[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2928582A1 - Absorbent solution made from amines belonging to the n-alkyl-hydroxypiperidine family and method for eliminating acid compounds from a gaseous effluent with such a solution - Google Patents

Absorbent solution made from amines belonging to the n-alkyl-hydroxypiperidine family and method for eliminating acid compounds from a gaseous effluent with such a solution

Info

Publication number
EP2928582A1
EP2928582A1 EP13808112.0A EP13808112A EP2928582A1 EP 2928582 A1 EP2928582 A1 EP 2928582A1 EP 13808112 A EP13808112 A EP 13808112A EP 2928582 A1 EP2928582 A1 EP 2928582A1
Authority
EP
European Patent Office
Prior art keywords
weight
absorbent solution
methyl
amine
hydroxypiperidine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13808112.0A
Other languages
German (de)
French (fr)
Inventor
Julien Grandjean
Bruno Delfort
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP2928582A1 publication Critical patent/EP2928582A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1468Removing hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/38Removing components of undefined structure
    • B01D53/40Acidic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/06Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D211/36Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D211/40Oxygen atoms
    • C07D211/42Oxygen atoms attached in position 3 or 5
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/06Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D211/36Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D211/40Oxygen atoms
    • C07D211/44Oxygen atoms attached in position 4
    • C07D211/46Oxygen atoms attached in position 4 having a hydrogen atom as the second substituent in position 4
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/102Removal of contaminants of acid contaminants
    • C10L3/104Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • B01D2252/103Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20421Primary amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20426Secondary amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20431Tertiary amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20436Cyclic amines
    • B01D2252/20442Cyclic amines containing a piperidine-ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20478Alkanolamines
    • B01D2252/20484Alkanolamines with one hydroxyl group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/50Combinations of absorbents
    • B01D2252/504Mixtures of two or more absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/22Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/304Hydrogen sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/44Deacidification step, e.g. in coal enhancing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • C10L2290/541Absorption of impurities during preparation or upgrading of a fuel

Definitions

  • the present invention relates to the field of deacidification processes of a gaseous effluent.
  • the invention is advantageously applicable to the treatment of industrial gas and natural gas.
  • Absorption processes employing an aqueous amine solution are commonly used to remove the acidic compounds (in particular CO 2 , H 2 S, COS, CS 2 , SO 2 and mercaptans) present. in a gas.
  • the gas is deacidified by contact with the absorbent solution, and the absorbent solution is thermally regenerated.
  • US 6852144 discloses a method of removing acidic compounds from hydrocarbons. The method uses a water-N-methyldiethanolamine or water-triethanolamine absorbent solution containing a high proportion of a compound belonging to the following group: piperazine and / or methylpiperazine and / or morpholine.
  • a limitation of the absorbent solutions commonly used in deacidification applications is an insufficient selectivity of absorption of H 2 S with respect to C0 2 .
  • selective removal of H 2 S is sought with a minimum of C0 2 absorption. This constraint is particularly important for gases to be treated already containing a CO 2 content less than or equal to the desired specification.
  • a maximum absorption capacity of H 2 S is then sought with a maximum selectivity of absorption of H 2 S with respect to CO 2 . This selectivity makes it possible to recover an acid gas at the outlet of the regenerator having the highest concentration possible in H 2 S, which limits the size of the units of the sulfur chain downstream of the treatment and guarantees a better operation.
  • an H 2 S enrichment unit is needed to concentrate the acid gas in H 2 S.
  • the most selective amine is also sought.
  • Tertiary amines such as N-methyldiethanolamine (or MDEA), or congested secondary amines with slow reaction kinetics with C0 2 are commonly used, but have limited selectivities at high H 2 S loading rates.
  • Another limitation of the absorbent solutions commonly used in total deacidification applications is the kinetics of C0 2 or COS pickup that are too slow.
  • the desired specifications on the C0 2 or in COS are very advanced, one seeks a kinetics of reaction as fast as possible so as to reduce the height of the column of absorption column. This pressurized equipment, typically between 40 bars and 70 bars, represents a significant part of the investment costs of the process.
  • Another limitation of the absorbent solutions commonly used today is an energy consumption necessary for the regeneration of the solvent which is too important. This is particularly true in the case where the partial pressure of acid gases is low.
  • the partial pressure of acid gases is low.
  • the regeneration energy is about 3.7 GJ per tonne of CO 2 captured.
  • Such energy consumption represents a considerable operating cost for the C0 2 capture process.
  • the first two stations are proportional to the flow rates of absorbent solution that must be circulated in the unit to achieve a given specification. To reduce the energy consumption associated with the regeneration of the solvent, it is therefore preferable once again to maximize the cyclic capacity of the solvent.
  • the last item concerns the energy to be supplied to break the bond created between the amine used and CO 2. To reduce the energy consumption associated with the regeneration of the absorbent solution, it is therefore preferable to minimize the ⁇ linkage enthalpy. Nevertheless, it is not easy to find a solvent with a high cyclic capacity and a low reaction enthalpy. The best solution absorbing from an energy point of view is therefore that which will have the best compromise between a strong cyclic capacity ⁇ and a low enthalpy of connection ⁇ .
  • the chemical stability of the absorbent solution is also a key aspect in the deacidification and gas treatment processes.
  • the degradation behavior is a limitation for the commonly used absorbent solutions, especially under regeneration conditions at temperatures between 160 and 180 ° C envisaged in CO 2 capture processes. These conditions make it possible to recover CO 2 at a pressure of between 5 and 10 bars, making it possible to save energy on the compression of the CO 2 captured for the purpose of its transport and storage.
  • tertiary amines have a capture kinetics C0 2 slower than primary or secondary amines uncrowded.
  • tertiary amines have H 2 S capture kinetics instantaneous, which allows for selective removal of H 2 S based on distinct kinetic performance.
  • US Pat. No. 4,483,333 describes a process for the selective absorption of acid gases by an absorbent containing a tertiary alkanolamine or a tertiary aminoetheralcohol whose nitrogen is included in a heterocycle.
  • a compound of interest is N-methyl-2-hydroxymethylpiperidine whose capture capacities and absorption rate are described.
  • this document does not describe the performance of this molecule in terms of selective removal of H 2 S in a gas containing H 2 S and CO 2 .
  • tertiary alkanolamines whose nitrogen is included in a heterocycle are not equivalent in performance for their use in absorbent solution formulations for the treatment of acid gases in an industrial process.
  • Certain heterocyclic tertiary alkanolamine-type molecules have insufficient performances, in particular as regards the selective removal of H 2 S in a gas containing H 2 S and CO 2 .
  • other molecules make it possible to improve the absorption selectivity of H 2 S relative to tertiary amines of reference, such as methyldiethanolamine.
  • These same molecules also have acidic absorption performance, especially CO 2 and a particularly high chemical stability.
  • the present invention relates to the use of particular molecules belonging to the family of tertiary heterocyclic alkanolamines having a optimum performance between C02 capture capacity, selective removal of H 2 S, and thermal stability, in the context of the deacidification of a gas.
  • N-alkyl-hydroxypiperidines These molecules meet the general definition of N-alkyl-hydroxypiperidines. These heterocyclic tertiary alkanolamines have the particularity of having a single hydroxyl group directly bonded to one of the carbon atoms of the heterocycle, this heterocycle being a piperidine ring. More specifically, these molecules are N-alkyl-3-hydroxypiperidines and N-alkyl-4-hydroxypiperidines corresponding to the general formula (I):
  • N-alkyl-hydroxypiperidines according to the invention are particularly distinguished from the document WO2009 / 1 10586A1 in which the R 2 group can in no case be a hydroxyl group.
  • Another subject of the invention relates to a process for the elimination of acidic compounds contained in a gaseous effluent, in which an absorption step of the acidic compounds is carried out by bringing the effluent into contact with the absorbent solution according to the invention. .
  • N-alkyl-hydroxypiperidine compounds according to the invention makes it possible to obtain greater acid gas absorption capacities than the reference amines. This performance is increased due to greater basicity.
  • the compounds according to the invention have a selectivity towards H 2 S that is greater than the reference amines.
  • the invention makes it possible to accelerate the absorption kinetics of the COS and C0 2 , relative to an MDEA solution containing the same amount of primary or secondary amine. This gain in COS and CO 2 absorption kinetics results in savings on the cost of the absorption column in cases where removal of this compound at high specifications (1 ppm) is required.
  • the subject of the present invention is an absorbent solution for removing acidic compounds contained in a gaseous effluent, comprising:
  • R is an alkyl radical containing one to six carbon atoms, and preferably one to three carbon atoms. carbon.
  • the nitrogenous compound may be chosen from the following compounds listed by way of non-limiting example of the formula en above
  • the solution may comprise between 10% and 90% by weight of said nitrogenous compound, preferably between 20% and 60% by weight, very preferably between 25% and 50% by weight; and the solution may comprise between 10% and 90% by weight of water, preferably between 40% and 80% by weight of water, very preferably from 50% to 75% of water.
  • the solution may comprise an additional amine, said additional amine being a tertiary amine, such as methyldiethanolamine, or a secondary amine having two tertiary carbon atoms alpha to the nitrogen, or a secondary amine having at least one Quaternary carbon in alpha of nitrogen.
  • the solution may comprise between 10% and 90% by weight of said additional amine, preferably between 10% and 50% by weight, very preferably between 10% and 30% by weight.
  • the solution may comprise a compound containing at least one primary or secondary amine function.
  • the solution may comprise a concentration up to 30% by weight of said compound, preferably less than 15% by weight, preferably less than 10% by weight, and at least 0.5% by weight.
  • the solution may comprise a concentration of at least 0.5% by weight of said compound.
  • the compound can be chosen from:
  • 1,6-hexanediamine and all its variously N-alkylated derivatives such as, for example, N, N'-dimethyl-1,6-hexanediamine, N-methyl-1,6-hexanediamine or N, N ', N'- trimethyl-1,6-hexanediamine.
  • the solution may comprise a physical solvent chosen from methanol and sulfolane.
  • the invention also relates to a process for removing acidic compounds contained in a gaseous effluent, in which an absorption step of the acidic compounds is carried out by contacting the effluent with an absorbent solution according to the invention.
  • the absorption step of the acid compounds can be carried out at a pressure between 1 bar and 120 bar, and at a temperature between 20 ⁇ and 100 ⁇ €.
  • a gaseous effluent depleted of acidic compounds and an absorbent solution loaded with acidic compounds there is obtained a gaseous effluent depleted of acidic compounds and an absorbent solution loaded with acidic compounds, and at least one regeneration step of the absorbent solution loaded with acidic compounds is carried out.
  • the regeneration step can be carried out at a pressure of between 1 bar and 10 bar and a temperature of between 100 ° C. and 180 ° C.
  • the gaseous effluent may be chosen from natural gas, synthesis gases, combustion fumes, refinery gases, acid gases from an amine unit, gases from a tail reduction unit of Claus process, biomass fermentation gases, cement gases, incinerator fumes.
  • FIG. 1 represents a schematic diagram of a process for treating acid gas effluents.
  • FIG. 2 represents a synthesis scheme of an N-alkyl-hydroxypiperidine according to the invention from a picoline.
  • FIG. 3 represents a synthesis scheme of the N-methyl-4-hydroxypiperidine according to the invention starting from methyl acrylate.
  • the present invention provides an aqueous solution and a process for removing acidic compounds from a gaseous effluent.
  • the aqueous solution according to the invention comprises at least one nitrogen compound chosen from the group of N-alkyl-3-hydroxypiperidines and N-alkyl-4-hydroxypiperidines
  • the molecules according to the invention can be synthesized using all the routes allowed by organic chemistry. For each of the molecules of the invention, some may be cited without being exhaustive.
  • N-alkyl-hydroxypiperidines of the invention can be synthesized by any pathway permitted by organic chemistry.
  • the synthesis can be carried out from widely available industrial products which are the 3 or 4-methylpyridines also called 3 or 4-picolines according to a general reaction scheme illustrated in FIG.
  • reaction 1 The ammoxidation reaction of the 3 or 4-picolines leads to 3 or 4 cyanopyridines which are then converted into 3 or 4-pyridinecarboxamides according to basic hydrolysis (reaction 2).
  • the 3 or 4-pyridinecarboxamides can then be converted to 3 or 4-aminopyridines in basic medium and in the presence for example of sodium hypochlorite according to the so-called "Hofman reaction” reaction (reaction 3).
  • the 3 or 4-aminopyridines can then be converted into 3 or 4-hydroxypyridines in a diazotization reaction which is carried out in the presence of alkaline nitrite, for example sodium nitrite followed by acid hydrolysis (reaction 4).
  • the 3 or 4-hydroxypyridines obtained are then subjected to a hydrogenation of the aromatic ring (reaction 5).
  • This well-known reaction leads to 3 or 4-hydroxypiperidines also called 3- or 4-piperidinols.
  • the 3 or 4-hydroxypiperidines will undergo a so-called N-alkylation (reaction 6) to yield 1-alkyl-3 or 4-hydroxypiperidines.
  • This N-alkylation reaction may be carried out for example by condensation of the 3 or 4-hydroxypiperidines with an alkyl halide.
  • this N-alkylation reaction will be carried out by condensation of the 3 or 4-hydroxypiperidines with either an alcohol, an aldehyde or a ketone in the presence of hydrogen and a suitable catalyst.
  • reaction 1 methyl-di- (2- (methylcarboxy) ethyl) amine
  • reaction 2 methyl-di- (2- (methylcarboxy) ethyl) amine
  • reaction 3 1-methyl-3-methylcarboxy-4-piperidone
  • 1-methyl-4-piperidone is obtained by carrying out a decarboxylation reaction according to a well-known procedure (reaction 4). Finally, the carbonyl function of 1-methyl-4-piperidone is hydrogenated to yield 1-methyl-4-hydroxypiperidine (reaction 5).
  • This sequence of reactions illustrated here with methylamine as a precursor may be applied to any other primary amine to yield the family of 1-alkyl-4-hydroxypiperidines.
  • the absorbent solution used in the process according to the invention comprises: a - water
  • R being an alkyl radical containing one to six carbon atoms, and preferably one to three carbon atoms.
  • the hydroxyl radical may be located at the 3-position or at the 4-position with respect to the nitrogen atom of the piperidine ring.
  • the absorbent solution according to the invention may comprise a compound te corresponding to the general formula (I), chosen from the following compounds:
  • the alkylaminopiperazine may be in variable concentration in the absorbent solution, for example between 10% and 90% by weight, preferably between 20% and 60% by weight, very preferably between 25% and 50% by weight.
  • the absorbent solution may contain from 10% to 90% by weight of water, preferably from 40% to 80% by weight of water, very preferably from 50% to 75% water.
  • the absorbent solution may also contain a tertiary amine, for example methyldiethanolamine, triethanolamine, diethylmonoethanolamine, dimethylmonoethanolamine, ethyldiethanolamine, or secondary having a severe steric hindrance, this bulk being defined either by the presence of two tertiary carbons in alpha of the nitrogen, or by at least one quaternary carbon in alpha of the nitrogen.
