheitselement gelegt wird, werden die verschiedenen Bereiche aufgrund des Moire-Effekts dann unterschiedlich hell oder dunkel erscheinen. Insbesondere kann die Verifikationsmaske auf dem gleichen zu schützenden Gegenstand vorgesehen sein wie das erfindungsgemäße Sicherheitselement.
  • Bei dem erfindungsgemäßen Sicherheitselement kann der Flächenbereich so ausgebildet sein, dass er für einen Betrachter als imaginäre Fläche wahrnehmbar ist. Darunter soll hier insbesondere verstanden werden, dass das erfindungsgemäße Sicherheitselement ein Reflexionsverhalten zeigt, das mit einer realen makroskopisch gewölbten Oberfläche nicht erzeugt werden kann. Insbesondere kann die imaginäre Fläche als Drehspiegel wahrnehmbar sein, der das sichtbare Spiegelbild z. B. um 90° dreht.
  • Eine solche imaginäre Fläche und insbesondere ein solcher Drehspiegel ist für einen Betrachter sehr leicht erfassbar und zu verifizieren.
  • Im Prinzip kann jede reale gewölbte reflektierende bzw. transmittierende Oberfläche mittels des Flächenbereichs des erfindungsgemäßen Sicherheitselementes in eine imaginäre Fläche abgewandelt werden. Dies kann z. B. dadurch realisiert werden, dass die Azimutwinkel aller Facetten verändert werden, beispielsweise um einen bestimmten Winkel verdreht werden. Damit lassen sich interessante Effekte erzielen. Dreht man beispielsweise alle Azimutwinkel um 45° nach rechts, so ist der Flächenbereich für einen Betrachter, wenn er direkt von oben beleuchtet wird, eine gewölbte Fläche, die scheinbar von rechts oben beleuchtet wird. Verdreht man alle Azimutwinkel um 90°, so bewegen sich die Lichtreflexe beim Kippen in eine Richtung, die senkrecht auf der Richtung steht, die ein Betrachter erwarten würde. Dieses unnatürliche Reflexionsverhalten macht es einem Betrachter dann beispielsweise auch nicht mehr möglich, zu entscheiden, ob die gewölbt wahrnehmbare Fläche nach vorne oder nach hinten (bezogen auf den Flächenbereich) vorliegt.
  • Ferner können durch ein aperiodisches Gitter oder die Einführung zufälliger Phasenparameter gezielt Beugungseffekte unterdrückt werden.
  • Auch ist es möglich, die Orientierungen der Facetten zu "verrauschen" (also geringfügig gegenüber der optimalen Form für die nachzustellende Fläche zu ändern), um beispielsweise matt erscheinende Oberflächen nachzustellen. Damit scheint der Flächenbereich nicht nur vor- und/ oder zurückspringend gegenüber seiner tatsächlichen Raumform, sondern ihm kann auch noch eine registergenaue positionierte Textur verliehen werden.
  • Des Weiteren kann der Träger neben dem Flächenbereich einen weiteren Flächenbereich aufweisen, der bevorzugt mit dem einen Flächenbereich verschachtelt und insbesondere als weiteres Sicherheitsmerkmal ausgebildet ist. Eine solche Ausbildung kann z. B. als Verschachtelung oder als Mehrkanalbild bezeichnet werden. Der weitere Flächenbereich kann in gleicher Weise wie der eine Flächenbereich in eine Vielzahl von Pixeln, die jeweils zumindest eine optisch wirksame Facette umfassen, aufgeteilt sein, wobei bevorzugt die Mehrzahl der Pixel jeweils mehrere der optisch wirksamen Facetten mit gleicher Orientierung pro Pixel aufweisen und die Facetten so orientiert sind, dass für einen Betrachter der weitere Flächenbereich als gegenüber seiner tatsächlichen Raumform gewölbte bzw. vor- und/ oder zurückspringende Fläche wahrnehmbar ist. Dadurch können z. B. zwei verschiedene dreidimensionale Darstellungen realisiert werden.
  • Mittels der Verschachtelung kann der eine Flächenbereich z. B. mit zusätzlicher registergenauer Farb- oder Graustufeninformation (Kombination beispielsweise mit Echtfarbenhologramm oder Halbtonbild z. B. auf Basis von sub-Wellenlängengittern) überlagert werden.
  • Des Weiteren kann in der Anordnung der Facetten eine Phaseninformation als weiteres Sicherheitsmerkmal versteckt bzw. hinterlegt werden.
  • Bei dem erfindungsgemäßen Sicherheitselement kann zumindest eine Facette an ihrer Oberfläche eine lichtstreuende Mikrostruktur aufweisen. Natürlich können auch mehrere oder auch alle Facetten eine solche lichtstreuende Mikrostruktur an der Facettenoberfläche aufweisen.
  • Beispielsweise kann die lichtstreuende Mikrostruktur als Beschichtung ausgebildet sein. Insbesondere ist es möglich, die Facetten einzubetten und als Einbettmaterial ein solches zu verwenden, mit dem die gewünschte lichtstreuende Mikrostruktur realisiert werden kann.
  • Mit einer solchen Ausbildung können mit dem erfindungsgemäßen Sicherheitselement streuende Objekte, wie z. B. eine Marmorfigur, ein Gipsmodell, etc. nachgestellt werden.
  • Natürlich können die Facetten auch in einem farbigen Material eingebettet werden, um zusätzlich noch einen Farbeffekt zu realisieren bzw. einen farbigen Gegenstand nachzustellen.
  • Bei dem erfindungsgemäßen Sicherheitselement können die Orientierungen mehrerer Facetten gegenüber den Orientierungen zur Erzeugung der vor- und/oder zurückspringenden Fläche so geändert sein, dass die vor- und/oder zurückspringende Fläche zwar noch wahrnehmbar ist, aber mit matt erscheinender Oberfläche. Somit kann die vor- und/oder zurückspringende Fläche auch mit einer matten Oberflächenerscheinung dargeboten werden.
  • Die Erfindung umfasst auch ein Verfahren zum Herstellen eines Sicherheitselementes für Sicherheitspapiere, Wertdokumente oder dergleichen, bei dem die Oberfläche eines Trägers in einem Flächenbereich so höhenmoduliert wird, dass der Flächenbereich in eine Vielzahl von jeweils zumindest eine optisch wirksame Facette aufweisende Pixeln aufgeteilt wird, wobei die Mehrzahl der Pixel jeweils mehrere optisch wirksame Facetten mit gleicher Orientierung pro Pixel aufweisen und die Facetten so orientiert sind, dass für einen Betrachter des hergestellten Sicherheitselementes der Flächenbereich als gegenüber seiner tatsächlichen Raumform vor- und/oder zurückspringende Fläche wahrnehmbar ist.
  • Das erfindungsgemäße Herstellungsverfahren kann insbesondere so weitergebildet werden, dass das erfindungsgemäße Sicherheitselement sowie die Weiterbildungen des erfindungsgemäßen Sicherheitselementes hergestellt werden können.
  • Das Herstellungsverfahren kann ferner den Schritt des Berechnens der Pixel ausgehend von einer nachzustellenden Oberfläche enthalten. Bei diesem Berechnungsschritt werden für alle Pixel die Facetten (deren Abmessungen sowie deren Orientierungen) berechnet. Anhand dieser Daten kann dann die Höhenmodulation des Flächenbereiches durchgeführt werden.
  • Bei dem erfindungsgemäßen Herstellungsverfahren kann ferner der Schritt des Beschichtens der Facetten vorgesehen sein. Die Facetten können mit einer reflektierenden oder reflexionserhöhenden Beschichtung versehen werden. Die reflektierende oder reflexionserhöhende Beschichtung kann eine vollständige Verspiegelung oder auch eine teiltransparente Verspiegelung sein.
  • Zur Erzeugung der höhenmodulierten Oberfläche des Trägers können bekannte Mikrostrukturierungsverfahren verwendet werden, wie z.B. Prägeverfahren. So können beispielsweise auch mit aus der Halbleiterfertigung bekannten Verfahren (Photolithographie, Elektronenstrahllithographie, Laserstrahllithographie, etc.) geeignete Strukturen in Resistmaterialien belichtet, eventuell veredelt, abgeformt und zur Fertigung von Prägewerkzeugen verwendet werden. Es können bekannte Verfahren zur Prägung in thermoplastischen Folien oder in mit strahlungshärtenden Lacken beschichtete Folien eingesetzt werden. Der Träger kann mehrere Schichten aufweisen, die sukzessive aufgebracht und gegebenenfalls strukturiert werden und/oder kann aus mehreren Teilen zusammengesetzt werden.
  • Das Sicherheitselement kann insbesondere als Sicherheitsfaden, Aufreißfaden, Sicherheitsband, Sicherheitsstreifen, Patch oder als Etikett zum Aufbringen auf ein Sicherheitspapier, Wertdokument oder dergleichen ausgebildet sein. Insbesondere kann das Sicherheitselement transparente oder zumindest transluzente Bereiche oder Ausnehmungen überspannen.
  • Unter dem Begriff Sicherheitspapier wird hier insbesondere die noch nicht umlauffähige Vorstufe zu einem Wertdokument verstanden, die neben dem erfindungsgemäßen Sicherheitselement beispielsweise auch weitere Echtheitsmerkmale (wie z.B. im Volumen vorgesehene Lumineszenzstoffe) aufweisen kann. Unter Wertdokumenten werden hier einerseits aus Sicherheitspapieren hergestellte Dokumente verstanden. Andererseits können Wertdokumente auch sonstige Dokumente und Gegenstände sein, die mit dem erfindungsgemäßen Sicherheitselement versehen werden können, damit die Wertdokumente nicht kopierbare Echtheitsmerkmale aufweisen, wodurch eine Echtheitsprüfung möglich ist und zugleich unerwünschtes Kopieren verhindert wird.
  • Es wird ferner bereitgestellt ein Prägewerkzeug mit einer Prägefläche, mit der die Form der Facetten eines erfindungsgemäßen Sicherheitselementes (einschließlich seiner Weiterbildungen) in den Träger bzw. in eine Schicht des Trägers geprägt werden kann.
  • Die Prägefläche weist bevorzugt die invertierte Form der zu prägenden Oberflächenkontur auf, wobei diese invertierte Form mit Vorteil durch die Ausbildung von entsprechenden Vertiefungen erzeugt ist.
  • Ferner kann das erfindungsgemäße Sicherheitselement als Master zur Belichtung von Volumenhologrammen oder zu rein dekorativen Zwecken benutzt werden.
  • Um das Volumenhologramm zu belichten, kann eine fotosensitive Schicht, in der das Volumenhologramm ausgebildet werden soll, unmittelbar oder unter Zwischenschaltung eines transparenten optischen Mediums in Kontakt mit der Vorderseite des Masters und somit mit der Vorderseite des Sicherheitselementes gebracht werden.
  • Dann werden die fotosensitive Schicht und der Master mit einem kohärenten Lichtstrahl belichtet, wodurch das Volumenhologramm in die fotosensitive Schicht geschrieben wird. Das Vorgehen kann gleich oder ähnlich zu dem in der DE 101006 016139 A1 beschriebenen Vorgehen zur Erzeugung eines Volumenhologramms sein. Das grundsätzliche Vorgehen ist beispielsweise in den Abschnitten Nr. 70 bis 79 auf Seiten 7 und 8 der genannten Druckschrift in Verbindung mit Figuren 1a, 1b, 2a und 2b beschrieben. Hiermit wird der gesamte Inhalt der DE 10 2006 016139 A1 in Bezug auf die Herstellung von Volumenhologrammen in die vorliegende Anmeldung aufgenommen.
  • Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in den angegebenen Kombinationen, sondern auch in anderen Kombinationen oder in Alleinstellung einsetzbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
  • Nachfolgend wird die Erfindung beispielshalber anhand der beigefügten Zeichnungen, die auch erfindungswesentliche Merkmale offenbaren, noch näher erläutert. Zur besseren Anschaulichkeit wird in den Figuren auf eine maßstabs- und proportionsgetreue Darstellung verzichtet. Es zeigen:
  • Figur 1
    eine Draufsicht einer Banknote mit einem erfindungsgemäßen Sicherheitselement 1;
    Figur 2
    eine vergrößerte Draufsicht eines Teils der Fläche 3 des Sicherheitselementes 1;
    Figur 3
    eine Querschnittsansicht entlang der Linie 6 in Figur 2;
    Figur 4
    eine schematische perspektivische Darstellung des Pixels 47 von Figur 2;
    Figur 5
    eine Schnittansicht einer weiteren Ausführungsform einiger Facetten des Sicherheitselementes 1;
    Figur 6
    eine Schnittansicht einer weiteren Ausführungsform einiger Facetten des Sicherheitselementes 1;
    Figur 7
    eine Schnittansicht zur Erläuterung der Berechnung der Facetten;
    Figur 8
    eine Draufsicht zur Erläuterung eines Quadratrasters zur Berechnung der Pixel;
    Figur 9
    eine Draufsicht zur Erläuterung eines 60°-Rasters zur Berechnung der Pixel;
    Figur 10
    eine Draufsicht auf drei Pixel 4 der Fläche 3;
    Figur 11
    eine Querschnittsansicht der Darstellung von Figur 10;
    Figur 12
    eine Draufsicht auf drei Pixel 4 der Fläche 3;
    Figur 13
    eine Querschnittsansicht der Draufsicht von Figur 12;
    Figur 14
    eine Draufsicht auf drei Pixel 4 der Fläche 3;
    Figur 15
    eine Schnittansicht der Draufsicht von Figur 14;
    Figur 16
    eine Draufsicht zur Erläuterung der Berechnung der Pixel gemäß einer weiteren Ausführungsform;
    Figur 17
    eine Schnittansicht der Anordnung der Facetten der Pixel auf einer zylindrischen Grundfläche;
    Figur 18
    eine Schnittansicht zur Erläuterung der Herstellung der Pixel für die Anwendung gemäß Figur 17;
    Figuren 19 - 21
    Darstellungen zur Erläuterung der Winkel bei reflektiven und transmissiven Facetten;
    Figur 22
    eine Schnittansicht einer nachzustellenden reflektiven Oberfläche;
    Figur 23
    eine Schnittansicht einer die Oberfläche gemäß Figur 22 nachstellenden Linse 22;
    Figur 24
    eine Schnittansicht der transmissiven Facetten für die Nachbildung der Linse gemäß Figur 23;
    Figur 25
    eine Schnittansicht einer nachzustellenden reflektiven Oberfläche;
    Figur 26
    eine Schnittansicht einer die Oberfläche gemäß Figur 25 nachstellenden Linse 22;
    Figur 27
    eine Schnittansicht der entsprechenden transmissiven Facetten zur Nachbildung der Linse gemäß Figur 24;
    Figur 28
    eine Schnittansicht einer Ausführungsform, bei der auf beiden Seiten des Trägers 8 transmissive Facetten ausgebildet sind;
    Figur 29
    eine Schnittansicht gemäß einer weiteren Ausführungsform, bei der auf beiden Seiten des Trägers 8 transmissive Facetten ausgebildet sind;
    Figur 30
    eine Darstellung zur Erläuterung der Winkel bei der Ausführungsform, bei der auf beiden Seiten des Trägers 8 transmissive Facetten ausgebildet sind;
    Figur 31
    eine schematische Schnittansicht eines Prägewerkzeuges zur Herstellung des erfindungsgemäßen Sicherheitselementes gemäß Figur 5.
    Fig. 32a -32 c
    Darstellungen zur Erläuterung eingebetteter Facetten, wobei die Facetten als reflektive Facetten ausgebildet sind;
    Fig. 33a + 33b
    Darstellungen zur Erläuterung eingebetteter Facetten, wobei die Facetten als transmissive Facetten ausgebildet sind;
    Figur 34
    eine Darstellung zur Erläuterung eingebetteter streuender Facetten, und
    Figur 35
    eine Darstellung zur Erläuterung eingebetteter matt glänzender Facetten.
  • Bei der in Figur 1 gezeigten Ausführungsform ist das erfindungsgemäße Sicherheitselement 1 so in einer Banknote 2 integriert, dass das Sicherheitselement 1 von der in Figur 1 gezeigten Vorderseite der Banknote 2 sichtbar ist.
  • Das Sicherheitselement 1 ist als reflektives Sicherheitselement 1 mit rechteckiger Außenkontur ausgebildet, wobei die durch die rechteckige Außenkontur begrenzte Fläche 3 in eine Vielzahl von reflektiven Pixeln 4 aufgeteilt ist, von denen ein geringer Teil vergrößert in Figur 2 als Draufsicht dargestellt sind.
  • Die Pixel 4 sind hier quadratisch und weisen eine Kantenlänge im Bereich von 10 bis mehrere 100 µm auf. Bevorzugt ist die Kantenlänge nicht größer als 300 µm. Insbesondere kann sie im Bereich zwischen 20 und 100 µm liegen.
  • Die Kantenlänge der Pixel 4 ist insbesondere so gewählt, dass die Fläche jedes Pixels 4 um zumindest eine Größenordnung, bevorzugt um zwei Größenordnungen kleiner ist als die Fläche 3.
  • Die Mehrzahl der Pixel 4 weisen jeweils mehrere reflektive Facetten 5 gleicher Orientierung auf, wobei die Facetten 5 die optisch wirksamen Flächen eines reflektiven Sägezahngitters sind.
  • In Figur 3 ist die Schnittansicht entlang der Linie 6 für sechs benachbarte Pixel 41, 42, 43, 44, 45 und 46 dargestellt, wobei die Darstellung in Figur 3 sowie auch in den anderen Figuren teilweise zur besseren Darstellbarkeit nicht maßstabsgetreu ist. Ferner ist zur Vereinfachung der Darstellung in den Figuren 1 bis 3 sowie auch in Figur 4 die reflektierende Beschichtung auf den Facetten 5 nicht eingezeichnet.
  • Das Sägezahngitter der Pixel 4 ist hier in einer Oberfläche 7 eines Trägers 8 ausgebildet, wobei die so strukturierte Oberfläche 7 bevorzugt mit einer reflektierenden Beschichtung (in Figur 3 nicht gezeigt) beschichtet ist. Bei dem Träger 8 kann es sich beispielsweise um einen strahlungshärtenden Kunststoff (UV-Harz) handeln, der auf einer nicht gezeigten Trägerfolie (beispielsweise eine PET-Folie) aufgebracht ist.
  • Wie Figur 3 zu entnehmen ist, weisen die Pixel 41, 42, 44, 45 und 46 jeweils drei Facetten 5 auf, deren Orientierung pro Pixel 41, 42, 44, 45 und 46 jeweils gleich ist. Die Sägezahngitter und somit auch die Facetten 5 dieser Pixel sind hier bis auf ihre unterschiedliche Neigung σ1, σ4 gleich (zur Vereinfachung der Darstellung sind nur die Neigungswinkel σ1 und σ4 von jeweils einer Facette 5 der Pixel 41 und 44 eingezeichnet). Das Pixel 43 weist hier nur eine einzige Facette 5 auf.
  • In Draufsicht gesehen (Figur 2) sind die Facetten 5 der Pixel 41- 46 streifenförmige Spiegelflächen, die zueinander parallel ausgerichtet sind. Die Orientierung der Facetten 5 ist dabei so gewählt, dass für einen Betrachter die Fläche 3 als gegenüber ihrer tatsächlichen (makroskopischen) Raumform, die hier die Form einer ebenen Fläche ist, vor- und/oder zurückspringende Fläche wahrnehmbar ist. Hier nimmt ein Betrachter die in Figur 3 im Schnitt dargestellte Oberfläche 9 wahr, wenn er auf die Facetten 5 blickt. Dies wird durch Wahl der Orientierungen der Facetten 5 erreicht, die das einfallende Licht L1 so reflektieren, als ob es auf eine Fläche gemäß der durch Linie 9 in Figur 3 angedeuteten Raumform fällt, wie durch das einfallende Licht L2 schematisch dargestellt ist. Die durch die Facetten 5 eines Pixels 4 erzeugte Reflexion entspricht der mittleren Reflexion des durch das entsprechende Pixel 4 umgesetzten bzw. nachgestellten Bereiches der Oberfläche 9.