  • concentration of tertiary amine or secondary amine severely congested in the absorbent solution may be between 10% and 90% by weight, preferably between 10% and 50% by weight, very preferably between 10% and 30% by weight.
  • the absorbent solution may contain a compound containing at least one primary or secondary amine function.
  • the absorbent solution comprises up to a concentration of 30% by weight, preferably less than 15% by weight, preferably less than 10% by weight of said compound containing at least one primary or secondary amine function.
  • the absorbent solution comprises at least 0.5% by weight of said compound containing at least one primary or secondary amine function. Said compound makes it possible to accelerate the absorption kinetics of the COS and, in certain cases, the CO 2 contained in the gas to be treated.
  • 1,6-hexanediamine and all its variously N-alkylated derivatives such as, for example, N, N'-dimethyl-1,6-hexanediamine, N-methyl-1,6-hexanediamine or N, N ', N'- trimethyl-1,6-hexanediamine.
  • the absorbent solution may contain a physical solvent selected from methanol and sulfolane.
  • the absorbent solution can be used to deacidify the following gaseous effluents: natural gas, synthesis gases, combustion fumes, refinery gases, acid gases from an amine unit, gases from a unit Claus process bottoms, biomass fermentation gases, cement gases, incinerator fumes.
  • gaseous effluents contain one or more acidic compounds: CO 2 , H 2 S, mercaptans, COS, CS 2, SO 2.
  • the combustion fumes are produced in particular by the combustion of hydrocarbons, biogas, coal in a boiler or for a combustion gas turbine, for example for the purpose of producing electricity.
  • the method according to the invention can be used to absorb at least 70%, preferably at least 80% or even at least 90% of the CO 2 contained in the combustion fumes.
  • These fumes generally have a temperature of between 20 and 60 ° C., a pressure of between 1 and 5 bar and may comprise between 50 and 80% of nitrogen, between 5 and 40% of carbon dioxide, and between 1 and 20% of carbon dioxide. oxygen, and some impurities such as SOx and NOx, if they have not been removed upstream of the deacidification process.
  • the process according to the invention is particularly well adapted to absorb the CO 2 contained in combustion fumes comprising a low CO 2 partial pressure, for example a CO 2 partial pressure of less than 200 mbar.
  • the invention also relates to a process for deacidifying a gaseous effluent from the aqueous solution according to the invention. This process is carried out, schematically, by performing an absorption step followed by a regeneration step, for example as shown in FIG.
  • the absorption step consists of bringing the gaseous effluent 1 into contact with the absorbent solution 4.
  • the gaseous effluent 1 is introduced at the bottom of C1, the absorbent solution is introduced at the head of C1 .
  • Column C1 is provided with gas-liquid contacting means, for example loose packing, structured packing or distillation trays.
  • gas-liquid contacting means for example loose packing, structured packing or distillation trays.
  • the amine functions of the molecules of the absorbent solution react with the acidic compounds contained in the effluent, so as to obtain a gaseous effluent depleted of acidic compounds 2 discharged at the head of C1, and an acid-enriched absorbent solution.
  • 3 evacuated at the bottom of C1 to be regenerated.
  • the regeneration step consists in particular in heating and, optionally, in expanding, the absorbent solution enriched in acidic compounds in order to release the acidic compounds in gaseous form.
  • the absorbent solution enriched in acidic compounds 3 is introduced into the heat exchanger E1, where it is heated by the stream 6 from the regeneration column C2.
  • the heated solution at the outlet of E1 is introduced into the regeneration column C2.
  • the regeneration column C2 is equipped with internal contacting between gas and liquid, for example trays, loose or structured packings.
  • the bottom of column C2 is equipped with a reboiler R1 which provides the heat necessary for regeneration by vaporizing a fraction of the absorbent solution.
  • the absorption step of the acidic compounds can be carried out at a pressure in C1 of between 1 bar and 120 bar, preferably between 20 bar and 100 bar for the treatment of a natural gas, preferably between 1 bar and 3 bar. for the treatment of industrial fumes, and at a temperature in C1 of between 20% and 80%, preferably between 30 ° C and 90 ° C, or even between 30 and 60 ° C.
  • the regeneration step of the process according to the invention can be carried out by thermal regeneration, optionally supplemented by one or more expansion steps.
  • the regeneration can be carried out at a pressure in C2 of between 1 bar and 5 bar, or even up to 10 bar, and at a temperature in C2 of between ⁇ ⁇ ' ⁇ and 180 ° C., preferably of between 130 ° and 170 ° C. vs.
  • the regeneration temperature in C2 is between 155 ° C and ⁇ ⁇ ' ⁇ in the case where it is desired to reinject the acid gases.
  • the regeneration temperature in C2 is between 115 ° C and 130 ° in the case where the acid gas is sent to the atmosphere or in a downstream treatment process, such as a Claus process or a treatment method. of tail gas.
  • the process according to the invention can be used to deacidify a synthesis gas.
  • the synthesis gas contains carbon monoxide CO, hydrogen H 2 (generally in a ratio H 2 / CO equal to 2), water vapor (generally at saturation at the temperature where the washing is carried out) and carbon dioxide C0 2 (of the order of ten percent).
  • the pressure is generally between 20 and 30 bar, but can reach up to 70 bar. It contains, in addition, sulfur impurities (H 2 S, COS, etc.), nitrogen (NH 3 , HCN) and halogenated impurities.
  • the process according to the invention can be implemented to deacidify a natural gas.
  • the natural gas consists mainly of gaseous hydrocarbons, but can contain several of the following acidic compounds: C0 2 , H 2 S, mercaptans, COS, CS2.
  • the content of these acidic compounds is very variable and can be up to 40% for CO 2 and H 2 S.
  • the temperature of the natural gas can be between 20 ° and 100 ° C.
  • the pressure of the natural gas to be treated may be between 10 and 120 bar.
  • the invention can be implemented to achieve specifications generally imposed on the deacidified gas, which are 2% of C0 2 , or even 50 ppm of C0 2 to then perform a liquefaction of natural gas and 4 ppm H 2 S and 10 to 50 ppm volume of total sulfur.
  • the absorption is carried out in a liquid volume of 50 cm 3 by bubbling a gaseous stream consisting of a nitrogen mixture: carbon dioxide: hydrogen sulphide of 89: 10: 1 in volume proportions, of a flow rate of 30NL / h for 90 minutes.
  • This selectivity S is defined as follows:
  • This example illustrates the gains in the degree of charge and selectivity that can be achieved with an absorbent solution according to the invention, comprising 50% by weight of N-methyl-4-hydroxypiperidine or 50% by weight of N-methyl-3-hydroxypiperidine. or 49% by weight of N-ethyl-4-hydroxypiperidine compared to the reference absorbent solution (MDEA 47%)
  • an absorbent solution according to the invention comprising 50% by weight of N-methyl-4-hydroxypiperidine or 50% by weight of N-methyl-3-hydroxypiperidine. or 49% by weight of N-ethyl-4-hydroxypiperidine compared to the reference absorbent solution (MDEA 47%)
  • Example 2 CO 2 absorption rate of an amine formulation for a selective absorption process.
  • a comparative CO 2 absorption test was carried out with an absorbent solution of 50% by weight N-methyl-4-hydroxypiperidine according to the invention relative to an aqueous solution of methyldiethanolamine at 47% by weight.
  • the C0 2 absorption flux is measured by the aqueous solution in a closed reactor, such as a Lewis cell. 200 g of solution is introduced into the closed reactor, regulated at a temperature of 50 ° C. Four successive injections of carbon oxysulfide of 100 to 200 mbar are carried out in the vapor phase of the reactor having a volume of 200 cm 3 . The gas phase and the liquid phase are stirred at 100 revolutions / minute and fully characterized from the hydrodynamic point of view. For each injection, the rate of absorption of the carbon dioxide is measured by variation of pressure in the gas phase. An overall transfer coefficient Kg is thus determined by an average of the results obtained on the four injections.
  • the absorption rate of CO 2 is compared with an absorbent solution containing 39% by weight of methyldiethanolamine and 6.7% by weight of piperazine in water to an absorbent solution according to the invention containing 39% by weight of N-methyl-4-hydroxypiperidine. and 6.7 wt% piperazine in water.
  • a gas containing CO 2 is contacted with the absorbing liquid by operating in a vertical falling film reactor provided in its upper part with a gas outlet and an inlet for the liquid and in its lower part. an inlet for the gas and an outlet for the liquid.
  • a gas containing 10% CO 2 and 90% nitrogen is injected at a flow rate of between 30 and 50 Nl / h and the liquid inlet is introduced with a flow rate of 0.5 l / h.
  • a CO 2 depleted gas is evacuated and the liquid outlet is evacuated and the CO 2 enriched liquid is evacuated.
  • the absolute pressure and the liquid temperature at the outlet are respectively equal to 1 bar and 40 ⁇ €.
  • the flow of C0 2 absorbed between the gas inlet and the gas outlet is measured as a function of the incoming gas flow rate: for each gas flow setpoint: 30 - 35 - 40 - 45 - 50 Nl / h, the gas incoming and outgoing are analyzed by infrared ray absorption techniques in the gas phase to determine their C0 2 content. From all these measurements, by performing two ups and downs of the range of flow rates, the overall transfer coefficient Kg is deduced, characterizing the absorption speed of the absorbing liquid.
  • the performance of the C0 2 capture capacity of the N-methyl-4-hydroxypiperidine according to the invention is compared in particular with those of an aqueous solution of MonoEthanolAmine at 30% by weight, which constitutes the reference solvent for a capture application.
  • C0 2 contained in post-combustion fumes. They are also compared with those of a solution of aqueous N-methyl-2-hydroxymethylpiperidine, cited in US Patent 4,405,582 containing the same weight percentage of tertiary diamine and piperazine.
  • An absorption test is carried out on aqueous amine solutions in a perfectly stirred closed reactor whose temperature is controlled by a control system.
  • the absorption is carried out in a liquid volume of 50 cm 3 by injections of pure CO 2 from a reserve.
  • the solvent solution is previously drawn under vacuum before any CO 2 injection.
  • the feed rates (a nb of mole acid gas / nb of amine mole) obtained at 40 ° C. for various partial pressures of CO 2 between an aqueous solution of N-methyl- 4-hydroxypiperidine 30% by weight according to the invention, an aqueous solution of N-methyl-2-hydroxymethylpiperidine molecule described in the document WO2009 / 1 105586 at 30% by weight and an aqueous solution of MonoEthanolAmine, at 30% by weight for a post-combustion C0 2 capture application.
  • the partial pressures of CO 2 in the effluent to be treated are typically 0.1 bar with a temperature of 40 ° C., and it is desired to slaughter 90 % of the acid gas.
  • the cyclic capacity ⁇ ⁇ 0 expressed in moles of C0 2 per kg of solvent is calculated, considering that the solvent reaches its maximum thermodynamic capacity at the bottom of the absorption column and must at least be regenerated below its thermodynamic capacity under the conditions of the column head bar to achieve 90% reduction of C0 2 .
  • [A] is the concentration of amine expressed in% by weight
  • M is the molar mass of the amine in g / mol
  • reaction enthalpy can be obtained by calculation from several CO 2 absorption isotherms by applying the Van't Hoff law.
  • Table 4 For post-combustion fume extraction application where the partial pressure of C0 2 in the effluent to be treated is 0.1 bar, this example illustrates the greater cyclic capacity obtained thanks to an absorbing solution of N-methyl-4-hydroxypiperidine according to the invention, comprising 30% by weight of molecules to achieve a felling rate of 90% at the absorber outlet.
  • the amine according to the invention makes it possible to obtain a much better compromise than the MEA, in terms of cyclic capacity and heat transfer. reaction.
  • C0 2 capture capacity of an aqueous solution of N-methyl-4-hydroxypiperidine according to the invention in a mixture with piperazine is compared in particular with those of an aqueous solution of monoethanolamine at 30% by weight, which constitutes the reference solvent for a CO 2 capture application contained in post-combustion fumes. They are also compared with those of an aqueous solution of N-methyl-2-hydroxymethylpiperidine, described in document WO2009 / 1 105586 containing the same weight percentage of tertiary amine and piperazine.
  • AOC pc [pCppco) '[ ⁇ ]' 10 M
  • [A] is the total concentration of amine expressed as% by weight, and in the case of amine mixtures, M is the average molar mass of the amine mixture in g / mol:
  • [A T ], [PZ] are the concentrations of tertiary amine and piperazine, expressed in weight%
  • M AT and M PZ are respectively the molar masses of the tertiary amine and piperazine in mol / kg
  • this example illustrates the greater cyclic capacity obtained thanks to the absorbent solution according to the invention, comprising 39% weight of N-methyl-4-hydroxypiperidine according to the invention and 6.7% by weight of piperazine to achieve a felling rate of 90% at the outlet of the absorber compared to MEA 30% by weight.
  • Example 6 Absorption capacity of CO 2 of solutions of N-methyl-4-hydroxypiperidine activated with piperazine. Application to decarbonation in natural gas treatment
  • the feed rates (a nb of mole acid gas / mole of amine mole) obtained at 40 ° C. for a partial pressure of CO 2 equal to 3 bar between an absorbent solution of N-methyl-4-hydroxypiperidine according to the invention at 39% by weight and containing 6.7% by weight of piperazine, an absorbent solution of methyldiethanolAmin at 39% by weight and containing 6.7% by weight of piperazine, as well as an absorbent solution of N-methyl-2-hydroxymethylpiperidine at 39% by weight and containing 6.7% by weight of piperazine.
  • the partial pressures of C0 2 are typically centered between 1 and 10 bar with a temperature of 40 q C, and it is desired to eliminate almost all the C0 2 for liquefaction of natural gas.
  • the maximum cyclic capacity Aa LN G, max expressed in moles of CO 2 per kg of solvent is calculated, considering that the solvent reaches its maximum thermodynamic capacity at the bottom of the absorption column. and is fully regenerated under the conditions of the column head.
  • [A T ], [PZ] are the concentrations of tertiary amine and piperazine, expressed in weight%
  • M AT and M PZ are respectively the molar masses of the tertiary amine and piperazine in mol / kg
  • Table 6 For a total decarbonation application in natural gas treatment, this example illustrates the greater cyclic capacity obtained thanks to the absorbent solution according to the invention, comprising 39% by weight of N-methyl-4-hydroxypiperidine according to the invention. and 6.7% by weight of piperazine relative to the reference formulation containing 39% by weight of MDEA and 6.7% by weight of piperazine.
  • the amines used according to the invention have the particularity of being particularly resistant to the degradations that may occur in a deacidification unit.
  • a degradation test is carried out on aqueous solutions of amine in a closed reactor whose temperature is controlled by a control system. For each solution, the test is carried out in a liquid volume of 50 cm 3 injected into the reactor. The solvent solution is previously drawn under vacuum before any gas injection and the reactor is then placed in a heating shell at the set temperature and stirred magnetically. The gas in question is then injected at the desired partial pressure. This pressure is added to the initial pressure due to the vapor pressure of the aqueous amine solution. Different degradation conditions are tested:
  • Table 7 gives the degradation rate TD, by degradation under C0 2 , of N-methyl-4-hydroxymethylpiperidine according to the invention, and of N-methyl-2-hydroxymethylpiperidine described in document WO2009 / 1 105586 as well as the MEA as reference amines, for a duration of 15 days, defined by the equation below:
  • [A] where [A] is the concentration of the compound in the degraded sample, and [A] 0 is the concentration of the compound in the non-degraded solution.
  • concentrations [A] and [A] 0 are determined by gas phase chromatography.
  • Table 8 gives the degradation rate TD, by degradation under 0 2 , of the N-methyl-4-hydroxymethylpiperidine according to the invention, as well as the MEA as reference amine, for a period of 15 days, defined as above:
  • Table 9 gives the degradation rate TD, by degradation under C0 2 of the N-methyl-4-hydroxymethylpiperidine according to the invention and piperazine mixed with the latter in an absorbent solution, and the MDEA as reference amine. , and piperazine mixed with the latter in another absorbent solution for a period of 15 days, the degradation rate of each amine being defined as above:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)