  • Bei dem erfindungsgemäßen Sicherheitselement 1 wird somit ein dreidimensional erscheinendes Höhenprofil durch eine hier gerasterte Anordnung reflektiver Sägezahnstrukturen (Facetten 5 pro Pixel 4), die das Reflexionsverhalten des Höhenprofils imitieren, nachgestellt. Mit der Fläche 3 können somit beliebige dreidimensional wahrnehmbare Motive erzeugt werden, wie z.B. eine Person, Teile einer Person, eine Zahl oder sonstige Gegenstände.
  • Neben der Steigung σ der einzelnen Facetten 5 ist auch der Azimut-Winkel α der nachgestellten Oberfläche anzupassen. Für die Pixel 41- 46 beträgt der Azimut-Winkel α relativ zur Richtung gemäß Pfeil P1 (Figur 2) 0°. Für das Pixel 47 beträgt der Azimut-Winkel α beispielsweise ca. 170°. Das Sägezahngitter des Pixels 47 ist in Figur 4 schematisch in dreidimensionaler Darstellung gezeigt.
  • Zur Herstellung des Sicherheitselementes 1 können die reflektiven Sägezahnstrukturen beispielsweise mittels Graustufenlithographie in einen Fotolack geschrieben, anschließend entwickelt, galvanisch abgeformt, in UV-Lack (Träger) geprägt und verspiegelt werden. Die Verspiegelung kann beispielsweise mittels einer aufgebrachten Metallschicht (beispielsweise aufgedampft) verwirklicht werden. Typischerweise wird eine Aluminiumschicht mit einer Stärke von z.B. 50 nm aufgebracht. Natürlich können auch andere Metalle, wie z.B. Silber, Kupfer, Chrom, Eisen, etc. oder Legierungen davon verwendet werden. Auch können alternativ zu Metallen hochbrechende Beschichtungen aufgebracht werden, beispielsweise ZnS oder TiO2. Die Bedampfung kann vollflächig sein. Es ist jedoch auch möglich, eine nur bereichsweise bzw. rasterförmige Beschichtung durchzuführen, so dass das Sicherheitselement 1 teilweise transparent bzw. transluzent ist.
  • Die Periode A der Facetten 5 ist im einfachsten Fall für alle Pixel 4 gleich. Es ist jedoch auch möglich, die Periode A der Facetten 5 pro Pixel 4 zu variieren. So weist z.B. das Pixel 47 eine kleinere Periode A auf als die Pixel 41- 46 (Figur 2). Insbesondere kann die Periode A der Facetten 5 für jedes Pixel zufällig gewählt werden. Durch eine Variation der Wahl der Periode A der Sägezahngitter für die Facetten 5 kann eine eventuell vorhandene Sichtbarkeit eines auf die Sägezahngitter zurückgehenden Beugungsbildes minimiert werden.
  • Innerhalb eines Pixels 4 ist eine feste Periode A vorgesehen. Grundsätzlich ist es jedoch auch möglich, die Periode Λ innerhalb eines Pixels 4 zu variieren, so dass aperiodische Sägezahngitter pro Pixel 4 vorliegen.
  • Die Periode A der Facetten 5 liegt zur Vermeidung unerwünschter Beugungseffekte einerseits und zur Minimierung der nötigen Foliendicke (Dicke des Trägers 8) andererseits bevorzugt zwischen 3 µm und 300 µm. Insbesondere liegt der Abstand zwischen 5 µm und 100 µm, wobei besonders bevorzugt ein Abstand zwischen 10 µm und 30 µm gewählt ist.
  • Bei dem hier beschriebenen Ausführungsbeispiel sind die Pixel 4 quadratisch. Es ist jedoch auch möglich, die Pixel 4 rechteckförmig auszubilden. Auch können andere Pixelformen benutzt werden, wie z.B. eine parallelogrammförmige oder hexagonale Pixelform. Die Pixel 4 weisen dabei bevorzugt Abmessungen auf, die einerseits größer sind als der Abstand der Facetten 5 und andererseits so klein sind, dass die einzelnen Pixel 4 dem unbewaffneten Auge nicht störend auffallen. Der sich aus diesen Anforderungen ergebende Größenbereich liegt zwischen etwa 10 und einigen 100 µm.
  • Steigungen σ und Azimut-Winkel α der Facetten 5 innerhalb eines Pixels 4 ergeben sich dann aus der Steigung des nachgestellten Höhenprofils 9.
  • Neben der Steigung σ und dem Azimut-Winkel α kann weiterhin für jedes Pixel 4 optional ein Phasenparameter pi eingeführt werden. Das Oberflächenrelief des Sicherheitselementes 1 kann dann im i-ten Pixel 4i durch folgende Höhenfunktion hi (x,y) beschrieben werden: h i x y = A i x sinα i + y cosα i + p i mod Λ i
    Figure imgb0001
  • Dabei sind Ai die Amplitude des Sägezahngitters, αi der Azimut-Winkel und Ai die Gitterperiode. "mod" steht für die Modulo-Operation und liefert den positiven Rest bei Division. Der Amplitudenfaktor Ai ergibt sich aus der Steigung des nachgestellten Oberflächenprofils 9.
  • Durch Veränderung des Phasenparameters pi lassen sich die Sägezahngitter bzw. die Facetten 5 unterschiedlicher Pixel 4 relativ zueinander verschieben. Für die Parameter pi können zufällige Werte oder sonstige pro Pixel 4 variierende Werte benutzt werden. Dadurch kann ein eventuell noch sichtbares Beugungsmuster des Sägezahngitters (der Facetten 5 pro Pixel 4) oder des Rastergitters der Pixel 4 beseitigt werden, was ansonsten unerwünschte Farbeffekte verursachen kann. Ferner gibt es aufgrund der variierten Phasenparameter pi auch keine ausgezeichneten Richtungen, in denen die Sägezahngitter benachbarter Pixel 4 besonders gut oder besonders schlecht aneinander passen, was einer sichtbaren Anisotropie vorbeugt.
  • Bei dem erfindungsgemäßen Sicherheitselement 1 können der Azimut-Winkel α sowie die Steigungen σ der Facetten 5 pro Pixel 4 so gewählt werden, dass sie nicht möglichst gut der nachgestellten Oberfläche 9 entsprechen, sondern davon etwas abweichen. Dazu kann für jedes Pixel 4 auf den optimalen Wert zur Nachstellung der Oberfläche 9 entsprechend einer geeigneten Verteilung eine (bevorzugt zufällige) Komponente dazu addiert werden. Je nach Größe des Pixels 4 und Stärke des Rauschens (Standardabweichung der Verteilung) können so unterschiedliche interessante Effekte erzielt werden. Bei sehr feinen Pixeln 4 (um 20 µm) erscheint die sonst glänzende Oberfläche mit zunehmendem Rauschen zunehmend matt. Bei größeren Pixeln (um 50 µm) erhält man ein mit einer Metallic-Lackierung vergleichbares Aussehen. Bei sehr großen Pixeln (mehrere 100 µm) werden die einzelnen Pixel 4 vom unbewaffneten Auge aufgelöst. Sie erscheinen dann wie grobe aber glatte Abschnitte, die unter verschiedenen Betrachtungswinkeln hell aufleuchten.
  • Die Stärke des Rauschens kann für verschiedene Pixel 4 unterschiedlich gewählt werden, wodurch die gewölbt erscheinende Oberfläche an verschiedenen Stellen unterschiedlich glatt oder matt wirken kann. So kann beispielsweise der Effekt erzeugt werden, dass der Betrachter die Fläche 3 als glatte vor- und/oder zurückspringende Fläche wahrnimmt, die eine matte Beschriftung oder Textur aufweist.
  • Ferner ist es möglich, auf den Facetten 5 eine farbkippende Beschichtung, insbesondere ein Dünnfilmsystem, aufzubringen. Das Dünnfilmsystem kann beispielsweise eine erste, eine zweite und eine dritte dielektrische Schicht aufweisen, die aufeinander ausgebildet sind, wobei die erste und dritte Schicht eine höhere Brechzahl aufweisen als die zweite Schicht. Aufgrund der unterschiedlichen Neigungen der Facetten 5 sind für einen Betrachter unterschiedliche Farben wahrnehmbar, ohne das Sicherheitselement 1 drehen zu müssen. Die wahrnehmbare Fläche weist somit ein gewisses Farbspektrum auf.
  • Das Sicherheitselement 1 kann insbesondere als Mehrkanalbild ausgebildet sein, das verschiedene, ineinander verschachtelte Teilflächen aufweist, wobei zumindest eine der Teilflächen in erfindungsgemäßer Art und Weise ausgebildet ist, so dass diese Teilfläche für den Betrachter als räumliche Teilfläche wahrnehmbar ist. Natürlich können auch die anderen Teilflächen in der beschriebenen Art und Weise mittels Pixel 4 mit zumindest einer Facette 5 ausgebildet sein. Auch die anderen Teilflächen können, müssen aber nicht, als gegenüber der tatsächlichen Raumform vor- und/oder zurückspringende Fläche wahrnehmbar sein. Die Verschachtelung kann beispielsweise schachbrettartig oder auch streifenartig ausgebildet sein. Durch die Verschachtelung mehrerer Teilflächen lassen sich interessante Effekte erzielen. Wenn z.B. die Nachstellung einer Kugeloberfläche mit der Darstellung einer Zahl verschachtelt wird, kann dies so durchgeführt werden, dass für den Betrachter der Eindruck entsteht, die Zahl befände sich im Inneren einer Glaskugel mit halbspiegelnder Oberfläche.
  • Neben der bereits beschriebenen Verwendung von farbkippenden Beschichtungen ist es ferner möglich, das erfindungsgemäße Sicherheitselement 1 zusätzlich mit Farbinformationen zu versehen. So kann z.B. Farbe auf die Facetten 5 gedruckt werden (entweder transparent oder dünn) oder unterhalb einer zumindest teilweise transparenten bzw. transluzenten Sägezahnstruktur vorgesehen werden. Beispielsweise kann dadurch eine Einfärbung eines mittels der Pixel 4 dargestellten Motivs durchgeführt werden. Wenn z.B. ein Portrait nachgestellt wird, kann die Farbschicht die Gesichtsfarbe liefern.
  • Auch eine Kombination mit einem Echtfarbenhologramm oder Kinegramm, insbesondere die Verschachtelung mit einem Echtfarbenhologramm, das eine farbige Darstellung der mit den Pixeln 4 nachgestellten Oberfläche 9 zeigt, ist möglich. Damit erscheint das an sich achromatisch dreidimensionale Bild eines Objektes unter bestimmten Winkeln farbig.
  • Ferner ist eine Kombination mit einem Subwellenlängengitter möglich. Insbesondere die verschachtelte Darstellung des gleichen Motivs durch beide Techniken ist vorteilhaft, bei der die dreidimensionale Wirkung der Sägezahnstrukturen mit der Farbinformation der Subwellenlängengitter kombiniert wird.
  • Bei der mit den Pixeln 4 nachgestellten Oberfläche 9 kann es sich insbesondere um eine sogenannte imaginäre Fläche handeln. Darunter wird hier die Ausbildung eines Reflexions- bzw. Transmissionsverhaltens verstanden, das mit einer realen gewölbten reflektierenden bzw. transmittierenden Oberfläche nicht erzeugt werden kann.
  • Zur weiteren Erläuterung des Begriffs der imaginären Fläche wird nachfolgend ein mathematisches Kriterium zur Abgrenzung von realen Flächen eingeführt und am Beispiel eines Drehspiegels erläutert.
  • Bei der Nachstellung einer realen gewölbten Oberfläche ist diese durch eine Höhenfunktion h(x,y) beschreibbar. Dabei kann man hier davon ausgehen, dass die Funktion h(x,y) differenzierbar ist (nicht differenzierbare Funktionen ließen sich durch differenzierbare Funktionen approximieren, die beim Beobachter letztendlich den gleichen Effekt hervorrufen würden). Integriert man nun den Gradienten von h(x,y) entlang einer beliebig geschlossenen Kurve C so verschwindet das Integral: C h x y d S = 0
    Figure imgb0002
  • Bildlich gesprochen bedeutet dies, dass man entlang eines geschlossenen Weges die gleichen Höhenunterschiede hoch wie runter läuft und am Ende wieder auf der gleichen Höhe ankommt. Die Summe der auf diesem Weg überwundenen Höhendifferenzen muss also Null sein.
  • Im erfindungsgemäßen Sicherheitselement 1 entsprechen Steigung und Azimut der Facetten 5 dem Gradienten der Höhenfunktion. Dabei lassen sich nun Fälle konstruieren, bei denen Steigung und Azimut der Facetten 5 zwar praktisch kontinuierlich ineinander übergehen, sich aber keine Höhenfunktion finden lässt, mit der obiges Integral verschwindet. In diesem Fall soll von der Nachstellung einer imaginären Fläche die Rede sein.
  • Eine spezielle Ausführung ist z.B. ein Drehspiegel. Dazu betrachtet man zunächst die Nachstellung eines realen konvexen Spiegels mit parabolischem Profil. Die Höhenfunktion ist gegeben durch h x y = c x 2 + y 2
    Figure imgb0003
  • Wobei c > 0 eine Konstante ist und die Krümmung des Spiegels bestimmt. In einem solchen Spiegel kann der Betrachter ein aufrechtstehendes verkleinertes Spiegelbild von sich sehen. Die Parameter der Sägezahnstrukturen sind dann gegeben durch α x y = arctan x y
    Figure imgb0004
    und A x y = 2 c x 2 + y 2
    Figure imgb0005
  • Addiert man auf den Azimut-Winkel α nun einen konstanten Winkel δ, so wird das Spiegelbild um eben diesen Winkel gedreht. Sofern es sich bei δ nicht um ganzzahlige Vielfache von 180° handelt, entsteht so eine imaginäre Oberfläche. Wählt man beispielsweise δ = 90°, so wird das Spiegelbild um 90° gedreht und man erhält ein Spiegelbild, das mit einer glatten gewölbten realen Oberfläche nicht zu erzielen ist. Setzt man den Gradienten von h gleich mit der Steigung der Sägezahnstrukturen, so kann man nun geschlossene Kurven finden, bei denen obiges Integral nicht verschwindet. Beispielsweise ergibt eine Kurve K entlang eines Kreises um den Mittelpunkt mit Radius R > 0 K h x y d S = K 2 c ds = 4 π c R 0
    Figure imgb0006
  • Bildlich gesprochen stellt dieser Drehspiegel also eine Oberfläche nach, bei der man entlang eines Kreises kontinuierlich bergauf läuft, am Ende aber wieder auf der gleichen Höhe ankommt, auf der man gestartet ist. Eine solche reale Oberfläche kann es offensichtlich nicht geben.
  • Bei den bisher beschriebenen Sicherheitselementen 1 wurde davon ausgegangen, dass die Fläche als reflektive Fläche ausgebildet ist. Die gleichen Effekte der dreidimensionalen Wirkung lassen sich im Wesentlichen jedoch auch in Transmission erzielen, wenn die Sägezahnstrukturen bzw. die Pixel 4 mit den Facetten 5 (einschließlich des Trägers 8) zumindest teilweise transparent sind. Bevorzugt liegen die Sägezahnstrukturen zwischen zwei Schichten mit unterschiedlichen Brechungsindizes. In diesem Falle erscheint das Sicherheitselement 1 dem Betrachter dann wie ein Glaskörper mit gewölbter Oberfläche.
  • Die beschriebenen vorteilhaften Ausgestaltungen lassen sich auch für die transmissive Ausbildung des Sicherheitselementes 1 anwenden. So kann beispielsweise der Drehspiegel einer imaginären Fläche in Durchsicht das Bild drehen.
  • Die transmissive Ausbildung des Sicherheitselements wird nachfolgend noch detaillierter in Verbindung mit den Figuren 19 bis 29 beschrieben.
  • Die Fälschungssicherheit des erfindungsgemäßen Sicherheitselementes 1 kann durch weitere, nur mit Hilfsmittel sichtbare Merkmale, die auch als versteckte Merkmale bezeichnet werden können, erhöht werden.
  • So können z.B. in den Phasenparametern der einzelnen Pixel 4 zusätzliche Informationen kodiert werden. Insbesondere kann eine Verifikationsmaske mit Gitterstrukturen hergestellt werden, die die gleichen Perioden und Azimut-Winkel aufweisen wie das erfindungsgemäße Sicherheitselement 1. In einem Teilbereich der Fläche können die Gitter der Verifikationsmaske den gleichen Phasenparameter aufweisen wie das zu verifizierende Sicherheitselement, in anderen Bereichen eine bestimmte Phasendifferenz. Diese verschiedenen Bereiche werden durch Moire-Effekte dann unterschiedlich hell oder dunkel erscheinen, wenn das Sicherheitselement 1 und die Verifikationsmaske übereinander gelegt werden.
  • Insbesondere kann die Verifikationsmaske auch in der Banknote 2 oder dem sonstigen, mit dem Sicherheitselement 1 versehenen Element vorgesehen sein.
  • Die Pixel 4 können neben den beschriebenen Umrissformen auch andere Umrisse haben. Mit einer Lupe bzw. einem Mikroskop können diese Umrisse dann erkannt werden.
  • Ferner kann in einem kleinen Anteil der Pixel 4 statt der entsprechenden Sägezähne bzw. Facetten 5 auch eine beliebige andere Struktur eingeprägt oder eingeschrieben werden, ohne dass dies dem unbewaffneten Auge auffällt. In diesem Fall sind diese Pixel nicht Bestandteil der Fläche 3, so dass eine Verschachtelung der Fläche 3 mit den anders ausgebildeten Pixeln vorliegt. Diese anderen ausgebildeten Pixeln können beispielsweise jedes 100. Pixel im Vergleich zu den Pixeln 4 der Fläche 3 sein. Man kann in diese Pixel eine Mikroschrift oder ein Logo einbringen, beispielsweise 10 µm große Buchstaben in einem 40 µm großen Pixel.
  • Bei den bisher beschriebenen Ausführungsbeispielen sind die Facetten in der Oberfläche 7 des Trägers 8 so gebildet, dass die tiefsten Punkte bzw. die minimalen Höhenwerte aller Facetten 5 (Figur 3) in einer Ebene liegen. Es ist jedoch auch möglich, die Facetten 5 so zu bilden, dass die Mittelwerte der Höhen aller Facetten 5 auf gleicher Höhe liegen, wie in Figur 5 schematisch dargestellt ist. Ferner ist es möglich, die Facetten 5 so auszubilden, dass die Spitzenwerte bzw. die maximalen Höhenwerte aller Facetten 5 der Pixel 4 auf gleicher Höhe liegen, wie in Figur 6 schematisch angedeutet ist.
  • In Figur 7 ist eine Schnittdarstellung in gleicher Weise wie in Figur 3 gezeigt, wobei jedoch für das Pixel 44 eine Spiegelfläche 10 eingezeichnet ist, die im Bereich des Pixels 44 die Oberfläche 9 nachstellt. Bei einer Pixelgröße von beispielsweise 20 µm bis 100 µm würde ein solches Spiegelfläche 10 dazu führen, dass unerwünscht große Höhen d vorliegen würden. Bei einer Spiegelneigung von 45° würde die entsprechende Spiegelfläche 10 um 20 µm bis 100 µm aus der x-y-Ebene herausragen. Es sind jedoch bevorzugt maximale Höhen d von 10 µm gewünscht. Daher wird die Spiegelfläche 10 noch einer Modulo d Operation unterworfen, so dass die in Figur 7 gezeichneten Facetten 5 gebildet werden, wobei die Normalenvektoren n der Facetten 5 dem Normalenvektor n der Spiegelfläche 10 entsprechen.