Abstract

The invention relates to an absorbent solution comprising water and at least one amine belonging to the N-alkyl-hydroxypiperidine family, and a method implementing this solution for eliminating acid compounds contained in a gaseous effluent.

Description

SOLUTION ABSORBANTE A BASE D'AMINES APPARTENANT A LA FAMILLE DES N-ALKYL-HYDROXYPIPERIDINES ET PROCEDE D'ÉLIMINATION DE COMPOSES ACIDES D'UN EFFLUENT GAZEUX AVEC UNE TELLE SOLUTION La présente invention concerne le domaine des procédés de désacidification d'un effluent gazeux. L'invention s'applique avantageusement au traitement de gaz d'origine industrielle et du gaz naturel.  The present invention relates to the field of deacidification processes of a gaseous effluent. The invention is advantageously applicable to the treatment of industrial gas and natural gas.
On utilise couramment des procédés d'absorption mettant en œuvre une solution aqueuse d'amines, pour retirer les composés acides (notamment le C02, l'H2S, le COS, le CS2, le S02 et les mercaptans) présents dans un gaz. Le gaz est désacidifié par mise en contact avec la solution absorbante, puis la solution absorbante est régénérée thermiquement. Par exemple le document US 6852144 décrit une méthode d'élimination des composés acides des hydrocarbures. La méthode utilise une solution absorbante eau-N-méthyldiéthanolamine ou eau-triéthanolamine contenant une forte proportion d'un composé appartenant au groupe suivant : pipérazine et/ou méthylpipérazine et/ou morpholine. Absorption processes employing an aqueous amine solution are commonly used to remove the acidic compounds (in particular CO 2 , H 2 S, COS, CS 2 , SO 2 and mercaptans) present. in a gas. The gas is deacidified by contact with the absorbent solution, and the absorbent solution is thermally regenerated. For example, US 6852144 discloses a method of removing acidic compounds from hydrocarbons. The method uses a water-N-methyldiethanolamine or water-triethanolamine absorbent solution containing a high proportion of a compound belonging to the following group: piperazine and / or methylpiperazine and / or morpholine.
Une limitation des solutions absorbantes couramment utilisées dans des applications de désacidification est une sélectivité insuffisante d'absorption de l'H2S par rapport au C02. En effet, dans certains cas de désacidification du gaz naturel, on recherche une élimination sélective de l'H2S en limitant au maximum l'absorption du C02. Cette contrainte est particulièrement importante pour des gaz à traiter contenant déjà une teneur en C02 inférieure ou égale à la spécification désirée. On recherche alors une capacité d'absorption de H2S maximale avec une sélectivité maximale d'absorption de H2S vis-à-vis du C02. Cette sélectivité permet de récupérer un gaz acide en sortie de régénérateur ayant une concentration la plus élevée possible en H2S ce qui limite la taille des unités de la chaîne soufre en aval du traitement et garantit un meilleur fonctionnement. Dans certains cas, une unité d'enrichissement en H2S est nécessaire pour concentrer en H2S le gaz acide. Dans ce cas, on recherche également l'aminé la plus sélective. Des aminés tertiaires, comme la N-méthyldiéthanolamine (ou MDEA), ou aminés secondaires encombrées présentant une cinétique de réaction lente avec le C02 sont couramment utilisées, mais présentent des sélectivités limitées à des taux de charge en H2S élevés. Une autre limitation des solutions absorbantes couramment utilisées dans des applications de désacidification totale est une cinétique de captage du C02 ou du COS trop lente. Dans le cas où les spécifications désirées sur le C02 ou en COS sont très poussées, on recherche une cinétique de réaction la plus rapide possible de manière à réduire la hauteur de la colonne de colonne d'absorption. Cet équipement sous pression, typiquement entre 40 bars et 70 bars, représente une part importante des coûts d'investissement du procédé. A limitation of the absorbent solutions commonly used in deacidification applications is an insufficient selectivity of absorption of H 2 S with respect to C0 2 . In fact, in certain cases of deacidification of natural gas, selective removal of H 2 S is sought with a minimum of C0 2 absorption. This constraint is particularly important for gases to be treated already containing a CO 2 content less than or equal to the desired specification. A maximum absorption capacity of H 2 S is then sought with a maximum selectivity of absorption of H 2 S with respect to CO 2 . This selectivity makes it possible to recover an acid gas at the outlet of the regenerator having the highest concentration possible in H 2 S, which limits the size of the units of the sulfur chain downstream of the treatment and guarantees a better operation. In some cases, an H 2 S enrichment unit is needed to concentrate the acid gas in H 2 S. In this case, the most selective amine is also sought. Tertiary amines, such as N-methyldiethanolamine (or MDEA), or congested secondary amines with slow reaction kinetics with C0 2 are commonly used, but have limited selectivities at high H 2 S loading rates. Another limitation of the absorbent solutions commonly used in total deacidification applications is the kinetics of C0 2 or COS pickup that are too slow. In the case where the desired specifications on the C0 2 or in COS are very advanced, one seeks a kinetics of reaction as fast as possible so as to reduce the height of the column of absorption column. This pressurized equipment, typically between 40 bars and 70 bars, represents a significant part of the investment costs of the process.
Que l'on recherche une cinétique de captage du C02 et du COS maximale dans une application désacidification totale, ou une cinétique de captage du C02 minimale dans une application sélective, on désire toujours utiliser une solution absorbante ayant la capacité cyclique la plus grande possible. Cette capacité cyclique, notée Δα correspond à la différence de taux de charge (a désignant le nombre de mole de composés acides absorbés ngaz acide par kilogramme de solution absorbante) entre la solution absorbante alimentant la colonne d'absorption et la solution absorbante soutirée en fond de ladite colonne. En effet, plus la solution absorbante a une forte capacité cyclique, plus le débit de solution absorbante qu'il faut mettre en œuvre pour désacidifier le gaz à traiter est restreint. Dans les procédés de traitement de gaz, la réduction du débit de solution absorbante a également un fort impact sur la réduction des investissements, notamment au niveau du dimensionnement de la colonne d'absorption. Whether maximum C0 2 and maximum COD uptake kinetics are sought in a total deacidification application, or a minimum CO 2 capture kinetics in a selective application, it is always desirable to use an absorbent solution having the largest cyclic capacity. possible. This cyclic capacity, denoted by Δα, corresponds to the difference in charge ratio (a designating the number of moles of acidic compounds absorbed n acid gas per kilogram of absorbing solution) between the absorbent solution supplying the absorption column and the absorbent solution withdrawn in bottom of said column. Indeed, the more the absorbing solution has a strong cyclic capacity, the more the flow of absorbent solution that must be used to deacidify the gas to be treated is limited. In gas treatment processes, the reduction of the absorbent solution flow rate also has a strong impact on the reduction of investments, especially in the dimensioning of the absorption column.
Un autre aspect primordial des opérations de traitement de gaz ou fumées industrielles par solvant reste la régénération de l'agent de séparation. En fonction du type d'absorption (physique et/ou chimique), on envisage généralement une régénération par détente, et/ou par distillation et/ou par entraînement par un gaz vaporisé appelé "gaz de strippage".  Another essential aspect of industrial gas treatment or flue gas treatment operations is the regeneration of the separating agent. Depending on the type of absorption (physical and / or chemical), regeneration by expansion, and / or distillation and / or entrainment by a vaporized gas called "stripping gas" is generally envisaged.
Une autre limitation des solutions absorbantes couramment utilisées aujourd'hui est une consommation énergétique nécessaire pour la régénération du solvant qui est trop importante. Ceci est particulièrement vrai dans le cas où la pression partielle de gaz acides est faible. Par exemple, pour une solution aqueuse de 2-aminoéthanol (ou monoéthanolamine ou éthanolamine ou MEA) à 30 % poids utilisée pour le captage du C02 en post-combustion dans une fumée de centrale thermique, où la pression partielle de C02 est de l'ordre de 0,12 bar, l'énergie de régénération représente 3,7 GJ environ par tonne de C02 captée. Une telle consommation énergétique représente un coût opératoire considérable pour le procédé de captage du C02. Il est bien connu de l'homme du métier que l'énergie nécessaire à la régénération par distillation d'une solution d'amine peut se décomposer selon trois postes différents : l'énergie nécessaire pour réchauffer le solvant entre la tête et le fond du régénérateur, l'énergie nécessaire pour abaisser la pression partielle de gaz acide dans le régénérateur par vaporisation d'un gaz de strippage, et enfin l'énergie nécessaire pour casser la liaison chimique entre l'aminé et le C02. Another limitation of the absorbent solutions commonly used today is an energy consumption necessary for the regeneration of the solvent which is too important. This is particularly true in the case where the partial pressure of acid gases is low. For example, for an aqueous solution of 2-aminoethanol (or monoethanolamine or ethanolamine or MEA) at 30% by weight used for the capture of C0 2 post-combustion in a thermal power plant smoke, where the partial pressure of C0 2 is the order of 0.12 bar, the regeneration energy is about 3.7 GJ per tonne of CO 2 captured. Such energy consumption represents a considerable operating cost for the C0 2 capture process. It is well known to those skilled in the art that the energy required for the regeneration by distillation of an amine solution can be broken down into three different positions: the energy required to heat the solvent between the head and the bottom of the regenerator, the energy necessary to lower the partial pressure of acid gas in the regenerator by vaporization of a stripping gas, and finally the energy necessary to break the chemical bond between the amine and the CO 2 .
Les deux premiers postes sont proportionnels aux débits de solution absorbante qu'il est nécessaire de faire circuler dans l'unité pour réaliser une spécification donnée. Pour diminuer la consommation énergétique associée à la régénération du solvant, il est donc préférable encore une fois de maximiser la capacité cyclique du solvant.  The first two stations are proportional to the flow rates of absorbent solution that must be circulated in the unit to achieve a given specification. To reduce the energy consumption associated with the regeneration of the solvent, it is therefore preferable once again to maximize the cyclic capacity of the solvent.
Le dernier poste concerne l'énergie à fournir pour casser la liaison créée entre l'aminé utilisée et le C02. Pour diminuer la consommation énergétique associée à la régénération de la solution absorbante, il est donc préférable de minimiser l'enthalpie de liaison ΔΗ. Néanmoins, il n'est pas évident de trouver un solvant présentant une forte capacité cyclique et une faible enthalpie de réaction. La meilleure solution absorbante d'un point de vue énergétique est donc celle qui permettra d'avoir le meilleur compromis entre une forte capacité cyclique Δα et une faible enthalpie de liaison ΔΗ.  The last item concerns the energy to be supplied to break the bond created between the amine used and CO 2. To reduce the energy consumption associated with the regeneration of the absorbent solution, it is therefore preferable to minimize the ΔΗ linkage enthalpy. Nevertheless, it is not easy to find a solvent with a high cyclic capacity and a low reaction enthalpy. The best solution absorbing from an energy point of view is therefore that which will have the best compromise between a strong cyclic capacity Δα and a low enthalpy of connection ΔΗ.
La stabilité chimique de la solution absorbante est également un aspect primordial dans les procédés de désacidification et de traitement de gaz. La tenue en dégradation est une limitation pour les solutions absorbantes couramment utilisées, notamment dans des conditions de régénération à des températures comprises entre 160 et 180°C envisagées dans les procédés de captage du C02. Ces conditions permettraient de récupérer le C02 à une pression comprise entre 5 et 10 bars, permettant de réaliser une économie d'énergie sur la compression du C02 capté en vue de son transport et stockage.  The chemical stability of the absorbent solution is also a key aspect in the deacidification and gas treatment processes. The degradation behavior is a limitation for the commonly used absorbent solutions, especially under regeneration conditions at temperatures between 160 and 180 ° C envisaged in CO 2 capture processes. These conditions make it possible to recover CO 2 at a pressure of between 5 and 10 bars, making it possible to save energy on the compression of the CO 2 captured for the purpose of its transport and storage.
Il est donc difficile de trouver des composés, ou une famille de composés, permettant aux différents procédés de désacidification de fonctionner à moindre coûts opératoires (dont l'énergie de régénération) et d'investissements (dont le coût de la colonne d'absorption).  It is therefore difficult to find compounds, or a family of compounds, allowing the various deacidification processes to operate at lower operating costs (including regeneration energy) and investments (including the cost of the absorption column). .
II est bien connu de l'homme du métier que les aminés tertiaires ont une cinétique de captage du C02 plus lente que des aminés primaires ou secondaires peu encombrées. En revanche, les aminés tertiaires ont une cinétique de captage de l'H2S instantanée, ce qui permet de réaliser une élimination sélective de l'H2S basée sur des performances cinétiques distinctes. It is well known to those skilled in the art that tertiary amines have a capture kinetics C0 2 slower than primary or secondary amines uncrowded. In contrast, tertiary amines have H 2 S capture kinetics instantaneous, which allows for selective removal of H 2 S based on distinct kinetic performance.
Parmi les applications de ces aminés tertiaires, le brevet US 4,483,333 décrit un procédé d'absorption sélective de gaz acides par un absorbant contenant une alcanolamine tertiaire ou un aminoétheralcool tertiaire dont l'azote est inclus dans un hétérocycle.  Among the applications of these tertiary amines, US Pat. No. 4,483,333 describes a process for the selective absorption of acid gases by an absorbent containing a tertiary alkanolamine or a tertiary aminoetheralcohol whose nitrogen is included in a heterocycle.
Le document WO2009/1 10586A1 décrit une solution aqueuse et une méthode pour absorber du dioxyde de carbone d'un gaz, cette solution aqueuse contenant au moins une aminé représentée par la formule générale ci-dessous avec n = 1 ou 2, Ri est un groupement alkyle ou hydroxyalkyle et R2 situé en position 2 ou 3 représente un hydrogène, un groupe alkyle ou hydroxyalkyke, pourvu que au moins un des groupes Ri et R2 soit un groupe hydroxyalkyle. WO2009 / 1 10586A1 discloses an aqueous solution and a method for absorbing carbon dioxide from a gas, said aqueous solution containing at least one amine represented by the general formula below with n = 1 or 2, R 1 is an alkyl or hydroxyalkyl group and R 2 in position 2 or 3 is hydrogen, alkyl or hydroxyalkyl, provided that at least one of R 1 and R 2 is hydroxyalkyl.
Plus particulièrement, un composé d'intérêt est la N-méthyl-2-hydroxyméthyl- pipéridine dont les capacités de captage et la vitesse d'absorption sont décrites. Cependant, ce document ne décrit pas les performances de cette molécule en terme d'élimination sélective de H2S dans un gaz contenant de l'H2S et du C02. More particularly, a compound of interest is N-methyl-2-hydroxymethylpiperidine whose capture capacities and absorption rate are described. However, this document does not describe the performance of this molecule in terms of selective removal of H 2 S in a gas containing H 2 S and CO 2 .
Les inventeurs ont découvert que les alcanolamines tertiaires dont l'azote est compris dans un hétérocycle ne sont pas équivalentes en termes de performances pour leur usage dans des formulations de solution absorbante pour le traitement de gaz acides dans un procédé industriel.  The inventors have found that tertiary alkanolamines whose nitrogen is included in a heterocycle are not equivalent in performance for their use in absorbent solution formulations for the treatment of acid gases in an industrial process.
Certaines molécules de type alcanolamines tertiaires hétérocycliques présentent des performances insuffisantes notamment en ce qui concerne l'élimination sélective de l'H2S dans un gaz contenant de l'H2S et du C02. A contrario d'autres molécules permettent d'améliorer la sélectivité d'absorption de l'H2S par rapport à des aminés tertiaires de référence, telle la méthyldiéthanolamine. Ces mêmes molécules présentent également des performances d'absorption des gaz acides, notamment du C02 ainsi qu'une stabilité chimique particulièrement élevées. La présente invention a pour objet l'utilisation de molécules particulières appartenant à la famille des alcanolamines tertiaires hétérocycliques présentant un optimum de performances entre la capacité de captage de C02, l'élimination sélective de l'H2S, et la stabilité thermique, dans le cadre de la désacidification d'un gaz. Ces molécules répondent à la définition générale de N-alkyl-hydroxypipéridines. Ces alcanolamines tertiaires hétérocycliques présentent la particularité de posséder un seul groupement hydroxyle directement lié à l'un des atomes de carbone de l'hétérocycle, cet hétérocycle étant un cycle pipéridine. Plus précisément, ces molécules sont des N-alkyl-3- hydroxypipéridines et des N-alkyl-4-hydroxypipéridines répondant à la formule générale (I) : Certain heterocyclic tertiary alkanolamine-type molecules have insufficient performances, in particular as regards the selective removal of H 2 S in a gas containing H 2 S and CO 2 . On the other hand, other molecules make it possible to improve the absorption selectivity of H 2 S relative to tertiary amines of reference, such as methyldiethanolamine. These same molecules also have acidic absorption performance, especially CO 2 and a particularly high chemical stability. The present invention relates to the use of particular molecules belonging to the family of tertiary heterocyclic alkanolamines having a optimum performance between C02 capture capacity, selective removal of H 2 S, and thermal stability, in the context of the deacidification of a gas. These molecules meet the general definition of N-alkyl-hydroxypiperidines. These heterocyclic tertiary alkanolamines have the particularity of having a single hydroxyl group directly bonded to one of the carbon atoms of the heterocycle, this heterocycle being a piperidine ring. More specifically, these molecules are N-alkyl-3-hydroxypiperidines and N-alkyl-4-hydroxypiperidines corresponding to the general formula (I):
Les N-alkyl-hydroxypipéridines selon l'invention se distinguent notamment du document WO2009/1 10586A1 dans lequel le groupement R2 ne peut en aucun cas être un groupement hydroxyle. The N-alkyl-hydroxypiperidines according to the invention are particularly distinguished from the document WO2009 / 1 10586A1 in which the R 2 group can in no case be a hydroxyl group.
Un autre objet de l'invention concerne un procédé d'élimination des composés acides contenus dans un effluent gazeux, dans lequel on effectue une étape d'absorption des composés acides par mise en contact de l'effluent avec la solution absorbante selon l'invention.  Another subject of the invention relates to a process for the elimination of acidic compounds contained in a gaseous effluent, in which an absorption step of the acidic compounds is carried out by bringing the effluent into contact with the absorbent solution according to the invention. .
L'utilisation des composés N-alkyl-hydroxypipéridines selon l'invention permet d'obtenir des capacités d'absorption des gaz acides plus importantes que les aminés de référence. Cette performance est accrue du fait d'une plus grande basicité.  The use of the N-alkyl-hydroxypiperidine compounds according to the invention makes it possible to obtain greater acid gas absorption capacities than the reference amines. This performance is increased due to greater basicity.
Par ailleurs, les composés selon l'invention présentent une sélectivité vis-à-vis de l'H2S plus importante que les aminés de référence. Moreover, the compounds according to the invention have a selectivity towards H 2 S that is greater than the reference amines.
De plus, dans le cas particulier d'une application en traitement de gaz naturel dans laquelle la solution absorbante contient un composé selon l'invention en mélange avec une aminé primaire ou secondaire, l'invention permet d'accélérer la cinétique d'absorption du COS et du C02, par rapport à une solution de MDEA contenant la même quantité d'amine primaire ou secondaire. Ce gain de cinétique d'absorption du COS et du C02 entraîne une économie sur le coût de la colonne d'absorption dans les cas où l'élimination de ce composé à des spécifications poussées (1 ppm) est requise. In addition, in the particular case of an application in natural gas treatment in which the absorbent solution contains a compound according to the invention mixed with a primary or secondary amine, the invention makes it possible to accelerate the absorption kinetics of the COS and C0 2 , relative to an MDEA solution containing the same amount of primary or secondary amine. This gain in COS and CO 2 absorption kinetics results in savings on the cost of the absorption column in cases where removal of this compound at high specifications (1 ppm) is required.
De manière générale la présente invention a pour objet une solution absorbante pour éliminer des composés acides contenus dans un effluent gazeux, comportant : In general, the subject of the present invention is an absorbent solution for removing acidic compounds contained in a gaseous effluent, comprising:
a - de l'eau;  a - water;
b - au moins un composé choisi dans le groupe des N-alkyl-3- hydroxypipéridines et N-alkyl-4-hydroxypipéridines répondant à la formule générale (I) : b - at least one compound chosen from the group of N-alkyl-3-hydroxypiperidines and N-alkyl-4-hydroxypiperidines corresponding to the general formula (I):
dans laquelle le radical hydroxyle peut être situé en position 3 ou en position 4 par rapport à l'atome d'azote du cycle pipéridine, et R est un radical alkyle contenant un à six atomes de carbone, et de préférence un à trois atomes de carbone.  in which the hydroxyl radical can be located in position 3 or in position 4 with respect to the nitrogen atom of the piperidine ring, and R is an alkyl radical containing one to six carbon atoms, and preferably one to three carbon atoms. carbon.
Selon l'invention, le composé azoté peut être choisi parmi les composés suivants cotés à titre d'exem le non limitatifs de la formule én ci-dessus  According to the invention, the nitrogenous compound may be chosen from the following compounds listed by way of non-limiting example of the formula en above
N-méthyl-4-hydroxypipéridine N-méthyl-3-hydroxypipéridine N-éthyl-3-hydroxypipéridine  N-methyl-4-hydroxypiperidine N-methyl-3-hydroxypiperidine N-ethyl-3-hydroxypiperidine
Selon l'invention, la solution peut comporter entre 10 % et 90 % en poids dudit composé azoté, de préférence entre 20% et 60% poids, de manière très préférée entre 25% et 50% poids ; et la solution peut comporter entre 10 % et 90 % en poids d'eau, de préférence entre 40% et 80% poids d'eau, de manière très préférée de 50% à 75% d'eau. According to the invention, the solution may comprise between 10% and 90% by weight of said nitrogenous compound, preferably between 20% and 60% by weight, very preferably between 25% and 50% by weight; and the solution may comprise between 10% and 90% by weight of water, preferably between 40% and 80% by weight of water, very preferably from 50% to 75% of water.
Selon un mode de réalisation, la solution peut comporter une aminé supplémentaire, ladite aminé supplémentaire étant une aminé tertiaire, telle que la méthyldiéthanolamine, ou une aminé secondaire présentant deux carbones tertiaires en alpha de l'azote, ou une aminé secondaire présentant au moins un carbone quaternaire en alpha de l'azote. Dans ce cas, la solution peut comporter entre 10% et 90% poids de ladite aminé supplémentaire, de préférence entre 10% et 50% poids, de manière très préférée entre 10% et 30% poids.  According to one embodiment, the solution may comprise an additional amine, said additional amine being a tertiary amine, such as methyldiethanolamine, or a secondary amine having two tertiary carbon atoms alpha to the nitrogen, or a secondary amine having at least one Quaternary carbon in alpha of nitrogen. In this case, the solution may comprise between 10% and 90% by weight of said additional amine, preferably between 10% and 50% by weight, very preferably between 10% and 30% by weight.
Selon un autre mode de réalisation, la solution peut comporter un composé contenant au moins une fonction aminé primaire ou secondaire. Dans ce cas, la solution peut comporter une concentration jusqu'à 30% poids dudit composé, de préférence inférieure à 15% poids, de préférence inférieure à 10% poids, et au moins 0,5% poids. La solution peut comporter une concentration d'au moins 0,5% poids dudit composé. Le composé peut être choisi parmi :  According to another embodiment, the solution may comprise a compound containing at least one primary or secondary amine function. In this case, the solution may comprise a concentration up to 30% by weight of said compound, preferably less than 15% by weight, preferably less than 10% by weight, and at least 0.5% by weight. The solution may comprise a concentration of at least 0.5% by weight of said compound. The compound can be chosen from:
monoéthanolamine, N-butyléthanolamine monoethanolamine, N-butylethanolamine
aminoéthyléthanolamine,  aminoethylethanolamine
diglycolamine,  diglycolamine,
pipérazine,  piperazine,
- 1 -méthylpipérazine  - 1-methylpiperazine
2-méthylpipérazine  2-methylpiperazine
N-(2-hydroxyéthyl)pipérazine,  N- (2-hydroxyethyl) piperazine,
N-(2-aminoéthyl)pipérazine,  N- (2-aminoethyl) piperazine,
morpholine,  morpholine
- 3-(méthylamino)propylamine.  3- (methylamino) propylamine.
1 ,6-hexanediamine et tous ses dérivés diversement N-alkylés tels par exemple la N,N'-diméthyl-1 ,6-hexanediamine, la N-méthyl-1 ,6-hexanediamine ou la N,N',N'-triméthyl-1 ,6-hexanediamine.  1,6-hexanediamine and all its variously N-alkylated derivatives such as, for example, N, N'-dimethyl-1,6-hexanediamine, N-methyl-1,6-hexanediamine or N, N ', N'- trimethyl-1,6-hexanediamine.
Selon l'invention, la solution peut comporter un solvant physique choisi parmi le méthanol et la sulfolane.  According to the invention, the solution may comprise a physical solvent chosen from methanol and sulfolane.
L'invention, concerne également un procédé d'élimination des composés acides contenus dans un effluent gazeux, dans lequel on effectue une étape d'absorption des composés acides par mise en contact de l'effluent avec une solution absorbante selon l'invention.  The invention also relates to a process for removing acidic compounds contained in a gaseous effluent, in which an absorption step of the acidic compounds is carried out by contacting the effluent with an absorbent solution according to the invention.
Selon l'invention, l'étape d'absorption des composés acides peut être réalisée à une pression comprise entre 1 bar et 120 bars, et à une température comprise entre 20 ^ et 100 <€. According to the invention, the absorption step of the acid compounds can be carried out at a pressure between 1 bar and 120 bar, and at a temperature between 20 ^ and 100 <€.
Selon un mode de réalisation, après l'étape d'absorption, on obtient un effluent gazeux appauvri en composés acides et une solution absorbante chargée en composés acides, et on effectue au moins une étape de régénération de la solution absorbante chargée en composés acides. L'étape de régénération peut être réalisée à une pression comprise entre 1 bar et 10 bars et une température comprise entre 100°C et 180°C. L'effluent gazeux peut être choisi parmi le gaz naturel, les gaz de synthèse, les fumées de combustion, les gaz de raffinerie, les gaz acides issus d'une unité aux aminés, les gaz issus d'une unité de réduction en queue du procédé Claus, les gaz de fermentation de biomasse, les gaz de cimenterie, les fumées d'incinérateur.  According to one embodiment, after the absorption step, there is obtained a gaseous effluent depleted of acidic compounds and an absorbent solution loaded with acidic compounds, and at least one regeneration step of the absorbent solution loaded with acidic compounds is carried out. The regeneration step can be carried out at a pressure of between 1 bar and 10 bar and a temperature of between 100 ° C. and 180 ° C. The gaseous effluent may be chosen from natural gas, synthesis gases, combustion fumes, refinery gases, acid gases from an amine unit, gases from a tail reduction unit of Claus process, biomass fermentation gases, cement gases, incinerator fumes.
Enfin, le procédé peut être mis en œuvre pour l'élimination sélective de l'H2S d'un effluent gazeux comportant de l'H2S et du C02. D'autres caractéristiques et avantages de l'invention seront mieux compris et apparaîtront clairement à la lecture de la description faite, ci-après, en se référant aux figures annexées et décrites ci-après. Finally, the process can be implemented for the selective removal of H 2 S from a gaseous effluent comprising H 2 S and CO 2 . Other features and advantages of the invention will be better understood and will become clear from reading the description given hereinafter with reference to the appended figures and described below.
La figure 1 représente un schéma de principe d'un procédé de traitement d'effluents de gaz acides.  FIG. 1 represents a schematic diagram of a process for treating acid gas effluents.
- La figure 2 représente un schéma de synthèse d'une N-alkyl-hydroxypipéridine selon l'invention à partir d'une picoline.  FIG. 2 represents a synthesis scheme of an N-alkyl-hydroxypiperidine according to the invention from a picoline.
- La figure 3 représente un schéma de synthèse de la N-méthyl-4-hydroxypipéridine selon l'invention à partir de l'acrylate de méthyle.  FIG. 3 represents a synthesis scheme of the N-methyl-4-hydroxypiperidine according to the invention starting from methyl acrylate.
La présente invention propose une solution aqueuse et un procédé pour éliminer les composés acides d'un effluent gazeux. The present invention provides an aqueous solution and a process for removing acidic compounds from a gaseous effluent.
La solution aqueuse selon l'invention comporte au moins un composé azoté choisi dans le groupe des N-alkyl-3-hydroxypipéridines et N-alkyl-4-hydroxypipéridines  The aqueous solution according to the invention comprises at least one nitrogen compound chosen from the group of N-alkyl-3-hydroxypiperidines and N-alkyl-4-hydroxypiperidines
On peut synthétiser les molécules selon l'invention en utilisant toutes les voies permises par la chimie organique. Pour chacune des molécules de l'invention, on peut en citer quelques unes sans être exhaustif. The molecules according to the invention can be synthesized using all the routes allowed by organic chemistry. For each of the molecules of the invention, some may be cited without being exhaustive.
Les N-alkyl-hydroxypipéridines de l'invention peuvent être synthétisées par toutes les voies permises par la chimie organique. A titre d'exemple, la synthèse peut être réalisée à partir de produits industriels largement disponibles qui sont les 3 ou 4- méthylpyridines appelés aussi 3 ou 4-picolines selon un schéma réactionnel général illustré par la figure 2.  The N-alkyl-hydroxypiperidines of the invention can be synthesized by any pathway permitted by organic chemistry. By way of example, the synthesis can be carried out from widely available industrial products which are the 3 or 4-methylpyridines also called 3 or 4-picolines according to a general reaction scheme illustrated in FIG.
La réaction d'ammoxydation des 3 ou 4-picolines (réaction 1 ) conduit aux 3 ou 4- cyanopyridines qui sont ensuite transformées en 3 ou 4-pyridinecarboxamides selon une hydrolyse basique (réaction 2). Les 3 ou 4-pyridinecarboxamides peuvent alors être convertis en 3 ou 4-aminopyridines en milieu basique et en présence par exemple d'hypochlorite de sodium selon la réaction dite "réaction de Hofman" (réaction 3). Les 3 ou 4-aminopyridines peuvent ensuite être transformées en 3 ou 4-hydroxypyridines selon une réaction de diazotation qui s'effectue en présence de nitrite alcalin par exemple de nitrite de sodium suivie d'une hydrolyse acide (réaction 4). Les 3 ou 4-hydroxypyridines obtenues sont ensuite soumises à une hydrogénation du cycle aromatique (réaction 5). Cette réaction bien connue conduit à des 3 ou 4-hydroxypipéridines appelés aussi 3 ou 4- pipéridinols. Enfin, les 3 ou 4-hydroxypipéridines seront soumises à une réaction dite de N-alkylation (réaction 6) pour conduire à des 1 -alkyl-3 ou 4-hydroxypipéridines. Cette réaction de N-alkylation peut s'effectuer par exemple par condensation des 3 ou 4- hydroxypipéridines avec un halogénure d'alkyle. De préférence, cette réaction de N- alkylation sera effectuée par condensation des 3 ou 4-hydroxypipéridines avec soit un alcool, soit un aldéhyde ou une cétone en présence d'hydrogène et d'un catalyseur approprié. The ammoxidation reaction of the 3 or 4-picolines (reaction 1) leads to 3 or 4 cyanopyridines which are then converted into 3 or 4-pyridinecarboxamides according to basic hydrolysis (reaction 2). The 3 or 4-pyridinecarboxamides can then be converted to 3 or 4-aminopyridines in basic medium and in the presence for example of sodium hypochlorite according to the so-called "Hofman reaction" reaction (reaction 3). The 3 or 4-aminopyridines can then be converted into 3 or 4-hydroxypyridines in a diazotization reaction which is carried out in the presence of alkaline nitrite, for example sodium nitrite followed by acid hydrolysis (reaction 4). The 3 or 4-hydroxypyridines obtained are then subjected to a hydrogenation of the aromatic ring (reaction 5). This well-known reaction leads to 3 or 4-hydroxypiperidines also called 3- or 4-piperidinols. Finally, the 3 or 4-hydroxypiperidines will undergo a so-called N-alkylation (reaction 6) to yield 1-alkyl-3 or 4-hydroxypiperidines. This N-alkylation reaction may be carried out for example by condensation of the 3 or 4-hydroxypiperidines with an alkyl halide. Preferably, this N-alkylation reaction will be carried out by condensation of the 3 or 4-hydroxypiperidines with either an alcohol, an aldehyde or a ketone in the presence of hydrogen and a suitable catalyst.
Dans le cas des molécules de l'invention qui répondent à la définitions de N- alkyl-4-hydroxypipéridines, une voie de synthèse avantageuse consiste à effectuer la synthèse en plusieurs étapes à partir d'un précurseur industriel abondant et bon marché qui est l'acrylate de méthyle selon un schéma réactionnel général illustré par la figure 3 appliqué ici à une des molécules préférée de l'invention qui est la 1 -méthyl-4- hdroxypipéridine.  In the case of the molecules of the invention which meet the definition of N-alkyl-4-hydroxypiperidines, an advantageous synthetic route is to perform the multistep synthesis from a plentiful and inexpensive industrial precursor which is methyl acrylate according to a general reaction scheme illustrated in FIG. 3 applied here to one of the preferred molecules of the invention which is 1-methyl-4-hydroxypiperidine.
L'addition d'une mole de méthylamine à 2 moles d'acrylate de méthyle conduit au méthyl-di-(2-(méthylcarboxy)éthyl)amine (réaction 1 ), lequel est ensuite soumis à une réaction de cyclisation dite "réaction de Dieckman" pour conduire à la 1 -méthyl-3- méthylcarboxy-4-pipéridone (réaction 2). Cette réaction s'effectue en milieu basique, généralement avec un alcoolate alcalin, et nécessite une étape ultérieure de neutralisation. La fonction ester de la 1 -méthyl-3-méthylcarboxy-4-pipéridone est ensuite hydrolysée en fonction acide pour conduire à la 3-carboxy-1 -méthyl-4-pipéridone (réaction 3). A partir de ce produit, on obtient la 1 -méthyl-4-pipéridone en effectuant une réaction de décarboxylation selon une procédure bien connue (réaction 4). Enfin, la fonction carbonyle de la 1 -méthyl-4-pipéridone est hydrogénée pour conduire à la 1 -méthyl-4- hydroxypipéridine (réaction 5). Cet enchaînement de réactions illustré ici avec la méthylamine comme précurseur peut être appliqué à toute autre aminé primaire pour conduire à la famille des 1 -alkyl-4-hydroxypipéridines.  The addition of one mole of methylamine to 2 moles of methyl acrylate leads to methyl-di- (2- (methylcarboxy) ethyl) amine (reaction 1), which is then subjected to a cyclization reaction called "reaction of Dieckman "to lead to 1-methyl-3-methylcarboxy-4-piperidone (reaction 2). This reaction is carried out in a basic medium, generally with an alkaline alkoxide, and requires a subsequent neutralization step. The ester function of 1-methyl-3-methylcarboxy-4-piperidone is then acid-hydrolyzed to yield 3-carboxy-1-methyl-4-piperidone (reaction 3). From this product, 1-methyl-4-piperidone is obtained by carrying out a decarboxylation reaction according to a well-known procedure (reaction 4). Finally, the carbonyl function of 1-methyl-4-piperidone is hydrogenated to yield 1-methyl-4-hydroxypiperidine (reaction 5). This sequence of reactions illustrated here with methylamine as a precursor may be applied to any other primary amine to yield the family of 1-alkyl-4-hydroxypiperidines.
Composition de la solution absorbante Composition of the absorbent solution
La solution absorbante mise en œuvre dans le procédé selon l'invention comporte: a - de l'eau  The absorbent solution used in the process according to the invention comprises: a - water
b - au moins une molécule choisie parmi dans le groupe des N-alkyl-3- hydroxypipéridines et N-alkyl-4-hydroxypipéridines répondant à la formule générale (I) : b - at least one molecule selected from the group of N-alkyl-3-hydroxypiperidines and N-alkyl-4-hydroxypiperidines corresponding to the general formula (I):
R étant un radical alkyle contenant un à six atomes de carbone, et de préférence un à trois atomes de carbone. R being an alkyl radical containing one to six carbon atoms, and preferably one to three carbon atoms.