  • Die nachzustellende Oberfläche 9 kann beispielsweise als Menge von x,y-Werten mit jeweils zugeordneter Höhe h in z-Richtung (3D-Bitmap) vorliegen. Über ein solches 3D-Bitmap kann in der x-y-Ebene ein definiertes Quadrat- oder 60°-Raster (Figuren 8,9) aufgebaut werden. Die Rasterpunkte verbindet man so, dass sich eine Flächendeckung in der x-y-Ebene mit Dreieckskacheln ergibt, wie dies in Figuren 8 und 9 schematisch dargestellt ist.
  • An den drei Eckpunkten einer jeden Kachel entnimmt man die h-Werte aus dem 3D-Bitmap. Den kleinsten dieser h-Werte zieht man von den h-Werten der drei Eckpunkte der Kacheln ab. Mit diesen neuen h-Werten an den Eckpunkten wird eine Sägezahnfläche aus schrägstehenden Dreiecken (dreieckige Ebenenstücke) aufgebaut. Die zu weit aus der x-y-Ebene herausragenden Ebenenstücke werden durch die Facetten 5 ersetzt. Damit hat man die Flächenbeschreibung für die Facetten 5 und kann das erfindungsgemäße Sicherheitselement 1 herstellen.
  • Die nachzustellende Oberfläche 9 kann durch eine mathematische Formel f (x,y,z) = h (x,y) - z = 0 gegeben sein. Die Facetten 5 bzw. deren Orientierungen erhält man aus Tangentialebenen der nachzustellenden Oberfläche 9. Diese lassen sich aus der mathematischen Ableitung der Funktion f (x,y,z) ermitteln. Die in einem Punkt x0, y0 angebrachte Facette 5 wird beschrieben durch den Normalenvektor: n = n x n y n z = f x x 0 y 0 z 0 f y x 0 y 0 z 0 f z x 0 y 0 z 0 / f x x 0 y 0 z 0 2 + f y x 0 y 0 z 0 2 + f z x 0 y 0 z 0 2
    Figure imgb0007
  • Der Azimut-Winkel α der Tangentialebene ist arctan (ny/nx) und der Steigungswinkel σ der Tangentialebene ist arccos nz. Die Fläche f (x,y,z) = kann beliebig gekrümmt sein und (x0,y0,z0) ist der Punkt auf der Fläche, für den die Berechnung gerade durchgeführt wird. Die Berechung wird nacheinander für alle für die Sägezahnstruktur ausgewählten Punkte durchgeführt.
  • Aus den schrägliegenden Ebenen mit den so berechneten Normalenvektoren, die an den ausgewählten Punkten in der x-y-Ebene anzubringen sind, werden jeweils Bereiche ausgeschnitten, so dass bei benachbarten x-y-Punkten Überlappungen der zugehörigen Elemente vermieden werden. Die schrägliegenden Ebenenstücke, die zu weit aus der x-y-Ebene herausragen, werden in kleinere Facetten 5 unterteilt, wie in Verbindung mit Figur 7 beschrieben wurde.
  • Die nachzustellende Oberfläche kann durch Dreiecks-Flächenstücke beschrieben sein, wobei die ebenen Dreiecksstücke zwischen ausgewählten Punkten aufgespannt sind, die innerhalb und am Rand der nachzustellenden Oberfläche liegen. Die Dreiecke können als Ebenenstücke durch folgende mathematische Funktion f (x,y,z) beschrieben werden f x y z = x x 1 y y 1 z z 1 x 2 x 1 y 2 y 1 z 2 z 1 x 3 x 1 y 3 y 1 z 3 z 1 = 0 ,
    Figure imgb0008
    dabei sind xi, yi, zi die Dreiecks-Eckpunkte.
  • In diesem Fall kann die Fläche in die x-y-Ebene projiziert und die einzelnen Dreiecke gemäß ihrem Normalenvektor schräg gestellt werden. Die schrägliegenden Ebenenstücke bilden die Facetten und werden, falls sie zu weit aus der x-y-Ebene herausragen, wie in Verbindung mit Figur 7 beschrieben wurde, in kleinere Facetten 5 unterteilt.
  • Wenn die nachzustellende Oberfläche durch Dreiecks-Flächenstücke gegeben ist, kann man auch folgendermaßen vorgehen. Man unterwirft die gesamte nachzustellende Oberfläche auf einmal (bzw. Teilstücke jeder Oberfläche) einer Fresnel-Konstruktion Modulo d (bzw. Modulo di). Da die nachzustellende Oberfläche aus Ebenenstücken besteht, entstehen an der x-y-Ebene automatisch Dreiecke, die mit den Facetten 5 gefüllt sind.
  • Die Konstruktion der Facetten kann auch wie folgt durchgeführt werden. In der x-y-Ebene, über der die nachzustellende Oberfläche 9 definiert ist, wählt man geeignete x-y-Punkte und verbindet sie so, dass sich eine Flächendeckung der x-y-Ebene mit Polygonkacheln ergibt. Über einem beliebig gewählten Punkt (z.B. einem Eckpunkt) in einer jeden Kachel bestimmt man den Normalenvektor aus der darüber liegenden, nachzustellenden Oberfläche 9. In jeder Kachel wird nun ein dem Normalenvektor entsprechender Fresnel-Spiegel (Pixel 4 mit mehreren Facetten 5) angebracht.
  • Vorzugsweise werden quadratische Kacheln bzw. Pixel 4 angewandt. Es sind aber beliebige (unregelmäßige) Kachelungen prinzipiell möglich. Die Kacheln können aneinander anschließen (was wegen der größeren Effizienz bevorzugt wird) oder es können Fugen zwischen den Kacheln sein (beispielsweise bei kreisförmigen Kacheln).
  • Der Steigungswinkel σ der Ebene lässt sich wie folgt darstellen σ = arccos n z = arccos / f x 2 + f y 2 + f z 2 f z
    Figure imgb0009
  • Der Azimut-Winkel α der Steigung lässt sich wie folgt darstellen α = arctan n y / n x = arctan / f x f y ,
    Figure imgb0010
    wobei a = 0° bis 180° für ny > 0 und α =180° bis 360° für ny < 0.
  • Das erfindungsgemäße Bestimmen der Facetten 5 einschließlich ihrer Orientierungen kann auf zwei grundsätzlich verschiedene Arten durchgeführt werden. So kann die x-y-Ebene in Pixel 4 (bzw. Kacheln) unterteilt werden und für jedes Pixel 4 wird der Normalenvektor für die reflektierende ebene Fläche bestimmt, die dann in mehrere Facetten 5 gleicher Orientierung umgesetzt wird. Alternativ ist es möglich, die nachzustellende Oberfläche 9 durch Ebenenstücke anzunähern, falls sie nicht schon durch Ebenenstücke gegeben ist, und dann die Ebenenstücke in die einzelnen Facetten 5 zu unterteilen.
  • Bei der ersten Vorgehensweise wird somit zunächst eine Kachelung in der x-y-Ebene bestimmt. Die Kachelung kann völlig beliebig angelegt werden. Es ist jedoch auch möglich, dass die Kachelung aus lauter gleichen Quadraten mit der Seitenlänge a besteht, wobei a bevorzugt im Bereich von 10 bis 100 µm liegt. Die Kachelung kann jedoch auch aus unterschiedlichen geformten Kacheln bestehen, die genau aneinander passen oder bei denen Fugen auftreten. Die Kacheln können unterschiedlich geformt sein und eine Codierung oder eine verborgene Information enthalten. Insbesondere können die Kacheln an die Projektion der nachzustellenden Oberfläche in die x-y-Ebene angepasst sein.
  • Man definiert dann in beliebiger Weise einen Bezugspunkt in jeder Kachel. Die Normalenvektoren in den Punkten der nachzustellenden Oberfläche, die senkrecht über den Bezugspunkten in den Kacheln liegen, ordnet man den entsprechenden Kacheln zu. Falls in der über dem Bezugspunkt liegenden nachzustellenden Oberfläche mehrere Normalenvektoren dem Bezugspunkt zugeordnet sind (z.B. an einer Kante oder Ecke, wo mehrere Flächenstücke aneinander stoßen), kann man aus diesen Normalenvektoren einen gemittelten Normalenvektor bestimmen.
  • Man definiert eine Unterteilung in jeder Kachel in der x-y-Ebene. Diese Unterteilung kann beliebig sein. Aus dem Normalenvektor wird dann der Azimut-Winkel α und der Steigungswinkel σ berechnet. Optional kann man noch ein Offset-System definieren, das jeder Facette 5 einen Offset (Höhenwert) zuweist. Der Offset kann in jedem Bereich der Unterteilung beliebig sein. Es ist jedoch auch möglich, den Offset so anzulegen, dass die Mittelwerte der Facetten 5 alle auf gleicher Höhe liegen oder dass die Maximalwerte aller Facetten 5 auf gleicher Höhe liegen.
  • In den Unterteilungen in den zugeordneten Kacheln werden dann als Facetten 5 schräggestellte Ebenenstücke mit dem der Kachel zugeordneten Normalenvektor unter Berücksichtigung des Offset-Systems rechnerisch angebracht. Die so berechnete Oberflächenform wird dann in der Oberfläche 7 des Trägers 8 ausgebildet.
  • Man kann jedoch nicht nur eine beliebige Unterteilung in jeder Kachel in der x-y-Ebene definieren. So kann man beispielsweise auch Gitterlinien definieren, die ungefähr oder genau senkrecht zur Projektion des Normalenvektors in die x-y-Ebene liegen. Die Gitterlinien können beliebige Abstände zueinander haben. Es ist jedoch auch möglich, dass die Abstände der Gitterlinien einem bestimmten Schema folgen. So können beispielsweise Gitterlinien nicht genau parallel zueinander vorgesehen werden, um beispielsweise Interferenz zu vermeiden. Es ist jedoch auch möglich, dass die Gitterlinien parallel zueinander sind, aber unterschiedliche Abstände aufweisen. Die unterschiedlichen Abstände der Gitterlinien können eine Codierung beinhalten. Ferner ist es möglich, dass die Gitterlinien aller Facetten 5 in jedem Pixel 4 gleiche Abstände aufweisen. Der Abstand kann im Bereich von 1 µm bis 20 µm liegen.
  • Die Gitterlinien können auch innerhalb jeder Kachel bzw. innerhalb jedes Pixels 4 gleiche Abstände aufweisen, aber pro Pixel 4 variieren. Der Gitterlinienabstand Λi und der Steigungswinkel σi der zugehörigen Facette 5 bestimmen die Strukturdicke di = Λi · tan σi, wobei di bevorzugt 1 bis 10 µm beträgt.
  • Die Facetten 5 können auch alle die gleiche Höhe d besitzen. Dann ist die Gitterkonstante bereichsweise durch den Steigungswinkel σi der zugehörigen Facette i bestimmt: Ai = d/tan σi.
  • Aus dem Normalenvektor wird dann wiederum der Azimut-Winkel α und der Steigungswinkel σ bestimmt. Das durch Gitterlinien, Azimut-Winkel und Steigungswinkel definierte Sägezahngitter wird in der zugehörigen Kachel unter Berücksichtigung des Offset-Systems rechnerisch angebracht.
  • Man kann auch von einer nachzustellenden Oberfläche 9 ausgehen, welche aus Ebenenstücken i aufgebaut ist (bzw. welche so bearbeitet wird, dass sie sich aus Ebenenstücken i aufbaut), wobei die Strukturtiefe der nachzustellenden Oberfläche und die Abmessungen der Ebenenstücke um einiges größer sind als di.
  • Beispielsweise sind die Ebenenstücke i jeweils gegeben durch drei Eckepunkte x1i, y1i, z1i; x2i, y2i, z2i; x3i, y3i, z3i.
  • Das Relief aus Ebenenstücken wird dargestellt durch z = f (x,y), wobei x x 1 , i y 2 , i y 1 , i z 2 , i z 1 , i y 3 , i y 1 , i z 3 , i z 1 , i y y 1 , i x 2 , i x 1 , i z 2 , i z 1 , i x 3 , i x 1 , i z 3 , i z 1 , i +
    Figure imgb0011
    z z 1 , i x 2 , i x 1 , i y 2 , i y 1 , i x 3 , i x 1 , i y 3 , i y 1 , i = 0
    Figure imgb0012
  • Daraus ergibt sich aufgelöst nach z z = z 1 , i + y y 1 , i | x 2 , i x 1 , i z 2 , i z 1 , i x 3 , i x 1 , i z 3 , i z 1 , i | x x 1 , i y 2 , i y 1 , i z 2 , i z 1 , i y 3 , i y 1 , i z 3 , i z 1 , i x 2 , i x 1 , i y 2 , i y 1 , i x 3 , i x 1 , i y 3 , i y 1 , i
    Figure imgb0013
  • Die gesuchte Sägezahnfläche, deren Strukturdicke in den Bereichen i kleiner als di ist, ergibt sich aus z Modulo di, wobei z aus der obigen Formel berechnet wird und wobei die x- und y-Werte bei der Berechnung jeweils innerhalb des durch x1i, y1i; x2i, y2i; x3i, y3i gegebenen Dreiecks in der x-y-Ebene liegen.
  • Die so berechnete Sägezahnfläche setzt sich automatisch zusammen aus den Facetten 5. Dabei ergeben sich als Gitterkonstanten Ai in den Bereichen i Λ i = d i / tan σ i
    Figure imgb0014
  • Falls eine überall gleiche Gitterkonstante A gewünscht ist, sind folgende di einzusetzen d i = Λ tan σ i
    Figure imgb0015
    wobei σi der Steigungswinkel des durch x1i, y1i, z1i; x2i, y2i, z2i; x3i, y3i, z3i gegebenen Dreiecks ist.
  • Folgende alternative Vorgehensweise ist möglich. In der nachfolgenden Formel A wird eine über der x-y-Ebene liegende, nachzustellende Oberfläche 9 durch Dreiecks-Ebenenstücke beschrieben z = z 1 , i + y y 1 , i | x 2 , i x 1 , i z 2 , i z 1 , i x 3 , i x 1 , i z 3 , i z 1 , i | x x 1 , i y 2 , i y 1 , i z 2 , i z 1 , i y 3 , i y 1 , i z 3 , i z 1 , i x 2 , i x 1 , i y 2 , i y 1 , i x 3 , i x 1 , i y 3 , i y 1 , i
    Figure imgb0016
  • Die Ebenenstücke i sind jeweils gegeben durch drei Eckpunkte x1i, y1i, z1i; x2i, y2i, z2i; x3i, y3i, z3i.
  • Die Eckpunkte werden so nummeriert, dass z1i der kleinste Wert unter den drei Werten z1i, z2i, z3i ist (z1i = min (z1i, z2i, z3i)).
  • Die nachfolgende Formel B stellt eine Sägezahnfläche dar, die den dreidimensionalen Eindruck der durch die Formel A gegebenen, nachzustellenden Oberfläche 9 nachstellt z = y y 1 , i | x 2 , i x 1 , i z 2 , i z 1 , i x 3 , i x 1 , i z 3 , i z 1 , i | x x 1 , i y 2 , i y 1 , i z 2 , i z 1 , i y 3 , i y 1 , i z 3 , i z 1 , i x 2 , i x 1 , i y 2 , i y 1 , i x 3 , i x 1 , i y 3 , i y 1 , i
    Figure imgb0017
  • Wie man sieht, unterscheidet sich die Sägezahnfläche gemäß Formel B von der nachzustellenden Fläche gemäß Formel A dadurch, dass vom Wert z jeweils der Minimalwert z1i im Bereich i abgezogen ist. Die Sägezahnfläche gemäß Formel B besteht aus an der x-y-Ebene angebrachten, schräggestellten Dreiecken.
  • Wenn eine Maximaldicke di für die Strukturtiefe vorgegeben ist, kann es sein, dass die Maximaldicke bei der Sägezahnfläche gemäß Formel B überschritten wird. Dagegen hilft die Ausbildung der einzelnen Facetten mit gleichem Normalenvektor gemäß z Modulo di, wobei z aus der obigen Formel B berechnet wird und die x- und y-Werte bei der Berechnung jeweils innerhalb des durch x1i, y1i; x2i, y2i; x3i, y3i gegebenen Dreiecks in der x-y-Ebene liegen.
  • Die so berechnete Sägezahnfläche setzt sich zusammen aus den Dreiecksbereichen, die mit den Facetten 5 gefüllt sind, wobei die Gitterkonstanten A in den Bereichen i sich ergeben zu Ai = di/tan σi. Der Winkel σi ist der Steigungswinkel des durch x1i, y1i, z1i; x2i, y2i, z2i, x3i, y3i, z3i gegebenen Dreiecks.
  • Die hier gezeigten Vorgehensweisen für nachzustellende Oberflächen, die durch Dreiecke beschrieben werden und die erfindungsgemäß in Pixel 4 mit mehreren Facetten 5 umgewandelt werden, ist beispielhaft zu verstehen. Allgemein wird bei nachzustellenden Oberflächen, die durch Ebenenstücke beschrieben werden, erfindungsgemäß folgendermaßen vorgegangen. Die Ebenenstücke werden in Teilstücke unterteilt. Bei den Unterteilungen wird ein Wert (beispielsweise der Minimalwert von z im Teilstück) abgezogen. Man erhält damit erfindungsgemäß ein Sägezahngitter, das flacher ist als die nachzustellende Oberfläche 9 und das bereichsweise in den Teilstücken jeweils gleiche Normalenvektoren aufweist.
  • Dieses Sägezahngitter imitiert die ursprüngliche, nachzustellende Oberfläche 9 einschließlich ihres dreidimensionalen Eindrucks. Dieses Sägezahngitter ist flacher als ein mit gleicher Vorgehensweise erstelltes Sägezahngitter ohne erfindungsgemäße Unterteilung der Pixel 4 in mehrere Facetten 5.
  • In Figur 10 ist eine Draufsicht auf drei Pixel 4 der Fläche 3 gemäß einer weiteren Ausführungsform gezeigt, wobei die Pixel 4 unregelmäßig (durchgezogene Linien) mit unregelmäßiger Unterteilung bzw. Facetten 5 (gestrichelte Linien) ausgebildet sind. Die Pixelränder und die Unterteilungen sind hier gerade Linien, sie können aber auch gekrümmt sein.
  • In Figur 11 ist die entsprechende Querschnittsansicht gezeigt, wobei die Normalenvektoren der Facetten 5 schematisch eingezeichnet sind. Pro Pixel 4 sind die Normalenvektoren aller Facetten 5 gleich, während sie sich von Pixel 4 zu Pixel 4 zu unterscheiden. Die Normalenvektoren liegen schräg im Raum und im allgemeinen nicht in der Zeichenebene, wie in Figur 11 zur Vereinfachung dargestellt ist.
  • In Figur 12 ist eine Draufsicht mit gleicher Aufteilung der Pixel 4 wie in Figur 11 gezeigt, wobei jedoch die Unterteilung (Facetten 5) pro Pixel 4 unterschiedlich ist. Bei dem gezeigten Ausführungsbeispiel ist die Gitterperiode A der Facetten 5 in jedem Pixel 4 konstant, aber von Pixel 4 zu Pixel 4 verschieden.
  • Figur 13 zeigt die entsprechende Querschnittsansicht.
  • In Figur 14 ist eine weitere Abwandlung gezeigt, wobei die Pixelform die gleiche ist wie in Figur 10. Jedoch ist die Unterteilung pro Pixel 4 codiert. Jeder zweite Gitterlinienabstand ist doppelt so groß wie der vorhergehende Gitterlinienabstand. In Figur 15 ist die entsprechende Querschnittsansicht dargestellt.
  • Falls die nachzustellende Oberfläche als Höhenlinienbild gegeben ist, kann man die Normalenvektoren wie folgt bestimmen. Man wählt diskrete Punkte auf den Höhenlinien 15 (in Figur 16 ist eine schematische Draufsicht gezeigt) und verbindet diese Punkte so, dass eine Dreieckskachelung entsteht. Die Berechnung des Normalenvektors bei den Dreiecken erfolgt so, wie bereits beschrieben wurde.
  • Bei den bisherigen Ausführungsformen wurde stets der Normalenvektor relativ zur x-y-Ebene berechnet. Es ist jedoch auch möglich, den Normalenvektor in Bezug auf eine gekrümmte Grundfläche zu berechnen, wie z.B. eine Zylinderfläche. In diesem Fall kann das Sicherheitselement auf einem Flaschenetikett (beispielsweise am Flaschenhals) so vorgesehen werden, dass dann die nachgestellte Oberfläche unverzerrt von einem Betrachter räumlich wahrgenommen werden kann. Dazu muss lediglich der Normalenvektor n bezogen auf die Zylinderfläche in den Normalenvektor ntrans bezogen auf eine Ebene umgerechnet werden, so dass die oben beschriebenen Herstellungsverfahren eingesetzt werden können. Wenn das erfindungsgemäße Sicherheitselement dann als Flaschenetikett an dem Flaschenhals (mit der zylinderförmigen Krümmung) aufgebracht ist, kann die nachgestellte Oberfläche 9 dann in dreidimensionaler Weise unverzerrt wahrgenommen werden. Die durchzuführende Umrechnung ergibt sich aus den nachfolgenden Formeln x = r sinΦ , Φ = arcsin x / r
    Figure imgb0018
    x trans = 2 πrΦ / 360 , Φ = 360 x trans / 2 πr
    Figure imgb0019
  • Der Normalenvektor ntrans an der Stelle (xtrans,y) lässt sich wie folgt berechnen. n trans = cos ϕ 0 sin ϕ 0 1 0 sin ϕ 0 cos ϕ n
    Figure imgb0020
    wobei n = Normalenvektor über (x,y).