Le radical hydroxyle peut être situé en position 3 ou en position 4 par rapport à l'atome d'azote du cycle pipéridine.  The hydroxyl radical may be located at the 3-position or at the 4-position with respect to the nitrogen atom of the piperidine ring.
Par exemple, la solution absorbante selon l'invention peut comporter un composé té répondant à la formule générale (I), choisi parmi les composés suivants :  For example, the absorbent solution according to the invention may comprise a compound te corresponding to the general formula (I), chosen from the following compounds:
N-méthyl-4-hydroxypipéridine N-méthyl-3-hydroxypipéridine N-éthyl-3-hydroxypipéridine  N-methyl-4-hydroxypiperidine N-methyl-3-hydroxypiperidine N-ethyl-3-hydroxypiperidine
Selon l'invention l'alkylaminopipérazine peut être en concentration variable dans la solution absorbante, par exemple comprise entre 10% et 90% poids, de préférence entre 20% et 60% poids, de manière très préférée entre 25% et 50% poids. According to the invention, the alkylaminopiperazine may be in variable concentration in the absorbent solution, for example between 10% and 90% by weight, preferably between 20% and 60% by weight, very preferably between 25% and 50% by weight.
La solution absorbante peut contenir entre 10% et 90% poids d'eau, de préférence entre 40% et 80% poids d'eau, de manière très préférée de 50% à 75% d'eau.  The absorbent solution may contain from 10% to 90% by weight of water, preferably from 40% to 80% by weight of water, very preferably from 50% to 75% water.
c - Selon un mode de réalisation, la solution absorbante peut contenir en outre une aminé tertiaire par exemple la méthyldiéthanolamine, la triéthanolamine, la diéthylmonoéthanolamine, la diméthylmonoéthanolamine, l'éthyldiéthanolamine, ou secondaire ayant un encombrement stérique sévère, cet encombrement étant défini soit par la présence de deux carbones tertiaires en alpha de l'azote, soit par au moins un carbone quaternaire en alpha de l'azote. La concentration d'amine tertiaire ou secondaire sévèrement encombrée dans la solution absorbante peut être comprise entre 10% et 90% poids, de préférence entre 10% et 50% poids, de manière très préférée entre 10% et 30% poids. d - Selon un mode de réalisation, la solution absorbante peut contenir un composé contenant au moins une fonction aminé primaire ou secondaire. Par exemple, la solution absorbante comporte jusqu'à une concentration de 30% poids, de préférence inférieure à 15% poids, de préférence inférieure à 10% poids dudit composé contenant au moins une fonction aminé primaire ou secondaire. De préférence, la solution absorbante comporte au moins 0,5% poids dudit composé contenant au moins une fonction aminé primaire ou secondaire. Ledit composé permet d'accélérer la cinétique d'absorption du COS et, dans certains cas, du C02 contenu dans le gaz à traiter. c - According to one embodiment, the absorbent solution may also contain a tertiary amine, for example methyldiethanolamine, triethanolamine, diethylmonoethanolamine, dimethylmonoethanolamine, ethyldiethanolamine, or secondary having a severe steric hindrance, this bulk being defined either by the presence of two tertiary carbons in alpha of the nitrogen, or by at least one quaternary carbon in alpha of the nitrogen. The concentration of tertiary amine or secondary amine severely congested in the absorbent solution may be between 10% and 90% by weight, preferably between 10% and 50% by weight, very preferably between 10% and 30% by weight. According to one embodiment, the absorbent solution may contain a compound containing at least one primary or secondary amine function. For example, the absorbent solution comprises up to a concentration of 30% by weight, preferably less than 15% by weight, preferably less than 10% by weight of said compound containing at least one primary or secondary amine function. Preferably, the absorbent solution comprises at least 0.5% by weight of said compound containing at least one primary or secondary amine function. Said compound makes it possible to accelerate the absorption kinetics of the COS and, in certain cases, the CO 2 contained in the gas to be treated.
Une liste non exhaustive de composés contenant au moins une fonction aminé primaire ou secondaire qui peuvent entrer dans la formulation est donnée ci-dessous monoéthanolamine,  A non-exhaustive list of compounds containing at least one primary or secondary amine function that may be included in the formulation is given below as monoethanolamine,
N-butyléthanolamine  N-butylethanolamine
aminoéthyléthanolamine,  aminoethylethanolamine
diglycolamine,  diglycolamine,
pipérazine,  piperazine,
1 - méthylpipérazine  1 - methylpiperazine
2- méthylpipérazine  2- methylpiperazine
N-(2-hydroxyéthyl)pipérazine,  N- (2-hydroxyethyl) piperazine,
N-(2-aminoéthyl)pipérazine,  N- (2-aminoethyl) piperazine,
morpholine,  morpholine
3- (méthylamino)propylamine.  3- (methylamino) propylamine.
1 ,6-hexanediamine et tous ses dérivés diversement N-alkylés tels par exemple la N,N'-diméthyl-1 ,6-hexanediamine, la N-méthyl-1 ,6-hexanediamine ou la N,N',N'-triméthyl-1 ,6-hexanediamine.  1,6-hexanediamine and all its variously N-alkylated derivatives such as, for example, N, N'-dimethyl-1,6-hexanediamine, N-methyl-1,6-hexanediamine or N, N ', N'- trimethyl-1,6-hexanediamine.
e - Selon un mode de réalisation, la solution absorbante peut contenir un solvant physique choisi parmi le méthanol et la sulfolane. e - According to one embodiment, the absorbent solution may contain a physical solvent selected from methanol and sulfolane.
La solution absorbante peut être utilisée pour désacidifier les effluents gazeux suivants : le gaz naturel, les gaz de synthèse, les fumées de combustion, les gaz de raffinerie, les gaz acides issus d'une unité aux aminés, les gaz issus d'une unité de réduction en queue du procédé Claus, les gaz de fermentation de biomasse, les gaz de cimenterie, les fumées d'incinérateur. Ces effluents gazeux contiennent un ou plusieurs des composés acides suivants : le C02, l'H2S, des mercaptans, du COS, du CS2, le S02. Les fumées de combustion sont produites notamment par la combustion d'hydrocarbures, de biogaz, de charbon dans une chaudière ou pour une turbine à gaz de combustion, par exemple dans le but de produire de l'électricité. A titre d'illustration, on peut mettre en œuvre le procédé selon l'invention pour absorber au moins 70%, de préférence au moins 80% voire au moins 90% du C02 contenu dans les fumées de combustion. Ces fumées ont généralement une température comprise entre 20 et 60 °C, une pression comprise entre 1 et 5 bars et peuvent comporter entre 50 et 80 % d'azote, entre 5 et 40 % de dioxyde de carbone, entre 1 et 20 % d'oxygène, et quelques impuretés comme des SOx et des NOx, s'ils n'ont pas été éliminés en amont du procédé de désacidification. En particulier, le procédé selon l'invention est particulièrement bien adapté pour absorber le C02 contenu dans des fumées de combustion comportant une faible pression partielle de C02, par exemple une pression partielle de C02 inférieure à 200 mbars. Procédé d'élimination des composés acides dans un effluent gazeux The absorbent solution can be used to deacidify the following gaseous effluents: natural gas, synthesis gases, combustion fumes, refinery gases, acid gases from an amine unit, gases from a unit Claus process bottoms, biomass fermentation gases, cement gases, incinerator fumes. These gaseous effluents contain one or more acidic compounds: CO 2 , H 2 S, mercaptans, COS, CS 2, SO 2. The combustion fumes are produced in particular by the combustion of hydrocarbons, biogas, coal in a boiler or for a combustion gas turbine, for example for the purpose of producing electricity. By way of illustration, the method according to the invention can be used to absorb at least 70%, preferably at least 80% or even at least 90% of the CO 2 contained in the combustion fumes. These fumes generally have a temperature of between 20 and 60 ° C., a pressure of between 1 and 5 bar and may comprise between 50 and 80% of nitrogen, between 5 and 40% of carbon dioxide, and between 1 and 20% of carbon dioxide. oxygen, and some impurities such as SOx and NOx, if they have not been removed upstream of the deacidification process. In particular, the process according to the invention is particularly well adapted to absorb the CO 2 contained in combustion fumes comprising a low CO 2 partial pressure, for example a CO 2 partial pressure of less than 200 mbar. Process for removing acidic compounds in a gaseous effluent
L'invention concerne également un procédé pour désacidifier un effluent gazeux, à partir de la solution aqueuse selon l'invention. Ce procédé est réalisée, de façon schématique, en effectuant une étape d'absorption suivie d'une étape de régénération, par exemple tel que représenté par la figure 1 .  The invention also relates to a process for deacidifying a gaseous effluent from the aqueous solution according to the invention. This process is carried out, schematically, by performing an absorption step followed by a regeneration step, for example as shown in FIG.
En référence à la figure 1 , l'étape d'absorption consiste à mettre en contact l'effluent gazeux 1 avec la solution absorbante 4. L'effluent gazeux 1 est introduit en fond de C1 , la solution absorbante est introduite en tête de C1 . La colonne C1 est munie de moyen de mise en contact entre gaz et liquide, par exemple un garnissage vrac, un garnissage structuré ou des plateaux de distillation. Lors du contact, les fonctions aminés des molécules de la solution absorbante réagissent avec les composés acides contenus dans l'effluent, de manière à obtenir un effluent gazeux appauvri en composés acides 2 évacué en tête de C1 , et une solution absorbante enrichie en composés acides 3 évacuée en fond de C1 pour être régénérée.  With reference to FIG. 1, the absorption step consists of bringing the gaseous effluent 1 into contact with the absorbent solution 4. The gaseous effluent 1 is introduced at the bottom of C1, the absorbent solution is introduced at the head of C1 . Column C1 is provided with gas-liquid contacting means, for example loose packing, structured packing or distillation trays. During contact, the amine functions of the molecules of the absorbent solution react with the acidic compounds contained in the effluent, so as to obtain a gaseous effluent depleted of acidic compounds 2 discharged at the head of C1, and an acid-enriched absorbent solution. 3 evacuated at the bottom of C1 to be regenerated.
L'étape de régénération consiste notamment à chauffer et, éventuellement à détendre, la solution absorbante enrichie en composés acides afin de libérer les composés acides sous forme gazeuse. La solution absorbante enrichie en composés acides 3 est introduite dans l'échangeur de chaleur E1 , où elle est réchauffée par le flux 6 provenant de la colonne de régénération C2. La solution 5 réchauffée en sortie de E1 est introduite dans la colonne de régénération C2. La colonne de régénération C2 est équipée d'internes de mise en contact entre gaz et liquide, par exemple des plateaux, des garnissages en vrac ou structurés. Le fond de la colonne C2 est équipé d'un rebouilleur R1 qui apporte la chaleur nécessaire à la régénération en vaporisant une fraction de la solution absorbante. Dans la colonne C2, sous l'effet de la mise en contact de la solution absorbante arrivant par 5 avec la vapeur produite par le rebouilleur, les composés acides sont libérés sous forme gazeuse et évacués en tête de C2 par le conduit 7. La solution absorbante régénérée 6, c'est-à-dire appauvrie en composés acides 6 est refroidie dans E1 , puis recyclée dans la colonne C1 par le conduit 4. The regeneration step consists in particular in heating and, optionally, in expanding, the absorbent solution enriched in acidic compounds in order to release the acidic compounds in gaseous form. The absorbent solution enriched in acidic compounds 3 is introduced into the heat exchanger E1, where it is heated by the stream 6 from the regeneration column C2. The heated solution at the outlet of E1 is introduced into the regeneration column C2. The regeneration column C2 is equipped with internal contacting between gas and liquid, for example trays, loose or structured packings. The bottom of column C2 is equipped with a reboiler R1 which provides the heat necessary for regeneration by vaporizing a fraction of the absorbent solution. In the column C2, under the effect of contacting the absorbent solution arriving by 5 with the vapor produced by the reboiler, the acid compounds are released in gaseous form and discharged at the top of C2 through the pipe 7. The solution regenerated absorbent 6, that is to say depleted in acidic compounds 6 is cooled in E1, then recycled in column C1 through line 4.
L'étape d'absorption des composés acides peut être réalisée à une pression dans C1 comprise entre 1 bar et 120 bars, de préférence entre 20 bars et 100 bars pour le traitement d'un gaz naturel, de préférence entre 1 bar et 3 bars pour le traitement des fumées industrielles, et à une température dans C1 comprise entre 20 ^ et Ι ΟΟ 'Ό, préférentiellement comprise entre 30 °C et 90 °C, voire entre 30 et 60 °C.  The absorption step of the acidic compounds can be carried out at a pressure in C1 of between 1 bar and 120 bar, preferably between 20 bar and 100 bar for the treatment of a natural gas, preferably between 1 bar and 3 bar. for the treatment of industrial fumes, and at a temperature in C1 of between 20% and 80%, preferably between 30 ° C and 90 ° C, or even between 30 and 60 ° C.
L'étape de régénération du procédé selon l'invention peut être réalisée par régénération thermique, éventuellement complétée par une ou plusieurs étapes de détente. The regeneration step of the process according to the invention can be carried out by thermal regeneration, optionally supplemented by one or more expansion steps.
La régénération peut être effectuée à une pression dans C2 comprise entre 1 bar et 5 bars, voire jusqu'à 10 bars et à une température dans C2 comprise entre Ι ΟΟ'Ό et 180 °C, de préférence comprise entre 130^ et 170°C. De manière préférée, la température de régénération dans C2 est comprise entre 155°C et Ι δΟ'Ό dans le cas où l'on souhaite réinjecter les gaz acides. De manière préférée, la température de régénération dans C2 est comprise entre 1 15°C et 130^ dans les cas où le gaz acide est envoyé à l'atmosphère ou dans un procédé de traitement aval, comme un procédé Claus ou un procédé de traitement de gaz de queue.  The regeneration can be carried out at a pressure in C2 of between 1 bar and 5 bar, or even up to 10 bar, and at a temperature in C2 of between Ι ΟΟ'Ό and 180 ° C., preferably of between 130 ° and 170 ° C. vs. Preferably, the regeneration temperature in C2 is between 155 ° C and Ι δΟ'Ό in the case where it is desired to reinject the acid gases. Preferably, the regeneration temperature in C2 is between 115 ° C and 130 ° in the case where the acid gas is sent to the atmosphere or in a downstream treatment process, such as a Claus process or a treatment method. of tail gas.
Le procédé selon l'invention peut être mis en œuvre pour désacidifier un gaz de synthèse. Le gaz de synthèse contient du monoxyde de carbone CO, de l'hydrogène H2 (généralement dans un ratio H2/CO égale à 2), de la vapeur d'eau (généralement à saturation à la température où le lavage est effectué) et du dioxyde de carbone C02 (de l'ordre de la dizaine de %). La pression est généralement comprise entre 20 et 30 bars, mais peut atteindre jusqu'à 70 bars. Il contient, en outre, des impuretés soufrées (H2S, COS, etc.), azotées (NH3, HCN) et halogénées. Le procédé selon l'invention peut être mis en œuvre pour désacidifier un gaz naturel. Le gaz naturel est constitué majoritairement d'hydrocarbures gazeux, mais peut contenir plusieurs des composés acides suivants : le C02, l'H2S, des mercaptans, du COS, du CS2. La teneur de ces composés acides est très variable et peut aller jusqu'à 40% pour le C02 et l'H2S. La température du gaz naturel peut être comprise entre 20^ et 100 °C. La pression du gaz naturel à traiter peut être comprise entre 10 et 120 bars. L'invention peut être mise en œuvre pour atteindre des spécifications généralement imposées sur le gaz désacidifié, qui sont 2% de C02, voire 50 ppm de C02 pour réaliser ensuite une liquéfaction du gaz naturel et de 4 ppm d'H2S, et 10 à 50 ppm volume de soufre total. The process according to the invention can be used to deacidify a synthesis gas. The synthesis gas contains carbon monoxide CO, hydrogen H 2 (generally in a ratio H 2 / CO equal to 2), water vapor (generally at saturation at the temperature where the washing is carried out) and carbon dioxide C0 2 (of the order of ten percent). The pressure is generally between 20 and 30 bar, but can reach up to 70 bar. It contains, in addition, sulfur impurities (H 2 S, COS, etc.), nitrogen (NH 3 , HCN) and halogenated impurities. The process according to the invention can be implemented to deacidify a natural gas. The natural gas consists mainly of gaseous hydrocarbons, but can contain several of the following acidic compounds: C0 2 , H 2 S, mercaptans, COS, CS2. The content of these acidic compounds is very variable and can be up to 40% for CO 2 and H 2 S. The temperature of the natural gas can be between 20 ° and 100 ° C. The pressure of the natural gas to be treated may be between 10 and 120 bar. The invention can be implemented to achieve specifications generally imposed on the deacidified gas, which are 2% of C0 2 , or even 50 ppm of C0 2 to then perform a liquefaction of natural gas and 4 ppm H 2 S and 10 to 50 ppm volume of total sulfur.
Exemple 1 : Capacité et sélectivité d'élimination de H?S d'un effluent gazeux contenant H2S et C02 par des solutions de N-méthyl-4-hydroxypipéridine, de N-méthyl-3- hydroxypipéridine et de N-éthyl-4-hydroxypipéridine : EXAMPLE 1 Ability and Selectivity of H 2 S Elimination of a Gaseous Effluent Containing H 2 S and CO 2 by Solutions of N-methyl-4-hydroxypiperidine, N-methyl-3-hydroxypiperidine and N-ethyl -4-hydroxypiperidine:
On réalise un test d'absorption à 40 °C sur des solutions aqueuses d'amine au sein d'un réacteur parfaitement agité ouvert coté gaz.  An absorption test is carried out at 40 ° C. on aqueous amine solutions in a perfectly stirred open reactor on the gas side.
Pour chaque solution, l'absorption est réalisée dans un volume liquide de 50 cm3 par bullage d'un courant gazeux constitué d'un mélange azote : dioxyde de carbone : hydrogène sulfuré de 89:10:1 en proportions volumiques, d'un débit de 30NL/h pendant 90 minutes. For each solution, the absorption is carried out in a liquid volume of 50 cm 3 by bubbling a gaseous stream consisting of a nitrogen mixture: carbon dioxide: hydrogen sulphide of 89: 10: 1 in volume proportions, of a flow rate of 30NL / h for 90 minutes.
On mesure à l'issue du test le taux de charge en H2S obtenu (a =nb de mole de H2S /kg de solvant) ainsi que la sélectivité d'absorption vis-à-vis du C02. At the end of the test, the H 2 S feedstock content obtained (a = mole of H 2 S / kg of solvent) and the absorption selectivity for C0 2 were measured.
Cette sélectivité S est définie de la manière suivante :  This selectivity S is defined as follows:
ç _ H2s (Concentration du mélangegazeux en C02 ) aco (Concentration du mélangegazeux en H2S) Dans les conditions du test décrit ici S = 10χ~ . H 2 s (Concentration of gas mixture C0 2 ) a co (concentration of gas mixture H 2 S) Under the conditions of the test described here S = 10 χ - ~ .
A titre d'exemple, on peut comparer les taux de charge et la sélectivité entre une solution absorbante de N-méthyl-4-hydroxypipéridine à 50% en poids selon l'invention, de N-méthyl-3-hydroxypipéridine à 50% en poids selon l'invention et de N-éthyl-4- hydroxypipéridine à 49% en poids selon l'invention et une solution absorbante de méthyldiéthanolamine (MDEA) à 47% en poids, composé de référence pour l'élimination sélective de l'H2S en traitement de gaz, ainsi qu'une solution absorbante de (N-méthyl-3- hydroxyméthyl) pipéridine à 50%, aminé tertiaire hétérocyclique citée dans le brevet US 4,483,833 et appartenant à la formule générale citée dans le document WO2009/1 105586 et distincte de l'invention. By way of example, it is possible to compare the degree of charge and the selectivity between an absorbent solution of N-methyl-4-hydroxypiperidine at 50% by weight according to the invention, of N-methyl-3-hydroxypiperidine at 50% by weight. weight according to the invention and N-ethyl-4-hydroxypiperidine at 49% by weight according to the invention and an absorbent solution of methyldiethanolamine (MDEA) at 47% by weight, reference compound for the elimination H 2 S selective gas treatment, and an absorbent solution of 50% (N-methyl-3-hydroxymethyl) piperidine, heterocyclic tertiary amine cited in US Patent 4,483,833 and belonging to the general formula cited in WO2009 / 1 105586 and separate from the invention.
Tableau 1  Table 1
Cet exemple illustre les gains en taux de charge et en sélectivité pouvant être atteints avec une solution absorbante selon l'invention, comprenant 50% en poids de N- méthyl-4-hydroxypipéridine ou 50% en poids de N-méthyl-3-hydroxypipéridine ou 49% en poids de N-éthyl-4-hydroxypipéridine par comparaison à la solution absorbante de référence (MDEA 47%) Cet exemple illustre que les alcanolamines tertiaires hétérocycliques ne sont pas toutes équivalentes en terme de sélectivité. En effet, la (N- méthyl-3-hydroxyméthyl) pipéridine (deuxième entrée du tableau 1 ) n'appartient pas au groupe des N-alkyl-hydroxypipéridines contrairement aux molécules de l'invention. Elle n'apporte pas de gain en sélectivité par comparaison à la solution absorbante de référence (MDEA 47%).  This example illustrates the gains in the degree of charge and selectivity that can be achieved with an absorbent solution according to the invention, comprising 50% by weight of N-methyl-4-hydroxypiperidine or 50% by weight of N-methyl-3-hydroxypiperidine. or 49% by weight of N-ethyl-4-hydroxypiperidine compared to the reference absorbent solution (MDEA 47%) This example illustrates that heterocyclic tertiary alkanolamines are not all equivalent in terms of selectivity. Indeed, (N-methyl-3-hydroxymethyl) piperidine (second entry of Table 1) does not belong to the group of N-alkyl-hydroxypiperidines unlike the molecules of the invention. It does not bring a gain in selectivity compared to the reference absorbent solution (MDEA 47%).
Il apparaît donc que les molécules revendiquées présentent des performances particulières et améliorées en termes de taux de charge et de sélectivité.  It therefore appears that the molecules claimed have particular performance and improved in terms of charge rate and selectivity.
Exemple 2 : Vitesse d'absorption du C02 d'une formulation d'amine pour un procédé d'absorption sélective. Example 2: CO 2 absorption rate of an amine formulation for a selective absorption process.
On effectue un essai comparatif d'absorption du C02 par une solution absorbante de N- méthyl-4-hydroxypipéridine à 50 %pds selon l'invention par rapport à une solution aqueuse de methyldiéthanolamine à 47 % en poids.  A comparative CO 2 absorption test was carried out with an absorbent solution of 50% by weight N-methyl-4-hydroxypiperidine according to the invention relative to an aqueous solution of methyldiethanolamine at 47% by weight.
Ces solutions sont également comparées à une solution de N-méthyl-2-hydroxyméthyl- pipéridine à 50%pds, molécule décrite dans le document WO2009/1 105586 et selon la définition du brevet US 4,483,833 ainsi que différentes solutions de composés décrits dans le brevet US 4,483,833 et selon la définition du document WO2009/1 105586 : une solution de N-(2-hydroxyéthyl)-pyrolidine à 50%pds, une solution de N-(2-hydroxyéthyl)- pipéridine à 45%pds, une solution de N-méthyl-2-hydroxyéthylpipéridine à 45%pds. These solutions are also compared to a 50% wt.% Solution of N-methyl-2-hydroxymethylpiperidine, a molecule described in WO2009 / 1 105586 and according to US Pat. US patent specification 4,483,833 and various solutions of compounds described in US Patent 4,483,833 and according to the definition of WO2009 / 1 105586: a solution of N- (2-hydroxyethyl) -pyrolidine at 50 wt%, a solution of N- (2-hydroxyethyl) -piperidine at 45% by weight, a solution of N-methyl-2-hydroxyethylpiperidine at 45% by weight.
Pour chaque essai, on mesure le flux d'absorption du C02 par la solution aqueuse dans un réacteur fermé, type cellule de Lewis. 200 g de solution est introduite dans le réacteur fermé, régulé à une température de 50 °C. On réalise quatre injections successives d'oxysulfure de carbone de 100 à 200 mbar dans la phase vapeur du réacteur ayant un volume de 200 cm3. La phase gaz et la phase liquide sont agitées à 100 tours/minutes et entièrement caractérisées du point de vue hydrodynamique. Pour chaque injection, on mesure la vitesse d'absorption du dioxyde de carbone par variation de pression dans la phase gaz. On détermine ainsi un coefficient de transfert global Kg par une moyenne des résultats obtenus sur les 4 injections. For each test, the C0 2 absorption flux is measured by the aqueous solution in a closed reactor, such as a Lewis cell. 200 g of solution is introduced into the closed reactor, regulated at a temperature of 50 ° C. Four successive injections of carbon oxysulfide of 100 to 200 mbar are carried out in the vapor phase of the reactor having a volume of 200 cm 3 . The gas phase and the liquid phase are stirred at 100 revolutions / minute and fully characterized from the hydrodynamic point of view. For each injection, the rate of absorption of the carbon dioxide is measured by variation of pressure in the gas phase. An overall transfer coefficient Kg is thus determined by an average of the results obtained on the four injections.
Les résultats obtenu sont présentés dans le tableau 2 en vitesse d'absorption relative à la formulation de référence methyldiéthanolamine 47%, cette vitesse d'absorption relative étant définie par le rapport du coefficient de transfert global du solvant sur le coefficient de transfert global de la formulation de référence.  The results obtained are shown in Table 2 as the relative absorption rate of the reference formulation methyldiethanolamine 47%, this relative absorption rate being defined by the ratio of the overall transfer coefficient of the solvent to the overall transfer coefficient of the reference formulation.
Tableau 2 L'examen des résultats fait ressortir, dans ces conditions de test, une vitesse d'absorption du C02 par la formulation à base de N-méthyl-4-hydroxypipéridine selon l'invention plus lente par rapport à la formulation de référence MDEA, contrairement aux autres molécules citées dans l'art antérieur. Il apparaît donc que la molécule exemplifiée selon l'invention présente un intérêt particulier et amélioré dans le cas d'une désacidification sélective dans laquelle on cherche à limiter la cinétique d'absorption du C02. Table 2 Examination of the results shows, under these test conditions, a rate of absorption of CO2 by the formulation based on N-methyl-4-hydroxypiperidine according to the invention slower than the reference formulation MDEA, unlike to the other molecules cited in the prior art. It therefore appears that the molecule exemplified according to the invention is of particular interest and improved in the case of a selective deacidification in which it is sought to limit the kinetics of C02 absorption.
Exemple 3. Vitesse d'absorption du C02 d'une formulation activée Example 3. CO 2 absorption rate of an activated formulation
On compare la vitesse d'absorption du C02 par une solution absorbante contenant 39%pds de méthyldiéthanolamine et 6.7%pds de pipérazine dans l'eau à une solution absorbante selon l'invention contenant 39%pds de N-méthyl-4-hydroxypipéridine et 6.7%pds de pipérazine dans l'eau. The absorption rate of CO 2 is compared with an absorbent solution containing 39% by weight of methyldiethanolamine and 6.7% by weight of piperazine in water to an absorbent solution according to the invention containing 39% by weight of N-methyl-4-hydroxypiperidine. and 6.7 wt% piperazine in water.
Dans chaque essai, un gaz renfermant du C02 est mis au contact du liquide absorbant en opérant dans un réacteur à film tombant vertical muni dans sa partie supérieure d'une sortie gaz et d'une entrée pour le liquide et dans sa partie inférieure d'une entrée pour le gaz et d'une sortie pour le liquide. Par l'entrée gaz, on injecte avec un débit variant entre 30 et 50 Nl/h un gaz renfermant 10% de C02 et 90% d'azote et par l'entrée pour le liquide, on introduit le liquide absorbant avec un débit de 0,5 l/h. Par la sortie gaz, on évacue un gaz appauvri en C02 et par la sortie liquide, on évacue le liquide enrichie en C02.  In each test, a gas containing CO 2 is contacted with the absorbing liquid by operating in a vertical falling film reactor provided in its upper part with a gas outlet and an inlet for the liquid and in its lower part. an inlet for the gas and an outlet for the liquid. Through the gas inlet, a gas containing 10% CO 2 and 90% nitrogen is injected at a flow rate of between 30 and 50 Nl / h and the liquid inlet is introduced with a flow rate of 0.5 l / h. Through the gas outlet, a CO 2 depleted gas is evacuated and the liquid outlet is evacuated and the CO 2 enriched liquid is evacuated.
La pression absolue et la température en sortie liquide sont égales respectivement à 1 bar et 40 <€. The absolute pressure and the liquid temperature at the outlet are respectively equal to 1 bar and 40 <€.
Pour chaque essai, on mesure le flux de C02 absorbée entre l'entrée et la sortie gaz en fonction du débit de gaz entrant : pour chaque consigne de débit gaz : 30 - 35 - 40 - 45 - 50 Nl/h, le gaz entrant et sortant sont analysés par des techniques d'absorption de rayon Infra Rouge dans la phase gaz pour déterminer leur teneur en C02. A partir de l'ensemble de ces mesures, en réalisant deux montées - descentes de la gamme des débits, on en déduit le coefficient de transfert global Kg caractérisant la vitesse d'absorption du liquide absorbant. For each test, the flow of C0 2 absorbed between the gas inlet and the gas outlet is measured as a function of the incoming gas flow rate: for each gas flow setpoint: 30 - 35 - 40 - 45 - 50 Nl / h, the gas incoming and outgoing are analyzed by infrared ray absorption techniques in the gas phase to determine their C0 2 content. From all these measurements, by performing two ups and downs of the range of flow rates, the overall transfer coefficient Kg is deduced, characterizing the absorption speed of the absorbing liquid.
Les conditions opératoires spécifiques à chaque essai et les résultats obtenus sont présentés dans le tableau 3. Composition de la solution absorbante aqueuse The operating conditions specific to each test and the results obtained are presented in Table 3. Composition of the aqueous absorbent solution
Aminé tertiaire Activateur  Tertiary amine Activator
Concentration Concentration Concentration Concentration
Nature Nature Vitesse  Nature Nature Speed
(% en poids) (% en poids)  (% by weight) (% by weight)
d'absorption relative du C02 relative absorption of C02
MDEA 39 Pipérazine 6,7 1 MDEA 39 Piperazine 6.7 1
N-méthyl-4-hydroxypipéridine  N-methyl-4-hydroxypiperidine
(selon invention ) 39 Pipérazine 6,7 1 ,24  (according to the invention) 39 piperazine 6.7 1, 24
Tableau 3  Table 3
L'examen des résultats du tableau 3 fait ressortir la vitesse améliorée d'absorption du C02 présentée par les solutions absorbantes selon l'invention par rapport à celles que possèdent la solution absorbante témoin renfermant un mélange MDEA-pipérazine connus de l'homme du métier.  Examination of the results in Table 3 shows the improved rate of absorption of CO 2 exhibited by the absorbent solutions according to the invention compared with those of the control absorbent solution containing an MDEA-piperazine mixture known to those skilled in the art. .
Exemple 4 : Capacité de captage de la N-méthyl-4-hydroxypipéridine Example 4: Capture capacity of N-methyl-4-hydroxypiperidine
Les performances de capacité de captage du C02 de la N-méthyl-4- hydroxypipéridine selon l'invention sont comparées notamment à celles d'une solution aqueuse de MonoEthanolAmine à 30 % poids, qui constitue le solvant de référence pour une application de captage du C02 contenu dans des fumées en post-combustion. Elles sont également comparées à celles d'une solution de aqueuse de N-méthyl-2- hydroxyméthylpipéridine, citée dans le brevet US4,405,582 contenant le même pourcentage poids de diamine tertiaire et de pipérazine. On réalise un test d'absorption sur des solutions aqueuses d'amine au sein d'un réacteur fermé parfaitement agité et dont la température est contrôlée par un système de régulation. Pour chaque solution, l'absorption est réalisée dans un volume liquide de 50 cm3 par des injections de C02 pur à partir d'une réserve. La solution de solvant est préalablement tirée sous vide avant toute injection de C02. La pression de la phase gaz dans le réacteur est mesurée et un bilan matière global sur la phase gaz permet de mesurer le taux de charge du solvant a = nb de mole gaz acide/nb de mole aminé. The performance of the C0 2 capture capacity of the N-methyl-4-hydroxypiperidine according to the invention is compared in particular with those of an aqueous solution of MonoEthanolAmine at 30% by weight, which constitutes the reference solvent for a capture application. of C0 2 contained in post-combustion fumes. They are also compared with those of a solution of aqueous N-methyl-2-hydroxymethylpiperidine, cited in US Patent 4,405,582 containing the same weight percentage of tertiary diamine and piperazine. An absorption test is carried out on aqueous amine solutions in a perfectly stirred closed reactor whose temperature is controlled by a control system. For each solution, the absorption is carried out in a liquid volume of 50 cm 3 by injections of pure CO 2 from a reserve. The solvent solution is previously drawn under vacuum before any CO 2 injection. The pressure of the gas phase in the reactor is measured and an overall material balance on the gas phase makes it possible to measure the solvent loading rate a = nb of mole acid gas / nb of amine mole.
A titre d'exemple, on compare dans le tableau 4 les taux de charge (a = nb de mole gaz acide/nb de mole aminé) obtenus à 40 ^ pour différentes pressions partielles de C02 entre une solution aqueuse de N-méthyl-4-hydroxypipéridine 30%pds selon l'invention, une solution aqueuse de N-méthyl-2-hydroxyméthylpipéridine molécule décrite dans le document WO2009/1 105586 à 30%pds et une solution aqueuse de MonoEthanolAmine, à 30 % en poids pour une application de captage du C02 en postcombustion. By way of example, the feed rates (a = nb of mole acid gas / nb of amine mole) obtained at 40 ° C. for various partial pressures of CO 2 between an aqueous solution of N-methyl- 4-hydroxypiperidine 30% by weight according to the invention, an aqueous solution of N-methyl-2-hydroxymethylpiperidine molecule described in the document WO2009 / 1 105586 at 30% by weight and an aqueous solution of MonoEthanolAmine, at 30% by weight for a post-combustion C0 2 capture application.
Pour passer d'une grandeur du taux de charge obtenu au laboratoire à une grandeur caractéristique du procédé, quelques calculs sont nécessaires, et sont explicités ci-dessous pour l'application visée :  To go from a quantity of the charge rate obtained in the laboratory to a characteristic quantity of the process, some calculations are necessary, and are explained below for the intended application:
Dans le cas d'une application de captage du C02 en post-combustion, les pressions partielles de C02 dans l'effluent à traiter sont typiquement 0,1 bar avec une température de 40 °C, et l'on souhaite abattre 90 % du gaz acide. On calcule la capacité cyclique ΔαΡ0 exprimée en moles de C02 par kg de solvant, en considérant que le solvant atteint sa capacité thermodynamique maximale en fond de colonne d'absorption et doit au moins être régénéré en dessous de sa capacité thermodynamique dans les conditions de la tête de colonne bar pour réaliser 90 % d'abattement du C02. In the case of an application of CO 2 capture in post-combustion, the partial pressures of CO 2 in the effluent to be treated are typically 0.1 bar with a temperature of 40 ° C., and it is desired to slaughter 90 % of the acid gas. The cyclic capacity Δα Ρ0 expressed in moles of C0 2 per kg of solvent is calculated, considering that the solvent reaches its maximum thermodynamic capacity at the bottom of the absorption column and must at least be regenerated below its thermodynamic capacity under the conditions of the column head bar to achieve 90% reduction of C0 2 .
AOCpc = {(Xppco )' [^] ' 10 M AOC pc = {(Xppco) '[^]' 10 M
où [A] est la concentration d'amine exprimée en % poids, et M la masse molaire de l'aminé en g/mol, sont les taux de charge (mole C02/mole d'amine) du solvant en équilibre respectivement avec une pression partielle de 0,1 bar et 0,01 bar de C02. where [A] is the concentration of amine expressed in% by weight, and M is the molar mass of the amine in g / mol, are the feed ratios (mole C0 2 / mole of amine) of the solvent in equilibrium respectively with a partial pressure of 0.1 bar and 0.01 bar of CO 2 .
L'enthalpie de réaction peut être obtenue par calcul à partir de plusieurs isothermes d'absorption du C02 en appliquant la loi de Van't Hoff. The reaction enthalpy can be obtained by calculation from several CO 2 absorption isotherms by applying the Van't Hoff law.
Tableau 4 Pour une application captage des fumées en post-combustion où la pression partielle de C02 dans l'effluent à traiter est de 0.1 bar, cet exemple illustre la plus grande capacité cyclique obtenue grâce à une solution absorbante de N-méthyl-4- hydroxypipéridine selon l'invention, comprenant 30 % poids de molécules pour atteindre un taux d'abattage de 90 % en sortie d'absorbeur. Dans cette application où l'énergie associée à la régénération de la solution est critique, on peut remarquer que l'aminé selon l'invention permet d'obtenir un bien meilleur compromis que la MEA, en termes de capacité cyclique et d'enthalpie de réaction. On observe également un gain en termes de capacité cyclique et d'enthalpie de réaction de la N-méthyl-4-hydroxypipéridine selon l'invention comparée à la N-méthyl-2-hydroxyméthylpipéridine décrite dans le document WO2009/1 105586. Table 4 For post-combustion fume extraction application where the partial pressure of C0 2 in the effluent to be treated is 0.1 bar, this example illustrates the greater cyclic capacity obtained thanks to an absorbing solution of N-methyl-4-hydroxypiperidine according to the invention, comprising 30% by weight of molecules to achieve a felling rate of 90% at the absorber outlet. In this application where the energy associated with the regeneration of the solution is critical, it can be observed that the amine according to the invention makes it possible to obtain a much better compromise than the MEA, in terms of cyclic capacity and heat transfer. reaction. There is also a gain in terms of cyclic capacity and reaction enthalpy of N-methyl-4-hydroxypiperidine according to the invention compared to N-methyl-2-hydroxymethylpiperidine described in WO2009 / 1 105586.