  • Das erfindungsgemäße Sicherheitselement 1 kann nicht nur als reflektives Sicherheitselement 1 ausgebildet sein, sondern auch als transmissives Sicherheitselement 1, wie bereits erwähnt wurde. In diesem Fall werden die Facetten 5 nicht verspiegelt und besteht der Träger 8 aus einem transparenten oder zumindest transluzentem Material, wobei die Betrachtung in Durchsicht erfolgt. Bei einer Beleuchtung von hinten soll ein Benutzer die nachgestellte Oberfläche 9 so wahrnehmen, als ob ein von vorne beleuchtetes erfindungsgemäßes reflektives Sicherheitselement 1 vorliegt.
  • Die für ein reflektives Sicherheitselement 1 berechneten Facetten 5 werden durch Daten für Mikroprismen 16 ersetzt, wobei die entsprechenden Winkel bei Reflexion (Figur 19) und für transmissive Prismen 16 in Figuren 20 und 21 dargestellt sind. Figur 20 zeigt den Einfall auf die geneigten Facetten 5, wohingegen Figur 21 den Einfall auf die glatte Seite zeigt, der bevorzugt ist, aufgrund der möglichen größeren Lichteinfallswinkel.
  • Der Azimut-Winkel der reflektiven Facette 5 wird als αs und der Steigungswinkel der Facette 5 wird als σs bezeichnet. Die Brechzahl des Mikroprismas 16 beträgt n, der Azimut-Winkel des Mikroprismas 16 beträgt αp = 180° + αs. Der Steigungswinkel des Mikroprismas 16 gemäß Figur 20 beträgt sin (σp + 2 σs) = n sin σp, wobei für kleine Winkel 2 σs = (n -1) σp sowie 4 σs = σp (für n = 1,5) gilt.
  • Der Steigungswinkel des Mikroprismas 16 nach Figur 21 beträgt sin (2 βs) = n sin β; sin (σp) = n sin (σp - β), wobei für kleine Winkel 4 σs = σp (für n = 1,5) gilt.
  • Die Komponenten des Normalenvektors sind bei bekanntem α und σ: n z = cos σ , n y / n x = sin α / cosα , n x 2 + n y 2 + n z 2 = 1
    Figure imgb0021
    n x = cos α 1 cos 2 σ , n y = sin α 1 cos 2 σ
    Figure imgb0022
  • In Figur 22 ist schematisch eine nachzustellende reflektive Oberfläche 9 mit einem Hügel 20 und einer Mulde 21 gezeigt. Die negative Brennweite -f des spiegelnden Hügels 20 beträgt r/2 und die positive Brennweite f der spiegelnden Mulde 21 beträgt r/2.
  • In Figur 23 ist schematisch eine Linse 22 gezeigt, die einen transparenten konkaven Abschnitt 23 sowie einen transparenten konvexen Abschnitt 24 aufweist. Der konkave Abschnitt 23 simuliert den spiegelnden Hügel 20, wobei die negative Brennweite -f des konkaven Abschnittes 23 2r beträgt. Der transparente konvexe Abschnitt 24 simuliert die spiegelnde Mulde 21 und weist eine positive Brennweite f = 2r auf.
  • Die Linse 22 gemäß Figur 23 kann durch die Sägezahnordnung gemäß Figur 24 ersetzt werden.
  • Die Pfeile in Figuren 20 bis 23 zeigen schematisch den Strahlenverlauf für einfallendes Licht L. Aus diesen Strahlenverläufen ist ersichtlich, dass die Linse 22 in Transmission die Oberfläche 9 wunschgemäß nachstellt.
  • In den Figuren 25 bis 27 wird ein Beispiel gezeigt, bei dem die Sägezahnseite auf der Lichteinfallsseite liegt. Ansonsten entspricht die Darstellung von Figur 25 der Darstellung von Figur 22, entspricht die Darstellung von Figur 26 der Darstellung in Figur 23 und entspricht die Darstellung von Figur 27 der Darstellung in Figur 24.
  • Zur Berechnung der transmissiven Sägezahnstrukturen können die oben beschriebenen Verfahren verwendet werden.
  • Die in Figur 27 gezeigte transparente Sägezahnstruktur entspricht im wesentlichen einem Abguss einer entsprechenden reflektiven Sägezahnstruktur zur Nachstellung der Oberfläche 9 gemäß Figur 25. Dabei erscheint jedoch die nachgestellte Oberfläche in Durchsicht (bei Brechzahl von 1,5) wesentlich flacher als in Reflexion. Daher wird bevorzugt die Höhe der Sägezahnstruktur erhöht bzw. die Anzahl der Facetten 5 pro Pixel 4 erhöht.
  • Natürlich ist es auch möglich, die beschriebenen Sägezahnstrukturen mit einer semitransparenten Verspiegelung zu versehen. In diesem Fall erscheint die nachgestellte Oberfläche 9 in der Regel in Reflexion tiefer strukturiert als in Durchsicht.
  • Ferner ist es möglich, beide Seiten eines transparenten oder zumindest transluzenten Trägers 8 mit einer Sägezahnstruktur, die die Vielzahl von Mikroprismen 16 aufweist, zu versehen, wie dies in Figuren 28 und 29 angedeutet ist. Bei Figur 28 sind die Sägezahnstrukturen 25, 26 auf beiden Seiten spiegelsymmetrisch. Bei Figur 29 sind die beiden Sägezahnstrukturen 25, 27 nicht spiegelsymmetrisch ausgebildet.
  • Zur Berechnung einer Sägezahnstruktur 25 und 27 gemäß Figuren 28 und 29 kann man davon ausgehen, dass die Sägezahnstruktur 25, 27 aus einer prismatischen Oberfläche 28 mit Steigungswinkel σp und darunter angesetztem Hilfsprisma 29 mit Steigungswinkel σh zusammengesetzt ist, wie in Figur 30 schematisch dargestellt ist. Somit ist σp + σh der wirksame Gesamt-Prismenwinkel.
  • Wenn der nachzuahmende Relief-Steigungswinkel mit bezeichnet σs wird, gilt folgendes, da die Winkelsumme im Dreieck 180° ist: 90 ° β 1 + 90 ° β 2 + σ p + σ h = 180 °
    Figure imgb0023
    σ p + σ h = β 1 + β 2 ,
    Figure imgb0024
  • Aufgrund des Brechungsgesetzes sin σ p = n sin β 1 , sin 2 σ s + σ h = n sin β 2
    Figure imgb0025
    ergibt sich für: σ p arcsin sin σ p / n = arcsin sin 2 σ s + σ h / n σ h
    Figure imgb0026
  • Somit kann ausgehend vom nachzuahmenden Relief-Steigungswinkel σs bei z. B. vorgegebenem Hilfsprisma-Steigungswinkel σh leicht der gesuchte Steigungswinkel σp der prismatischen Oberfläche 28 berechnet werden.
  • Man beachte, dass bei den aufgeführten Berechnungen für die Nachahmung eines Spiegelreliefs durch Prismen von einer senkrechten Betrachtung ausgegangen wurde. Bei gekippter Betrachtung können sich Verzerrungen ergeben und bei Betrachtung in weißem Licht können sich farbige Ränder beim dargestellten Motiv ergeben, da der in die Berechnung eingehende Brechungsindex n wellenlängenabhängig ist.
  • Die in den Figuren 1 bis 30 dargestellten reflektiven oder refraktiven Sicherheitselemente können auch in transparentes Material eingebettet bzw. mit einer Schutzschicht versehen werden.
  • Eine Einbettung erfolgt insbesondere, um die mikrooptischen Elemente vor Verschmutzung und Abrieb zu schützen und um eine unbefugte Nachstellung durch Abprägen der Oberflächenstruktur zu verhindern.
  • Beispiel: Eingebettete Spiegel
  • Beim Einbetten bzw. Anbringen einer Schutzschicht ändern sich die Eigenschaften der mikrooptischen Schicht mit den Facetten 5. In Figuren 32 a-c ist dieses Verhalten illustriert für eingebettete Spiegel (die Facetten 5 sind als Spiegel ausgebildet), wobei Figur 32a die Anordnung vor der Einbettung zeigt.
  • Bei Einbettung der Spiegel in eine durchsichtige Schicht 40 ändert sich die Richtung, in der ein Spiegelbild erscheint, wie Figur 32b zeigt. Soll nun bei einem durch eingebettete Mikrospiegel 5 nachgestelltem Relief die ursprüngliche Reflexionswirkung erzielt werden, ist dies beim Neigungswinkel der Mikrospiegel zu berücksichtigen, siehe Figur 32c.
  • Beispiel: Eingebettete Prismen
  • Bei eingebetteten Prismen 16 ist ein Brechzahlunterschied zwischen Prismenmaterial und Einbettungsmaterial 40 erforderlich und bei der Berechnung der Lichtstrahlablenkung zu berücksichtigen.
  • Figur 33b zeigt schematisch die Nachstellung der reflektierenden Anordnung von Figur 32a durch eine transmittierende Prismenanordnung mit offenliegenden Prismen 16, wie bereits z. B. bei den Figuren 19-27 diskutiert.
  • Figur 33b zeigt schematisch eine mögliche Nachstellung der reflektierenden Anordnung von Figur 32a durch eingebettete Prismen 16, wobei sich die Brechungsindizes von Prismenmaterial und Einbettungsmaterial 40 unterscheiden müssen.
  • Beispiel: Eingebettete streuende Facetten
  • In den beiden vorhergehenden Beispielen wurde die Nachstellung spiegelnder Objekte demonstriert. Zur Nachstellung streuender Objekte (z.B. Marmorfigur, Gips-Modell) können streuende Facetten eingesetzt werden, hierzu ein Beispiel (siehe Figur 34):
    • Auf einer Folie 41 als Trägermaterial wird folgender Aufbau realisiert: Die geprägten Facetten 5, die die Objektoberfläche nachstellen, befinden sich auf der Folienrückseite. Die Facetten 5 haben Abmessungen von beispielsweise 10 µm bis 20 µm. An den Facetten 5 wird ein mit Titanoxid (Partikelgrösse ca. 1 µm) pigmentierter Lack 42 aufgebracht, so dass die Facetten 5 mit diesem streuenden Material gefüllt werden. Die Betrachtungsseite ist durch den Pfeil P2 angedeutet.
    Beispiel: Eingebettete matt glänzende Facetten
  • In folgender Weise kann ein matt spiegelndes Objekt nachgestellt werden (siehe Figur 35):
    • Auf einer Folie 41 als Trägermaterial wird folgender Aufbau realisiert: Die geprägten Facetten 5, die die Objektoberfläche nachstellen, befinden sich auf der Folienrückseite. Die Facetten 5 haben Abmessungen von beispielsweise 10 µm bis 20 µm. Die Prägeschicht wird mit einer semitransparenten Verspiegelung 43 versehen und darauf ein mit Titanoxid (Partikelgrösse ca. 1 µm) pigmentierter Lack 42 aufgebracht, so dass die Facetten mit diesem streuenden Material gefüllt werden. Bei Betrachtung von der Betrachtungsseite erscheint der nachgestellte Gegenstand matt-glänzend. Die Betrachtungsseite ist durch den Pfeil P2 angedeutet.
    Farbige Facetten:
  • Zur Nachstellung farbiger Gegenstände kann die Einbettung der Facetten in den Figuren 32b, 32c, 33b, 34 bzw. 35 mit eingefärbtem Material (auch bereichsweise unterschiedlich eingefärbtem Material) erfolgen.
  • Das erfindungsgemäße Sicherheitselement 1 kann als Sicherheitsfaden 19 (Figur 1) ausgebildet sein. Ferner kann das Sicherheitselement 1 nicht nur, wie beschrieben, auf einer Trägerfolie ausgebildet werden, von der es in bekannter Weise auf das Wertdokument übertragen werden kann. Es ist auch möglich, das Sicherheitselement 1 direkt auf dem Wertdokument auszubilden. So kann ein direkter Druck mit anschließender Prägung des Sicherheitselementes auf ein Polymersubstrat durchgeführt werden, um beispielsweise bei Kunststoffbanknoten ein erfindungsgemäßes Sicherheitselement auszubilden. Das erfindungsgemäße Sicherheitselement kann in verschiedensten Substraten ausgebildet werden. Insbesondere kann es in oder auf einem Papiersubstrat, einem Papier mit Synthesefasern, d.h. Papier mit einem Anteil x polymeren Materials im Bereich von 0 < x < 100 Gew.-%, einer Kunststofffolie, z. B. einer Folie aus Polyethylen (PE), Polyethylenterephthalat (PET), Polybutylenterephthalat (PBT), Polyethylennaphthalat (PEN), Polypropylen (PP) oder Polyamid (PA), oder einem mehrschichtigem Verbund, insbesondere einem Verbund mehrerer unterschiedlicher Folien (Kompositverbund) oder einem Papier-Folien-Verbund (Folie/Papier/Folie oder Papier/Folie/Papier), wobei das Sicherheitselement in oder auf oder zwischen jeder der Schichten eines solchen mehrschichtigen Verbunds vorgesehen werden kann, ausgebildet werden.
  • In Figur 31 ist schematisch ein Prägewerkzeug 30 gezeigt, mit dem die Facetten 5 in den Träger 8 gemäß Figur 5 geprägt werden können. Dazu weist das Prägewerkzeug 30 eine Prägefläche 31 auf, in der die invertierte Form der zu prägenden Oberflächenstruktur ausgebildet ist.
  • Natürlich kann nicht nur für die Ausführungsform gemäß Figur 5 ein entsprechendes Prägewerkzeug bereitgestellt werden. Auch für die anderen beschriebenen Ausführungsformen kann in gleicher Art ein Prägewerkzeug zur Verfügung gestellt werden.
  • Illustrierende Ausgestaltungen:
    • Ausgestaltung 1: Sicherheitselement für ein Sicherheitspapier, Wertdokument oder dergleichen, mit einem Träger, der einen Flächenbereich aufweist, der in eine Vielzahl von Pixeln, die jeweils zumindest eine optisch wirksame Facette (5) umfassen, aufgeteilt ist, wobei die Mehrzahl der Pixel jeweils mehrere der optisch wirksamen Facetten mit gleicher Orientierung pro Pixel aufweisen und die Facetten so orientiert sind, dass für einen Betrachter der Flächenbereich als gegenüber seiner tatsächlichen Raumform vor- und/oder zurückspringende Fläche wahrnehmbar ist.
    • Ausgestaltung 2: Sicherheitselement nach Ausgestaltung 1, bei dem die Orientierung der Facetten so gewählt ist, dass für einen Betrachter der Flächenbereich als nicht ebene Fläche wahrnehmbar ist.
    • Ausgestaltung 3: Sicherheitselement nach Ausgestaltung 1 oder 2, bei dem die optisch wirksamen Facetten als reflektive Facetten ausgebildet sind.
    • Ausgestaltung 4: Sicherheitselement nach einer der obigen Ausgestaltungen, bei dem die optisch wirksamen Facetten als transmissive Facetten mit brechender Wirkung ausgebildet sind.
    • Ausgestaltung 5: Sicherheitselement nach einer der obigen Ausgestaltungen, bei dem die optisch wirksamen Facetten so ausgebildet sind, dass die Pixel keine optisch diffraktive Wirkung aufweisen.
    • Ausgestaltung 6: Sicherheitselement nach einer der obigen Ausgestaltungen, bei dem die Fläche jedes Pixels um zumindest eine Größenordnung kleiner ist als die Fläche des Flächenbereiches.
    • Ausgestaltung 7: Sicherheitselement nach einer der obigen Ausgestaltungen, bei dem die Facetten in einer Oberfläche des Trägers ausgebildet sind.
    • Ausgestaltung 8: Sicherheitselement nach einer der Ausgestaltungen 1 bis 6, bei dem die Facetten als eingebettete Facetten ausgebildet sind.
    • Ausgestaltung 9: Sicherheitselement nach einer der obigen Ausgestaltungen, bei dem die Facetten als im Wesentlichen ebene Flächenstücke ausgebildet sind.
    • Ausgestaltung 10: Sicherheitselement nach einer der obigen Ausgestaltungen, bei dem die Orientierung der Facetten durch ihre Neigung und/oder ihren Azimut-Winkel bestimmt ist.
    • Ausgestaltung 11: Sicherheitselement nach einer der obigen Ausgestaltungen, bei dem die Facetten ein periodisches oder aperiodisches Gitter bilden und die Gitterperiode der Facetten zwischen 1 µm und 300 µm, bevorzugt zwischen 3 µm und 100 µm, besonders bevorzugt zwischen 5 µm und 30 µm liegt.
    • Ausgestaltung 12: Sicherheitselement nach einer der obigen Ausgestaltungen, bei dem auf den Facetten zumindest bereichsweise eine reflektierende oder reflexionserhöhende Beschichtung ausgebildet ist.
    • Ausgestaltung 13: Sicherheitselement nach einer der obigen Ausgestaltungen, bei dem auf den Facetten zumindest bereichsweise eine farbkippende Beschichtung ausgebildet ist.
    • Ausgestaltung 14: Sicherheitselement nach einer der obigen Ausgestaltungen, bei dem die maximale Ausdehnung eines Pixels zwischen 5 µm und 5 mm, bevorzugt zwischen 10 µm und 300 µm, besonders bevorzugt zwischen 20µm und 100 µm liegt.
    • Ausgestaltung 15: Sicherheitselement nach einer der obigen Ausgestaltungen, bei dem der Flächenbereich für einen Betrachter als imaginäre Fläche wahrnehmbar ist, deren Reflexions- bzw. Transmissionsverhalten mit einer realen gewölbten reflektierenden bzw. transmittierenden Oberfläche nicht erzeugt werden kann, wobei der Flächenbereich insbesondere als Drehspiegel wahrnehmbar ist.
    • Ausgestaltung 16: Sicherheitselement nach einer der obigen Ausgestaltungen, bei dem zumindest eine Facette an ihrer Oberfläche eine lichtstreuende Mikrostruktur aufweist, wobei die lichtstreuende Mikrostruktur bevorzugt so ausgebildet ist, dass eine Streuung mit Vorzugsrichtung zur Erzeugung einer Mattstruktur bewirkt wird.
    • Ausgestaltung 17: Sicherheitselement nach einer der obigen Ausgestaltungen, bei dem die Orientierungen mehrerer Facetten gegenüber den Orientierungen zur Erzeugung der vor- und/ oder zurückspringenden Fläche so geändert sind, dass die vor- und/oder zurückspringende Fläche zwar noch wahrnehmbar ist, aber mit matt erscheinender Oberfläche.
    • Ausgestaltung 18: Wertdokument mit einem Sicherheitselement nach einem der obigen Ausgestaltungen.
    • Ausgestaltung 19: Herstellungsverfahren eines Sicherheitselementes für Sicherheitspapiere, Wertdokumente oder dergleichen, bei dem die Oberfläche eines Trägers in einem Flächenbereich so höhenmoduliert wird, dass der Flächenbereich in eine Vielzahl von jeweils zumindest eine optisch wirksame Facette aufweisenden Pixeln aufgeteilt wird, wobei die Mehrzahl der Pixel jeweils mehrere optisch wirksame Facetten mit gleicher Orientierung pro Pixel aufweisen und die Facetten so orientiert sind, dass für einen Betrachter des hergestellten Sicherheitselementes der Flächenbereich als gegenüber seiner tatsächlichen Raumform vor- und/ oder zurückspringende Fläche wahrnehmbar ist.
    • Ausgestaltung 20: Prägewerkzeug mit einer Prägefläche, mit der die Form der Facetten eines Sicherheitselementes nach einer der Ausgestaltungen 1 bis 17 in den Träger geprägt werden kann.
    • Ausgestaltung 21: Verwendung eines Sicherheitselementes nach einer der Ausgestaltungen 1 bis 17 als Master zur Belichtung eines Volumenhologramms.
    Bezugszeichenliste
  • 1
    Sicherheitselement
    2
    Banknote
    3
    Fläche
    4
    Pixel
    5
    Facetten
    6
    Linie
    7
    Oberfläche
    8
    Träger
    9
    nachgestellte Oberfläche
    10
    Spiegelfläche
    15
    Höhenlinie
    16
    Mikroprisma
    19
    Sicherheitsfaden
    20
    Hügel
    21
    Mulde
    22
    Linse
    23
    konkaver Abschnitt
    24
    konvexer Abschnitt
    25
    Sägezahnstruktur
    26
    Sägezahnstruktur
    27
    Sägezahnstruktur
    28
    prismatische Oberfläche
    29
    Hilfsprisma
    30
    Prägewerkzeug
    31
    Prägefläche
    40
    durchsichtige Schicht
    41
    Folie
    42
    pigmentierter Lack
    43
    semitransparente Verspiegelung
    L
    einfallendes Licht
    L1
    einfallendes Licht
    L2
    einfallendes Licht
    P1
    Pfeil
    P2
    Pfeil

Claims (18)

  1. Sicherheitselement für ein Sicherheitspapier, Wertdokument oder dergleichen, mit
    einem Träger, der einen Flächenbereich aufweist, der in eine Vielzahl von Pixeln, die jeweils zumindest eine optisch wirksame Facette (5) umfassen, aufgeteilt ist,
    wobei die Facetten so orientiert sind, dass für einen Betrachter der Flächenbereich als gegenüber seiner tatsächlichen Raumform vor- und/oder zurückspringende Fläche wahrnehmbar ist, und wobei auf den Facetten zumindest bereichsweise eine farbkippende Beschichtung ausgebildet ist.
  2. Sicherheitselement nach Anspruch 1, bei dem die Orientierung der Facetten so gewählt ist, dass für einen Betrachter der Flächenbereich als nicht ebene Fläche wahrnehmbar ist.
  3. Sicherheitselement nach Anspruch 1 oder 2, bei dem die farbkippende Beschichtung als Sub-Wellenlängengitter oder diffraktive Reliefstruktur realisiert ist.
  4. Sicherheitselement nach einem der obigen Ansprüche, bei dem die optisch wirksamen Facetten als reflektive Facetten ausgebildet sind.
  5. Sicherheitselement nach einem der obigen Ansprüche, bei dem die optisch wirksamen Facetten als transmissive Facetten mit brechender Wirkung ausgebildet sind.
  6. Sicherheitselement nach einem der obigen Ansprüche, bei dem die optisch wirksamen Facetten so ausgebildet sind, dass die Pixel keine optisch diffraktive Wirkung aufweisen.
  7. Sicherheitselement nach einem der obigen Ansprüche, bei dem die maximale Höhe der optisch wirksamen Facetten nicht größer als 10 µm ist.
  8. Sicherheitselement nach einem der obigen Ansprüche, bei dem die Fläche jedes Pixels um zumindest eine Größenordnung kleiner ist als die Fläche des Flächenbereiches.
  9. Sicherheitselement nach einem der obigen Ansprüche, bei dem die Facetten in einer Oberfläche des Trägers ausgebildet sind.
  10. Sicherheitselement nach einem der Ansprüche 1 bis 8, bei dem die Facetten als eingebettete Facetten ausgebildet sind.
  11. Sicherheitselement nach einem der obigen Ansprüche, bei dem die Orientierung der Facetten durch ihre Neigung und/oder ihren Azimut-Winkel bestimmt ist.
  12. Sicherheitselement nach einem der obigen Ansprüche, bei dem auf den Facetten zumindest bereichsweise eine reflektierende oder reflexionserhöhende Beschichtung, insbesondere durch eine Beschichtung mit einem Material mit hohem Brechungsindex ausgebildet ist.
  13. Sicherheitselement nach einem der obigen Ansprüche, bei dem die maximale Ausdehnung eines Pixels zwischen 5 µm und 5 mm, bevorzugt zwischen 10 µm und 300 µm, besonders bevorzugt zwischen 20µm und 100 µm liegt.
  14. Sicherheitselement nach einem der obigen Ansprüche, bei dem der Flächenbereich für einen Betrachter als imaginäre Fläche wahrnehmbar ist, deren Reflexions- bzw. Transmissionsverhalten mit einer realen gewölbten reflektierenden bzw. transmittierenden Oberfläche nicht erzeugt werden kann, wobei der Flächenbereich insbesondere als Drehspiegel wahrnehmbar ist.
  15. Sicherheitselement nach einem der obigen Ansprüche, bei dem die Orientierungen mehrerer Facetten gegenüber den Orientierungen zur Erzeugung der vor- und/ oder zurückspringenden Fläche so geändert sind, dass die vor- und/oder zurückspringende Fläche zwar noch wahrnehmbar ist, aber mit matt erscheinender Oberfläche.
  16. Wertdokument mit einem Sicherheitselement nach einem der obigen Ansprüche.
  17. Herstellungsverfahren eines Sicherheitselementes für Sicherheitspapiere, Wertdokumente oder dergleichen, bei dem
    die Oberfläche eines Trägers in einem Flächenbereich so höhenmoduliert wird, dass der Flächenbereich in eine Vielzahl von jeweils zumindest eine optisch wirksame Facette aufweisenden Pixeln aufgeteilt wird,
    wobei die Facetten so orientiert sind, dass für einen Betrachter des hergestellten Sicherheitselementes der Flächenbereich als gegenüber seiner tatsächlichen Raumform vor- und/ oder zurückspringende Fläche wahrnehmbar ist, und wobei auf den Facetten zumindest bereichsweise eine farbkippende Beschichtung ausgebildet wird.
  18. Herstellungsverfahren nach Anspruch 17, bei dem die Oberfläche des Trägers in dem Flächenbereich in Ebenenstücke einteilt wird und die durch die Ebenenstücke gegebene Oberfläche insgesamt einer Fresnel-Konstruktion Modulo d unterworfen wird.
EP16000444.6A 2009-12-04 2010-12-03 Sicherheitselement, wertdokument mit einem solchen sicherheitselement sowie herstellungsverfahren eines sicherheitselementes Active EP3059093B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102009056934A DE102009056934A1 (de) 2009-12-04 2009-12-04 Sicherheitselement, Wertdokument mit einem solchen Sicherheitselement sowie Herstellungsverfahren eines Sicherheitselementes
PCT/EP2010/007368 WO2011066990A2 (de) 2009-12-04 2010-12-03 Sicherheitselement, wertdokument mit einem solchen sicherheitselement sowie herstellungsverfahren eines sicherheitselementes
EP10790829.5A EP2507069B1 (de) 2009-12-04 2010-12-03 Sicherheitselement, wertdokument mit einem solchen sicherheitselement sowie herstellungsverfahren eines sicherheitselementes