Exemple 5 : Capacité de captage du C02 de solutions de la N-méthyl-4- hydroxypipéridine activée avec de la pipérazine. Application au traitement des fumées en post-combustion EXAMPLE 5 Capacity for C0 2 Capture of Solutions of N-Methyl-4-hydroxypiperidine Activated with Piperazine Application to post-combustion flue gas treatment
Les performances de capacité de captage du C02 d'une solution aqueuse de N- méthyl-4-hydroxypipéridine selon l'invention en mélange avec la pipérazine sont comparées notamment à celles d'une solution aqueuse de monoéthanolamine à 30 % poids, qui constitue le solvant de référence pour une application de captage du C02 contenu dans des fumées en post-combustion. Elles sont également comparées à celles d'une solution aqueuse de N-méthyl-2-hydroxyméthylpipéridine, décrite dans le document WO2009/1 105586 contenant le même pourcentage poids d'amine tertiaire et de pipérazine. The performance of C0 2 capture capacity of an aqueous solution of N-methyl-4-hydroxypiperidine according to the invention in a mixture with piperazine is compared in particular with those of an aqueous solution of monoethanolamine at 30% by weight, which constitutes the reference solvent for a CO 2 capture application contained in post-combustion fumes. They are also compared with those of an aqueous solution of N-methyl-2-hydroxymethylpiperidine, described in document WO2009 / 1 105586 containing the same weight percentage of tertiary amine and piperazine.
Les tests d'absorption réalisés sont comme décrits dans l'exemple précédent. A titre d'exemple, on compare dans le tableau 5 les taux de charge (a = nb de mole gaz acide/nb de mole aminé) obtenus à 40 °C pour différentes pressions partielles de C02 entre une solution absorbante de N-méthyl-4-hydroxypipéridine selon l'invention à 39 % en poids et contenant 6,7% en poids de pipérazine pour accélérer la cinétique de captage du C02 en post-combustion, une solution absorbante de monoéthanolamine à 30 % en poids, ainsi qu'une solution absorbante de N-méthyl-2-hydroxyméthylpipéridine à 39 % en poids et contenant 6,7% en poids de pipérazine. The absorption tests carried out are as described in the previous example. By way of example, the feed rates (a = nb of mole acid gas / mole of amine) obtained at 40 ° C. for various partial pressures of C0 2 between an absorbent solution of N-methyl are compared in Table 5. -4-hydroxypiperidine according to the invention to 39% by weight and containing 6.7% by weight of piperazine to accelerate the uptake kinetics of C0 2 in the post-combustion, an absorbent solution of monoethanolamine to 30% by weight, as well as an absorbent solution of N-methyl-2-hydroxymethylpiperidine at 39% by weight and containing 6.7% by weight of piperazine.
Les taux de charge sont comme définis dans l'exemple précédent. On calcule la capacité cyclique ΔαΡ0 exprimée en moles de C02 par kg de solvant, de la même manière que dans l'exemple 2 : Charge rates are as defined in the previous example. The cyclic capacity Δα Ρ0 expressed in moles of CO 2 per kg of solvent is calculated in the same manner as in Example 2:
AOCpc = [pCppco )' [^] ' 10 M où [A] est la concentration totale d'amine exprimée en % poids, et dans le cas des mélanges d'amine, M est la masse molaire moyenne du mélange d'amines en g/mol : AOC pc = [pCppco) '[^]' 10 M where [A] is the total concentration of amine expressed as% by weight, and in the case of amine mixtures, M is the average molar mass of the amine mixture in g / mol:
M = [AT]/([AT]/MAT+[PZ]/Mpz), M = [A T] / ([A T] / M AT + [PZ] / Mpz)
où [AT], [PZ] sont respectivement les concentrations en aminé tertiaire et en pipérazine, exprimées en % poids, MAT et MPZ sont respectivement les masses molaires de la aminé tertiaire et de la pipérazine en mol/kg where [A T ], [PZ] are the concentrations of tertiary amine and piperazine, expressed in weight%, M AT and M PZ are respectively the molar masses of the tertiary amine and piperazine in mol / kg
Tableau 5  Table 5
Pour une application captage des fumées en post-combustion où la pression partielle de C02 dans l'effluent à traiter est de 0.1 bar, cet exemple illustre la plus grande capacité cyclique obtenue grâce à la solution absorbante selon l'invention, comprenant 39 % poids de de N-méthyl-4-hydroxypipéridine selon l'invention et 6,7 % poids de pipérazine pour atteindre un taux d'abattage de 90 % en sortie d'absorbeur par rapport à la MEA 30 % poids. For post-combustion fume extraction application where the partial pressure of C0 2 in the effluent to be treated is 0.1 bar, this example illustrates the greater cyclic capacity obtained thanks to the absorbent solution according to the invention, comprising 39% weight of N-methyl-4-hydroxypiperidine according to the invention and 6.7% by weight of piperazine to achieve a felling rate of 90% at the outlet of the absorber compared to MEA 30% by weight.
On observe également un gain en termes de capacité cyclique de la formulation selon l'invention comparée à la formulation contenant le même pourcentage poids de N-méthyl- 2-hydroxyméthylpipéridine décrit dans le document WO2009/1 105586 et le même pourcentage poids de pipérazine. There is also a gain in terms of the cyclic capacity of the formulation according to the invention compared to the formulation containing the same weight percentage of N-methyl- 2-hydroxymethylpiperidine described in WO2009 / 1 105586 and the same weight percentage of piperazine.
Exemple 6 : Capacité d'absorption du C02 de solutions de la N-méthyl-4- hydroxypipéridine activée avec de la pipérazine. Application à la décarbonatation en traitement du gaz naturel Example 6 Absorption capacity of CO 2 of solutions of N-methyl-4-hydroxypiperidine activated with piperazine. Application to decarbonation in natural gas treatment
Les performances de capacité d'absorption du C02 d'une solution aqueuse de N- méthyl-4-hydroxypipéridine selon l'invention en mélange avec la pipérazine sont comparées notamment à celles d'une solution aqueuse de méthyldiéthanolamine en mélange avec la pipérazine contenant le même pourcentage poids d'amine tertiaire et de pipérazine, connue de l'homme du métier pour éliminer le C02 dans le traitement du gaz naturel. Elles sont également comparées à celles d'une solution aqueuse de N-méthyl-2- hydroxyméthylpipéridine, décrite dans le document WO2009/1 105586 contenant le même pourcentage poids d'amine tertiaire et de pipérazine. The performance of the absorption capacity of C0 2 of an aqueous solution of N-methyl-4-hydroxypiperidine according to the invention in a mixture with piperazine is compared in particular with those of an aqueous solution of methyldiethanolamine mixed with piperazine containing the same weight percentage of tertiary amine and piperazine, known to those skilled in the art to remove CO 2 in the treatment of natural gas. They are also compared with those of an aqueous solution of N-methyl-2-hydroxymethylpiperidine, described in document WO2009 / 1 105586 containing the same weight percentage of tertiary amine and piperazine.
Les tests d'absorption réalisés sont comme décrits dans l'exemple précédent. The absorption tests carried out are as described in the previous example.
A titre d'exemple, on compare dans le tableau 6 les taux de charge (a = nb de mole gaz acide/nb de mole aminé) obtenus à 40 °C pour une pression partielle de C02 égale à 3bar entre une solutions absorbante de N-méthyl-4-hydroxypipéridine selon l'invention à 39 % en poids et contenant 6,7% en poids de pipérazine, une solution absorbante de méthyldiéthanolAmine à 39 % en poids et contenant 6,7% en poids de pipérazine, ainsi qu'une solution absorbante de N-méthyl-2-hydroxyméthylpipéridine à 39 % en poids et contenant 6,7% en poids de pipérazine. By way of example, the feed rates (a = nb of mole acid gas / mole of amine mole) obtained at 40 ° C. for a partial pressure of CO 2 equal to 3 bar between an absorbent solution of N-methyl-4-hydroxypiperidine according to the invention at 39% by weight and containing 6.7% by weight of piperazine, an absorbent solution of methyldiethanolAmin at 39% by weight and containing 6.7% by weight of piperazine, as well as an absorbent solution of N-methyl-2-hydroxymethylpiperidine at 39% by weight and containing 6.7% by weight of piperazine.
Dans le cas d'une application de décarbonatation en traitement du gaz naturel, les pressions partielles de C02 sont typiquement centrées entre 1 et 10 bar avec une température de 40qC, et l'on souhaite éliminer la quasi-totalité du C02 en vue d'une liquéfaction du gaz naturel. Pour comparer les différents solvants, on calcule la capacité cyclique maximale AaLNG,max exprimée en moles de C02 par kg de solvant, en considérant que le solvant atteint sa capacité thermodynamique maximale en fond de colonne d'absorption et est totalement régénéré dans les conditions de la tête de colonne. In the case of a decarbonation application in natural gas treatment, the partial pressures of C0 2 are typically centered between 1 and 10 bar with a temperature of 40 q C, and it is desired to eliminate almost all the C0 2 for liquefaction of natural gas. To compare the different solvents, the maximum cyclic capacity Aa LN G, max expressed in moles of CO 2 per kg of solvent is calculated, considering that the solvent reaches its maximum thermodynamic capacity at the bottom of the absorption column. and is fully regenerated under the conditions of the column head.
Δΰ^σ {a ) ' [A] · 10 /  Δΰ ^ σ {a) '[A] · 10 /
où [A] est la concentration totale d'amine exprimée en % poids, et dans le cas des mélanges d'amine, M est la masse molaire moyenne du mélange d'amines en g/mol : M = [AT]/([AT]/MAT+[PZ]/Mpz), where [A] is the total concentration of amine expressed in weight%, and in the case of amine mixtures, M is the average molar mass of the mixture of amines in g / mol: M = [A T] / ([A T] / M AT + [PZ] / Mpz)
où [AT], [PZ] sont respectivement les concentrations en aminé tertiaire et en pipérazine, exprimées en % poids, MAT et MPZ sont respectivement les masses molaires de la aminé tertiaire et de la pipérazine en mol/kg where [A T ], [PZ] are the concentrations of tertiary amine and piperazine, expressed in weight%, M AT and M PZ are respectively the molar masses of the tertiary amine and piperazine in mol / kg
est le taux de charge (mole C02/mole d'amine) du solvant en équilibre respectivement avec une pression partielle de 3bar de C02. is the charge ratio (mole C0 2 / mole of amine) of the solvent in equilibrium respectively with a partial pressure of 3 bar of CO 2 .
Tableau 6 Pour une application de décarbonatation totale en traitement du gaz naturel, cet exemple illustre la plus grande capacité cyclique obtenue grâce à la solution absorbante selon l'invention, comprenant 39 % poids de de N-méthyl-4-hydroxypipéridine selon l'invention et 6,7 % poids de pipérazine par rapport à la formulation de référence contenant 39 % poids de MDEA et 6,7 % poids de pipérazine.  Table 6 For a total decarbonation application in natural gas treatment, this example illustrates the greater cyclic capacity obtained thanks to the absorbent solution according to the invention, comprising 39% by weight of N-methyl-4-hydroxypiperidine according to the invention. and 6.7% by weight of piperazine relative to the reference formulation containing 39% by weight of MDEA and 6.7% by weight of piperazine.
On observe également un gain en termes de capacité cyclique de la formulation selon l'invention comparée à la formulation contenant le même pourcentage poids de N-méthyl- 2-hydroxyméthylpipéridine décrit dans le document WO2009/1 105586 et le même pourcentage poids de pipérazine. Exemple 7 : Stabilité d'une solution d'amine selon l'invention. There is also a gain in terms of cyclic capacity of the formulation according to the invention compared to the formulation containing the same weight percentage of N-methyl-2-hydroxymethylpiperidine described in WO2009 / 1 105586 and the same weight percentage of piperazine. Example 7 Stability of an Amine Solution According to the Invention
Les aminés mises en œuvre selon l'invention présentent la particularité d'être particulièrement résistantes aux dégradations qui peuvent se produire dans une unité de désacidification. On réalise un test de dégradation sur des solutions aqueuses d'amine au sein d'un réacteur fermé et dont la température est contrôlée par un système de régulation. Pour chaque solution, le test est réalisé dans un volume liquide de 50 cm3 injecté dans le réacteur. La solution de solvant est préalablement tirée sous vide avant toute injection de gaz et le réacteur est ensuite placé dans une coque chauffante à la température de consigne et mis sous agitation magnétique. On injecte alors le gaz concerné à la pression partielle souhaitée. Cette pression est ajoutée à la pression initiale due à la tension de vapeur de la solution aqueuse d'amine. Différentes conditions de dégradation sont testées: The amines used according to the invention have the particularity of being particularly resistant to the degradations that may occur in a deacidification unit. A degradation test is carried out on aqueous solutions of amine in a closed reactor whose temperature is controlled by a control system. For each solution, the test is carried out in a liquid volume of 50 cm 3 injected into the reactor. The solvent solution is previously drawn under vacuum before any gas injection and the reactor is then placed in a heating shell at the set temperature and stirred magnetically. The gas in question is then injected at the desired partial pressure. This pressure is added to the initial pressure due to the vapor pressure of the aqueous amine solution. Different degradation conditions are tested:
- dégradation sous C02 : on injecte du C02 de manière à atteindre une pression partielle de 20 bar - degradation under C0 2 C0 2 is injected so as to attain a partial pressure of 20 bar
- dégradation sous 02 : on injecte de l'air sous une pression partielle de 20 bars ce qui donne une pression partielle d'oxygène de 4,2 bars. degradation under 0 2 : air is injected under a partial pressure of 20 bars, which gives an oxygen partial pressure of 4.2 bars.
Le tableau 7 donne le taux de dégradation TD, par dégradation sous C02, de la N-méthyl-4-hydroxyméthylpipéridine selon l'invention, et de la N-méthyl-2- hydroxyméthylpipéridine décrite dans le document WO2009/1 105586 ainsi que la MEA comme aminés de références, pour une durée de 15 jours, défini par l'équation ci- dessous : Table 7 gives the degradation rate TD, by degradation under C0 2 , of N-methyl-4-hydroxymethylpiperidine according to the invention, and of N-methyl-2-hydroxymethylpiperidine described in document WO2009 / 1 105586 as well as the MEA as reference amines, for a duration of 15 days, defined by the equation below:
[A] - [A]°  [A] - [A] °
TD(%) =  TD (%) =
[A]° où [A] est la concentration du composé dans l'échantillon dégradé, et [A] 0 est la concentration du composé dans la solution non dégradée. Les concentrations [A] et [A] 0 sont déterminées par chromatographie en phase gaz. [A] where [A] is the concentration of the compound in the degraded sample, and [A] 0 is the concentration of the compound in the non-degraded solution. The concentrations [A] and [A] 0 are determined by gas phase chromatography.
Aminé Concentration T ( <C) TD(%) Amine Concentration T ( < C) TD (%)
ME A 30 % poids 140 42 % ME 30% weight 140 42%
N-méthyl-2- hydroxyméthylpipéridine (décrite  N-methyl-2-hydroxymethylpiperidine (described
dans le document 50 % poids 140 1 1 % WO2009/1 105586)  in the document 50% weight 140 1 1% WO2009 / 1 105586)
N-méthyl-4- hydroxyméthylpipéridine (selon 50 % poids 1 % N-methyl-4-hydroxymethylpiperidine (according to 50% weight 1%
l'invention)  the invention)
Tableau 7  Table 7
Le tableau 8 donne le taux de dégradation TD, par dégradation sous 02, de la N-méthyl-4-hydroxyméthylpipéridine selon l'invention, ainsi que la MEA comme aminé de référence, pour une durée de 15 jours, défini comme précédemment : Table 8 gives the degradation rate TD, by degradation under 0 2 , of the N-methyl-4-hydroxymethylpiperidine according to the invention, as well as the MEA as reference amine, for a period of 15 days, defined as above:
PP02 = 4,2 bar PP 02 = 4.2 bar
Aminé Concentration T (°C) TD(%) Amine Concentration T (° C) TD (%)
MEA 30 % poids 140 21 % MEA 30% weight 140 21%
N-méthyl-4- hydroxyméthylpipéridine (selon 50 % poids 140 2 %  N-methyl-4-hydroxymethylpiperidine (according to 50% weight 140 2%
l'invention)  the invention)
Tableau 8  Table 8
Le tableau 9 donne le taux de dégradation TD, par dégradation sous C02 de la N-méthyl- 4-hydroxyméthylpipéridine selon l'invention et de la pipérazine en mélange avec cette dernière dans une solution absorbante, ainsi que la MDEA comme aminé de référence, et de la pipérazine en mélange avec cette dernière dans une autre solution absorbante, pour une durée de 15 jours, le taux de dégradation de chaque aminé étant défini comme précédemment : Table 9 gives the degradation rate TD, by degradation under C0 2 of the N-methyl-4-hydroxymethylpiperidine according to the invention and piperazine mixed with the latter in an absorbent solution, and the MDEA as reference amine. , and piperazine mixed with the latter in another absorbent solution for a period of 15 days, the degradation rate of each amine being defined as above:
TD aminé tertaire TD pipérazine (%) TD Tertiary amine TD piperazine (%)
Solution absorbante T ( <C) Absorbent solution T ( < C)
(%)  (%)
MDEA 39% + pipérazine 6.7% 140 13 % 43 %  MDEA 39% + piperazine 6.7% 140 13% 43%
N-méthyl-4- hydroxyméthylpipéridine 39% + 140 5% 8%  N-methyl-4-hydroxymethylpiperidine 39% + 140 5% 8%
pipérazine 6.7%  piperazine 6.7%
Tableau 9  Table 9
Cet exemple montre que l'utilisation des composés selon l'invention, comme aminé dans une solution absorbante permet d'obtenir un faible taux de dégradation par rapport aux solutions absorbantes à base d'amines de l'art antérieur (monoéthanolamine et N- méthyl2-hydroxyméthylpipéridine décrite dans le document WO2009/1 105586). This example shows that the use of the compounds according to the invention, as amine in an absorbing solution makes it possible to obtain a low degradation rate compared to amine-based absorbent solutions of the prior art (monoethanolamine and N-methyl2 -hydroxymethylpiperidine described in WO2009 / 1 105586).
En mélange avec la pipérazine, il indique également un taux de dégradation plus faible des composés selon l'invention ainsi que la pipérazine en mélange avec eux, en comparaison de la méthyldiéthanolamine en mélange avec la pipérazine. In mixture with piperazine, it also indicates a lower degradation rate of the compounds according to the invention as well as piperazine mixed with them, in comparison with methyldiethanolamine mixed with piperazine.
Par conséquent, il est possible de régénérer la solution absorbante à plus forte température et donc d'obtenir un gaz acide à plus forte pression. Ceci est particulièrement intéressant dans le cas du captage du C02 en post-combustion ou des applications de décarbonatation en traitement du gaz naturel dans lesquels le gaz acide doit être comprimé pour être liquéfié avant réinjection. Therefore, it is possible to regenerate the absorbent solution at higher temperature and thus to obtain an acid gas at higher pressure. This is particularly interesting in the case of C0 2 capture in post-combustion or decarbonation applications in natural gas treatment in which the acid gas must be compressed to be liquefied before reinjection.