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP10790829.5A Division EP2507069B1 (de) 2009-12-04 2010-12-03 Sicherheitselement, wertdokument mit einem solchen sicherheitselement sowie herstellungsverfahren eines sicherheitselementes
EP10790829.5A Division-Into EP2507069B1 (de) 2009-12-04 2010-12-03 Sicherheitselement, wertdokument mit einem solchen sicherheitselement sowie herstellungsverfahren eines sicherheitselementes

Publications (2)

Publication Number Publication Date
EP3059093A1 true EP3059093A1 (de) 2016-08-24
EP3059093B1 EP3059093B1 (de) 2021-03-31

Family

ID=43919824

Family Applications (2)

Application Number Title Priority Date Filing Date
EP10790829.5A Active EP2507069B1 (de) 2009-12-04 2010-12-03 Sicherheitselement, wertdokument mit einem solchen sicherheitselement sowie herstellungsverfahren eines sicherheitselementes
EP16000444.6A Active EP3059093B1 (de) 2009-12-04 2010-12-03 Sicherheitselement, wertdokument mit einem solchen sicherheitselement sowie herstellungsverfahren eines sicherheitselementes

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP10790829.5A Active EP2507069B1 (de) 2009-12-04 2010-12-03 Sicherheitselement, wertdokument mit einem solchen sicherheitselement sowie herstellungsverfahren eines sicherheitselementes

Country Status (9)

Country Link
US (2) US9827802B2 (de)
EP (2) EP2507069B1 (de)
CN (1) CN102905909B (de)
AU (1) AU2010327031C1 (de)
BR (1) BR112012013451B1 (de)
CA (1) CA2780934C (de)
DE (1) DE102009056934A1 (de)
RU (1) RU2573346C2 (de)
WO (1) WO2011066990A2 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9827802B2 (en) 2009-12-04 2017-11-28 Giesecke+Devrient Currency Technology Gmbh Security element, value document comprising such a security element, and method for producing such a security element
WO2019219238A1 (de) * 2018-05-18 2019-11-21 Giesecke+Devrient Currency Technology Gmbh Sicherheitselement mit bereichsweise metallisiertem flächenbereich, herstellungsverfahren und prägewerkzeug
WO2020078582A1 (de) * 2018-10-15 2020-04-23 Giesecke+Devrient Currency Technology Gmbh Sicherheitselement mit mikroreflektoren zur perspektivischen darstellung eines motivs
EP4389443A1 (de) * 2022-12-21 2024-06-26 Hueck Folien Gesellschaft m.b.H. Sicherheitselement
GB202406660D0 (en) 2024-05-10 2024-06-26 Iqs Group S R O Optically variable image device

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010047250A1 (de) 2009-12-04 2011-06-09 Giesecke & Devrient Gmbh Sicherheitselement, Wertdokument mit einem solchen Sicherheitselement sowie Herstellungsverfahren eines Sicherheitselementes
FR2953965B1 (fr) 2009-12-14 2011-11-25 Arjowiggins Security Element de securite comportant une structure optique
DE102010012495A1 (de) 2010-03-24 2011-09-29 Giesecke & Devrient Gmbh Sicherheitselement und Herstellungsverfahren dafür
DE102010019766A1 (de) 2010-05-07 2011-11-10 Giesecke & Devrient Gmbh Verfahren zur Erzeugung einer Mikrostruktur auf einem Träger
FR2959830B1 (fr) 2010-05-07 2013-05-17 Hologram Ind Composant optique d'authentification et procede de fabrication dudit composant
DE102010048262A1 (de) 2010-10-12 2012-04-12 Giesecke & Devrient Gmbh Darstellungselement
DE102010049600A1 (de) 2010-10-26 2012-01-19 Giesecke & Devrient Gmbh Sicherheitselement mit optisch variablem Flächenmuster
FR2979734B1 (fr) 2011-09-02 2014-05-23 Arjowiggins Security Structure de securite comportant une structure optique reflechissante, et procede associe.
DE102011112554A1 (de) * 2011-09-06 2013-03-07 Giesecke & Devrient Gmbh Verfahren zur Herstellung eines Sicherheitspapiers und Mikrolinsenfaden
DE102012006623A1 (de) 2012-03-30 2013-10-02 Giesecke & Devrient Gmbh Verfahren zum Herstellen eines Datenträgers und daraus erhältlicher Datenträger
DE102012020257A1 (de) 2012-10-16 2014-04-17 Giesecke & Devrient Gmbh Optisch variables Flächenmuster
FR3000112B1 (fr) 2012-12-20 2015-03-06 Arjowiggins Security Structure de securite.
DE102012025266A1 (de) 2012-12-21 2014-06-26 Giesecke & Devrient Gmbh Sicherheitselement mit Linsenrasterbild
DE102013002137A1 (de) 2013-02-07 2014-08-07 Giesecke & Devrient Gmbh Optisch variables Flächenmuster
WO2014186837A1 (en) * 2013-05-21 2014-11-27 Innovia Security Pty Ltd Optical device including vertical pixels
CN103605854B (zh) * 2013-11-26 2016-12-07 上海宏盾防伪材料有限公司 一种有关激光刻蚀的矢量全息几何曲线的制作方法
DE102013021358A1 (de) 2013-12-16 2015-06-18 Giesecke & Devrient Gmbh Sicherheitselement für Sicherheitspapiere
DE102014014082A1 (de) * 2014-09-23 2016-03-24 Giesecke & Devrient Gmbh Optisch variables Sicherheitselement mit reflektivem Flächenbereich
DE102014014079A1 (de) * 2014-09-23 2016-03-24 Giesecke & Devrient Gmbh Optisch variables Sicherheitselement mit reflektivem Flächenbereich
CN104385800B (zh) 2014-10-16 2017-10-24 中钞特种防伪科技有限公司 光学防伪元件及光学防伪产品
EP3210069A4 (de) * 2014-10-24 2018-05-30 Wavefront Technology, Inc. Optische produkte, vorlagen zur herstellung optischer produkte und verfahren zur herstellung von vorlagen und optischen produkte
US10471757B2 (en) * 2014-11-10 2019-11-12 Toppan Printing Co., Ltd. Optical element for forgery proof
DE102014019088A1 (de) * 2014-12-18 2016-06-23 Giesecke & Devrient Gmbh Optisch variables Durchsichtssicherheitselement
DE102015100280A1 (de) * 2015-01-09 2016-07-14 Ovd Kinegram Ag Verfahren zur Herstellung von Sicherheitselementen sowie Sicherheitselemente
EP3283906B1 (de) 2015-04-13 2020-09-23 RealD Spark, LLC Weitwinkelabbildung von direktionalen hintergrundbeleuchtungen
DE102015005969A1 (de) * 2015-05-08 2016-11-10 Giesecke & Devrient Gmbh Optisch variables Sicherheitselement
KR102630381B1 (ko) 2015-07-13 2024-01-29 웨이브프론트 테크놀로지, 인코퍼레이티드 광학 제품, 광학 제품을 제작하기 위한 마스터, 그리고 마스터 및 광학 제품을 제조하기 위한 방법
DE102015016713A1 (de) * 2015-12-22 2017-06-22 Giesecke & Devrient Gmbh Optisch variables Sicherheitselement mit reflektivem Flächenbereich
EP3415964B1 (de) * 2016-02-09 2021-10-13 Toppan Printing Co., Ltd. Optisches element und informationsaufzeichnungsmedium für fälschungsschutz
DE102016002451A1 (de) * 2016-02-29 2017-08-31 Giesecke & Devrient Gmbh Prägeplatte, Herstellungsverfahren und geprägtes Sicherheitselement
WO2017170886A1 (ja) * 2016-03-30 2017-10-05 凸版印刷株式会社 偽造防止用光学素子及び情報媒体
EP3405353A4 (de) 2016-04-22 2019-11-06 Wavefront Technology, Inc. Optische schaltvorrichtungen
DE102016007064A1 (de) * 2016-06-08 2017-12-14 Giesecke+Devrient Currency Technology Gmbh Sicherheitselement, Wertdokumentsubstrat, mit demselben ausgestattetes Wertdokument und Herstellungsverfahren
WO2018021320A1 (ja) * 2016-07-25 2018-02-01 凸版印刷株式会社 表示体
CN106313934B (zh) * 2016-09-29 2017-04-26 滕泽其 用于防伪的安全元件及其制造方法和安全票证
JP7156032B2 (ja) * 2016-11-28 2022-10-19 凸版印刷株式会社 表示体、およびその真贋判定方法、ならびに印刷物
DE102016015393A1 (de) * 2016-12-22 2018-06-28 Giesecke+Devrient Currency Technology Gmbh Sicherheitselement mit reflektivem Flächenbereich
JP2018114696A (ja) * 2017-01-19 2018-07-26 凸版印刷株式会社 表示体
DE102017004065A1 (de) * 2017-04-27 2018-10-31 Giesecke+Devrient Currency Technology Gmbh Verfahren zur Herstellung eines Sicherheitselements
DE102017004585A1 (de) 2017-05-12 2018-11-15 Giesecke+Devrient Currency Technology Gmbh Sicherheitselement mit Mikroreflektoren
DE102017004586A1 (de) 2017-05-12 2018-11-15 Giesecke+Devrient Currency Technology Gmbh Sicherheitselement mit Mikrospiegelanordnung zur Erzeugung eines optisch variablen Effekts und Herstellverfahren für das Sicherheitselement
DE102017005050A1 (de) * 2017-05-26 2018-11-29 Giesecke+Devrient Currency Technology Gmbh Sicherheitselement mit reflektivem Flächenbereich
DE102017006421A1 (de) * 2017-07-07 2019-01-10 Giesecke+Devrient Currency Technology Gmbh Optisch variable Sicherheitsanordnung
DE102017006507A1 (de) * 2017-07-10 2019-01-10 Giesecke+Devrient Currency Technology Gmbh Strukturelement
DE102017006513A1 (de) * 2017-07-10 2019-01-10 Giesecke+Devrient Currency Technology Gmbh Sicherheitselement mit optisch variabler 2-dimensionaler Prägestruktur
DE102017009226A1 (de) 2017-10-04 2019-04-04 Giesecke+Devrient Currency Technology Gmbh Optisch variables Durchsichtssicherheitselement und Datenträger
CN111093967A (zh) 2017-10-05 2020-05-01 伟福夫特科技公司 提供双色效应的光学结构
WO2019077419A1 (en) 2017-10-20 2019-04-25 Wavefront Technology, Inc. OPTICAL SWITCH DEVICES
CA3088210A1 (en) 2018-01-17 2019-07-25 Nanotech Security Corp. Nano-structures patterned on micro-structures
GB2572746B (en) 2018-03-22 2021-10-27 De La Rue Int Ltd Security elements and method of manufacture thereof
GB2572745B (en) * 2018-03-22 2021-06-09 De La Rue Int Ltd Security elements and methods of manufacture thereof
GB2572550B (en) * 2018-03-28 2020-07-22 De La Rue Int Ltd Optical device and method of manufacture thereof
DE102018003603A1 (de) 2018-05-03 2019-11-07 Giesecke+Devrient Currency Technology Gmbh Sicherheitselement, Datenträger und Verwendung
US10618340B2 (en) * 2018-05-16 2020-04-14 Viavi Solutions Inc. Security feature based on a single axis alignment of mirrors in a structured surface that forms a micro mirror array
DE102018004062A1 (de) 2018-05-18 2019-11-21 Giesecke+Devrient Currency Technology Gmbh Sicherheitselement mit Mikroreflektoren
DE102018004052A1 (de) * 2018-05-18 2019-11-21 Giesecke+Devrient Currency Technology Gmbh Optisch variables Sicherheitselement mit reflektivem Flächenbereich
DE102018004088A1 (de) 2018-05-18 2019-11-21 Giesecke+Devrient Currency Technology Gmbh Sicherheitselement mit Mikroreflektoren
KR20200002627A (ko) * 2018-06-29 2020-01-08 스미또모 가가꾸 가부시키가이샤 막의 제조 방법, 유기 el 소자의 제조 방법 및 막 제조용 잉크 조성물 세트
CN110936750A (zh) * 2018-09-21 2020-03-31 中钞特种防伪科技有限公司 光学防伪元件及防伪产品
EP3856534A1 (de) * 2018-09-24 2021-08-04 OVD Kinegram AG Optisch variables element, sicherheitsdokument, verfahren zur herstellung eines optisch variablen elements, verfahren zur herstellung eines sicherheitsdokuments
DE102018008041A1 (de) 2018-10-11 2020-04-16 Giesecke+Devrient Currency Technology Gmbh Ziffernblatt für eine Uhr
DE102018010078A1 (de) * 2018-12-20 2020-06-25 Giesecke+Devrient Currency Technology Gmbh Optisch variables Sicherheitselement
DE102019000785A1 (de) * 2019-02-04 2020-08-06 Giesecke+Devrient Currency Technology Gmbh Gitterstrukturbild zur Darstellung eines mehrfarbigen Beugungsbilds
WO2020162449A1 (ja) 2019-02-07 2020-08-13 凸版印刷株式会社 光学構造体およびアーティファクト低減方法
US11198316B2 (en) 2019-04-04 2021-12-14 Wavefront Technology, Inc. Optical structures providing dichroic effects
EP3938216A4 (de) 2019-04-19 2022-12-07 Wavefront Technology, Inc. Optische schaltvorrichtungen
DE102020000030A1 (de) * 2020-01-03 2021-07-08 Giesecke+Devrient Currency Technology Gmbh Optisch variables Sicherheitselement
CN111267535A (zh) * 2020-01-20 2020-06-12 烟台博源科技材料股份有限公司 一种新型磨砂效果包装材料的制备方法
DE102020000389A1 (de) * 2020-01-22 2021-07-22 Giesecke+Devrient Currency Technology Gmbh Darstellungselement für Lichtfleckenbild
FR3107004A1 (fr) * 2020-02-12 2021-08-13 Ccl Secure Pty Dispositif a effet optique
GB2594474B (en) * 2020-04-28 2022-05-11 Koenig & Bauer Banknote Solutions Sa Methods for designing and producing a security feature
DE102020004423A1 (de) 2020-07-22 2022-01-27 Giesecke+Devrient Currency Technology Gmbh Sicherheitsmerkmal mit kippungsabhängiger Motivdarstellung
US20220276502A1 (en) * 2020-10-07 2022-09-01 Wavefront Technology, Inc. Optical products, masters for fabricating optical products, and methods for manufacturing masters and optical products
DE102021002335A1 (de) 2021-05-03 2022-12-01 Giesecke+Devrient Currency Technology Gmbh Optisch variables sicherheitselement und wertdokument mit dem optisch variablen sicherheitselement
DE102021004910A1 (de) 2021-09-29 2023-03-30 Giesecke+Devrient Currency Technology Gmbh Darstellungselement mit einem oberhalb und unterhalb des Substrats schwebenden Bild
DE102022002470A1 (de) 2022-07-06 2024-01-11 Giesecke+Devrient Currency Technology Gmbh Optisch variables Flächenmuster, Wertdokument mit optisch variablem Flächenmuster und Verfahren zur Herstellung eines optisch variablen Flächenmusters
DE102022002839A1 (de) 2022-08-04 2024-02-15 Giesecke+Devrient Currency Technology Gmbh Sicherheitselement für ein Wertdokument mit optisch variablem Primärflächenmuster und verstecktem Sekundärflächenmuster und Verfahren zu dessen Herstellung
DE102022002840A1 (de) 2022-08-04 2024-02-15 Giesecke+Devrient Currency Technology Gmbh Sicherheitselement für ein Wertdokument mit lumineszierendem Sicherheitsmerkmal und Verfahren zu dessen Herstellung
DE102022003230A1 (de) 2022-09-02 2024-03-07 Giesecke+Devrient Currency Technology Gmbh Sicherheitselement mit farberzeugenden Nanostrukturen und Herstellverfahren dafür
DE102022003402A1 (de) 2022-09-15 2024-03-21 Giesecke+Devrient Currency Technology Gmbh Optisches Sicherheitselement mit Effektbereichen

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003068525A1 (de) * 2002-02-14 2003-08-21 Giesecke & Devrient Gmbh Sicherheitselement und sicherheitsdokument mit einem solchen sicherheitselement
WO2005038136A1 (de) * 2003-10-17 2005-04-28 Giesecke & Devrient Gmbh Sicherheitselement mit farbkippeffekt
WO2005042268A1 (de) * 2003-11-03 2005-05-12 Ovd Kinegram Ag Diffraktives sicherheitselement mit einem halbtonbild
WO2006013215A1 (en) * 2004-08-06 2006-02-09 Optaglio Sro A method of creating a three-dimensional image, a diffractive element and method of creating the same
DE102005061749A1 (de) * 2005-12-21 2007-07-05 Giesecke & Devrient Gmbh Optisch variables Sicherheitselement und Verfahren zu seiner Herstellung
DE102006016139A1 (de) 2006-04-06 2007-10-18 Ovd Kinegram Ag Mehrschichtkörper mit Volumen-Hologramm
DE102008008685A1 (de) * 2008-02-12 2009-08-13 Giesecke & Devrient Gmbh Sicherheitselement und Verfahren zu seiner Herstellung