Claims

REVENDICATIONS
1. Solution absorbante pour éliminer des composés acides contenus dans un effluent gazeux, comportant : An absorbent solution for removing acidic compounds contained in a gaseous effluent, comprising:
a - de l'eau ;  a - water;
b - au moins un composé choisi dans le groupe des N-alkyl-3-hydroxypipéridines et N-alkyl-4-hydroxypipéridines répondant à la formule générale (I) :  b - at least one compound chosen from the group of N-alkyl-3-hydroxypiperidines and N-alkyl-4-hydroxypiperidines corresponding to the general formula (I):
dans laquelle le radical hydroxyle peut être situé en position 3 ou en position 4 par rapport à l'atome d'azote du cycle pipéridine, et R est un radical alkyle contenant un à six atomes de carbone, et de préférence un à trois atomes de carbone.  in which the hydroxyl radical can be located in position 3 or in position 4 with respect to the nitrogen atom of the piperidine ring, and R is an alkyl radical containing one to six carbon atoms, and preferably one to three carbon atoms. carbon.
Solution absorbante selon la revendication 1 , dans laquelle le composé est choisi mi les composés suivants :  Absorbent solution according to claim 1, wherein the compound is selected from the following compounds:
N-méthyl-4-hydroxypipéridine N-méthyl-3-hydroxypipéridine N-éthyl-3-hydroxypipéridine N-methyl-4-hydroxypiperidine N-methyl-3-hydroxypiperidine N-ethyl-3-hydroxypiperidine
3. Solution absorbante selon l'une des revendications précédentes, comportant entre 10 % et 90 % en poids dudit composé, de préférence entre 20% et 60% poids, de manière très préférée entre 25% et 50% poids. 3. Absorbent solution according to one of the preceding claims, comprising between 10% and 90% by weight of said compound, preferably between 20% and 60% by weight, very preferably between 25% and 50% by weight.
4. Solution absorbante selon l'une des revendications précédentes, comportant entre 10 % et 90 % en poids d'eau, de préférence entre 40% et 80% poids d'eau, de manière très préférée de 50% à 75% d'eau. 4. Absorbent solution according to one of the preceding claims, comprising between 10% and 90% by weight of water, preferably between 40% and 80% by weight of water, very preferably from 50% to 75% of water. water.
5. Solution absorbante selon l'une des revendications précédentes, comportant une aminé supplémentaire, ladite aminé supplémentaire étant une aminé tertiaire, telle que la méthyldiéthanolamine, ou une aminé secondaire présentant deux carbones tertiaires en alpha de l'azote, ou une aminé secondaire présentant au moins un carbone quaternaire en alpha de l'azote. Absorbent solution according to one of the preceding claims, comprising an additional amine, said additional amine being a tertiary amine, such as methyldiethanolamine, or a secondary amine having two carbons. Tertiary in alpha of nitrogen, or a secondary amine having at least one quaternary carbon in alpha of nitrogen.
6. Solution absorbante selon la revendication 5, comportant entre 10% et 90% poids de ladite aminé supplémentaire, de préférence entre 10% et 50% poids, de manière très préférée entre 10% et 30% poids.  Absorbent solution according to claim 5, comprising between 10% and 90% by weight of said additional amine, preferably between 10% and 50% by weight, very preferably between 10% and 30% by weight.
7. Solution absorbante selon l'une des revendications précédentes, comportant un composé contenant au moins une fonction aminé primaire ou secondaire.  7. Absorbent solution according to one of the preceding claims, comprising a compound containing at least one primary or secondary amine function.
8. Solution absorbante selon la revendication 7, comportant une concentration jusqu'à 30% poids dudit composé, de préférence inférieure à 15% poids, de préférence inférieure à 10% poids, et au moins 0,5% poids.  8. Absorbent solution according to claim 7, comprising a concentration up to 30% by weight of said compound, preferably less than 15% by weight, preferably less than 10% by weight, and at least 0.5% by weight.
9. Solution absorbante selon l'une des revendications 7 et 8, comportant une concentration d'au moins 0,5% poids dudit composé.  9. Absorbent solution according to one of claims 7 and 8, comprising a concentration of at least 0.5% by weight of said compound.
10. Solution absorbante selon l'une des revendications 7 à 9, dans laquelle ledit composé est choisi parmi :  10. Absorbent solution according to one of claims 7 to 9, wherein said compound is selected from:
- Monoéthanolamine,  - Monoethanolamine,
N-butyléthanolamine  N-butylethanolamine
Aminoéthyléthanolamine,  aminoethylethanolamine
Diglycolamine,  diglycolamine,
Pipérazine,  piperazine
- 1 -méthylpipérazine  - 1-methylpiperazine
2-méthylpipérazine  2-methylpiperazine
N-(2-hydroxyéthyl)pipérazine,  N- (2-hydroxyethyl) piperazine,
N-(2-aminoéthyl)pipérazine,  N- (2-aminoethyl) piperazine,
Morpholine,  morpholine
- 3-(méthylamino)propylamine.  3- (methylamino) propylamine.
1 ,6-hexanediamine et tous ses dérivés diversement N-alkylés tels par exemple la N,N'-diméthyl-1 ,6-hexanediamine, la N-méthyl-1 ,6-hexanediamine ou la N,N',N'-triméthyl-1 ,6-hexanediamine.  1,6-hexanediamine and all its variously N-alkylated derivatives such as, for example, N, N'-dimethyl-1,6-hexanediamine, N-methyl-1,6-hexanediamine or N, N ', N'- trimethyl-1,6-hexanediamine.
11. Solution absorbante selon l'une des revendications précédentes, comportant un solvant physique choisi parmi le méthanol et la sulfolane.  11. Absorbent solution according to one of the preceding claims, comprising a physical solvent selected from methanol and sulfolane.
12. Procédé d'élimination des composés acides contenus dans un effluent gazeux, dans lequel on effectue une étape d'absorption des composés acides par mise en contact de l'effluent avec une solution absorbante selon l'une quelconque des revendications 1 à 1 1 . 12. A process for removing the acidic compounds contained in a gaseous effluent, in which an absorption step of the acidic compounds is carried out by contacting the effluent with an absorbent solution according to any one of claims 1 to 1 .
13. Procédé selon la revendication 12, dans lequel l'étape d'absorption des composés acides est réalisée à une pression comprise entre 1 bar et 120 bars, et à une température comprise entre 20 °C et 100°C. 13. The method of claim 12, wherein the step of absorbing the acidic compounds is carried out at a pressure between 1 bar and 120 bar, and at a temperature between 20 ° C and 100 ° C.
14. Procédé selon l'une quelconque des revendications 12 et 13, dans lequel, après l'étape d'absorption, on obtient un effluent gazeux appauvri en composés acides et une solution absorbante chargée en composés acides, et on effectue au moins une étape de régénération de la solution absorbante chargée en composés acides.  14. Process according to any one of claims 12 and 13, wherein, after the absorption step, a gaseous effluent depleted of acidic compounds and an absorbent solution loaded with acidic compounds are obtained, and at least one step is carried out. regeneration of the absorbent solution loaded with acidic compounds.
15. Procédé selon la revendication 14, dans lequel l'étape de régénération est réalisée à une pression comprise entre 1 bar et 10 bars et une température comprise entre 100 <C et 180 <C. 15. The method of claim 14, wherein the regeneration step is carried out at a pressure between 1 bar and 10 bar and a temperature between 100 < C and 180 < C.
16. Procédé selon l'une des revendications 12 à 15, dans lequel l'effluent gazeux est choisi parmi le gaz naturel, les gaz de synthèse, les fumées de combustion, les gaz de raffinerie, les gaz acides issus d'une unité aux aminés, les gaz issus d'une unité de réduction en queue du procédé Claus, les gaz de fermentation de biomasse, les gaz de cimenterie, les fumées d'incinérateur.  16. Method according to one of claims 12 to 15, wherein the gaseous effluent is selected from natural gas, synthesis gas, combustion fumes, refinery gases, acid gases from a unit with Amines, gases from a Claus process bottling reduction unit, biomass fermentation gases, cement gases, incinerator fumes.
17. Procédé selon l'une des revendications 12 à 16, mis en œuvre pour l'élimination sélective de l'H2S d'un effluent gazeux comportant de l'H2S et du C02. 17. Method according to one of claims 12 to 16, implemented for the selective removal of H 2 S from a gaseous effluent comprising H 2 S and CO 2 .
EP13808112.0A 2012-12-07 2013-11-25 Absorbent solution made from amines belonging to the n-alkyl-hydroxypiperidine family and method for eliminating acid compounds from a gaseous effluent with such a solution Withdrawn EP2928582A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1203330A FR2999094B1 (en) 2012-12-07 2012-12-07 AMINOUS ABSORBENT SOLUTION BELONGING TO THE N-ALKYL-HYDROXYPIPERIDINE FAMILY AND METHOD FOR REMOVING ACIDIC COMPOUNDS FROM A GASEOUS EFFLUENT WITH SUCH A SOLUTION
PCT/FR2013/052848 WO2014087075A1 (en) 2012-12-07 2013-11-25 Absorbent solution made from amines belonging to the n-alkyl-hydroxypiperidine family and method for eliminating acid compounds from a gaseous effluent with such a solution

Publications (1)

Publication Number Publication Date
EP2928582A1 true EP2928582A1 (en) 2015-10-14

Family

ID=47902028

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13808112.0A Withdrawn EP2928582A1 (en) 2012-12-07 2013-11-25 Absorbent solution made from amines belonging to the n-alkyl-hydroxypiperidine family and method for eliminating acid compounds from a gaseous effluent with such a solution

Country Status (4)

Country Link
US (1) US20150314230A1 (en)
EP (1) EP2928582A1 (en)
FR (1) FR2999094B1 (en)
WO (1) WO2014087075A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015187272A1 (en) * 2014-06-02 2015-12-10 Board Of Regents, The University Of Texas System Thermally stable amines for co2 capture
CN118454413A (en) * 2024-05-28 2024-08-09 苏州优碳科技有限公司 Carbon dioxide absorbent, carbon dioxide capturing system and application method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4101633A (en) * 1977-02-14 1978-07-18 Exxon Research & Engineering Co. Process and composition for removing carbon dioxide containing acidic gases from gaseous mixtures
US4405582A (en) 1982-01-18 1983-09-20 Exxon Research And Engineering Co. Process for selective removal of H2 S from mixtures containing H22 using diaminoether solutions
US4483833A (en) 1982-01-18 1984-11-20 Exxon Research & Engineering Co. Process for selective removal of H2 S from mixtures containing H22 with heterocyclic tertiary aminoalkanols
US4483333A (en) 1982-06-01 1984-11-20 Wrf/Aquaplast Corporation Orthopedic cast
DE19947845A1 (en) 1999-10-05 2001-04-12 Basf Ag Processes for removing COS from a hydrocarbon fluid stream and wash liquid for use in such processes
JP5557426B2 (en) 2008-03-07 2014-07-23 公益財団法人地球環境産業技術研究機構 Aqueous solution and method for efficiently absorbing and recovering carbon dioxide in gas
JP5331468B2 (en) 2008-03-07 2013-10-30 富士フイルム株式会社 Azo pigment composition, method for producing azo pigment composition, dispersion containing azo pigment composition, coloring composition, and ink for ink jet recording

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2014087075A1 *

Also Published As

Publication number Publication date
FR2999094A1 (en) 2014-06-13
FR2999094B1 (en) 2015-04-24
US20150314230A1 (en) 2015-11-05
WO2014087075A1 (en) 2014-06-12

Similar Documents

Publication Publication Date Title
EP2310110B1 (en) Absorbent solution based on n,n,n&#39;,n&#39;-tetramethylhexane-1,6-diamine and on one particular amine comprising primary or secondary amine functional groups and process for removing acid compounds from a gaseous effluent
CA2783697A1 (en) Method for removing acid compounds from a gaseous effluent using a diamine-based absorbent solution
CA2783719A1 (en) Method for removing acid compounds from a gaseous effluent using a triamine-based absorbent solution
WO2014001664A1 (en) Absorbent solution made from tertiary diamines belonging to the hindered aminoethyl morpholine family and method for eliminating acid compounds from a gaseous effluent
EP2776141B1 (en) Method for eliminating acidic compounds from a gaseous effluent using an absorbent solution made from dihydroxyalkylamines having a severe steric encumbrance of the nitrogen atom
WO2016055258A1 (en) Method for eliminating acid compounds from a gaseous effluent with an absorbent solution made from diamines belonging to the 1,3-diamino-2-propanol family
EP2785435B1 (en) Method for eliminating acid compounds from a gaseous effluent with an absorbent solution made from bis(amino-3-propyl)ethers or (amino-2-ethyl)-(amino-3-propyl)ethers
WO2014001669A1 (en) Absorbent solution containing amines from the aminoalkylpiperazine family, and method for removing acid compounds from a gaseous effluent using such a solution
WO2017102746A1 (en) Absorbent solution based on hydroxyl derivatives of 1,6-hexanediamine and method for eliminating acid compounds from a gaseous effluent
EP3148674B1 (en) Absorbent solution containing a mixture of 1,2-bis-(2-dimethylaminoethoxy)-ethane and 2-[2-(2- dimethylaminoethoxy)-ethoxy]-ethanol, and method for eliminating acid compounds from a gas effluent
EP2928582A1 (en) Absorbent solution made from amines belonging to the n-alkyl-hydroxypiperidine family and method for eliminating acid compounds from a gaseous effluent with such a solution
EP2836287A1 (en) Method for processing a gas stream by absorption
WO2015007970A1 (en) Process for removing acidic compounds from a gaseous effluent with a dihydroxyalkylamine-based absorbent solution
EP2931403A1 (en) Process for removing acid compounds from a gaseous effluent using an absorbent solution based on 1,2-bis(2-dimethylaminoethoxy)ethane and on an activator
WO2011138517A1 (en) Absorbent solution based on ν,ν,ν&#39;,ν&#39;-tetraethyl diethylenetriamine and method for removing acid compounds from a gaseous effluent
FR3021049A1 (en) NOVEL BETA-HYDROXYLATED TERTIARY DIAMINS, PROCESS FOR THEIR SYNTHESIS AND THEIR USE FOR THE REMOVAL OF ACIDIC COMPOUNDS FROM A GASEOUS EFFLUENT
WO2014114862A2 (en) Absorbent solution based on a tertiary or hindered amine and on a particular activator and process for removing acidic compounds from a gas effluent
FR3014101A1 (en) ABSORBENT SOLUTION BASED ON N, N, N &#39;, N&#39;-TETRAMETHYL-1,6-HEXANEDIAMINE AND N, N, N&#39;, N&#39;-TETRAMETHYLDIAMINOETHER AND METHOD FOR REMOVING ACIDIC COMPOUNDS FROM A GASEOUS EFFLUENT

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150707

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160601