Family Cites Families (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4012843A (en) 1973-04-25 1977-03-22 Hitachi, Ltd. Concave diffraction grating and a manufacturing method thereof
US4184700A (en) 1975-11-17 1980-01-22 Lgz Landis & Gyr Zug Ag Documents embossed with optical markings representing genuineness information
CH594936A5 (de) 1975-11-17 1978-01-31 Landis & Gyr Ag
US4892385A (en) 1981-02-19 1990-01-09 General Electric Company Sheet-material authenticated item with reflective-diffractive authenticating device
JPS57208514A (en) 1981-06-19 1982-12-21 Toshiba Corp Manufacture of diffraction grating
US4484797A (en) 1981-07-20 1984-11-27 Rca Corporation Diffractive subtractive color filter responsive to angle of incidence of polychromatic illuminating light
JPS5912403A (ja) 1982-07-12 1984-01-23 Matsushita Electric Ind Co Ltd 局所的グレ−テイング作製方法
CH659433A5 (de) 1982-10-04 1987-01-30 Landis & Gyr Ag Dokument mit einem beugungsoptischen sicherheitselement.
SE436023B (sv) 1983-03-31 1984-11-05 Tetra Pak Int Roterbar vinda for ingrepp i register med en biglinjeforsedd materialbana roterbar vinda for ingrepp i register med en biglinjeforsedd materialbana
JPS608802A (ja) 1983-06-29 1985-01-17 Agency Of Ind Science & Technol ブレ−ズド格子の製造方法
NZ218573A (en) 1985-12-23 1989-11-28 Optical Coating Laboratory Inc Optically variable inks containing flakes
DE3866230D1 (de) 1988-03-03 1991-12-19 Landis & Gyr Betriebs Ag Dokument.
WO1989008166A1 (en) * 1988-03-04 1989-09-08 GAO GESELLSCHAFT FÜR AUTOMATION UND ORGANISATION m Security element in the form of a thread or a ribbon for insertion in security documents, and process for producing it
US4838648A (en) 1988-05-03 1989-06-13 Optical Coating Laboratory, Inc. Thin film structure having magnetic and color shifting properties
DE58906429D1 (de) 1988-09-30 1994-01-27 Landis & Gyr Business Support Beugungselement.
EP0375833B1 (de) 1988-12-12 1993-02-10 Landis &amp; Gyr Technology Innovation AG Optisch variables Flächenmuster
DE68925484T2 (de) 1988-12-19 1996-06-27 Australia Reserve Bank Diffraktionsgitter
US5105306A (en) 1989-01-18 1992-04-14 Ohala John J Visual effect created by an array of reflective facets with controlled slopes
US5428479A (en) 1989-09-04 1995-06-27 Commonwealth Scientific And Industrial Research Organisation Diffraction grating and method of manufacture
EP0490923B1 (de) 1989-09-04 1999-02-03 Commonwealth Scientific And Industrial Research Organisation Lichtbrechungsnetz und verfahren zur herstellung
ATE105784T1 (de) 1989-12-01 1994-06-15 Landis & Gyr Business Support Anordnung zur verbesserung der fälschungssicherheit eines wertdokumentes.
CA2060057C (en) 1991-01-29 1997-12-16 Susumu Takahashi Display having diffraction grating pattern
WO1993018419A1 (en) 1992-03-12 1993-09-16 Commonwealth Scientific And Industrial Research Organisation Security diffraction grating with special optical effects
DE69428700T2 (de) 1993-05-25 2002-08-01 Commonwealth Scientific And Industrial Research Organisation, Campbell Diffraktionsvorrichtung mit mehreren abbildungen
WO1995004948A1 (en) 1993-08-06 1995-02-16 Commonwealth Scientific And Industrial Research Organisation A diffractive device
US6088161A (en) 1993-08-06 2000-07-11 The Commonwealth Of Australia Commonwealth Scientific And Industrial Research Organization Diffractive device having a surface relief structure which generates two or more diffraction images and includes a series of tracks
US5770120A (en) 1994-12-09 1998-06-23 Olympus Optical Co., Ltd. Method of manufacturing die and optical element performed by using the die
DE19506880A1 (de) 1995-02-17 1996-08-22 Hertz Inst Heinrich Verfahren zur Herstellung von optischen Übergitterstrukturen mittels Elektronenstrahllithographie
PL177897B1 (pl) 1995-10-31 2000-01-31 Remigiusz Gajda Element optycznie zmienny oraz sposób zapisu elementu optycznie zmiennego i urządzenie do zapisu elementu optycznie zmiennego
US6157487A (en) 1995-11-28 2000-12-05 Ovd Kinegram Ag Optically variable surface pattern
CN1193299A (zh) 1996-02-29 1998-09-16 厄纳斯特·祝 含有可写的透明全息图的仿伪文件
GB9617314D0 (en) 1996-08-17 1996-09-25 Fryco Ltd Optical images
GB9623214D0 (en) 1996-11-07 1997-01-08 Fryco Ltd Optical images
AUPO384796A0 (en) 1996-11-26 1996-12-19 Commonwealth Scientific And Industrial Research Organisation Colour image diffractive device
GB9710818D0 (en) * 1997-05-27 1997-07-23 Applied Holographics Optically variable devices
AU738289B2 (en) 1997-12-09 2001-09-13 Commonwealth Scientific And Industrial Research Organisation A diffractive device with three-dimensional effects
GB9813205D0 (en) 1998-06-18 1998-08-19 Rue De Int Ltd Methods of providing images on substrates
EP1123215A1 (de) 1998-09-08 2001-08-16 Commonwealth Scientific And Industrial Research Organisation Dreidimensionale mikrostruktur
US7517578B2 (en) 2002-07-15 2009-04-14 Jds Uniphase Corporation Method and apparatus for orienting magnetic flakes
US6987590B2 (en) 2003-09-18 2006-01-17 Jds Uniphase Corporation Patterned reflective optical structures
AU2001231674C1 (en) 2000-04-15 2006-07-27 Ovd Kinegram Ag Pattern
AU2001270833A1 (en) 2000-07-18 2002-01-30 Optaglio Limited Diffractive device
AUPR483301A0 (en) 2001-05-08 2001-05-31 Commonwealth Scientific And Industrial Research Organisation An optical device and methods of manufacture
DE10129939B4 (de) 2001-06-20 2006-06-22 Ovd Kinegram Ag Optisch variables Flächenmuster
DE10146508C2 (de) * 2001-09-21 2003-07-24 Ovd Kinegram Ag Zug Etikett mit einem diffraktiven Strichcode und Leseanordnung für solche Etiketten
US7106516B2 (en) 2002-02-04 2006-09-12 Applied Films Gmbh & Co. Kg Material with spectrally selective reflection
DE10214330A1 (de) 2002-03-28 2003-10-16 Giesecke & Devrient Gmbh Sicherheitselement und Verfahren zu seiner Herstellung
DE10221491A1 (de) * 2002-05-14 2003-12-04 Kurz Leonhard Fa Optisch variables Flächenmuster
DE10243863A1 (de) 2002-08-13 2004-02-26 Giesecke & Devrient Gmbh Datenträger mit einem optisch variablen Element
DE10254500B4 (de) 2002-11-22 2006-03-16 Ovd Kinegram Ag Optisch variables Element und dessen Verwendung
DE10318157A1 (de) * 2003-04-17 2004-11-11 Leonhard Kurz Gmbh & Co. Kg Folie und optisches Sicherungselement
DE10328759B4 (de) * 2003-06-25 2006-11-30 Ovd Kinegram Ag Optisches Sicherheitselement und System zur Visualisierung von versteckten Informationen
DE10361130A1 (de) 2003-12-22 2005-07-28 Giesecke & Devrient Gmbh Sicherheitselement mit Beugungsstruktur und Verfahren zu seiner Herstellung
EP1580020A1 (de) 2004-03-24 2005-09-28 Kba-Giori S.A. Stichtiefdruckplatte
DE102004017094A1 (de) * 2004-04-07 2005-11-03 Leonhard Kurz Gmbh & Co. Kg Verfahren zur Herstellung eines Kraftfahrzeug-Nummernschildes sowie ein Kraftfahrzeug-Nummernschild
EP1778501B2 (de) 2004-08-12 2018-09-26 Giesecke+Devrient Currency Technology GmbH Sicherheitselement mit träger
EP1658992A1 (de) 2004-11-23 2006-05-24 European Central Bank Verfahren zur Erzeugung von Tastsicherheitsmerkmalen auf Sicherheitsdokumente
DE102005028162A1 (de) 2005-02-18 2006-12-28 Giesecke & Devrient Gmbh Sicherheitselement und Verfahren zu seiner Herstellung
GB0504959D0 (en) 2005-03-10 2005-04-20 Rue International De La Ltd Security device based on customised microprism film
EP2458423A3 (de) 2005-05-18 2013-01-09 Visual Physics, LLC Bilddarstellung und mikrooptisches Sicherheitssystem
DE102005025095A1 (de) 2005-06-01 2006-12-07 Giesecke & Devrient Gmbh Datenträger und Verfahren zu seiner Herstellung
DE102005027380B4 (de) 2005-06-14 2009-04-30 Ovd Kinegram Ag Sicherheitsdokument
DE102005062132A1 (de) 2005-12-23 2007-07-05 Giesecke & Devrient Gmbh Sicherheitselement
US8488242B2 (en) 2006-06-20 2013-07-16 Opsec Security Group, Inc. Optically variable device with diffraction-based micro-optics, method of creating the same, and article employing the same
JP4967569B2 (ja) 2006-09-27 2012-07-04 凸版印刷株式会社 偽造防止媒体および偽造防止ステッカー
DE102006050047A1 (de) * 2006-10-24 2008-04-30 Giesecke & Devrient Gmbh Durchsichtssicherheitselement mit Mikrostrukturen
DE102007005884B4 (de) 2007-02-07 2022-02-03 Leonhard Kurz Stiftung & Co. Kg Sicherheitsdokument
DE102007039996B4 (de) 2007-02-07 2020-09-24 Leonhard Kurz Stiftung & Co. Kg Sicherheitselement für ein Sicherheitsdokument und Verfahren zu seiner Herstellung
DE102007029204A1 (de) 2007-06-25 2009-01-08 Giesecke & Devrient Gmbh Sicherheitselement
DE102007029203A1 (de) 2007-06-25 2009-01-08 Giesecke & Devrient Gmbh Sicherheitselement
DE102007063275A1 (de) * 2007-12-27 2009-07-02 Giesecke & Devrient Gmbh Sicherheitsmerkmal für hohe Kippwinkel
DE102008013167A1 (de) 2008-03-07 2009-09-10 Giesecke & Devrient Gmbh Sicherheitselement und Verfahren zu seiner Herstellung
DE102008046128B4 (de) 2008-09-05 2024-03-07 Giesecke+Devrient Currency Technology Gmbh Optisch variables Sicherheitselement mit Mattbereich
DE102009056934A1 (de) 2009-12-04 2011-06-09 Giesecke & Devrient Gmbh Sicherheitselement, Wertdokument mit einem solchen Sicherheitselement sowie Herstellungsverfahren eines Sicherheitselementes

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003068525A1 (de) * 2002-02-14 2003-08-21 Giesecke & Devrient Gmbh Sicherheitselement und sicherheitsdokument mit einem solchen sicherheitselement
WO2005038136A1 (de) * 2003-10-17 2005-04-28 Giesecke & Devrient Gmbh Sicherheitselement mit farbkippeffekt
WO2005042268A1 (de) * 2003-11-03 2005-05-12 Ovd Kinegram Ag Diffraktives sicherheitselement mit einem halbtonbild
WO2006013215A1 (en) * 2004-08-06 2006-02-09 Optaglio Sro A method of creating a three-dimensional image, a diffractive element and method of creating the same
DE102005061749A1 (de) * 2005-12-21 2007-07-05 Giesecke & Devrient Gmbh Optisch variables Sicherheitselement und Verfahren zu seiner Herstellung
DE102006016139A1 (de) 2006-04-06 2007-10-18 Ovd Kinegram Ag Mehrschichtkörper mit Volumen-Hologramm
DE102008008685A1 (de) * 2008-02-12 2009-08-13 Giesecke & Devrient Gmbh Sicherheitselement und Verfahren zu seiner Herstellung

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9827802B2 (en) 2009-12-04 2017-11-28 Giesecke+Devrient Currency Technology Gmbh Security element, value document comprising such a security element, and method for producing such a security element
US10525758B2 (en) 2009-12-04 2020-01-07 Giesecke+Devrient Currency Technology Gmbh Security element, value document comprising such a security element, and method for producing such a security element
WO2019219238A1 (de) * 2018-05-18 2019-11-21 Giesecke+Devrient Currency Technology Gmbh Sicherheitselement mit bereichsweise metallisiertem flächenbereich, herstellungsverfahren und prägewerkzeug
WO2020078582A1 (de) * 2018-10-15 2020-04-23 Giesecke+Devrient Currency Technology Gmbh Sicherheitselement mit mikroreflektoren zur perspektivischen darstellung eines motivs
CN112805155A (zh) * 2018-10-15 2021-05-14 捷德货币技术有限责任公司 包括用于图案的透视图示的微反射镜的防伪元件
US11325412B2 (en) 2018-10-15 2022-05-10 Giesecke+Devrient Currency Technology Gmbh Security element comprising micro-reflectors for a perspective representation of a motif
EP4389443A1 (de) * 2022-12-21 2024-06-26 Hueck Folien Gesellschaft m.b.H. Sicherheitselement
GB202406660D0 (en) 2024-05-10 2024-06-26 Iqs Group S R O Optically variable image device

Also Published As

Publication number Publication date
EP2507069A2 (de) 2012-10-10
WO2011066990A3 (de) 2011-07-28
US20130093172A1 (en) 2013-04-18
US9827802B2 (en) 2017-11-28
DE102009056934A1 (de) 2011-06-09
CA2780934A1 (en) 2011-06-09
US20180001690A1 (en) 2018-01-04
CN102905909B (zh) 2015-03-04
EP3059093B1 (de) 2021-03-31
EP2507069B1 (de) 2018-08-22
US10525758B2 (en) 2020-01-07
BR112012013451A2 (pt) 2018-10-09
AU2010327031B2 (en) 2014-07-17
RU2573346C2 (ru) 2016-01-20
CN102905909A (zh) 2013-01-30
RU2012127687A (ru) 2014-01-20
AU2010327031C1 (en) 2015-11-12
CA2780934C (en) 2019-08-06
BR112012013451B1 (pt) 2019-12-17
AU2010327031A1 (en) 2012-06-21
WO2011066990A2 (de) 2011-06-09

Similar Documents

Publication Publication Date Title
EP2507069B1 (de) Sicherheitselement, wertdokument mit einem solchen sicherheitselement sowie herstellungsverfahren eines sicherheitselementes
EP2507068B1 (de) Sicherheitselement, wertdokument mit einem solchen sicherheitselement sowie herstellungsverfahren eines sicherheitselementes
EP3339048B1 (de) Sicherheitselement mit reflektivem flächenbereich
EP2864130B1 (de) Dekorelement sowie sicherheitsdokument mit einem dekorelement
DE102011014114B3 (de) Mehrschichtkörper und Verfahren zur Herstellung eines Mehrschichtkörpers
EP2588276B1 (de) Sicherheitselement sowie wertdokument mit einem solchen sicherheitselement
EP2633344B1 (de) Optisch variables flächenmuster
WO2009024265A1 (de) Gitterbild
EP2853411B1 (de) Sicherheitselement mit Linsenrasterbild
EP2934904B1 (de) Sicherheitselement mit linsenrasterbild
EP2889152B1 (de) Sicherheitselement zur Darstellung zumindest einer optisch variablen Information
EP3242801B1 (de) Verfahren zur herstellung eines sicherheitselements sowie ein sicherheitselement
WO2012055537A2 (de) Optisch variables flächenmuster
EP3000614B1 (de) Optisch variables sicherheitselement mit reflektivem flächenbereich
WO2018172528A2 (de) Sicherheitselement und verfahren zur herstellung eines sicherheitselements

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 2507069

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170224

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GIESECKE+DEVRIENT CURRENCY TECHNOLOGY GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181221

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTG Intention to grant announced

Effective date: 20200917

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20201104

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 2507069

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1376504

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010016883

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210802

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010016883

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010016883

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211203

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211203

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101203

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231219

Year of fee payment: 14

Ref country code: BG

Payment date: 20231220

Year of fee payment: 14

Ref country code: AT

Payment date: 20231214

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240110

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231229

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331